Grbin, Dorotea; Pfannkuchen, Martin; Babić, Ivana; Mejdandžić, Maja; Mihanović, Hrvoje; Marić Pfannkuchen, Daniela; Godrijan, Jelena; Peharec Štefanić, Petra; Olujić, Goran; Ljubešić, Zrinka Multigene phylogeny and morphology of newly isolated strain of Pseudo-nitzschia mannii Amato & Montresor (Adriatic Sea). Diatom research, 32 (2017), 1; 127-131. doi:10.1080/0269249X.2017.1284158 Author's Postprint

1 Multigene phylogeny and morphology of newly isolated strain of *Pseudo-nitzschia*

- 2 *mannii* Amato & Montresor (Adriatic Sea)
- 3

4 An increasing number of cryptic and pseudo-cryptic species have been found within most of the newly described diatom species. To resolve the phylogenetic relationships of the genus 5 Pseudo-nitzschia, molecular markers in combination with different morphological 6 7 characterization (or separately) are being widely used. Sequence analysis of ribosomal DNA 8 markers (18S, ITS and 28S) in combination with morphological analyses of Pseudo-nitzschia mannii strain (CIM D-4) isolated from the Telašćica Bay (Adriatic Sea), show its 9 10 differentiation with respect to all other currently-reported strains of this species. 11 12 **Keywords:** *phytoplankton*, *Pseudo-nitzschia*, *molecular markers*, *phylogeny*, *morphology* 13

- 10
- 14
- 15
- 16
- 17
- 18

19 Acknowledgement

20 This work was supported by the Nature park "Telašćica"; Croatian Ministry of Science,

Education and Sports under Grant number 119-1191189-1228 and by the Croatian Science

22 Foundation (project no. UIP-11-2013-6433).

- Multigene phylogeny and morphology of newly isolated strain of Pseudo-nitzschia 23
- mannii Amato & Montresor (Adriatic Sea) 24
- 25

27

DOROTEA GRBIN¹, MARTIN PFANNKUCHEN², IVANA BABIĆ¹, MAJA 26

MEJDANDŽIĆ¹, HRVOJE MIHANOVIĆ³, DANIELA MARIĆ PFANNKUCHEN², JELENA GODRIJAN⁴, PETRA PEHAREC ŠTEFANIĆ⁵, GORAN OLUJIĆ⁶, ZRINKA 28

- LJUBEŠIĆ^{1*,} 29
- 30
- 31 ¹University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000
- Zagreb, Croatia 32
- ²Ruđer Bošković Institute, Centre for marine research, G. Paliaga 5, 2210 Rovinj, Croatia 33
- ³Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia 34
- ⁴*Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54,* 35
- 10000 Zagreb, Croatia 36
- ⁵University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102A, 10000 37
- 38 Zagreb, Croatia
- ⁶Hydrographic Institute of the Republic of Croatia Split, Zrinsko-Frankopanska 161, 21000 39
- 40 Split, Croatia
- 41

An increasing number of cryptic and pseudo-cryptic species have been found within most of 42 the newly described diatom species. To resolve the phylogenetic relationships of the genus 43 Pseudo-nitzschia, molecular markers in combination with different morphological 44 characterization (or separately) are being widely used. Sequence analysis of ribosomal DNA 45 markers (18S, ITS and 28S) in combination with morphological analyses of *Pseudo-nitzschia* 46 mannii strain (CIM_D-4) isolated from the Telašćica Bay (Adriatic Sea), show its 47 differentiation with respect to all other currently-reported strains of this species. 48

49

50 **Keywords:** *phytoplankton*, *Pseudo-nitzschia*, *molecular markers*, *phylogeny*, *morphology*

