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Abstract 
Despite a large variety of processes that can control Mo and its potential to become an environ- 
mental tracer of euxinic environment, this element is not often studied in lakes. The aim of this 
paper is to identify main seasonal biogeochemical processes that involve Mo in a well constrained 
freshwater system (Lake Pavin water-column) in order to evaluate their respective importance. In 
Lake Pavin, 4 main processes have been identified: 1) the transitional process represented by Mo 
assimilation of by phytoplankton in the epilimnion (nitrogen biological fixation and nitrate assi- 
milation); 2) transient process represented by dissolved Mo adsorption onto Fe and Mn metal 
oxides at oxic/anoxic interface (depth 50 - 60 m); 3) Mo precipitation where apparent sulfide 
production rate is maximum, and from 80 m depths; 4) release of dissolved Mo due to Mo benthic 
flux or input from a deep source. 
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1. Introduction 
Mo is a trace element which interests both geochemists and biochemists because it plays an important role in 
natural biogeochemical cycles of elements such as nitrogen and sulphur cycle where they are bound to molyb- 
denum by specific enzymes [1] [2]. Mo is also considered in marine sediment records as a proxy of anoxic paleo-en- 
vironments where sulphide builds up and precipitate molybdenum [3]-[7]. In spite of molybdenum biological 
properties and potential reactivity in aquatic systems, there are very few works on lake ecosystem. Particularly, 
there is a lack of publications that compare to different biogeochemical processes [8]. 

The aim of this research is to identify processes that involve Mo in a well constrained freshwater system in 
order to evaluate their respective importance. Lake Pavin is the perfect natural laboratory to study dynamic be- 
haviour of Mo in presence both of microalgaes, manganese and iron oxides productive layers and sulphidic lay- 
ers. 

2. Biogeochemical Background 
Mo is a biologically essential trace element [9]-[15]; however, unlike many bioactive elements, variations in 
ocean are small [16]-[19]. Consistent with its generally conservative ocean distribution, Mo has a high saline- 
ty-normalized dissolved concentration (110 nM) [16] [17] and a modern-ocean residence time of approximately 
0.8 million years [20] [21]. Rivers serve as the dominant source term for Mo to the ocean; whereas anoxic ma-
rine sedimentary systems are believed to be the primary sinks [19]-[32]. 

Mo is introduced into cells in molybdate ions form and operates in various enzymes where it oscillates 
between stages MoIV and MoVI. Unlike iron or manganese, molybdenum is not used as a final acceptor of 
electrons in cells [2]. Different categories of Mo enzymes were revealed by crystallography on cells of model 
bacteria (i.e., Escherichia coli) and can be classified on one hand in two categories linked to nitrogen cycle: 
nitrogenase (Enzyme multimeric complex) which is irreversibly inhibited by molecular oxygen and molybdoen- 
zymes essentially represented by nitrate reductases [33]. On the other hand, Mo enzymes such as sulfite oxidase, 
formate dehydrogenase and aldehyde oxidase, were also identified [34]. They play a role in aquatic systems in 
the oxidation of sulphite to sulphate and dimethyl sulfo oxide to dimethyl sulphide. 

At the global scale, Mo is a rare metal (0.001% of the earth crust). In natural waters and especially in oxic 
conditions, Mo is present mainly under the form of molybdate ( 2

