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Abstract
There is an ongoing debate regarding themechanismof swift heavy ion (SHI) track formation inCaF2.
The objective of this study is to shed light on this important topic using a range of complementary
experimental techniques. Evidence of the threshold for ion track formation being below 3 keV nm−1

is provided by both transmission electronmicroscopy (TEM) andRutherford backscattering
spectroscopy in the channellingmode, which has direct consequences for the validity ofmodels
describing the response of CaF2 to SHI irradiation. Furthermore, information about the elemental
compositionwithin the ion tracks is obtained using scanning TEM, electron energy loss spectroscopy,
andwith respect to the stoichiometry of thematerials surface by in situ time offlight elastic recoil
detection analysis. Advances in the analyses of the experimental data presented here pave theway for a
better understanding of the ion track formation.

1. Introduction

Materialmodification using swift heavy ions (SHIs) having amass above 15 atomicmass units (amu), and a
specific kinetic energy above 0.1 MeV amu−1 is an important contemporary research topic [1–6]with diverse
applications like hadron therapy, radiationwaste storage and track etchedmembrane production. Irradiation
with SHI generates intense electronic excitation along its trajectory because at these kinetic energies
(10–2000MeV) the dominant channel for energy dissipation is via numerous collisions with electrons in the
material. The density of deposited energy, usually expressed in terms of the SHI’s electronic stopping power
(keV nm–1), is often quite sufficient to produce permanent damage along the ion trajectory (i.e. ion track) or
activate various thermally driven processes enabling patterning or synthesis of nano-structuredmaterials
[4, 7–10].

Interactions of individual SHIswith crystallinematerials can result in the formation of ion tracks in the bulk
[3, 11–13], accompanied by surface features (nano-hillocks, nano-craters and similar) that can be found at the
SHI impact site bymeans of atomic forcemicroscopy (AFM) [2, 5, 14–18]. Despite their nanometric sizes, ion
tracks in the bulk can be observedwith several techniques. Themost often used techniques are transmission
electronmicroscopy (TEM) andRutherford backscattering spectroscopy in the channellingmode (RBS/c)
[12, 14, 19–21]. TEMoffers the possibility for direct observation of the individual ion tracks, while the RBS/c
measures the ion track size indirectly by observing the fraction of disorderedmaterial in the crystalmatrix, as a
function of the applied SHI fluence.With some exceptions, the agreement inmeasured ion track radii between
these two techniques is very good [20].

Due to the so-called velocity effect, slower ions (E/A<2MeV amu−1 aremuchmore efficient at ion track
formation than the faster ones (E/A>8MeV amu−1, evenwhen both have the same electronic stopping power
[11, 21, 22]. Twomost widely usedmodels of ion track formation, namely the inelastic thermal spikemodel
(ITSM) and the analytical thermal spikemodel (ATSM), attribute the velocity effect to two completely different
physicalmechanisms. In the case of the ITSM, the velocity effect (i.e. reduction in track sizes at high SHI
velocities) is related to the low density of the deposited energy due to the high energy of scattered electrons
(primary or delta electrons) [12, 20]. This results in amonotonically increasing threshold for ion track formation
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with ion velocity, i.e. E/A.On the other hand, the ATSMattributes larger track sizes at low SHI velocities (below
2MeV amu−1) to a contribution from theCoulomb explosion and this is considered as an important difference
between those twomodels [23, 24].

Due to the existence of the velocity effect,medium sized accelerators can provide important complementary
data at energies below 1MeV amu−1 which are not easily accessible to large accelerators. In particular, the
threshold for ion track formation constitutes an important experimental quantity (often needed for testing
various ion-solid interactionmodels) that can be inmany cases easily accessible tomedium sized accelerators
[1, 9, 11, 16, 19, 25, 26]. Similar to ion tracks in the bulk, there is always a threshold for nanohillock formation on
the surface. Above the threshold, nanohillocks typically grow in size with increasing ion energy. Similar values
for the threshold for ion tracks in the bulk and for nanohillocks on the surface have often been observed [5, 6],
thus enabling us to characterise the thresholdwith different techniques.

1.1. Ion tracks inCaF2: current status
At present, a hotly debated topic is the formationmechanismof ion tracks inCaF2 and closely related to this, the
nature of the velocity effect (even its very existence) in thismaterial [26–31]. A still incomplete body of
experimental data available for analysis is themain reasonwhy this debate is ongoing. Despite extensive
experimental work done previously [32–35]where ion tracks inCaF2were investigated byTEM, only recently
one experimental study using RBS/cwas published [27]. As noted by Szenes [28], this RBS/c data (alongwith
XRDdata from the samework) indicate the absence of the velocity effect in the 1–11MeV amu−1 range. In
response [29], TEMdatawas used as a proof for existence of the velocity effect in CaF2 because very small ion
tracks were found indicating a threshold for track formation around 20 keV nm−1 after GeVmonoatomic
irradiation, while a lower threshold around 10 keV nm−1 was found afterMeV cluster ion irradiation. Not
surprisingly, even the newest experimental results onAFMobservation of SHI induced nanohillocks onCaF2
surfaces were used in this discussion [30].