- 51
- *Corresponding author. E-mail: zrinka.ljubesic@biol.pmf.hr 52

53 Introduction

54 Genetically distinct groups might exist within phytoplankton species described only by

- 55 morphological characterization (Amato et al. 2007). A combination of molecular markers (i.e.
- 56 nuclear ribosomal genes (rDNA), internal transcribed spacer (ITS) regions, and mitochondrial
- 57 and cytochrome oxidase genes) have been widely used to resolve the phylogenetic structure of
- 58 genus *Pseudo-nitzschia* (Lundholm et al. 2002, Lim et al. 2014, Tan et al. 2015, Lim et al.
- 59 2016).
- 60 Until recently, only partial sequences of the 28S rDNA (domains D1 D3) and the fast evolving,
- 61 highly variable ITS1-5,8S-ITS2 (ITS) regions were used for phylogeny of genus Pseudo-
- 62 *nitzschia* (Lim et al. 2016). In diatoms, 18S rDNA regions have conservative rate of evolution
- 63 and are considered inadequate for analysing phylogenetic relationships exceeding higher
- taxonomic levels (Medlin et al. 1993, Kooistra & Medlin 1996, Medlin et al. 1996, Sorhannus
- 65 1997, Sorhannus 2007, Zhang et al. 2007, Alverson 2008, Medlin et al. 2008, Theriot et al.
- 66 2009, Moniz & Kaczmarska 2010, Lundholm et al. 2012). Yet, as Lim et al (2016) have
- demonstrated, by incorporating all three rDNA markers in the analyses 18S rDNA can provide
- 68 additional important information.
- Here we provide the morphology of *Pseudo-nitzschia mannii* strain CIM_D-4 isolated from
 Telašćica Bay (Adriatic Sea) together with multigene phylogeny inferred from the obtained
 sequences of 18S, ITS and 28S rDNA.
- 72

73 Material and Methods

74 Sampling

- Net phytoplankton samples (20 µm-pore-size mesh) were collected in August at inner Station T4 from Telašćica Bay (Adriatic Sea, Fig. S1). A strain generated from single cells (or clonal chain of cells) of *Pseudo-nitzschia mannii* was isolated and maintained as a monoclonal culture (strain CIM_D-4) in Guillard's f/2 marine water enrichment solution (Sigma-Aldrich) with a 12:12 h light dark cycle and constant temperature (Guillard 1983). Cultured *P. mannii* cells were morphologically analysed with LM and TEM (see Supplement Information for details).
- 81

82 Genetic characterization and phylogenetic analysis

83 18S rDNA, ITS and 28S rDNA sequences of *P. mannii* Telašćica strain CIM_D-4 were obtained

84 and deposited in the GenBank under the following accession numbers: KX215915 for 18S

- rDNA; KX215916 for ITS, and KX215917 for 28S rDNA. Phylogenetic analyses were
- 86 performed with obtained sequences (see Supplement Information for details).

87

88 Results and discussion

Cells isolated in August 2012 in Telašćica Bay were maintained as monoclonal culture (strain CIM_D-4), and were confirmed as *P. mannii* by morphological and molecular analysis. Morphological measurements showed that the width of the *P. mannii* cells was slightly narrower $(1.3 - 1.8 \mu m)$, which coincided with the data given by Ljubešić et al. (2011) $(1.3 - 1.7 \mu m)$, but still fit within the original description (Amato & Montesor 2008). In the original description *P. mannii* cells are wider $(1.7 - 2.6 \mu m)$ (Table S1). Given that all other

95 morphological characteristics and measures corresponded to the original description, the
96 species was designated as *P. mannii* (Fig. 1).

97 Phylogenetic analyses performed with obtained 18S (KX215915, 760 bp, V4 region), ITS (KX215915, 838 bp, ITS1-5,8S-ITS2 region) and 28S (KX215917, 786 bp, D1 – D3 region) 98 99 sequences further confirmed positioning of CIM D-4 strain well within P. mannii clade (BPP: 0.98, 0.92 and 1 respectively) (Fig. 2). Regarding P. mannii Telašćica strain CIM D-4 18S 100 101 sequence, we only found relation with the KJ608080 sequence (strain SZN-B640). Indicated 102 sequence remains unpublished, but annotated as P. mannii in NCBI GenBank database. This 103 confirms that, other than those currently known genetic markers, 18S rDNA is also useful in 104 exploring the intragenic relationships, as was recently shown by Lim et al. (2016). As presented on the 28S phylogenetic tree P. mannii Telašćica strain CIM_D-4 28S rDNA sequence was 105 found to be in relation with the earlier published sequence DQ813814 (strain AL-101) (Amato 106 & Montresor, 2008). Finally, ITS rDNA sequence has been grouped with 7 other strains that 107 108 together form P. mannii clade, which also included one P. delicatissima sequence (strain 21-01, accession number AY519274). The presence of P. delicatissima sequence within P. mannii 109 110 clade emphasizes the importance of combining analyses (e.g. morphological and molecular) 111 and exploring the phylogenetic relationship in order to get a complete and correct taxonomical affiliation of the Pseudo-nitzschia species. 112

- *P. calliantha* was the most similar species to *P. mannii*, distinguished by a well-supported
 branch with BPP of 0.87 on ITS and 0.99 on 28S tree. Further phylogenetic analysis revealed
 that *P. mannii* and *P. calliantha* clades are separately clustered, and distinguished from other *Pseudo-nitzschia* species (*P. kodamae*, *P. hasleana*, *P. seriata* and *P. delicatissima*) (Fig. 2).
- 117 In conclusion, presented morphological and phylogenetic results of *P. mannii* Telašćica strain
- 118 CIM_D-4 distinguish separated and indigenous population of *P. mannii* in the middle Adriatic
- 119 Sea observed in the Telašćica Bay.
- 120

