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ABSTRACT 13 

The planktonic diatoms belonging to two genera Chaetoceros and Bacteriastrum, included 14 

within the family Chaetocerotaceae, are ecologically important as they represent a constitutive 15 

component of the phytoplankton in the coastal regions and are often among bloom-forming 16 

taxa. We analysed the chaetocerotacean species composition and abundances in the coastal 17 

area of northeastern Adriatic in a biweekly study conducted from September 2008 to October 18 

2009 with the aim of investigating seasonal dynamics and species succession on the finer 19 

temporal scale and determining the most important ecological factors influencing their 20 

distribution. The study identified seven Chaetoceros and three Bacteriastrum species as major 21 

phytoplankton components showing the clear annual succession and two types of blooms (one 22 

species/multi species) governed by differing ecological conditions. Autumn bloom was 23 

composed of 20 chaetocerotacean species with Chaetoceros contortus and C. vixvisibilis 24 

alternating in dominance. Summer period was characterized by spreading of freshwater from 25 

the Po River up to the eastern coast increasing availability of phosphate which triggered the 26 

monospecific Chaetoceros vixvisibilis bloom. We explained the chaetocerotacean dominant 27 

species succession pattern by the environmental parameters, with the temperature, salinity and 28 

phosphate availability as most important factors driving the species seasonality. 29 

 30 
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Highlights 35 

 First coherent investigation of temporal dynamics and species succession of 36 

marine planktonic diatom family Chaetocerotaceae  37 

 Two types of blooms (one species/multi species) are governed by differing 38 

ecological conditions  39 

 The succession pattern of dominant chaetocerotacean species was explained by 40 

temperature, salinity and phosphate availability as the most important factors 41 

driving the species seasonality 42 

 43 

1. Introduction 44 

The family Chaetocerotaceae Ralfs in Pritchard (1861) include cosmopolitan diatoms, 45 

notably thriving in the phytoplankton of coastal regions (Rines and Hargraves, 1988), and 46 

play an important role in neritic food webs and biogeochemical carbon and silica cycles. The 47 

hallmarks of this family are setae, long and hollow silicate spine-like projections protruding 48 

from the valve surface (Round et al., 1990). The strong and robust setae can irritate fish gills 49 

and cause excess mucus secretion and damage, thus certain species have been characterized as 50 

nuisance and harmful to fish and invertebrates (Hallegraeff et al., 2003; Smayda, 2006). 51 

Members of this family are important model species in not only in ecology and physiology, 52 

but also in toxicology and nanomaterial studies (Nagao et al., 2010; Peng et al., 2011; 53 

Osterholz et al., 2014).  54 

Chaetocerotaceae is one of the largest and most diverse diatom families, comprising more 55 

than hundred described species which belong to two genera, Chaetoceros Ehrenberg and 56 

Bacteriastrum Shadbolt (Hasle and Syvertsen, 1997; Rines and Theriot, 2003). The genera 57 

Chaetoceros and Bacteriastrum are often difficult to identify due to the morphological 58 

variability of their constituent species (Rines and Theriot, 2003). The main distinctions 59 

between members of these two genera are the valve shape and the number of setae per valve. 60 

Chaetoceros species have a bipolar/bilateral symmetry with elliptically shaped valves each 61 

adorned with usually two setae, as opposed to Bacteriastrum species that have 62 

multipolar/radial symmetry with numerous (6-20) setae regularly arranged around the circular 63 

valve margin (Round et al., 1990).  64 

The genus Chaetoceros regularly blooms in coastal ecosystems of temperate and polar 65 

seas in the late winter/early spring and autumn period. These blooms are usually multispecies 66 
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blooms, made up from simultaneously present 15-20 different species, of which typically one 67 

to three species dominate (Rines and Hargraves, 1987). The important role in formation of 68 

this type of blooms might be the activation of resting stages (Montresor et al., 2013). 69 

Approximately one-third of the Chaetoceros species are reported to be capable of producing 70 

resting spores (Hargraves, 1976). These resting stages are reinoculated in the water column 71 

during upwelling events (Pitcher, 1990), and their germination may be triggered by the 72 

photoperiod (Eilertsen 1995). However, the clear cut evidence of this event sequence is 73 

lacking (Montresor et al., 2013). Bacteriastrum species, although frequently present in 74 

planktonic assemblages, rarely form blooms. There are several exceptions: the bloom of B. 75 

furcatum, recorded in the Gulf of Mexico (Fryxell, 1978), spore-forming B. hyalinum which 76 

regularly blooms in the summer in the North Sea (Hoppenrath et al., 2009; Kraberg et al., 77 

2010) and the autumn bloom of B. jadranum in the Adriatic Sea (Godrijan et al., 2012). The 78 

ecological importance of chaetocerotacean species in the Mediterranean Sea has been 79 

previously well established in numerous occasions, such as in the late winter/early spring 80 

bloom in NW Mediterranean coastal area (Percopo et al., 2011; Arin et al., 2013) and in 81 

diatom-dominated summer/autumn DCMs (deep chlorophyll maxima) where they have been 82 

found as a rather constant feature in both the western (Arin et al., 2002; Siokou-Frangou et al., 83 

2010) and the eastern Mediterranean basin (Boldrin et al., 2002; Casotti et al., 2003). Also, 84 

the phytoplankton studies in the Adriatic Sea found Chaetoceros and Bacteriastrum species 85 

among the dominant phytoplankton taxa together with members of diatom genera such as 86 

Pseudo-nitzschia, Proboscia, Cerataulina, Leptocylindrus and Thalassionema (Viličić et al., 87 