VI4Mo − ). Its chemical characteristics are a strong 
chemical inertia, as a result of covalent bonds between Mo and O, and high solubility [31]. In lakes water 
column depending on oxygen conditions, processes would tend to follow a vertical sequence. Mo is important in 
biological processes like nitrogen fixation and nitrate assimilation under oxic conditions in lakes epilimnion. In 
seawater where molybdenum concentration is above 100 nM, the effect of biological uptake on molybdenum 
vertical distribution is not visible. In continental waters where concentrations are ten times lower, it might be 
worth checking for this biological signature. In oxygened waters iron and manganese hydrated oxides are also 
effective extractors of molybdenum [35]. Molybdates ions can be adsorbed onto oxides manganese authigenic 
and transported to anoxic compartment (bottom waters or sediment-water interface). This reaction allows a 
major molybdate redistribution throughout water column however, this observation does not explain moly- 
bdenum fixation in sediment [35]-[37]. In anoxic condition molybdenum is strongly associated with natural 
colloidal organic matter [38], or directly complexed by the natural organic matter [39]. Following the possible 
transformation of molybdate to thiomolybdates (Equations (1) to (5), molybdenum can co-precipitate with iron 
sulfides and organic molecules-rich sulphide participating in the capture and long term sequestration of moly- 
bdenum [27] [40] [41]. 

( ) ( )
2 2
4 2 3 2aq lMoO  H S MoO S H O− −+ ↔ +                                          (1) 

( ) ( )
2 2

3 2 2 2 2aq lMoO S H S MoO S H O− −+ ↔ +                            (2) 

( ) ( )
2 2

2 2 2 3 2aq lMoO S H S MoS H O− −+ ↔ +                            (3) 

( ) ( )
2 2
3 2 4 2aq lMoS  H S MoS H O−+ ↔ +                             (4) 

( ) ( )
2 2
4 2 4 2aq lMoO  4H S MoS  H O− −+ ↔ +                                          (5) 
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The equilibrium constant of reaction is: 

( ) ( )( ){ }42 2 19
4 4 2MoS MoO H S 7.4 10K − −= = ×  

Very recently precipitation of a previously unrecognized, probably nanoscale Fe(II)-Mo(VI) sulfide mineral 
with predicted formula Fe5Mo3S14 is postulated for sulfidic anoxic water column of Rogoznica Lake [42]. 

3. Study Site: Lake Pavin 
Scientific literature about lake Pavin biogeochemistry is quantitatively imortant: [38] [43]-[69]. Lake Pavin is a 
small (0.44 km2), but deep (92 m), nearly circular lake located at an altitude of 1197 m in the French Massif 
Central (45˚30'N, 2˚54'E). It occupies a maar crater which was formed 6900 years ago [54]. It represents the 
most recent period of volcanic activity in the Massif Central. Its geological setting is similar to that of other 
maar lakes such as Lake Nyos (Cameroon) or Laacher See (Germany). Lake Pavin is meromictic. It is characte- 
rized by the presence of permanent stratified layers: the upper layer called mixolimnion (0 to 60 m depth) is af- 
fected by seasonal mixing; an intermediate layer called mesolimnion (60 to 70 m depth); the deepest layer called 
monimolimnion (about 70 to 92 m depth). Mesolimnion and monimolimnion are anoxic and progressively 
enriched with depth in reduced compounds (ions Fe2+, Mn2+, 4NH+ …) and gazes such as CO2 and CH4 [54,70], 
as well as of many trace element [60] [61]. Molybdenum showed strong removal in the mesolimnion and a 
strong association with natural dissolved organic matter in the monimolimnion [38]. The monimolimnion is of-
ten con- sidered to have reached a geochemical steady state [58]. Dissolved molybdenum in the water column 
comes from 16 surface streams (Figure 1) and sublacustrine inputs. 

Subsurface inputs at about 45 m and 85 m are discussed in [60] [61] and [71]. Basically, the 45 m depth input 
has a composition close to surface running waters with an average flow rate close to the average visible surface 
input [71]. The 85 m depth input has a composition influenced by mineral springs emerging in the area. The best 
surrogate is Fontaine Goyon a mineral spring located 1.5 km from Lake Pavin crater. Regular visual observa- 
tions indicate that the water level of the lake has been stable, within an uncertainty of 50 cm, for at least several 
decades. Dissolved molybdenum in rain is <1 nM [61]. 
 