121 Acknowledgement

The authors would like to express their thanks to Katrina O'Loughlin for critical reading of the manuscript and language corrections. Special gratitude goes to two anonymous reviewers whose comments and suggestions helped improving this manuscript. The authors would like to thank the Nature park "Telašćica" office for their financial support of the research, and assistance with sampling. The study was supported in part by the Croatian Ministry of Science, Education and Sports (project no. 119-1191189-1228) and by the Croatian Science Foundation (project no. UIP-11-2013-6433).

129

130 **References**

ALVERSON K. 2008. Sustained Arctic Observations: A Legacy of the Polar Year. *Eos*,
 Transactions American Geophysical Union 89: 363-364.

133 AMATO A., KOOISTRA W.H., GHIRON J.H., MANN D.G., PRÖSCHOLD T. & MONTRESOR M. 2007.

134 Reproductive isolation among sympatric cryptic species in marine diatoms. *Protist* 158:193–
135 207.

AMATO A. & MONTRESOR M. 2008. Morphology, phylogeny, and sexual cycle of *Pseudo- nitzschia mannii* sp. nov. (Bacillariophyceae): A pseudo-cryptic species within the *P*.
 pseudodelicatissima complex. *Phycologia* 47:487–497.

139 GUILLARD R.R.L. 1983. Culture of phytoplankton for feeding marine invertebrates. In: Berg,

140 C.J.J. (Ed.) Culture of Marine Invertebrates Selected Readings. Hutchinson Ross Publishing

- 141 *Co.*, Stroudsberg, pp. 108–132.
- 142 KOOISTRA W.H.C.F. & MEDLIN L.K. 1996. Evolution of the diatoms (Bacillariophyta). IV. A

reconstruction of their age from small subunit rRNA coding regions and the fossil record. *Molecular Phylogenetics and Evolutions* 6:391–407.

145 LIM H.C., LIM P.T., TENG S.T., BATES S.S. & LEAW C.P. 2014. Genetic structure of Pseudo-

146 *nitzschia pungens* (Bacillariophyceae) populations: implication of a global diversification of

147 the diatom. *Harmful Algae* 37:142–152.

148 LIM H.C., TENG S.T., LIM P.T., WOLF M. & PIN LEAW, C. 2016. 18S rDNA phylogeny of

149 Pseudo-nitzschia (Bacillariophyceae) inferred from sequence-structure information.

150 *Phycologia* 55:134-146.

- 151 LUNDHOLM N., DAUGBUERG N. & MOESTRUP Ø. 2002. Phylogeny of the Bacillariaceae with
- emphasis on the genus *Pseudo-nitzschia* (Bacillariophyceae) based on partial LSU rDNA. *European Journal of Phycology* 37:115–134.
- 154 LUNDHOLM N., BATES S.S., BAUGH K.A., BILL B.D., CONNELL L.B., LEGER C. & TRAINER V.L.,
- 155 2012. Cryptic and pseudo-cryptic diversity in diatoms with descriptions of *Pseudo-nitzschia*
- 156 *hasleana* sp. nov. and *P. fryxelliana* sp. nov. *Journal of phycology* 48:436-454.
- 157 LJUBEŠIĆ Z., BOSAK S., VILIČIĆ D., BOROJEVIĆ KRALJ K., MARIĆ D., GODRIJAN J., UJEVIĆ I.,
- 158 PEHAREC P. & DAKOVAC T. 2011. Ecology and taxonomy of potentially toxic *Pseudo-nitzschia*
- species in Lim Bay (north-eastern Adriatic Sea). *Harmful Algae* 10:713-722.
- 160 MEDLIN L.K., JUNG I., BAHULIKAR R., MENDGEN K., KROTH P. & KOOISTRA W.H.C.F. 2008.
- 161 Evolution of the diatoms. VI. Assessment of the new genera in the araphids using molecular
- 162 data. *Nova Hedwigia* 133:81–100.
- 163 MEDLIN L.K., KOOISTRA W.H.C.F., GERSONDE R. & WELLBROCK U. 1996. Evolution of the
- diatoms (Bacillariophyta). II. Nuclear- encoded small-subunit rRNA sequence comparisons
 confirm a paraphyletic origin for the centric diatoms. *Molecular Biology and Evolution* 13:67–
 75.
- MEDLIN L.K., WILLIAMS D.M. & SIMS P.A. 1993. The evolution of the diatoms
 (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. *European Journal of Phycology* 28:261–275.
- MONIZ M. & KACZMARSKA I. 2010. Barcoding of diatoms: nuclear encoded ITS revisited. *Protist* 161:7–34.
- SORHANNUS U. 1997. The origination time of diatoms; an analysis based on ribosomal RNA
 data. *Micropaleontology* 43:215–218
- SORHANNUS U. 2007. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom
 evolution. *Marine Micropaleontology* 65:1–12.
- 176 TAN S.N., LIM H.C., TENG S.T., LIM P.T. & LEAW C.P. 2015. Pseudo-nitzschia species
- 177 (Bacillariophyceae) identification and delineation using mitochondrial cox1 gene sequences as
- 178 compared to LSU rDNA. *Fisheries Science* 81:831–838.