The explanations given by the twomodels about the rather small track sizes observed inCaF2 are radically
different and at present seen as a test of their validity [27–29]. According to the ITSM, the small track sizes
observed by TEMare caused by strong ionic bonding that prevents amorphizationwithin the ion track [27].
Therefore inCaF2, and probably other non-amorphizablematerials, ion tracks consisting of strongly disordered
material are considered as a result of the quench of the boiling phase that occurs along the SHI trajectory.
Melting, on the other hand, is seen as requirement for CaF2modification as observed by RBS/c andXRD, as well
as previous swelling studies [36, 37]. For this reason, the track radiimeasured by differentmethods are not
always the same, and consequently the thresholds also vary. Based on the thermodynamic parameters for CaF2,
the amount of energy necessary to induce amolten phase is around 0.6 eV atom–1 [30] and for the formation of
the vapour phase around 1.7 eV atom–1 [27] is required. For very low velocity SHI, in the ITSM this corresponds
to stopping powers of 2.6 keV nm−1 [30] and 7.4 keV nm−1, respectively.

The problemof small ion track sizes inCaF2 is solvedwithin theATSM in an altogether different way. Since
large track sizes observed in othermaterials after irradiationwith SHIswith low velocity are interpreted as
contribution of aCoulomb explosion, small track sizes inCaF2 are seen as evidence of its absence [28, 38].
Therefore, a pure thermal spike is thought to be at the origin of ion track formation inCaF2, and in this later case
all experimental data can be described usingmodel parameters for the high velocity regime (i.e. a0=4.5 nm,
g=0.18), yielding a threshold at 9.5 keV nm−1 [31]. Recently, this thresholdwas corrected by Szenes to
7 keV nm−1 to accommodate newer RBS/c results, while the TEMdata from [34, 35]were dismissed as
erroneous [28].Materialmelting remains as a necessary condition for ion track formation, while the boiling
criterion is considered as unrealistic [28], although it is also possible to describe all TEMdata available in the
literature by applying the boiling criterionwithin the ATSMand taking the velocity effect into account [26].

Finally, there is also an open question about the atomic structure within the ion track. Based on previous
investigations on the response of CaF2 to electron beams [39], the characteristic intermittent track structure
observed by TEM is believed to consist of faceted anion voids [32–35, 40]. These voids can be viewed as calcium
inclusions that should be easily formed due to the smallmisfit between the fcc structure of theCa sublattice and
CaF2. Then, themuch lower density of the calciumwith respect toCaF2would give rise to contrast as seen in
TEM [33]. However, the fate of the fluorine gas liberated fromwithin the ion track remains unknown: itmight
remain trappedwithin theCaF2 crystal but outside the ion tracks [40] or itmight be released by diffusion from
the ion track [35].

1.2. Ion tracks inCaF2:motivation for the presentwork
The aimof the present work is to resolve the dilemmaoutlined above by providingmuch needed additional
experimental data. First, we observe that the TEMdata of tracks in CaF2 due to irradiationwithmonoatomic
projectiles [34, 35] show an unexpectedly uniformbehaviour throughout the intermediate and high velocity
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range of the SHI (E/A=2–11MeV amu−1). Similarly, RBS/c data [27] show the same uniformbehaviour in
almost the same range of energies (E/A=1–11MeV amu−1), as observed earlier by Szenes [28]. These
observations led us to formulate the hypothesis that the velocity effect inCaF2 (as conceived in the ATSM) is
shifted to lower values of E/Abelow 1MeV amu−1. A smaller shift has been observed previously [41], but
recently a larger shift has been observed for tracks produced by lighter SHIs like oxygen [9].

To test our hypothesis, we have undertaken SHI irradiation of CaF2 usingmonoatomic heavy ionswith a
specific kinetic energy E/A=0.1–0.2 MeV amu−1, followed by an investigation of the resulting ion tracks using
TEM,RBS/c, AFMand time offlight elastic recoil detection analysis (ToF-ERDA). The SHI beams used in this
study cover precisely the range of interest, i.e. electronic stopping powers between 3–7 keV nm−1. Furthermore,
in the present case the irradiation conditionsmatch almost exactly the ones used in [30] because iodine and
xenon ions at these energies are practically indistinguishable projectiles, hence the comparison between bulk
and surface tracks inCaF2 becomes possible. Thus, experimental data obtained here complements the existing
data: in this energy range there is hitherto noRBS/c data, and available TEMdatawas obtained afterMeV cluster
ion irradiation, which could bear additional effects due to extreme values of deposited energy densities
[40, 42, 43] although opinions are divided on this topic [27, 41]. This complementarity should enable us to
establish the threshold for ion track formation in the bulkCaF2, and tofinally resolve the ardent controversy
about the velocity effect in thismaterial. Last but not least, to shed some light on the inner track structure, i.e. its
elemental composition, both ToF-ERDA and scanning TEM–electron energy loss spectroscopy (STEM–EELS)
were performed in our current study.