 
            Figure 1. Tributaries location (France) and Lake Pavin.                                   
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4. Methods 
Water column and rivers sampled were collected and analyzed during METANOX multidisciplinary project 
(Biodiversity and Metabolism in Anoxic Aquatic Systems). During this project, 17 monthly campaigns from 
May 2006 to August 2007 were carried out. 

4.1. Water Column Monitoring 
During first campaigns, samples were collected from a platform (45˚29.740N, 2˚53.280E) at depth by a 50 ml 
syringe sampler. For other campaigns we used a syringe of 1 liter. This latter syringe sampler is a lab-made 
prototype designed for an accurate sampling depth and to avoid gas bubble formation during retrieval. Small 
tributaries are sampled for various analyses directly with a 50 mL Polypropylene syringe. Filtration is done with a 
Sartorius Luer membrane support rinsed with the sample immediately after retrieving the syringes. Filtered 
samples for trace element analyses (i.e., molybdenum) are acidified with Merck Suprapur nitric acid. In addition 
tests of chemical entity sizing were done using ultrafiltration in the monimolimnion [38], for operational details. 
Separative membrane allowed the following cut off sizes: 1 kDa, 5 kDa, 10 kDa, 0.45 µm. 

4.2. Settling Particles 
Settling particles in Lake Pavin were collected at 4 strategic depths according to physical and biogeochemical 
stratification: 23 m (below biological production), 58 m (above the mesolimnion), 70 m (below the mesolimnion), 
and 88 m (above sediment). For June, July, August and September 2006 campaigns, 4 lab-made sediment traps 
deployed on individual lines [61] were maintained in position by a 15 kg weight at the lake bottom and a buoy at 
the lake surface. Concerning the remaining campaigns 4 Uwitec® sediment traps have been used on a single 
vertical line attached to a platform in the center of the lake. Two cylinders per depth were available. Sodium azide 
was used as a poison to prevent particles degradation by microorganism. Immediately after sampling, settled 
samples are filtered under nitrogen atmosphere on GFF membrane with average size of 0.6 mm. 

4.3. Diatoms Culture 
In order to estimate independently the potential impact of molybdenum uptake by algae on the lake water 
column, Diatoms Aulacoseira italica (phytoplankton dominant species, 80% of microalgae species in February- 
March 2007) was grown in the lab from a known quantity of molybdenum. Diatoms originated from LMGE 
collection at University of Clermont-Ferrand. 100 nM of molybdenum were added in Synura growth medium 
[72] (Table 1). The culture was carried out in one control and 3 replicates. Control (250 ml) is equivalent of 
synura medium while each replicats consists of 250 ml synura medium and 50 ml of homogenized diatoms 
strains. The culture has been carried out on a regular workbench at 25˚C with alternating outdoor daylight and 
outdoor darkness. Samples were taken daily to measure absorbance at 670 nm in order to estimate algal biomass 
growth. 

All visible spectroscopic measurements were carried out on an ICP-MS by using an internal standard 115In (1 
µg/L) to correct matrix effects and derivatives. 

Analytical quality was made by a SLR4, certified standard. Mo was determined in filtered and acidified samples 
by ICP-MS. 

Table 1. Growth media for diatoms culture.                                                                  

Synura Media (Mignot-Brugerolle, 1982) in 1 L 
Chemical formula m (g) M (g∙mol−1) C (mol∙L−1) 

CaCl22H2O 
MgSO47H2O 

NaHCO3 
K2HPO4 
NaNO3 

Na2SIO35H20 

0.03676 
0.03697 
0.0126 

0.00403 
0.8501 

0.02842 

147 
246 
84 

174.18 
85 
212 

2.50E−04 
1.50E−04 
1.50E−04 
2.31E−05 
1.00E−02 
1.34E−04 

+5 ml of oligo-nutrients solution, 1 ml of Thiamine HCl, 5 ml of biotine, 0.5 ml of B12 vitamin, pH adjusted at 7.5 ± 0.2 with Suprapur HCl. 
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4.4. Laboratory and Field Analyses 
4.4.1. Auxiliary Parameters 
In order to locate physico-chemical gradients, vertical CTD profiles are done with a Seacat Seabird CTD profiler 
(pressure/depth, temperature, conductivity, dissolved oxygen, pH). It has resulted in situ vertical profiles of main 
physical and chemical parameters over the entire water column of the lake. 