- 179 THERIOT E.C., CANNONE J.J., GUTELL R.R. & ALVERSON A.J. 2009. The limits of nuclear-
- 180 encoded SSU rDNA for resolving the diatom phylogeny. European Journal of Phycology
- 181 44:277–290.
- 182 ZHANG H., BHATTACHARYA D. & LIN S. 2007. A three-gene dinoflagellate phylogeny suggest
- 183 monophyly of Prorocentrales and a basal position for Amphidinium and Heterocapsa. *Journal*
- 184 *of Molecular Evolution* 65:463–474.
- 185
- 186

187 Figure captions

188 **Figure 1.** *Pseudo-nitzschia mannii*, TEM. A) Tip of the valve. Scale bar: 1µm. B) Central part

189 of the valve. Scale bar: 1μm. C) Perforation pattern of the areole. Scale bar: 0.5 μm. D) Girdal

190 bands. Scale bar: 0.25 μ m.

191

192 Figure 2. Phylogenetic position of CIM D-4 (P. mannii Telašćica strain) based on A) ITS rDNA gene sequence data (23 taxa), B) 18S rDNA gene sequence data (22 taxa), and C) 28S 193 rDNA gene sequence data (19 taxa). The trees were rooted with two raphid taxa. BPP and BP 194 195 values greater than 50 are shown on the nodes that were recovered with Bayesian inference 196 analysis (GTR+G+I model, 5M generations with burn-in 500000, MLE $-\ln L = -9134.029$), 197 Maximum likelihood (ML) analysis (K2+G model, 1000 replicates of bootstrap) and Maximum 198 Parsimony (MP) analysis (1000 replicates of bootstrap). Taxa in bold designate sequence 199 obtained in this study.

Supporting Information

Multigene phylogeny and morphology of newly isolated strain of Pseudo-nitzschia mannii Amato & Montresor (Adriatic Sea)

DOROTEA GRBIN¹, MARTIN PFANNKUCHEN², IVANA BABIĆ¹, MAJA MEJDANDŽIĆ¹, HRVOJE MIHANOVIĆ³, DANIELA MARIĆ PFANNKUCHEN², JELENA GODRIJAN⁴, PETRA PEHAREC ŠTEFANIĆ⁵, GORAN OLUJIĆ⁶, ZRINKA LJUBEŠIĆ^{1*}

¹University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
 ²RuðerBošković Institute, Centre for marine research, Rovinj, Croatia
 ³Institute of Oceanography and Fisheries, Split, Croatia
 ⁴Ruðer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
 ⁵University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
 ⁶Hydrographic Institute of the Republic of Croatia – Split, Split, Croatia

*Corresponding author:

Zrinka Ljubešić Department of Biology Faculty of Science, University of Zagreb, Croatia E-mail: zrinka.ljubesic@biol.pmf.hr

Supporting Information consists of 12 SI pages (S1 – S12), 5 SI Tables (Table S1 – S5) and one SI Figures (Figures S1).

Material and Methods

Morphological characterization

For transmission electron microscopy (TEM) and preparation of permanent slides, *Pseudo-nitzschia* frustules were first acid-cleaned (combination of HNO₃ and H₂SO₄) and rinsed with distilled water. Cleaned frustules in distilled water were mounted on the copper grid and micrographs were taken with a FEI Morgagni 268D transmission electron microscope. Permanent slides for morphometry on a light microscope were made from cleaned samples mounted in Zrax.

Genetic characterization

DNA was isolated from *P. mannii* monoclonal culture (strain CIM_D-4) with a Qiagen plant tissue kit (Qiagen GmgH, Hilden, Germany) according to the manufacturer's instructions.