2. Experimental details

Single crystalline CaF2 (111) samples of 7×7 mm2were prepared by cleaving from single crystal piece (Crystec)
before the irradiation. Additionally, several TEMgrids containingCaF2 crystal grains were prepared by crushing
CaF2 into amortar followed by dispersion into ethanol and dripping the dispersion onto a TEMgrid provided
with a carbonmembrane.

All SHI irradiationswere performed at the Ruđer Bošković Institute (RBI) using 6MVENVan deGraaff
accelerator. Iodine ionswith energies of 10, 15 and 23MeVwere used in both normal and grazing incidence
geometry. Single crystal samples irradiated at normal incidence were orientedwith a small tilt angle (6°)with
respect to the surface normal, in order to avoid possible SHI channelling. The SHI beamwas scanned to ensure
homogenous irradiation and thefluencewasmeasured by observing the ionflux in the Faraday cup before and
after the exposure. For longer exposures, the irradiationwas interrupted a few times to ensure that the ion flux
was stable. A full list of all irradiation parameters is given in table 1.

Ion tracks in the bulkwere characterised using RBS/c andTEM.The samples were analysed by TEMbefore
and after irradiationwith SHI using a JEOL 200CX electronmicroscope operated at 200 kV acceleration voltage
at room temperature. In order to further understand the processes induced by heavy ion irradiation but also by
electron irradiation during the TEM investigation, the sample irradiated at 23MeVwas analysed by STEM–

EELS technique.Wewere using the JEMARM200F electronmicroscope corrected for spherical aberration in
the STEMmode. Themicroscopewas operated at 200 kV, while the samplewasmaintained at room
temperature during observation.

For the RBS/c analysis, a 2 MeVLi2+ and 1MeVH+ beams delivered by the 1 MVTandetron accelerator
were used (RBI). The samples weremounted on a goniometer and angular scanmaps (tilt, azimuth)were
performed for target alignment. The beam spot sizewas 1 mm in diameter and the ion current was kept at about
1 to 2 nA. To detect the backscattered ions, a silicon surface barrier detector with a thickness of 300 μmand
bearing 3 mmslits was positioned at 160°with respect to the probing beamdirection.

Table 1. Irradiation parameters used in this work calculated using the SRIM
code [44]: electronic stopping power dEe/dx, nuclear stopping power dEn/
dx and projected ion rangeR.

SHI

dEe/dx

(keV nm−1)
dEn/dx

(keV nm−1) R (μm)

10 MeV I5+ 2.93 0.63 3.29

15 MeV I6+ 4.27 0.47 4.47

23 MeV I6+ 6.26 0.35 5.87

2 MeVLi2+ 0.72 0.001 3.82

1 MeVH+ 0.005 0.00 004 11.99
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Ion tracks on the surface were analysed using tappingmodeAFMand in situToF-ERDA. TheAFM
measurements were performed under ambient conditions using aDimension 3100 AFMandNanosensors
NCHR cantilevers atUniversität Duisburg-Essen. Images were analysed using theWSxMcode [45]. The ToF-
ERDAmeasurements (RBI)were performed using a 23MeV I beamat 1° grazing incidence angle with respect to
the sample surface. The ToF-ERDA spectrometer [46, 47]was positioned at an angle of 37.5° towards the beam
direction (RBI). All data were collected in the ‘listmode’ and offline replay/analysis with sections was performed
using the Potku software package [48].

3. Experimental results

3.1. TEMresults
Herewe present evidence of ion track formation for all SHI irradiation energies used. The TEMclearly revealed
ion tracks produced by stopping power as low as 2.9 keV nm−1, with thewell-known intermittentmorphology.

3.1.1. Before irradiation
At lowTEMmagnification theCaF2 grains proved to be beam resistant.Working for severalminutes in such
low-beam illumination conditions did not induce any visiblemodifications at themorphological or structural
level. However, after a few tens of seconds of e-beam irradiation under a focused e-beam, CaF2 started to
decompose, followed byCa oxidation as shown infigure 1.One can observe in the following pictures that after
exposing the crystal grain to a focused electron beam, it starts tomodify bothmorphologically (as one can see in
the TEM images, figure 1(c)) and structurally (see the selected area electron diffraction (SAED) patterns at the
beginning of the TEMobservation and after ca. 1 min of observation under the focused beam, figures 1(d) and
(e)). Diffuse diffraction rings appear in the SAEDpatterns alongwith theCaF2 spots. The diffraction rings
indicate the in situ formation of CaO (cubic phase). In order to avoid the rapid beam-induced structural
modifications, we have chosen towork at lowmagnification using the diffraction contrast for the track studies.

3.1.2. After irradiationwith iodine ions at 23 MeV
For all analysed samples, the SHI irradiation effects could only be revealed for high values of objective lens
defocus, either underfocus (df<0) or overfocus (df>0). To be able to correctly interpret the TEM imageswe
note that for the TEM images obtained in the diffraction contrastmode, the features exhibiting bright Fresnel
fringe correspond to regions in the sample with lower density than the surroundingmatrix (voids). The contrast
is opposite when the objective lens is overfocused, the image then showing a dark Fresnel fringe on the side of the
lower-densitymaterial.