4.4.2. Iron and Manganese 
Dissolved iron (II) is measured by colorimetry at 565 nm by the ferrozine method [61]. Dissolved manganese 
concentration is determined by ICP-AES (Optima 3000, Perkin Elmer). 

4.4.3. Nitrate, Sulphate and Total Sulphide 
Volatile and oxidizable sulfide is trapped after filtration at the time of sampling by precipitation in the form of 
insoluble zinc sulfide. These solid/colloids are maintained in suspension with the addition of gelatin. Sulfide is 
measured colorimetrically at 665 nm. Nitrate and sulfate are determined with ion chromatography after addition 
of cadmium acetate to prevent sulfide oxidation to sulfate. 

4.4.4. Molybdenum 
Samples stored in the dark at 5˚C in Polypropylen tubes were analyzed by ICP-MS (X7 series Thermo 
Scientific). ICP-MS analyses were calibrated with an external standardization. Internal standard technique using 
115In at 1 µg/L was used in order to correct matrix and drift effect. Particles samples obtained from sediment 
traps were analysed at CRPG (Nancy, France) for C, H, N and S. For molybdenum, only two samples were 
analysed at CRPG (58 m and 70 m) by ICP-MS after complete sample dissolution. 

5. Results 
5.1. Mixolimnion Stratification 
Figure 2 shows vertical profiles of temperature in Lake Pavin. During 2006, surface temperature increases until 
July before decreasing by nearly 5˚C in August. At this time the metalimnion moves down allowing surface wa- 
ter to mix partly with hypolimnion waters. Cooling down goes on until autumn when the lake surface starts to 
freeze. From melting ice in March 2007 to June 2007, temperature goes up. 

Figure 3 presents dissolved oxygen concentrations evolution in Lake Pavin. Residual peak of oxygen is 
almost always visible at metalimnion depth (excluding December when no significant peak is observed). During 
high photosynthesis activity (supersaturation is often observed in the epilimnion), oxygen accumulates in the 
less dynamic zone (metalimnion) where exchange with the atmosphere or with the hypolimnion is limited. From 
May to September the oxycline rises up in the water column from 58 to 52 m. When the oxycline rises upward 
in the water column the chemocline (shown through the iron profile in Figure 4 does not undergo such vertical 
shift (nearly 10 meters). 

5.2. Redox Biogeochemical Cycles  
Nitrate, spite of input surface concentration >20 µmol∙L−1, shows almost constantly concentrations <5 µmol∙L−1 
in the epilimnion (Figure 5) mostly due to uptake by growing phytoplankton. Nitrification of large concentra- 
tions of ammonium (>1 mmol∙L−1) can explain the presence of a nearly constant nitrate peak above the meso-
limnion. 

Iron (II) (Figure 4) and manganese (Figure 6) in very low concentration in the mixolimnion show significant 
accumulations in the meso-monimolimnion layers; especially dissolved iron for which concentrations reach 1 
mmol∙L−1. Consequently, metal oxides formed in the oxycline zone are likely to be present [62] and might fol- 
low the oxycline when rising up. Sulfate reduction within the mesolimnion causes the production of sulfide 
(Figure 7), sulfide oxidation by-products (S(0)) and colloidal iron sulfide [68] [69]. Sulfide results are very 
close to those published by [58]. 

5.3. Molybdenum 
Roughly, dissolved molybdenum in tributaries ranges from 5 to 15 nmol∙L−1 (Figure 8(a)) depending on tributary 
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Figure 2. Lake pavin—Temperature data.                                                                     
 

 
                      Figure 3. Lake pavin—Oxygen data.                             
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                             Figure 4. Iron (II) in deep layers of Lake Pavin.      