The hypervariable region of the small subunit (SSU) 18S ribosomal DNA (rDNA) gene was amplified using the primer set D512for 18S and D978rev 18S (Table S2) according to Zimmermann et al. (2011). Additionally, we used primer set ITSL and Diat-ITS-NL38-R (Table S2) to amplify the internal transcribed spacer (ITS) region (ITS1 -5,8S-ITS2) as described in Lundholm et al. (2003) and primer set D1R and D3Ca (Table S2) to amplify partial large subunit (LSU) 28S rDNA as described in Amato et al. (2007).

All nucleotide sequences were commercially obtained by submission to Macrogen (Amsterdam, The Netherlands), using the sequencing Big Dye TM Terminator Kit and ABI 3730XL (Applied Biosystems). Retrieved 18S rDNA sequences from two runs for each direction were compared in order to exclude sequencing mistakes by majority rule (3:1) resulting in 760 base pair (bp) long 18S rDNA sequence (SSU sequence; V4 region). For ITS the result was 838 bp long sequence (ITS1– 5,8S–ITS2 region) and for 28S rDNA 786 bp long sequence (LSU sequence; D1–D3 domains).

All three newly obtained sequences of *P. mannii* Telašćica strain CIM_D-4 were deposited in the GenBank under the following accession numbers: KX215915 for 18S rDNA; KX215916 for ITS, and KX215917 for 28S rDNA.

Phylogenetic analysis

Three datasets, including *P. mannii* Telašćica strain CIM_D-4, were analyzed: the nuclear 18S rDNA, ITS and 28S rDNA. 18S rDNA sequence alignment included a total of 22 18S DNA sequences - twenty of the genus *Pseudo-nitzschia*, one sequence per genus *Nitzschia* and *Cylindrotheca*. ITS sequence alignment included a total of 23 ITS DNA sequences - 21 of the genus *Pseudo-nitzschia* and one sequence per genus *Nitzschia* and *Cylindrotheca*. 28S rDNA alignment included a total of 19 sequences – 17 different *Pseudo-nitzschia* species/strains and two of the genus *Nitzschia*. All selected sequences were obtained from the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) by using a basic alignment search tool (tblastn) and are listed in Supplementary Tables S3, S4 and S5. Each multiple sequence alignment was performed using Clustal X version (v) 2.0 (Larkin et al. 2007) and subsequently corrected and manually refined using BioEdit v 7.0.5.3 (Hall 1999).

Maximum Parsimony (MP) and Maximum Likelihood (ML) analyses were performed by MEGA 6 software (Tamura et al. 2013). MP analyses were carried out using heuristic searches with the random addition of sequences (1000 replicates), and branch-swapping with tree-bisection-reconnection (TBR) (Nei & Kumar 2000). ML analyses were performed using heuristic searches with 10 random addition replicates and the TBR branch-swapping algorithm. The best-fitting evolutionary models were identified according to lowest BIC scores (Bayesian Information Criterion) that included AICc value (Akaike Information Criterion) (Tamura et al. 2013). For all three alignments (18S DNA, ITS

and 28S) the best-fitting evolutionary model was K2+G (Kimura 2-parameter + discreet Gamma distribution). The reliability of phylogenetic relationships were evaluated using a non-parametric bootstrap analysis with 1000 replicates. The bootstrap values exceeding 75 were considered well supported.

Additionally, Bayesian inference (BI) analyses were performed using MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003) on all three datasets, each using default priors and the general time reversible (GTR) model with a gamma distribution (G) and a proportion of invariable sites (I) (GTR+G+I) model. Posterior probabilities were assessed in two runs, using four MCMC chains with trees (5 million generations, sampling every 1000th generation, burn-in period 500000). Stationarity was confirmed using Tracer ver. 1.5 (Drummond & Rambaut 2007). Finally, consensus phylogenetic trees were made using FigTree v.1.4.2. (available at tree.bio.ed.ac.uk/software/figtree/), comprising Bayesian posterior probability (BPP), MP and ML bootstrap values (BP) presented at branch nodes.

TABLES

Lengł	nt (µm)	Wi (µ	dht m)	Fibu 10	ılae/ um	Str 10	iae∕ µm	Por μ	oids/ m	Div sec	ided ctor	Authors
Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
57	89	1.3	1.8	18	26	37	44	4	6	2	5	This work
77	98	1.3	1.7	19	24	34	41	4	6	2	4	Ljubešić et al. 2011
115	117	3.1	3.3	17	20	27	30	4	5	-	-	Quijano-Scheggia et al. 2010
53	93	1.6	2.1	18	23	32	39	4	6	2	7	Moschandreou & Nikolaidis 2010
30	130	1.7	2.6	17	25	30	40	4	6	2	7	Amato & Montresor, 2008

Table S1. Comparison of *Pseudo-nitzschia mannii* strains morphometry through studies.