The SHI irradiation effects weremost visible in the case of the sample irradiated at the highest energy of
23MeV.When observing the irradiated crystal grains in no-tilt or slightly tilted orientation, the underfocused
images exhibit doublets of bright dots of 2–3 nm size (figure 2). The separation distance between the two bright
dots differs across one crystal grain, being smaller close to the grain border and larger for the pairs of dots inside
the grain away from the grain border.We attribute these pairs of bright spots to the extremities of the irradiation
tracks crossing the crystal grain and intercepting the two limiting surfaces (bottom and upper surface). The
variation of the separation distancewith the location of the bright dots goes in linewith the thickness increase of
the analyzedwedge-shaped grains. The SHI tracks consist of heavily disorderedmaterial regionswhich,
according to thementioned Fresnel contrast criterion, correspond to regions of lower density within thematrix
(figure 2).

In order to get a side view of the irradiation tracks, the sample was tilted inside themicroscope up to 40
degrees with respect to the electron beam. The TEM images obtained in underfocus and overfocus conditions
then reveal a certain structuring of the irradiation tracks along their trajectory. They show a contrastmodulation
with 2–4maxima along their length.

The prolonged observation in the TEMof the SHI irradiated sample leads to the formation of two kinds of
defects apart from the irradiation tracks. These defects have already been reported in literature as defects
induced by e-beam irradiation during the TEMobservation: (i) on one hand aggregated defects (voids)
sometimes organised in periodic arrays and (ii) dislocation loops located in the (111) planes.

The through focus contrast behaviour of thefirst type of defects proves that they are nanovoids of up to
10 nm size. They are indicated bywhite arrows infigures 3 and 4 in underfocus and overfocus condition. It is
known from the literature [49, 50] that these nanovoids tend to organise, with the increase of the irradiation dose
and the observation time, into a cubic superlattice oriented parallel to the cubic CaF2 lattice. In our case, due to
the lowfluence observation conditions and the early stage observation during imaging, the induced nanovoids
are not yet organised into a superstructure.
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Figure 1.TheTEM image (a) and corresponding SAEDpattern (b) of a CaF2 grain close to the [−112] zone axis at the beginning of
observation at lowmagnification (low e-beam fluence). The TEM image (c) and corresponding SAEDpattern (d) of the sameCaF2
grain after ca. 60 s of observation under focused e-beam (high e-beamfluence); (e) SAEDpattern of the same crystal grain in a different
orientation (close to the [111] zone axis) after ca. 120 s of observation under focused e-beam (high e-beamdose).

Figure 2. SHI induced nanofeatures revealed as pairs of bright spots on theCaF2 crystal grain.
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The second type of e-beam induced defects are the dislocation loops bordering planar defects. The calcite
grain infigure 5 is oriented close to the [1–10] zone axis (see the inserted SAEDpattern). The image infigure 5(a)
was acquired in thefirst seconds of observation, therefore only the irradiation tracks are visible as doublets of
white spots. After a fewminutes of observation, pairs of planar defects bordered by dislocation loops started to
appear under the influence of the e-beam. By comparingwith the corresponding SAEDpattern, one can notice
that these planar defects are situated in the {111} crystallographic plane of CaF2. Such defects have been also
mentioned in literature [2].

3.1.3. After irradiationwith iodine ions at 15 MeV
Similar SHI track features were observed on the samples irradiated at 15MeV. The bright scattered dots in
figure 6(a) represent end-on irradiation tracks with a similar size (2–3 nm) as in the case of the sample irradiated
at 23 MeV. The side view of the irradiation tracks (figure 6(b)) reveals their fine structure of 3–4 aligned
nanovoids of 3–4 nm size. E-beam induced faceted nanovoids of up to 8 nm size can also be observed after a few
tens of seconds of observation.

3.1.4. After irradiationwith iodine ions at 10 MeV
Similar SHI induced track effects were observed on the samples irradiated at 10MeV.Groups of up to 5 bright
dots aligned parallel to the vertical direction infigure 7(a) represent irradiation tracks in side view orientation,

Figure 3.Under-focus (a) and over-focus (b)TEM images reveal low densitymaterial inside the irradiation tracks represented by the
white and, respectively, the black dots.White arrows point to electron beam-induced voids.

Figure 4.Underfocused (a) and overfocused (b)TEM image of a tiltedCaF2 grain containing 23 MeV I irradiation tracks (black
arrows) and an array of electron beam-induced voids (white arrows).
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consisting in nanovoids of 5–6 nm size. After a few tens of seconds of observation, e-beam induced defects can be
noticed as faceted nanovoids of up to 8–9 nm size (white arrows infigure 7(b)).