1995; Totti et al., 2000; Viličić et al., 2002).  88 

There have been scarce ecological investigations specifically focused on this important 89 

planktonic diatom family. Members of the Chaetocerotaceae are usually analysed in bulk with 90 

other phytoplankton (Ajani et al., 2001; Bode et al., 2005; Odebrecht et al., 2010; 91 

Widdicombe, 2010; Arin et al., 2013; Ajani et al., 2014; Du and Peterson, 2014) or only the 92 

ecology of the most important blooming species is featured (Sieracki et al., 1998; Shevchenko 93 

and Orlova, 2010; Kownacka et al., 2013). In order to fill this gap, the main objective of this 94 

study was to obtain a better understanding of the ecology of genera Chaetoceros and 95 

Bacteriastrum in the coastal areas. And specifically we aim to (i) for the first time describe 96 

and interpret seasonal dynamics and succession of Bacteriastrum and Chaetoceros species on 97 

the finer temporal scale and to (ii) investigate most important ecological factors influencing 98 

their seasonal distribution. 99 
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 100 

2. Material and methods 101 

2.1. Sampling site 102 

The Adriatic Sea is the northernmost part of the Mediterranean with marked west to 103 

east gradients of physical and biological properties (Cushman-Roisin et al., 2001). In the 104 

north, the Adriatic Sea is shallow (< 50 m) and the stratification/mixing regime together with 105 

the trophic state is mainly influenced by the Po River freshwater discharge, coupled with the 106 

meteorological forcing factors (north-eastern Bora wind) and the inflow of the salty, 107 

oligotrophic water brought by Eastern Adriatic Current (EAC) (Socal et al., 2008). The 108 

coastal station RV001 (45°08’ N, 13°61’ E) is situated in north-eastern Adriatic Sea one 109 

nautical mile from the shore of Rovinj (Figure 1.). This coastal area is mostly oligotrophic due 110 

to the EAC influence (Artegiani et al., 1997) and thus ideal as proxy for a Mediterranean 111 

oriented survey.  112 

 113 
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Figure 1. Map showing the location of the RV001 sampling station on the northeastern coast 114 

of the Adriatic Sea. 115 

 116 

2.2. Sampling protocol 117 

Seawater samples were collected with the Niskin samplers (5L) from five depths (0, 5, 118 

10, 20, and 27 m) at the RV001 station. Additional samples were collected by plankton nets 119 

(mesh size 53 and 20 μm) vertically hauled in the euphotic layer of the water column. The 120 

sampling was performed approximately biweekly between September 2008 and October 121 

2009. Temperature and salinity profiles were obtained with a CTD SBE 25 Sealogger probe in 122 

situ, while samples for nutrients and chlorophyll a (Chl a) concentration were collected in 123 

polycarbonate bottles and processed as described in Šilović et al. (2012). Subsamples for the 124 

determination of dissolved nutrients: (NO3), nitrite (NO2), orthophosphate (PO4) and 125 

orthosilicate (SiO4) were measured by spectrophotometric methods (Parsons et al., 1984). 126 

Ammonium (NH4) was analysed by a modified technique of the indophenol method (Ivančić 127 

and Degobbis, 1984). Subsamples of 500 mL for the determination of Chl a were filtered onto 128 

Whatman GF/F filters, and immediately frozen at -20 °C until analysis (within a week). Total 129 

Chl a concentrations were determined on a Turner TD-700 fluorometer (Parsons et al., 1984) 130 

after three hours of extraction in 90% acetone (in the dark, with grinding).  131 

 132 

2.3.Phytoplankton analysis 133 

A total number of 125 water samples (200 mL) for the phytoplankton cell counts were 134 

preserved with pseudo- Lugol’s solution (0.4% final concentration) according to Verity et al. 135 

(2007). Cells were identified and counted using a Zeiss Axiovert 200 (Carl Zeiss, 136 

Oberkochen, Germany) inverted microscope operating with phase contrast and bright field 137 

optics. The variable volume (10 or 50 mL) of sub-samples depending on the cell density was 138 

sedimented in combined plate counting chambers (HydroBios, Kiel, Germany) and analysed 139 

after > 24 h according to Utermöhl (Lund et al., 1958; Utermöhl, 1958). For cells smaller than 140 

20 µm (nanophytoplankton) which were relatively abundant, the half of transect (i.e. 1/2 141 

diameter of counting chamber) along the counting chamber bottom was examined under 400x 142 

magnification. Individual cells with either maximum linear dimension (MLD) or equivalent 143 

spherical diameter (ESD) larger than 20 µm (microphytoplankton) and colony-forming 144 

diatom species in which chain length exceeds 20 µm were counted along two transects under 145 
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200x magnification. Very abundant species were counted on a variable number (5-20) of 146 

randomly chosen fields under either 200x or 400x magnification depending on their size. In 147 

addition, the bottom of the chamber was also examined under a magnification of 100x, to 148 

obtain a more correct evaluation of less abundant taxa. The minimum concentration of 149 

phytoplankton cells that can be detected by this method is 20 cells L−1. Whenever it was 150 

possible in the light microscopy the identification was made to species level. Identifications 151 

were performed referring to general literature of phytoplankton taxonomy (Cupp, 1943; 152 

Tomas, 1997; Bérard-Therriault et al., 1999; Hoppenrath et al., 2009; Kraberg et al., 2010) 153 

and specifically for Chaetoceros and Bacteriastrum: Ikari (1927), Rines and Hargraves 154 

(1988), Hernández-Becerril (1996); Jensen and Moestrup (1998) and Kooistra et al. (2010). 155 