 

 
                    Figure 5. Nitrate seasonal dynamics in Lake Pavin.                    
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                            Figure 6. Manganese in deep layers of Lake Pavin.    
 

 
                            Figure 7. Sulphate and sulphide in Lake Pavin.       
 
or period of the year. From measured flow rates (Figure 8(b)), one can calculate a weighted average concentration 
entering the lake annually of 11 nmol∙L−1. In deep layers, ultrafiltration results (Figure 9(a)) point out the 
presence of molybdenum in rather large molecules >10 kDa. Organic molecules (Figure 9(b)) are the best 
candidates to carry molybdenum in the monimolimnion through binary or ternary association however association 
with iron sulfide species cannot be ruled out [42]. 

From May 2006 to October 2006, slight dissolved molybdenum depletion is observable in the epilimnion 
(Figure 10). This feature disappears in autumn when the mixolimnion becomes homogeneous. More permanent is 
the removal feature observable in the oxycline zone (about 50 m depth). Also permanent but more consequent is 
the removal feature that is observed within the mesolimnion and already described in [61]. The maximum removal 
leading to concentrations <5 nmol∙L−1 occurs in the zone of maximum sulfide production (Figure 10).  

5.4. CHNS 
Table 2 presents the results obtained on settling particles from sediments traps. Their average carbon content is 
close to 12% (Table 2). The highest value (19%) is found in the hypolimnion whereas the lowest value is found in 
the monimolimion (7.5%) corresponding likely to partly degraded material. This can also be observed in nitrogen 
content which varies from 2 in the mixolimnion to 1% in the monimolimnion. Degradation by-products are likely 
to be the source of organic macromolecules detected in the monimolimnion.  

Mass fluxes show higher values during March and April. This period corresponds to the bloom of diatoms 
(Table 3). In this period, analyses show that Mo concentrations are varying between 9.304 and 13.53 ppm 

5.5. Diatoms Culture 
Absorbance measurements for control and replicates show (Figure 11(a)) a lag phase until day 6, followed by a 
nearly exponential growth until a stationar activity which is recorded in the last day of the experiment. Corres- 
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(a) 

 
(b) 

      Figure 8. (a) Molybdenum seasonal dynamics in tributaries; (b) Mo flow rate dynamics of tributaries.        
 
ponding molybdenum uptake shows (Figure 11(b)) the same lag period but followed by a constant removal rate 
until reaching the stationary phase. Direct (filament) cell counting with an optic microscope from an aliquot is 
rather difficult and lead to less smoothed data (Figure 11(c)); cell∙L−1). If one presume that molybdenum uptake in 
the experiment is related to assimilation alone and not adsorption at cell surface (which remains to be proven), it is 
possible to calculate a first order estimate of molybdenum growth requirement (in this experiment) per cell unit. 
Such estimation leads to 5 × 10−6 nmol∙cell−1. 
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(a)                                                    (b) 

Figure 9. (a) Molybdenum size; (b) DOC size.                                                                
 

 
      Figure 10. Dissolved molybdenum seasonal dynamics.                                              

Table 2. Mass % of C, H, N and S measured on settling particles.                                                 

Mass % 

Samples Identification 
February-2007-(with NaN3) (23 m) 

March-2007-(with NaN3) (23 m) 
April-2007-(with NaN3) (23 m) 

May-June-2007-(with NaN3) (23 m) 
February-2007-(with NaN3) (58 m) 
March 2007-(with NaN3 ) (58 m) 
February-07-(with NaN3 ) (70 m) 
March-2007-(with NaN3 ) (70 m) 

February-2007-(with NaN3 ) (88 m 
March-2007-(with NaN3 ) (88 m) 

N 
1.41 
1.81 
2.10 
1.69 
1.33 
1.43 
1.70 
1.13 
1.38 
1.06 

C 
10.46 
14.43 
19.25 
12.76 
9.19 

10.78 
14.69 
7.98 
9.76 
7.53 

H 
2.38 
2.91 
2.91 
2.80 
2.47 
2.79 
2.73 
2.29 
2.74 
2.1 

S 
0.24 
0.17 
  
0.11 
0.12 
0.11 
  
0.17 
0.19 
0.16 

 Any chemical analyses. 