3.2. In situTEMresults
Detailed inspection of the ion tracks for prolonged time and under the various TEMconditions indicated
difficulties in obtaining reliable information about ion track sizes. On a careful examination of the ion tracks in
the sample irradiated at low energy (10MeV I), we observed that, apart from the alreadymentioned defects
induced by the e-beam, there is a certainmorphological evolution of the ion tracks themselves under the

Figure 5. (a)Wedge-shapedCaF2 grain oriented close to the [1–10] zone axis (corresponding SAEDpattern inserted) containing
23 MeV I irradiation tracks imaged as doublets of white dots; (b) e-beam induced planar defects grouped in pairs, bordered by
dislocation loops (seen edge-on).

Figure 6. (a)Under-focused TEM image showing end-on 15 MeV I irradiation tracks revealed aswhite dots (black arrows); (b) side
view of the irradiation tracks (black arrow) in a grain that was tiltedwith respect to the electron beam in themicroscope. Thewhite
arrowpoints to the regular in situ e-beam induced nanovoids.

Figure 7.Under-focused (a) and overfocused (b)TEM images showing 10 MeV I irradiation tracks revealed as groups of 4–5white
dots (black dots when overfocused) aligned parallel to the vertical direction (pointed by black arrows); thewhite arrows indicate
nanovoids induced by e-beam irradiation during the observation in the TEM.
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electron beam.Wenoticed that, although initially not visible, the irradiation tracks are only revealed after a few
tens of seconds of observation under the e-beam, inside grains which atfirst apparently contained no ion tracks.
The images infigure 8 are taken from the sameCaF2 grain at differentmoments starting from the beginning of
the observation in themicroscope. The image recorded during the very first seconds of observation in
underfocus condition does not exhibit any visible ion track (figure 8(a)).Without changing the illumination
conditions or defocus of the objective lens, the ion tracks started to become visible after about 30 s of
observation, while after 2 min they showed quite well defined shapes.

Infigure 8(b)we present the TEM image after 3 min of observation, at the same defocus condition as in
figure 8(a) (recorded directly after imaging started). The irradiation tracks are now clearly visible, showing the
morphological features described previously.Wemention that the e-beam fluences during the TEMobservation
weremaintained at low values and that the typically observed e-beam induced defects in CaF2 have not yet been
formed before the ion tracks became visible. This experiment proved that although the ion tracks are produced
even for low energy values (10MeV) as confirmed by the RBS/cmeasurements (section 3.4.), their spatial extent
and, in particular, their contrast is too low to be imaged by TEM in their native state, despite the TEMpoint
resolutionwhich is well below 1 nm for all the commercial TEMs. Any attempt to adjust the TEMobservation
conditions in order to reveal the sub-nanometric ion tracks results in increasing the e-beam fluencewhich has as
direct consequence the rapidmodification of the ion tracks from their initial state. From theTEMpoint of view,
the as-produced ion tracks consist of unobservable thin filaments (of the order of 1 nmor below, as revealed by
RBS/c) of disorderedmatter inside theCaF2 lattice. These are only revealed in TEMafter a few seconds of
e-beam irradiationwhich induces a process of atomic relaxation and rearrangement along the tracks into rows
of nanovoids. Accuratelymeasuring the size of the ion tracks by TEM therefore becomes a delicate issue, since
they continuously evolve under the e-beam, their size reaching a saturation valuewhichmay be higher than the
onemeasured by RBS/c.

Moreover, as thesefinemorpho-structural features (ion tracks) are only visible under strong defocus
conditionswith the help of the bright or dark Fresnel fringe, it is important tomention that themeasured size on
the TEMmicrographs depends on the degree of defocus. In order to illustrate this, infigure 9we present a
through-focus series of TEM images from the same area of a CaF2 containing ion tracks. Two different values of
underfocus (figures 9(a) and (b)) and overfocus (figures 9(c) and (d))were used to show that the larger the
defocus the larger themeasured size of the ion tracks. For the two ion tracksmarkedwith arrows in the central
part and bottompart of themicrographs, themeasured sizes are 4.1 nm infigure 9(a) (small underfocus), 6.6 nm
and 5.8 nm infigure 9(b) (large underfocus), 7.3 nm and 5.8 nm infigure 9(c) (small overfocus), 8.2 nm and
7.4 nm infigure 9(d) (large overfocus). From this spread of the data and the fact that the ion tracks aremodified
by the e-beam illumination, it results that one cannot obtain reliable information on the tracks size from the
TEM investigationswith an accuracy better than 2–3 nm,which is of the same order ofmagnitude as the ion
tracks. Thismight explain the contradictory quantitative results obtained by different techniques and authors
reported in literature. Although the quantitative information obtained by STEM imaging of the ion tracks is
more reliable (section 3.3.) since in this casewe deal with themass-thickness contrast instead of the Fresnel
fringes, neither this observationmode preventsmorphological transformation of the ion tracks under the
e-beam.

Figure 8.TEM image of aCaF2 grains irradiated at 10 MeV: (a) at the beginning of the TEMobservation, underfocused image; (b) after
3 min of TEMobservation, underfocused image.
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3.3. STEM–EELS results
During the previous TEM investigations performed in low e-beam conditions, wewere able to discriminate the
defects induced by SHI irradiation, ion tracks as rows of nanovoids, and those induced in situ, by e-beam
irradiation during the TEMobservation, undecidedly reported in literature either as voids or Ca colloids, or
more generally, aggregated defects. By using STEM–EELS, herewe provide evidence that the elemental
compositionwithin the ion tracks is indeed different from the surroundingmatrix.