2.2. Graphical and statistical data analyses 156 

The statistical procedures were applied to investigate relationships between 157 

chaetocerotacean species abundances and environmental factors. Basic descriptive statistics 158 

for physical, chemical and biological parameters was calculated using statistical software 159 

Statistica 10 (StatSoft). For statistical multivariate analyses: nMDS – non-metric 160 

Multidimensional Scaling and Cluster Analysis, statistical software PRIMER 6 v.6.1.11. & 161 

PERMANOVA+ v.1.0.1. (Clarke and Gorley, 2006) was used. In nMDS and Cluster analysis 162 

abundance data of all Bacteriastrum and Chaetoceros species from samples collected at five 163 

different depths were integrated and averaged for each sampling date. The similarities among 164 

samples were calculated for each abundance resemblance matrix by means of Bray–Curtis 165 

similarity index (Clarke and Warwick, 2001). CCA –  Canonical Correspondence Analysis 166 

was performed with CANOCO version 5. The CCA analysis was made using only species 167 

assigned as dominant (frequency of appearance ≥ 10% and maximal abundance >10 000 cells 168 

L-1) and both abundance and environmental data from individual sampling depths were used. 169 

In CCA analysis dissolved inorganic nitrogen (DIN) calculated as sum of NO3, NO2, and NH4 170 

was used. A Monte Carlo permutation test (999 permutations) was used to test the statistical 171 

significance of each environmental variable with threshold at p ≤0.05 considered as 172 

significant. For all multivariate statistical procedures data were transformed using log (x+1) 173 

overall transformation. Graphical presentations were created using the Golden Software 174 

Grapher 8.0. and Ocean Data View 4.5.6. (Schlitzer, 2011). 175 

 176 

3. Results 177 
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3.1. Environmental conditions and diatom community 178 

The detailed temporal distributions of physico chemical parameters, namely 179 

temperature, salinity and nutrients, were shown by Šilović et al. (2012) for the investigated 180 

period. Thus, here we present these parameters only for the surface layer and together with the 181 

integrated values over the whole column (Table 1). 182 

 183 
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Table 1. Physical, chemical and biological parameters at RV001 sampling station, measured during the study period (September 2008-October 184 

2009) recorded at the surface (S) and integrated over the whole water column (Int. 0-30 m). min – minimum; max – maximum; st. dev.- standard 185 

deviation; N- number of samples, Lower Qu. – lower quartile, Upper Qu.-upper quartile; NO3
- -  nitrate; NO2

- - nitrite; NH4
+ - ammonium; PO4

-3 186 

– phosphate; SiO4
- - silicate, Chl a – chlorophyll a. 187 

  Min. Lower Qu. Median Mean St. dev. Upper Qu. Max. N 

Temperature (°C) S 9.28 13.36 18.09 17.59 5.48 22.16 27.48 25 

 Int. (0-30 m) 9.26 13.36 17.17 16.55 4.6 19.45 27.48 125 

Salinity S 34.22 36.52 37.33 36.95 0.97 37.60 37.89 25 

 Int. (0-30 m) 34.2 37.32 37.61 37.35 0.75 37.76 38.18 125 

NO3
- (µmol L-1) S 0.07 0.98 1.55 1.84 1.79 2.14 9.12 24 

 Int. (0-30 m) 0.03 0.69 1.27 1.50 1.46 1.80 10.34 120 

NO2
- (µmol L-1) S 0.01 0.07 0.10 0.24 0.32 0.26 1.16 24 

 Int. (0-30 m) 0.01 0.05 0.12 0.32 0.42 0.43 2.07 120 

NH4
+ (µmol L-1) S 0.12 0.32 0.61 0.62 0.37 0.81 1.35 24 

 Int. (0-30 m) 0.12 0.36 0.55 0.68 0.59 0.80 5.1 120 

PO4
-3 (µmol L-1) S <0.01 0.01 0.03 0.04 0.05 0.04 0.24 24 

 Int. (0-30 m) <0.01 0.01 0.03 0.04 0.04 0.05 0.26 120 

SiO4
- (µmol L-1) S 0.47 2.50 2.95 2.96 1.19 3.98 4.99 24 

 Int. (0-30 m) 0.38 2.48 3.11 3.72 2.18 4.22 11.75 120 

Chl a (ng L-1) S 0.07 0.23 0.34 0.34 0.15 0.43 0.79 25 

 Int. (0-30 m) 0.07 0.25 0.34 0.38 0.17 0.47 0.85 125 
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 188 

 189 

Diatoms (cells L-1) S 1.50×103 8.53×103 1.80×104 1.00×105 2.18×105 6.56×104 1.01×106 25 

 Int. (0-30 m) 6.10×102 8.59 ×103 1.57×104 7.69×104 1.76×105 5.93×104 1.37×106 125 
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Total chlorophyll a (Chl a) concentrations were below 1 μg L-1 during the investigated 190 

period as shown in Figure 2A. In the phytoplankton assemblage small cyanobacteria and 191 

picoeukaryotes belonging to the picophytoplankton (size <2 µm) generally prevailed,  with 192 

highest contribution in March and in August 2009. Nanophytoplankton abundances increased 193 

during the late spring/early summer months 2009 with coccolithophores and cryptophytes as 194 

the most important groups. High microphytoplankton abundances were recorded in September 195 

and October 2008 as well as in the period from April to July 2009 with the highest cell 196 

numbers (>106) observed in July 2009. Diatoms were the dominant group in the 197 

microphytoplankton during the whole investigated period. Diatom cell concentrations varied 198 

considerably over time. Minimum diatom values (6.0 × 102 cells L−1) were observed in 199 

January 2009, while two peaks occurred in September/October 2008 at the surface and in July 200 