Table S2. List of primers used in this study.

Region	Primer ID	Primers	Reference
18S	D512for 18S	5-ATTCCAGCTCCAATAGCG-3	Zimmermann et al. (2011)
	D978rev 18S	5-GACTACGATGGTATCTAATC-3	Zimmermann et al. (2011)
ITS1-5,8S-ITS2	ITSL	5-TCGTAACAAGGTTTCCGTAGGTG-3	Lundholm et al. (2003)
	Diat-ITS-NL38-R	5-CGCTTAATTATATGCTTA-3	Lundholm et al. (2003)
28S(D1-D2)	D1R	5-ACCCGCTGAATTTAAGCATA-3	Amato et al. (2007)
	D3Ca	5-ACGAACGATTTGCACGTCAG-3	Amato et al. (2007)

Table S3. Origins of the *Pseudo-nitzschia*, *Nitzschia* and *Cylindrotheca* 18S strains and DNA sequenceGenBank accession number. Taxa in bold designate sequence obtained in this study.

		GenBank	
Species	Strain	accession num.	Reference
Pseudo-nitzschia brasiliana	PnKk33	KP708991	Lim et al. 2016
Pseudo-nitzschia brasiliana	PnSm07	KP708990	Lim et al. 2016
Pseudo-nitzschia brasiliana	CCMA405	KM386874	Wang et al. Direct Submission
Pseudo-nitzschia caciantha	PnSL05	KP708992	Lim et al. 2016
Pseudo-nitzschia calliantha	NWFSC185	JN091716	Boardman et al. Direct Submission
Pseudo-nitzschia circumpora	PnPd28	KP708994	Lim et al. 2016
Pseudo-nitzschia circumpora	PnPd27	KP708993	Lim et al. 2016
Pseudo-nitzschia fraudulenta	SZN-B670	KJ608077	Ruggiero & Italiano, Direct Submission
Pseudo-nitzschia fraudulenta	NWFSC196	JN091721	Boardman et al. Direct Submission
Pseudo-nitzschia fukuyoi	PnTb39	KP708999	Lim et al. 2016
Pseudo-nitzschia fukuyoi	PnTb31	KP708998	Lim et al. 2016
Pseudo-nitzschia fukuyoi	PnTb25	KP708997	Lim et al. 2016
Pseudo-nitzschia kodamae	PnPd31	KP709000	Lim et al. 2016
Pseudo-nitzschia lundholmiae	PnTb28	KP709002	Lim et al. 2016
Pseudo-nitzschia lundholmiae	PnTb21	KP709001	Lim et al. 2016
Pseudo-nitzschia mannii	CIM_D-4	KX215915	This study
Pseudo-nitzschia mannii	SZN-B640	KJ608080	Ruggiero & Italiano Direct Submission
Pseudo-nitzschia micropora	PnKk14	KP709003	Lim et al. 2016
Pseudo-nitzschia pseudodelicatissima	isolate SPC22	GU373965	Fitzpatrick et al. 2010
Pseudo-nitzschia sp.	CCMP1309	GU373970	Fitzpatrick et al. 2010
Cylindrotheca closterium	KMMCC:B-552	GQ468545	Youn & Hu, Direct Submission
Nitzschia communis	FDCC L408	AJ867278	Rimet et al. Direct Submission

Table S4. Origins of the Pseudo-nitzschia, Nitzschia and Cylindrotheca ITS strains and DNA sequnce

GenBank accession number. Taxa in bold designate sequence obtained in this study.