6. Discussions 
6.1. Evidence of Phytoplankton Growth Impact on Dissolved Mo Distribution  

in the Mixolimnion 
Nitrate reductase is an enzyme used both in nitrate assimilation in cells and also during intermediate steps of  
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Table 3. Mass fluxes obtained by traps sediment.                                                              

Flux (g/m2/day) 
 23 mm 58 mm 70 mm 88 mm 

Dates of campaigns 
June-06 
July-06 

August-06 
September-06 

October-06 
November-06 
February-07 

March-07 
April-07 
May-07 

without 
NaN3 
0.16 
0.78 
0.13 
0.04 
0.09 
0.18 
0.17 

3 
3.49 
0.38 

with NaN3 
* 
* 
* 
* 

0.2 
0.21 
0.19 
2.05 
3.3 

0.38 

without NaN3 
0.13 
0.81 
1.99 
0.09 
0.08 
0.24 
0.19 
0.15 
5.94 
2.71 

with NaN3 
* 
* 
* 
* 

0.26 
0.22 
0.25 
4.01 
2.53 
0.312 

without NaN3 
0.02 
0.73 
1.12 
0.12 
0.22 
0.3 

0.11 
1.26 
4.17 
0.59 

with NaN3 
* 
* 
* 
* 

0.24 
0.35 
0.1 

1.11 
2.32 
0.59 

without NaN3 
0.46 
1.53 
0.34 
0.09 
0.28 
0.28 
0.44 
0.67 
1.34 
0.67 

with 
NaN3 

* 
* 
* 
* 

0.3 
0.41 
0.65 
0.8 

1.83 
0.60 

* means traps with single pipe. 
 

 
(a)                                                    (b) 

 
(c) 

Figure 11. (a) Aulacoseira italica culture: absorbance (DO); (b) Aulacoseira italica culture: Molybdenum; (c) Aulacoseira 
italica culture: cell number equivalent.                                                                       
 
nitrification. Since both processes are obviously active in Lake Pavin, as well as denitrification as suggested by 
[70], it would be straightforward to attribute the epilimnion slight depletion in spring and summer to mi- 
crobiological activity. On one hand, one cannot exclude, tributaries seasonal variations to explain the observation 
since the average input of 11 nmol∙L−1 matches closely the winter value of the mixolimnion. On the other hand, 
during high productivity period for diatoms (late February to late March), it is usual to find more than 107 cell∙L−1. 
This would correspond to a growth uptake of 50 nmol∙L−1 in the right order of magnitude to influence epilimnion 
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molybdenum concentration. Though the growth dynamics is not completely solved to conclude definitely and the 
direct transfer from lab pure culture to the field can be strongly biased, this simple approach supports the idea of a 
visible molybdenum uptake par phytoplankton.  

6.2. Oxycline Seasonal Change and Molybdenum Adsorption/Release onto/from Metal  
Oxides 

Along with the rise of the oxycline, molybdenum depletion moves also upward in the mixolimnion (i.e., 
decrease starts shallower), supporting the idea of a removal by adsorption onto authigenic metal oxides. How- 
ever, the depletion maximum corresponds also roughly to the layers of the “river type” sublacustrine input. The 
intake of slightly less concentrated water would create the depletion of few nmol∙L−1. The use of a dynamic 
reactive transport model of the lake would probably solve this assumption. 