2009 at 5 m with 4.9 × 105 and 1.4 × 106 cells L−1, respectively.  201 

Throughout the study period 89 diatom taxa were enumerated and with the additional 202 

24 species identified from net samples, thus adding up to 113 identified diatom taxa. Most 203 

frequently found species (present in >70% of analysed samples) were Nitzschia longissima 204 

and Pseudo-nitzschia cf. pseudodelicatissima, followed by Thalassionema nitzschioides, 205 

Cerataulina pelagica, Leptocylindrus cf. danicus and Proboscia alata (present in > 50% of 206 

samples).  207 

The most pronounced Chl a peak was observed in September and October 2008 208 

(Figure 2A) corresponding to the peak in diatom abundance (Figure 2B). The diatom peak 209 

lasted through three sampling dates. This peak was composed of 52 identified diatoms with 210 

four species, Chaetoceros contortus, Pseudo-nitzschia cf. pseudodelicatissima, C. vixvisibilis, 211 

and Asterionellopsis glacialis, constituting together between 43 % and 69 % of the total 212 

diatom population. During the second diatom peak in July 2009 no visible increase in Chl a 213 

concentration was recorded (Figure 2A). This bloom was constituted almost exclusively from 214 

a single species, Chaetoceros vixvisibilis. C. vixvisibilis made up 90 % of the total diatom 215 

abundance. There were 31 recorded diatom species during this summer peak, albeit in very 216 

low abundances. 217 

 218 

 219 

 220 
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 221 

Figure 2. Temporal distribution of (A) total Chl a concentration, (B) diatom abundance at 222 

station RV001 from September 2008 to October 2009. Data are presented as mean values with 223 

standard deviations for the whole water column (0-30 m). Note the logarithm scale in B.  224 

 225 

3.2. Chaetoceros and Bacteriastrum composition, bloom dynamics and species succession 226 

During the investigated period Bacteriastrum and Chaetoceros species exhibited two 227 

distinct abundance peaks, with markedly lower numbers in between (Figure 3A). The first 228 

peak in autumn 2008 (autumn bloom) was characterized by high abundances, up to 3.02 × 105 229 

cells L-1, and it developed predominately in the surface layer. The second peak in July 2009 230 

(summer bloom), was more evenly distributed throughout the water column, with the highest 231 

abundances recorded at 20 m of depth, 5.18 × 106 cells L-1 (Figure 3A). The number of 232 

chaetocerotacean species simultaneously present in the water column at the individual 233 

sampling date ranged from 5 to 20. The highest recorded number of species occurred on the 234 

date of the autumn bloom in 2008, but was also high during June/July 2009 (Figure 3B). On 235 

few occasions, such as in December 2009, the number of identified species from the net 236 

samples was 13, while only two species were recorded in the water samples. This indicates 237 
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that they were present in the water column, but in numbers not detectable by the Ütermohl 238 

method. 239 

 240 

 241 

Figure 3. Temporal distribution of Chaetoceros and Bacteriastrum species at station RV001 242 

in the period 2008-2009 A) Vertical distribution of the species abundances B) Number of 243 

species recorded in the whole water column for each sampling date.  244 

A total of 28 Chaetoceros and 4 Bacteriastrum species were identified throughout the study 245 

(Table 3). Ten species were common in the water column, found in ≥ 10% of samples and 246 

reached high abundances >10 000 cells L-1, and thus classified as dominant species (Figure 3). 247 

Species such as C. curvisetus and C. danicus and 5 others were frequently present in samples, 248 

but their abundances were lower than the threshold for dominant species, reaching ~ 103 cells 249 

L-1. The rest of the species were considered as rare. 250 

 251 
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Table 2. Chaetoceros and Bacteriastrum species identified at the station RV001 in the period 252 

2008-2009. Max- maximal abundance; Freq. - frequency of appearance. Number of samples= 253 

125; + indicates species observed only in net samples. D - dominant species with Freq. ≥ 10% 254 

and Max. >10 000 cells L-1 (in bold); F – species with Freq. ≥ 10% and Max. <10 000 cells L-255 

1; R – rare and not abundant species. 256 

 Species Max (cells L-1) Freq. (%) 

D Bacteriastrum furcatum Shadbolt 118 560 19 

R B. hyalinum Lauder 640 2 

D B. jadranum Godrijan, Marić & Pfannkuchen 52 060 13 

D B. mediterraneum Pavillard 50 540 12 

D Chaetoceros affinis Lauder 18 240 21 

R C. anastomosans Grunow 7 030 6 

D C. brevis Schütt  10 260 17 

R C. coarctatus Lauder  + + 

D C. contortus Schütt  175 180 36 

R C. constrictus Gran  + + 

R C. costatus Pavillard 3 420 2 

F C. curvisetus Cleve 7 600 17 

R C. dadayi Pavillard  120 1 

F C. danicus Cleve 4 180 28 

D C. decipiens Cleve 12 920 29 

F C. densus Cleve 5 320 12 

F C. didymus Ehrenberg 4 560 10 

F C. diversus Cleve 6 080 12 

R C. eibenii (Grunow in Van Heurck) Meunier 1 520 6 

R C. lauderi Ralfs in Lauder  1 520 6 

R C. peruvianus Brightwell  1 140 7 

R C. pseudoaurivillii Ikari 680 1 

R C. pseudocurvisetus Mangin + + 

F C. rostratus Lauder 6 840 14 

F C. simplex Ostenfeld 5 680 12 

D C. socialis Lauder 28 380 22 

R C. tenuissimus Meunier 4 820 4 

R C. tetrastichon Cleve + + 

D 
C. throndsenii var. throndsenia (Marino, Montresor & 

Zingone) Marino, Montresor & Zingone 
24 140 21 

R C. throndsenii var. trisetosa Zingone  8 360 5 

R C. tortissimus Gran 9 120 5 

D C. vixvisibilis Schiller 1 349 679 17 

 257 
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 258 

 259 

Figure 4. Light microscope micrographs of dominant chaetocerotacean species 260 

identified in the northern Adriatic: (A) Chaetoceros contortus (B) C. vixvisibilis (C) C. 261 

decipiens (D) C. affinis (E) C. throndsenii var. throndsenia (F) C. socialis (G) C. brevis (H) 262 