The STEMworkingmode is based on themass-thickness contrast,meaning that signal intensity is
proportional to the local 〈Z〉2 and the local sample thickness. On the other hand, EELS is an analytical technique
providing qualitative and quantitative information regarding the chemical composition of the sample. By
coupling STEMandEELSmodes in the spectrum imaging (SI)mode, one can get data packages containing both
morphological and spectroscopic information. In STEM–EELS–SI, the focused electron beam is scanned across
the selected areawhile an EEL spectrum andmorphologic information are acquired in each pixel. EEL spectra
and compositionmaps can be afterwards extracted from the SI data cubewith a space resolutionwhich, in
certain conditions, can go down to atomic resolution.We have applied the STEM–EELS analysis in order to get
correlated chemical andmorphological information on the irradiation defects induced by the heavy ions and the
electron beam. The analysed grains contain both SHI and e-beam induced defects. The STEM images were
acquired using the annular dark field (ADF) detector with a collection angle of 180–730 mrad.

On the STEM–ADF image infigure 10, the e-beam induced defects and the 23MeV I ion tracks are indicated
withwhite arrows and black arrow, respectively. For both kinds of defects, the characteristic contrast is darker
than the surrounding area, indicating a local deficit ofmatter in both cases, which is in agreement with the
conclusions derived fromdiffraction contrast of the underfocused/overfocused TEM images. The size of the
observed defects, asmeasured on the STEM image, is in the range 2–4 nm for the irradiation track and about
10–15 nmormore for the e-beam induced defects (defect average size proportional to the time exposed to the

Figure 9.Through-focus series of TEM images from the same area inside a CaF2 grain containing ion tracks: (a)Δf1<0; (b)Δf2<0,
|Δf1|<|Δf2|; (c)Δf3>0; (d)Δf4>0,Δf4>Δf3.
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e-beam), confirming the values resulted from the TEM study. Typical intensity line profiles across the ion tracks
are presented correspondingly below the STEM images infigure 10.

The possible chemicalmodifications associatedwith the irradiation-induced defects and the spatial
distribution of the identified chemical elements were investigated by EELS in STEMmode (SI). On the STEM–

ADF image infigure 11(a) (the same area as the one infigure 10(a)), the green rectanglemarks a region
containing one typical ion track (pointed by the black arrow) aswell as defects created in situ by electron beam
irradiation (pointed bywhite arrows). As previouslymentioned, these defects show a darker contrast with
respect to the surroundings, indicating a deficit ofmatter (void).

The total EEL spectrum extracted from thewhole SI area reveals the chemical elements Ca and F present in
the sample. After removing the background, the local intensity of theCa and F signals ismapped out as Ca and F
elementalmaps presented infigure 11(b). The two elementalmapswere also overlapped into a composed
colouredmap to check for local chemical segregation.We have used the same arrows to point to the areas
corresponding to themorphological details indicated infigure 10(a). Two interesting facts can be noticed by
correlating the elementalmapswith the STEM image:

i. A local increase of the F signal and a deficit of theCa signal correspond to the ion track.

ii. A local deficit of the F signal and an increase of the Ca signal correspond to the e-beam induced defects.

On the composed colouredmap one can clearly observe the spatial complementarities between the two
elementalmaps and the compositional differences between the ion tracks and the e-beam induced defects.

In addition to the expectedCa and F signals, theO absorption edge at 532 eV can also be noticed in the
extracted EEL spectrum. The presence of theO signal is not surprising, since byTEM investigations we have
evidenced themorphological and structuralmodifications of CaF2 under the e-beam and the in situ formation of
cubic CaOduring the TEMobservation of theCaF2 grains (see the SAEDpatterns of the non-irradiatedCaF2
single crystal grains after ca. 1 min of observation under focused beam,figure 1(e)).

3.4. RBS/c results
In agreementwith the TEM results presented in section 3.1, RBS/cmeasurements provided evidence for
damage build-up due to electronic excitation caused by the SHI irradiation. This was observed for all the SHI
energies used, indicating again threshold below 2.9 keV nm−1.
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Figure 10. STEMADF images (a),(c) at differentmagnifications (800 kx and 1200 kx) of aCaF2 grains containing irradiation tracks
(black arrows) and e-beam induced defects (white arrows). Intensity line profiles across the irradiation tracks (b), (d) indicate their size
(measured as the FWHMof the profile) in the range of 2–4 nm.
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For eachCaF2 sample, the area irradiated by swift iodine ionswas defined by a collimator 3×2 mm2 in size,
and the channelling alignment was done on the unirradiated part of the sample. No sample preparationwas
done, and the ion current was kept low around 1 nA to obtain reliable RBS/c spectra. It was verified that the
2MeVLi beamdoes not introduce defects after prolonged exposure, and that the RBS/c spectra from irradiated
samples (containing disorder) can be reliably acquired even aftermultiple exposures. For each iodine energy
used, three samples were irradiatedwithfluences of 3×1012 cm−2, 1×1013 cm−2 and 3×1013 cm−2,
respectively. In total, nine samples were analysed by RBS/c. After the alignment procedure was accomplished on
the unirradiated part of the sample, by a quick angular scan it was verified that the channelling axis is the same on
the irradiated part of the sample. For each channelling RBS/c spectrum, a randomonewas also recorded for the
same exposure time. In this way all aligned spectra could be normalised to the random spectra, ensuring all
aligned spectra are normalised to the same analysing beamfluence.