		GenBank	
Species	Strain	accession num.	Reference
Pseudo-nitzschia calliantha	B4	DQ530621	Andree, Direct Submission
Pseudo-nitzschia calliantha	TURB	KC017464	Ajani et al. 2013
Pseudo-nitzschia calliantha	WAG	KC017463	Ajani et al. 2013
Pseudo-nitzschia calliantha	AL-112	DQ813841	Amato et al. 2007
Pseudo-nitzschia delicatissima	BC6_CL13_17	KM245506	Noyer et al. 2015
Pseudo-nitzschia delicatissima	21-01	AY519274	Orsini et al. 2004
Pseudo-nitzschia hasleana	HAWK3/1	KC017450	Ajani et al. 2013
Pseudo-nitzschia hasleana	HAWK4	KC017468	Ajani et al. 2013
Pseudo-nitzschia hasleana	NWFSC 186	JN050282	Lundholm et al. 2012
Pseudo-nitzschia hasleana	OFP41014-2	JN050286	Lundholm et al. 2012
Pseudo-nitzschia kodamae	PnPd36	KF482053	Teng et al. 2014
Pseudo-nitzschia kodamae	PnPd26	KF482050	Teng et al. 2014
Pseudo-nitzschia mannii	CIM_D-4	KX215916	This study
Pseudo-nitzschia mannii	CBA60	HE650978	Penna et al. 2013
Pseudo-nitzschia mannii	CBA56	HE650977	Penna et al. 2013
Pseudo-nitzschia mannii	AL-101	DQ813839	Amato et al. 2007
Pseudo-nitzschia mannii	C-AL-1	DQ813842	Amato et al. 2007
Pseudo-nitzschia mannii	(08)10A2	JF714905	Moschandreou et al. Direct Submission
Pseudo-nitzschia mannii	(08)10B8	JF714904	Moschandreou et al. Direct Submission
Pseudo-nitzschia mannii	(07)E-2	JF714903	Moschandreou et al. Direct Submission
Pseudo-nitzschia turgiduloides	3-19	AY257839	Lundholm et al. 2003
Cylindrotheca sp.	CCAP 1017/7	FR865492	Heesch, Direct Submission
Nitzschia epithemoides	CCAP 1052/18	FR865501	Heesch, Direct Submission

Table S5. Origins of the *Pseudo-nitzschia* and *Nitzschia* 28S strains and DNA sequence GenBank

 accession number. Taxa in bold designate sequence obtained in this study.

		GenBank	
Species	Strain	accession num.	Reference
Pseudo-nitzschia calliantha	TURB	KC017452	Ajani et al. 2013
Pseudo-nitzschia calliantha	WAG	KC017451	Ajani et al. 2013
Pseudo-nitzschia calliantha	B4	EF642976	Andree, Direct Submission
Pseudo-nitzschia calliantha	AL-112	DQ813815	Amato et al. 2007
Pseudo-nitzschia delicatissima	AL-22	DQ813810	Amato et al. 2007
Pseudo-nitzschia hasleana	HAWK3/1	KC017446	Ajani et al. 2013
Pseudo-nitzschia hasleana	NWFSC186	JN050298	Lundholm et al. 2012
Pseudo-nitzschia kodamae	PnPd36	KF482045	Teng et al. 2014
Pseudo-nitzschia kodamae	PnPd26	KF482042	Teng et al. 2014
Pseudo-nitzschia mannii	CIM_D-4	KX215917	This study
Pseudo-nitzschia mannii	AL-101	DQ813814	Amato et al. 2007
Pseudo-nitzschia pseudodelicatissima	P-11	AF417640	Lundholm et al. 2003
Pseudo-nitzschia pseudodelicatissima	P-15	DQ813808	Amato et al. 2007
Pseudo-nitzschia pungens	KBH2	AF417650	Lundholm et al. 2002
Pseudo-nitzschia pungens	P-24	AF417648	Lundholm et al. 2003
Pseudo-nitzschia seriata	Lynaes8	AF417653	Lundholm et al. 2002
Pseudo-nitzschia seriata	Nissum3	AF417652	Lundholm et al. 2003
Nitzschia pellucida	99NG1-16	AF417672	Lundholm et al. 2002
Nitzschia laevis	M1285	AF417673	Lundholm et al. 2003

FIGURES

Figure S1. Telašćica Bay; sampling area. T0 is located on the southern side of the bay with the depth of 85 m and it is a referent site without any anthropogenic influence. Additional station (CT01) close to T0 was investigated in March 2012, to get better insight into a physico-chemical conditions. Station T1 is located at the entrance to the bay (bottom depth 55 m) while sampling sites T2 - T5 are situated within the bay and their depth varies between 20 and 60 meters. Characteristic depths in the Telašćica Bay and in the surrounding area are also denoted.

References

AJANI P., MURRAY S., HALLEGRAEFF G., LUNDHOLM N., GILLINGS M., BRETT S. & ARMAND L. 2013. The diatom genus *Pseudo-nitzschia* (Bacillariophyceae) in New South Wales, Australia: morphotaxonomy, molecular phylogeny, toxicity and distribution. *Journal of phycology* 49:765–785.

AMATO A., KOOISTRA W.H., GHIRON J.H., MANN D.G., PRÖSCHOLD T. & MONTRESOR M. 2007. Reproductive isolation among sympatric cryptic species in marine diatoms. *Protist* 158:193–207.

AMATO A. & MONTRESOR M. 2008. Morphology, phylogeny, and sexual cycle of *Pseudo-nitzschia mannii* sp. nov. (Bacillariophyceae): A pseudo-cryptic species within the *P. pseudodelicatissima* complex. *Phycologia* 47:487–497.