B. furcatum (I) B. jadranum (J) B. mediterraneum. 263 

 264 

 265 

Analysis of temporal succession of the whole chaetocerotaceaean community via 266 

MDS and cluster analysis showed that the distinct species assemblages were present at the 267 

certain point in time, and indicated a successional change in the community composition 268 

(Figure 5). The group A was composed from samples collected in the first part of the study, 269 
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from September until the beginning of December 2008. In the first group species Chaetoceros 270 

contortus and C. vixvisibilis were prevailing together with slightly less abundant 271 

Bacteriastrum mediterraneum and C. socialis. In the second B group there is a single winter 272 

sample from the middle of December, with only C. danicus and Chaetoceros sp. present. It is 273 

followed by the third C group representing the winter assemblage from January/February 274 

2009 characterized by high numbers of C. danicus, C. eibenii and B. hyalinum. Fourth group 275 

D is the largest, describing the community that was apparently similar in composition from 276 

end of February to the middle of July with the date corresponding to summer C. vixvisibilis 277 

bloom. Group D was dominated by small single celled C. tenuissimus, C. throndsenii var. 278 

throndsenia and C. simplex. Later on towards summer the intensive development of diverse 279 

community similar to autumn was observed with addition of C. curvisetus, C. danicus and 280 

Bacteriastrum furcatum. E group is the last including samples describing the diverse 281 

community of late summer/autumn 2009 composed of C. decipiens and C. affinis with B. 282 

jadranum, C. tortissimus, C. anastomosans and C. lauderi. 283 

 284 
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 285 

Figure 5. MDS plot for Chaetocerotaceae species abundances from different sampling dates 286 

at the station RV001 from September 2008 until October 2009. 5 distinct groups of samples 287 

are separated based on the results of the cluster analysis at the similarity level 30%, and 288 

superimposed on the MDS ordination. A- autumn/early winter 2008; B – winter 2008; C – 289 

winter 2009; D – spring/summer 2009; E – late summer/autumn 2009. 290 

 291 

The contribution of individual Chaetoceros and Bacteriastrum species was 292 

investigated in detail on the two peak occasions, September–November 2008 and July 2009. 293 

Generally, the autumn bloom was composed of similar species on all sampling dates, however 294 

the contribution of the dominant taxa markedly varied between them (Figure 6 A-C). On 29th 295 

September 2008, the chaetocerotacean community was composed of 15 species, with 5 296 

species contributing over 5% to the chaetocerotacean abundance. Of these species, B. 297 

mediterraneum and C. socialis contributed with 27% and 21%, respectively. C. contortus 298 

contributed with only 14% which changed three weeks later, when this species was 299 
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dominating with 63% of contribution. Only six days later, contribution of C. contortus fell to 300 

just 18% and C. vixvisibilis took over the dominant position, with 45% of contribution. The 301 

chaetocerotacean community was composed of 20 and 16 species, on 20th and 26th October, 302 

respectively. The end of the bloom was recorded after additional 10 days, when 303 

chaetocerotacean population markedly decreased in numbers (Figure 3A) and change in the 304 

species composition occurred (Figure 6D). The community was then composed of only 9 taxa, 305 

with dominant B. mediterraneum, C. curvisetus and C. densus. The summer 2009 bloom was 306 

composed of one species (99%), C. vixvisibilis, which was not recorded on the dates 307 

preceding the bloom (not shown). Fifteen other species contributed all together only 1% of 308 

overall chaetocerotaceaean numbers (Figure 6E). 309 

 310 

 311 

 312 

 313 

Figure 6. Relative percentage contribution of individual species to the Chaetocerotaceae 314 

community during the selected dates of autumn bloom A) 29th September 2008, B) 20th 315 

October 2008, C) 26th October 2008, post-bloom D) 6th November 2008 and E) summer 316 

bloom on 16th July. Species with more than 3% contribution are listed, others are combined in 317 
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group Chaetoceros spp. Data are calculated from mean values for the whole water column for 318 

each sampling date.  319 

3.3 Ecology of dominant Chaetoceros and Bacteriastrum species  320 

CCA ordination analysis was used to visualise the relation of individual 321 

chaetocerotacean species to the influencing environmental factors (Figure 7). The first two 322 

ordination axes from the CCA explained 84% of the species–environment relation. The first 323 

axis had an eigenvalue of 0.34 and explained 57%, while the second had an eigenvalue of 324 

0.16 and explained 27%. Temperature (F = 11.50, p = 0.001), salinity (F = 5.70, p = 0.001), 325 

and PO4 (F = 2.70, p = 0.006) were the most important factors influencing dominant 326 

chaetocerotacean species while DIN (F = 1.40, p= 0.219) and SiO4 (F = 1.40, p= 0.219) were 327 

not found significant. 328 

 329 

 330 

 331 

Figure 7. Results of CCA analysis of dominant chaetocerotacean species and environmental 332 

data. Triangles give the position of species plotted on the ordination diagram. Length and 333 

direction of environmental parameter arrows indicate their importance in terms of influence 334 

on selected species. Abbreviations: T - Temperature; S – Salinity; DIN – dissolved inorganic 335 

nitrogen; SiO4 – orthosilicate; PO4 – orthophosphate; B_FUR -Bacteriastrum furcatum; 336 