Infigure 12we showRBS/c spectra for three different iodine energies, as a function of the applied fluence. It
is evident that for each iodine energy used, disorder is introduced into theCaF2 crystal. Furthermore, by
increasing the energy of the iodine ions, disorder is building up faster and eventually saturation is reached at the
highest fluence. At that instance, obviously a second stage of damage evolves leading to a pronounced growth of
the surface peak (marked by the arrow infigure 12).

Analysis of this kind of RBS/c spectra is usually done in the so-called surface approximation [27]. By
neglecting the contribution from the surface peak, the amount of disorder Fd ismeasured by comparing the
backscattering yield fromdefects (γi) relative to the backscattering yield in the random (γr) and aligned virgin

Figure 11. (a) STEM–ADF image of a CaF2 grain containing ion tracks and e-beam induced defects. The green rectangle indicates the
area fromwhich the Spectrum Imagewas acquired. (b)Elementalmaps inside the green rectangle illustrating the local content of F
andCa; the composed RGB imagewas obtained by superposing the two elementalmaps (c)EEL spectrum extracted from the entire
area inside the green rectangle showing the absorption edges of Ca (L2,3 edge at 346 eV), F (Kedge at 685 eV) andO (K edge at 532 eV).
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(γv)RBS/c spectra at the position of the surface:
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Assuming a cylindrical geometry for the ion tracks, it is possible to evaluate the radius of the individual ion tracks
R bymonitoring disorder build-up as a function of the applied ion fluencej, andfitting the resulting datawith a
Poisson formula (thus taking into account ion track overlap):

Figure 12.RBS/c spectra after (a) 23 MeV I (b) 15 MeV I and (c) 10 MeV I irradiation. The appliedfluences were 3×1012 ions cm−2,
1×1013 ions cm−2, and 3×1013 ions cm−2. For comparison, RBS/c spectra fromunirradiated sample are given, both in
channelling and in randomorientation.Marked areCa and F edges in the RBS/c spectrum and arrowpoints to the surface peak in (a).
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whereα is a normalisation factor.
It can be immediately realised this analysing approach is not adequate for the present set of experimental

data.While it is clear that the damage is correlated to the electronic stopping power of the respective projectile,
and the fact that ion tracks are observed by TEM for all used iodine ion energies, direct backscattering on defects
belowCa edge (channels 300–650) is negligible. However, damage observed by RBS/c due to dechannelling of
the probing beam in this region indicates damagewithin the F sublattice because direct backscattering of F atoms
contributes to the RBS/c spectrumonly below the F edge (i.e. below channel 300). In order to verify this, we have
performed an additional RBS/c analysis using 1MeVprotons on the sample irradiatedwith 23MeV I at a
fluence of 3×1012 ions cm−2. Due to differentmass and energy of the probing ion beam, an enhanced
sensitivity to backscattering fromdisplaced fluorine atoms is achieved, as shown infigure 13. In this case, it is
evident that both dechannelling and direct backscattering from the disordered fluorine lattice occur (increased
RBS/c yield below channel 180) and in principle, the standard approach (i.e. surface approximation) could be
applied to thefluorine edge in theRBS/c spectra. The pronounced step at the position of the fluorine surface
indicates thatmost of the fluorine sublattice is disordered, in agreementwith results from2MeVLi RBS/c
(figure 12).

Since dechannelling also depends on the defect concentration [51], dechannelling of 2 MeVLi below theCa
edge as a function of applied iodinefluence can be used for ion trackmeasurement. Dechannelling herewe
define as the slope of the alignedRBS/c spectra between channels 400 and 600 infigure 12, corresponding to the
depth of ca. 300 nm.Applying the Poisson formula (equation (2))we estimate the ion track (i.e. disorder within
fluorine sublattice) radii to be:R=3.5± 0.1 nm for 23MeV I,R=1.6±0.2 nm for 15 MeV I and
R=1±0.2 nm for 10MeV I irradiation (figure 14). For the 10 MeV I tracks, saturation of disorder below 1
cannot be ruled out (i.e.α<1), but higher iodine fluenceswould be needed to establish this with certainty.

3.5. AFMandToF-ERDA results
While ion trackswere observed before on theCaF2 surface after grazing incidence SHI irradiation [52, 53], we
demonstrate that for the creation of surface tracks a dE/dx of 2.9 keV nm−1 is already sufficient as can be clearly
seen from theAFM images infigure 15. Surface ion tracks produced by grazing incidence 23MeV iodine ion
irradiation shown in figure 15(a) exhibit the typical, well defined nanohillock-like structure aligned along the
SHI trajectory. This is in linewith previously published data on surface ion tracks in CaF2 after grazing incidence
with 103MeVPb ions [52]. The observed ion-track density at afluence of 15 ion impacts μm–2 indicates a
surface track formation efficiency close to one.