DRUMMOND A.J. & RAMBAUT A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary biology* 7:1.

FITZPATRICK E., CARON D. & SCHNETZER A. 2010. Development and environmental application of a genus-specific quantitative PCR approach for Pseudo-nitzschia species. *Marine biology* 157:1161-1169.

HALL, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41:95-98.

LARKIN, M.A., BLACKSHIELDS, G., BROWN, N.P., CHENNA, R., MCGETTIGAN, P. A., MCWILLIAM, H., VALENTIN F., WALLACE I.M., WILM, A., LOPEZ, R., THOMPSON, J.D., GIBSON, T.J. & HIGGINS, D.G. (2007). Clustal W and Clustal X version 2.0. *Bioinformatics*. 23:2947-2948.

LIM H.C., TENG S.T., LIM P.T., WOLF M. & PIN LEAW, C. 2016. 18S rDNA phylogeny of *Pseudo-nitzschia* (Bacillariophyceae) inferred from sequence-structure information. *Phycologia* 55:134-146.

LJUBEŠIĆ Z., BOSAK S., VILIČIĆ D., BOROJEVIĆ KRALJ K., MARIĆ D., GODRIJAN J., UJEVIĆ I., PEHAREC P. & DAKOVAC T. 2011. Ecology and taxonomy of potentially toxic *Pseudo-nitzschia* species in Lim Bay (north-eastern Adriatic Sea). *Harmful Algae* 10:713-722.

LUNDHOLM N., MOESTRUP Ø., HASLE G.R. & HOEF-EMDEN K. 2003. A study of the Pseudonitzschia pseudodelicatissima/cuspidata complex (Bacillariophyceae): What is *P. pseudodelicatissima? Journal of Phycology* 39:797-813.

LUNDHOLM N., BATES S.S., BAUGH K.A., BILL B.D., CONNELL L.B., LEGER C. & TRAINER V.L., 2012. Cryptic and pseudo-cryptic diversity in diatoms - with descriptions of *Pseudo-nitzschia hasleana* sp. nov. and *P. fryxelliana* sp. nov. *Journal of phycology* 48:436-454.

MOSCHANDREOU, K.K. & NIKOLAIDIS G. 2010. The genus Pseudo-nitzschia (Bacillariophyceae) in Greek coastal waters. Botanica Marina. 53:159-172.

NEI M. & KUMAR S. 2000. *Molecular Evolution and Phylogenetics*. Oxford University Press, New York.

NOYER C., ABOT A., TROUILH L., LEBERRE V.A. & DREANNO C. 2015. Phytochip: Development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species. *Journal of microbiological methods* 112:55-66.

QUIJANO-SCHEGGIA, S., GARCÉS, E., ANDREE, K.B., DE LA IGLESIA, P., DIOGÈNE, J., FORTUÑO, J.M., & CAMP, J. (2010). *Pseudo-nitzschia* species on the Catalan coast: characterization and contribution to the current knowledge of the distribution of this genus in the Mediterranean Sea. *Scientia Marina*. 74:395-410.

ORSINI L., PROCACCIANI G., SARNO D. & MONTRESOR M. 2004. Multiple rDNA ITS-types within the diatom *Pseudo-nitzschia delicatissima* (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. *Marine ecology-progress series* 271:87-98.

PENNA A., CASABIANCA S., PERINI F., BASTIANINI M., RICCARDI E., PIGOZZI S. & SCARDI M. 2013. Toxic *Pseudo-nitzschia spp*. in the northwestern Adriatic Sea: characterization of species

composition by genetic and molecular quantitative analyses. *Journal of plankton research* 35:352-366.

RONQUIST F. & HUELSENBECK J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19:1572–4.

TAMURA K., STECHER G., PETERSON D., FILIPSK A. & KUMAR S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular biology and evolution* 30:2725-2729.

TENG S.T., LIM H.C., LIM P.T., DAO V.H., BATES S.S. & LEAW C.P. 2014. *Pseudo-nitzschia kodamae* sp. nov. (Bacillariophyceae), a toxigenic species from the Strait of Malacca, Malaysia. *Harmful Algae* 34:17–28.

ZIMMERMANN C., CHYMKOWITCH P., ELDHOLM V., PUTNAMC. D., LINDVALLJ. M., OMERZU M., BJORAS M., KOLODNERR. D. & ENSERINK J.M. 2011. A chemical-geneticscreen to unravel the genetic networkof CDC28/CDK1 linksubiquitin and Rad6-Bre1 to cell cycle progression. *Proceedings of the National Academy of Sciences* 46:18748-53.