B_JAD - Bacteriastrum jadranum; B_MED - Bacteriastrum mediterraneum; C_AFF - 337 

Chaetoceros affinis; C_BRE - Chaetoceros brevis; C_CON - Chateoceros contortus; C_DEC 338 
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- Chaetoceros decipiens; C_SOC - Chaetoceros socialis; C_THR - Chaetoceros throndsenii 339 

var. trisetosa; C_VIX - Chaetoceros vixvisibilis. 340 

 341 

The distribution of dominant species abundances over time (Figure 8) showed that the 342 

majority reached high abundances during the autumn bloom in 2008. Chaetoceros contortus, 343 

C. vixvisibilis and C. decipiens all had three peaks of abundance during the investigated 344 

period. Of those, C. contortus was situated near the SiO4 arrow, however the relationship was 345 

not considered as significant. On the other hand, C. vixvisibilis and C. decipiens were situated 346 

in the upper right quadrant of CCA plot (Figure 7) and found to be positively related to 347 

temperature and phosphate and negatively with salinity. Also close to the temperature arrow 348 

were C. affinis and B. jadranum (Figure 7), which had abundance peaks in late 349 

summer/autumn 2009 (Figure 8 C, E). B. mediterraneum and C. socialis each had a single 350 

peak in the autumn 2008 (Figure 8 D, E). B. mediterraneum was situated near the SiO4 arrow, 351 

whereas C. socialis was positively related to salinity (Figure 7). B. furcatum, C. throndsenii 352 

var. trisetosa and C. brevis had only one distinct peak of abundance during 2009 (Figure 8 C, 353 

D, E). B. furcatum was positively related to PO4, while other two species were not 354 

significantly related to any environmental factors (Figure 7). 355 

 356 

 357 

 358 
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 359 

Figure 8. Temporal distribution of dominant Chaetoceros (A-D) and Bacteriastrum (E) 360 

species abundances at the station RV001 from September 2008 to October 2009. Data are 361 

presented as mean values with standard deviations for the whole water column (0-30 m). 362 

 363 
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4. Discussion 364 

Results of this study focused specifically on the diatom family Chaetocerotaceae and 365 

allowed us to clarify aspects of the seasonal dynamics and succession of chaetocerotacean 366 

species in the coastal environments. The taxonomical affiliation of identified species 367 

generally agreed with the species lists provided in recent northeastern Adriatic Sea studies 368 

(Viličić et al. 2009; Cabrini et al., 2012; Godrijan et al., 2013). The study by Viličić et al. 369 

(2009) identified four typical species for the phytoplankton assemblages in the northern 370 

Adriatic area, namely C. socialis, C. vixvisibilis, C. curvisetus, C. decipiens and C. affinis. 371 

These taxa were also identified as dominant components in our study, but we added five more 372 

Chaetoceros species to the list, together with three species belonging to the genus 373 

Bacteriastrum. Generally our results showed that chaetocerotacean species were consistently 374 

present in the diatom community, and can be divided into four successional groups composed 375 

of different taxa. Interestingly, we did not find that any of the species persisted throughout the 376 

year, as Rines and Hargraves (1988) in their study about the seasonal distribution of the genus 377 

Chaetoceros in Narragansett Bay. However, we did found that major bloom-forming species 378 

C. vixvisibilis and C. contortus were present in both summer and subsequent autumn pulse 379 

probably persisting in between in low numbers, thus not detectable with our research method. 380 

4.1 Seminal chaetocerotacean species 381 

In our study Chaetoceros contortus was recognized as the most frequently found 382 

species. It is a very robust, eurythermal species (Rines and Hargraves, 1987) capable of 383 

surviving very low temperatures (Shevchenko and Orlova, 2010). C. contortus is very often 384 

synonymised with the morphologically very similar C. compressus (Cupp, 1943; Hasle and 385 

Syvertsen, 1997). Both species are easily recognizable in the water samples due to the 386 

common presence of heavy, contorted setae (Rines, 1999). Recent study by Chamnansinp et 387 

al. (2015) resolved the status of both species and described morphological characters used for 388 

their delineation, and specifically indicated that many records of C. compressus outside the 389 

tropics seem to be due to taxonomic confusion. In our study all specimens had almost circular 390 

valves, a typical C. contortus character. However, majority of the studies conducted in the 391 

northern Adriatic area (Revelante and Gilmartin, 1976; Bernardi Aubry et al., 2012) 392 

recognized C. compressus as one of the most significant phytoplankton species. We suggest 393 

that this is a case of the misidentification, as C. compressus appears to be confined to tropic 394 

areas (Chapmannship et al., 2015; Rines, 1999). In the northwestern Adriatic Sea, C. 395 

contortus (noted as C. compressus) was recorded as a key species responsible for the summer 396 
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diatom peak in July together with Proboscia alata (Bernardi Aubry et al., 2012). We recorded 397 

C. contortus in early summer, but we identified it as a much more significant component of 398 

the autumn bloom. Nevertheless, we are unable to draw conclusions based on our data on the 399 

relation of this species with the temperature and can only hypothesize that this environmental 400 

parameter is a trigger for the species seasonal occurrence in the plankton. 401 

The second important species was Chaetoceros vixvisibilis, a very frequent and 402 

abundant diatom species in the phytoplankton assemblage of the eastern Adriatic Sea (Viličić 403 

et al., 1995; Viličić et al., 2009). The species environmental preferences have been described 404 

by Hernández-Becerril et al. (2010), and generally agree with the results in this study. C. 405 

vixvisibilis is a thermophilic species forming summer/autumn blooms related to higher 406 

seawater temperatures, but more importantly, with higher concentrations of ortophosphate 407 