6.3. Long Term Control by Iron and Sulfur Species 
Removal feature in the mesolimnion has already been observed by [60] [61]. However, the seasonal study allows 
demonstrating the permanence of this process. Viollier [61] have already published particulate Mo data that 
demonstrate the strong formation of Mo-bearing particles in the mesolimnion: 2 to 4 nmol∙L−1 were measured. 
This concentration is very significant in comparison to dissolved molybdenum in the monimolimnion (4 to 10 
nmol∙L−1). Framboïdal pyrite was also discovered more than a decade ago forming in Lake Pavin [61] while very 
recent work revealed the presence of S0 in micromolar levels and the presence of colloidal FeS which comprises 
around 70% of total sulfide measured in nonfiltered samples [68] [69]. 

Thiomolybdates are postulated as key species in sulfidic aquatic systems. However, they are not yet measured 
in such environments. If thiomolybdates formation is the first step of molybdenum scavenging, these species must 
be stable in such solution.  

Thiomolybdates equilibrium concentrations from the first molybdate sulfuration to monothiomolybdate (0 - 1) 
until the formation of tetrathiomolybdate (reaction 3 - 4) were calculated by use of MinQL+ (equilibrium calcu- 
lation software, [73] from Mo and sulfide data measured by colorimetry constants from Erickson and Helz [74] 
corrected and rearranged according to Lake Pavin ionic strength were used for calculation.  

0 1logK 12.38 0.03− = ± ; 1 2logK 24.5 0.12− = ± ; 2 3logK 36.53 0.13− = ± ; 3 4logK 48.59 0.28− = ±  

The equilibrium model output is shown on Figure 12. 
Contrary to the Black Sea [74], there is no total transformation to tetrathiomolybdate due to a lack of free sulfide. 

At the most, dissolved molybdenum in the monimolimnion is roughly half under the form of molybdate and half 
under the form of monothiomolybdate, the less reactive form of thiomolybdates. Vorlicek [4] suggest that thi- 
omolybdates adsorbed onto iron sulfide and onto pyrite form Fe-Mo-S cluster stabilized by the reduction of 
Mo(VI) to Mo(V or IV) in presence of H2S and S(0)-donors. More recently Helz et al. [42] even suggest a min- 
eral’s formula that applies in sulfidic anoxic marine environment (Fe5Mo3S14) however the same model does not 
fit completely Lake Pavin Mo data. Until now thiomolybdates cannot be measured in the environment directly but 
Lake Pavin mesolimnion seems to have all necessary conditions to fit the more consensual removal pathway of 
dissolved molybdenum in sulfidic environment: thermodynamically possible thiomolybdates formation, adsorp- 
tion onto and co-precipitation with iron sulfide. 

The subsistence of stable molybdate in the monimolimnion and its association with natural organic matter [38] 
would most probably explain the incomplete removal of dissolved molybdenum for the anoxic compartments. 
Viollier [61] showed that iron oxyhydroxides formed in the mixolimnion of Lake Pavin mainly dissolve at the 
sediment-water interface. The reductive dissolution of these carrier phases would release molybdenum and con- 
tribute to the deep enhancement of its concentration. This statement is highly in accordance with FeS profile 
previously given in papers [68] [69]. 

7. Conclusion 
The seasonal study of dissolved molybdenum allowed the observation of transient phenomenon likely explained 
by microalgae uptake in the epilimnion. Oscillating feature of dissolved molybdenum depletion at intermediate 
depth is explained by adsorption onto iron and manganese oxyhydroxides and/or by the injection of a sublacu- 
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         Figure 12. Dissolved molybdenum speciation in Lake Pavin.                                   
 
strine input containing lower molybdenum concentration. The depletion zone, however, follow more or less the 
oxycline rise up. This characteristic would argue for the adsorption pathway. In this work, it has also been shown 
that strong removal in the sulfidic zone is permanent and does not respond significantly to seasonal changes. The 
most favorable removal pathway involves thiomolybdates formation and reaction with authigenic iron sulfides. At 
what extent, natural organic matter is involved in long term removal or burial of molybdenum, is still in debate. 
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