(0.02 - 0.05 µmol L-1) and low salinity down to 33, directly corresponding to the Po River 408 

inflow.  409 

Chaetoceros affinis and C. decipiens are both generally widespread and frequently 410 

reported species in temperate environments (Hasle and Syvertsen, 1997; Kooistra et al., 2010; 411 

Kraberg et al., 2010), including the Adriatic Sea (Viličić, et al. 2009). These two species 412 

reached relatively high cell concentrations in the water column in late summer/autumn. The 413 

same seasonal distribution was found for Chaetoceros affinis in Narragansett Bay (Rines and 414 

Hargraves, 1987), while C. decipiens was reported all year round in both Narragansett Bay 415 

and the Baltic Sea (Jensen and Moestrup, 1998). However, there are difficulties in correctly 416 

separating C. decipiens from a very similar species C. lorenzianus. This is due to the apparent 417 

transitional morphologies (Rines and Hargraves, 1988; Kownacka et al., 2013), which may 418 

account for the reported irregularities in the species seasonal dynamics. Recent studies in the 419 

morphology of C. lorenzianus (Ishii et al., 2011; Kownacka et al., 2013) emphasize the 420 

importance of resting spores and two elevations extended into branching spines on the spore 421 

primary valve face . In our study we did not record any resting spores, therefore until more 422 

clearly defined taxonomic criteria are set, we consider all Adriatic specimens to belong to C. 423 

decipiens sensu lato. Ecologically, the development of both C. affinis and C. decipiens sensu 424 

lato was related to the temperature and lower nutrient levels of nitrogen and silicate in 425 

accordance with their seasonal distribution. Their occurrence in nutrient limiting environment 426 

indicates an existence of adaptive physiological mechanism to these conditions, possibly 427 

including enzymatic activity like active degradation of β-1,3-d-glucans present in these 428 

species (Myklestad et al., 1981).  429 
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Chaetoceros socialis is another widely distributed diatom (Rines and Hargraves, 430 

1988), reported to form dense blooms (Sieracki et al., 1998). Recently, Degerlund et al. 431 

(2012) showed evidence on physiological separation between two varieties from the cold-432 

water and temperate regions. Chamnansip (2013) raised the northern, cold-water variety to a 433 

species level named Chaetoceros gelidus and established synonymy of warm-water species C. 434 

socialis and C. radians. Species characters found in Adriatic specimens match the 435 

morphology of the C. socialis temperate strains found in the Tyrrhenian Sea (Degerlund et al., 436 

2012; Kooistra et al., 2010), and therefore we retain the name C. socialis for the species found 437 

in our study. C. socialis is very common in the Adriatic, more abundant and frequent in the 438 

northern than in the southern part (Viličić et al., 2009). Although in the northwestern part of 439 

the Adriatic it is recognized as a typical spring diatom (Bernardi Aubry et al., 2004), it forms 440 

autumn blooms in the central area (Viličić et al., 2009) and along the northeastern coast 441 

(Godrijan et al., 2013) which is in accordance with our findings. 442 

In recent literature Chaetoceros brevis was reported as a truly oceanic Antarctic 443 

diatom species (Timmermans et al., 2001; Van Oijen et al., 2004; Janknegt et al., 2008). Rines 444 

and Hargraves (1988) pointed out that this species is probably a taxonomical “collecting 445 

ground” containing atypical forms of other taxa. There is a similar species, C. pseudobrevis 446 

(Jensen and Moestrup, 1998) which both Hustedt (1930) and VanLandingham (1968) 447 

considered as a synonym of C. brevis, but further studies are required in order to establish the 448 

valid delineating characters. In our study, temperate C. brevis morphotype showed one 449 

distinct abundance peak during summer, coinciding with higher temperatures and lower 450 

silicate levels in the water column. 451 

Chaetoceros throndsenii var. throndsenia is a small- single celled species (Marino et 452 

al., 1987) reported as common and at time abundant, in the late spring and autumn in the Gulf 453 

of Naples (Marino et al., 1991). The same seasonal distribution was found in our study, with 454 

maximal abundance of this species recorded in May, related to increased concentrations of 455 

ortophosphate and ammonium. The higher concentration of ammonium are easily explored by 456 

the small-celled diatom species and bacterioplankton (Šilović et al., 2012). 457 

The seasonality of three dominant Bacteriastrum species has been already described in 458 

northeastern Adriatic habitats by Godrijan et al. (2012) and their results are generally in 459 

accordance with our findings. Bacteriastrum delicatulum was previously reported for the 460 

same area (Bosak et al., 2009; Viličić et al., 2009; Cabrini et al., 2012), and the name was 461 

used by Godrijan et al. (2012). However, subsequent reports based on 462 
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morphological/molecular information identified B. furcatum from the cultured strains isolated 463 

from the Adriatic Sea (Bosak et al., 2015). Moreover, in our study all observed complete 464 

colonies were heteropolar with the morphological attributes more similar to B. furcatum 465 

(Fryxell, 1978; Sarno et al., 1997; Bosak et al., 2015) and the true B. delicatulum isopolar 466 

chains (Tomas, 1997) were not found in any of the investigated samples. B. furcatum showed 467 

one abundance peak in summer, similarly to C. brevis, in agreement with Godrijan et al. 468 

(2012) who detected B. furcatum (noted as B. delicatulum) abundance peak during June-469 

August period. Bacteriastrum mediterraneum maximal abundances were recorded in autumn 470 

within the same study, and we also observed this species as a component of autumn 471 

multispecies diatom bloom. Another autumn species was Bacteriastrum jadranum, which 472 

maxima occurred at the same time as C. affinis, in the period of higher temperature and low 473 

nutrient levels in the water column. The high cell concentrations of B. jadranum were 474 

recorded previously in the northeastern Adriatic in September (Godrijan et al., 2012) and 475 

November (Šupraha et al., 2011), in similar environmental conditions with low levels of 476 

nutrients. B. jadranum has a unique way of colony formation where cells are held together in 477 

regular filaments by the cell jacket, an extruded organic structure (Bosak et al., 2012). The 478 

exopolymers are highly absorptive substances and can readily sequester and concentrate 479 

nutrients from the surrounding water (Decho, 1990). Therefore, in addition to colony 480 

formation, it is possible that this organic material can allow for efficient uptake of nutrients 481 

when concentration in nearby water is low, acting as an active nutrient trap as suggested for 482 

the gel structure of the marine diatom Berkeleya rutilans (Drum, 1969).  483 

4.2. Bloom dynamics 484 

After establishing the seminal chaetocerotacean species we will discuss the two 485 

recorded types of blooms: the autumn 2008 multispecies bloom and summer 2009 486 

monospecific one.  This might not only be important for the chaetocerotacean family, but also 487 

for the general bloom ecology. The autumn diatom bloom recorded in 2008 was triggered by 488 

the water column mixing event which happened at the end of September (Šilović et al., 2012). 489 

This enriched the upper layers with nutrients stimulating the growth of autumn diatoms 490 

among which were the 20 chaetocerotacean species. The major blooming species were 491 

Pseudo-nitzschia cf. pseudodelicatissima and Asterionellopsis glacialis, but significant 492 

contributors were also two dominant chaetocerotacean species. These were Chaetoceros 493 

contortus and C. vixvisibilis and they had alternating peaks of abundances between different 494 

sampling dates. In 2009, the following year, the autumn bloom shifted towards end of 495 
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November as the mixing event did not occur until the end of October (Godrijan et al., 2013). 496 

The great autumnal diversity of Chaetoceros species found within this study, was previously 497 

recorded for the nearby area of Lim Bay (Bosak et al., 2009) but no detailed account on the 498 

temporal development of the bloom was given. In other temperate coastal marine areas such 499 

as Narragansett Bay (Rines and Hargraves, 1988) and Danish waters (Jensen and Moestrup, 500 

1998) the autumn bloom is also simultaneously composed of up to 15-20 different 501 

Chaetoceros species with a few species making up the majority of the population. 502 

The trigger for the summer diatom bloom observed in July 2009 was the surface 503 

spreading of the Po River plume which occurred along the whole Istrian coast (Godrijan et al., 504 

2013). These summer Po River freshwater spreading events, as a thin surface layer over the 505 

northern Adriatic basin, have been occurring as a regular phenomenon in recent years 506 

(Djakovac et al., 2012; Viličić et al., 2013). The lower salinity coincided with the slightly 507 

increased concentrations of nutrients, mostly orthophosphate, which probably influenced the 508 

development of monospecific Chaetoceros vixvisibilis bloom, recorded not only at our 509 

investigated station but also along the whole northeastern Adriatic coast (Godrijan et al., 510 

2013). For the northern Adriatic four major peaks in phytoplankton abundance are reported 511 

(February, May, July and September) (Bernardi Aubry et al., 2012). But Marić et al. (2012) 512 

report a change in the timing and composition of these blooms in the recent decade on this 513 

station. As the July bloom intensified and is dominated by a single Chaetoceros species, it 514 

resembles a typical spring bloom. Usually the spring and autumn blooms differ in both terms 515 

of abundance and biodiversity, spring peaks are higher and have only one-two taxa. The 516 

autumn peaks are lower in abundance, but with higher biodiversity (Cabrini et al., 2012). The 517 

two blooms have the different implications on the carbon cycling in the ecosystem. In 518 

particular, the autumn bloom is mainly consumed by the intense grazing activities and the 519 

energy transported further in the food-web (Fonda Umani et al., 2012). On the other hand, the 520 

intense winter blooms are mostly exported to bottom and only partly grazed by zooplankton 521 

(Fonda Umani et al., 2012) so we can assume that this was the fate of the C. vixvisibilis 522 

summer bloom. This is corroborated with the high abundances recorded at 20 m of depth and 523 

large proportion of resting spores within the cells, which presumably sank to the sea floor 524 

during/after the bloom. We hypothesize that the seasonal dynamics of C. vixvisibilis can be 525 

attributed to its biological traits, mostly to its spore formation ability.  526 

 527 
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Although this study was done on the data collected from only one year, our results 528 

indeed showed that it is possible to distinguish a species succession on a fine scale. As 529 

chaetocerotacean species are among the most important components in the coastal seas, they 530 

can be viewed as important determinants of the ecological status of coastal waters as 531 

determined by biological quality element phytoplankton according to the European Directive 532 

2000/60/EC (European Community, 2000). It is therefore very important to have the basic 533 

knowledge about the species temporal and bloom dynamics and the ecological conditions that 534 

govern these features. Such diverse interactions of individual chaetocerotacean species with 535 

their environment and their importance for the marine food web emphasize the necessity for 536 

future monitoring of phytoplankton communities and environmental parameters in the area in 537 

order to detect the changes that might have a profound effect on the coastal ecosystem 538 

dynamics. 539 
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