After 10MeV I irradiation under the same grazing incidence angle of 1°, the resulting surface ion tracks show
the same internal structure but they appearmuch fainter, as can be seen from figure 15(b). Images were acquired
by the sameAFM tip and on the same day, butwe cannot rule out changes in the AFM tip quality during the
measurements (figure 15(a)was acquired beforefigure 15(b)). However, themain point is that also here, the
observed density of the surface tracks is in agreementwith the applied fluence of 10 ion impacts μm–2 indicating
that the track production efficiency is still close to one. Because onewould expect a reduced efficiency close to
the track formation threshold, we conclude that an electronic stopping power of 2.9 keV nm−1 (corresponding

Figure 13.RBS/c spectra of samples irradiatedwith 23 MeV I ions at afluence of 3×1012 ions cm−2, obtained by 1 MeVproton
probing beam.Marked areCa and F edges in the RBS/c spectrum.
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to 10MeV I irradiation) is still well above the threshold for surface ion track formation. This is in agreementwith
the observation in [30], although thresholds for surface ion tracks produced in the normal and under the grazing
geometry probably cannot be compared directly [19].

As shown previously, the formation of surface ion tracks after grazing incidence irradiation can be
accompanied by depletion of one of thematerial constituents, resulting in non-stoichiometric surface state
[19, 25]. For this reason, in situTOF-ERDAwas performed using 23MeV I ions under the 1° grazing incidence
geometry. As shown onfigure 16, even after highfluence iodine irradiation (i.e. under the conditions ofmultiple
ion tracks overlap), the stoichiometry of theCaF2 surface remains stable. This is not necessarily at variancewith
the STEM–EELS results presented in section 3.3. because information obtained from the ToF-ERDA is non-
local since it inspects thewhole sample surface.

4.Discussion

4.1.Discussion of TEMresults
Webegin by comparing TEMresults obtained in this studywith previously published data [32, 34, 35] and
related analysis using the ITSM [27, 30] and the ATSM [26, 28, 31, 38]. The observation of surface aswell as bulk
ion tracks inCaF2 after irradiationwith 10MeV I, already at an electronic stopping power as low as 3 keV nm−1,
is completely unexpected. Fromprevious TEM studies, the threshold for ion track formationwas evaluated to be
at 9.5 keV nm−1 for low velocity irradiation [31, 32], while high velocity irradiation data indicated an even
higher threshold around 20 keV nm−1 [34, 35]. Such a large value of the high velocity threshold, and the small
size of the observed ion trackswas dismissed by Szenes as erroneous experimental data [28].While it is true that
TEMobservation of ion tracks inCaF2 is challenging, due to the sensitivity of thematerial to e-beam irradiation

Figure 14. (a)Disordered fractionwithin thefluorine sublattice evaluated from the dechannelling RBS/c yield as a function of the
applied iodinefluence for 23 MeV I (red), 15 MeV I (blue) and 10 MeV I (green) irradiation. (b) Ion track size increase with electronic
stopping power.
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as demonstrated in the present work, and due to knowndifficulties in evaluating the ion track diameter [33],
objections of that kind cannot holdwhen clear experimental evidence for the existence of ion tracks is given.
Herewe note that the ion track sizes obtained in this study (data from section 3.1.) are comparable to other
studies, with the exception of experiment with 40MeVC60 cluster ion irradiation, as shown infigure 17. The
slightly larger ion track diameter for the lowest energy irradiation (10MeV I) is in our opinion not related to the
nuclear stopping power. First, here presented RBS/c data showmonotonic increase of disorder with increasing
electronic stopping power. Second, 20.2 MeVAu4+ data point from a previous study [32], with nuclear and
electronic stopping power of comparablemagnitude, is indistinguishable fromother irradiations with
dominant electronic stopping power. Therefore, slightly larger ion track diameters cannot be caused by nuclear
stopping powerwhich is one order ofmagnitude lower than the electronic stopping power in all of our
irradiations. Even if we assume that 100%of nuclear stopping power is transferred into the thermal spike, while
only 20%of the electronic stopping power (a hypothesis that can be accommodated onlywithin theATSM), it
would still not be possible to justify a track diameter of 5 nm after irradiationwith 10MeV I. At present we
cannot explain this slight increase in ion track size after 10 MeV I irradiation, but as shown after in situTEM
measurements (section 3.2.) thesemeasured ion track radii values are prone to uncertainties related to specific
imaging conditions despite our efforts to keep imaging conditions similar for all the samples investigated. These
measurements were done under low irradiation conditions, in order to limit or postpone the e-beamdamage,
and track sizes were estimated in the saturation conditions. Herewe have to reiterate thewarning of Szenes [28]
because TEM results reported in previousworks could also be influenced by the extreme sensitivity of the CaF2

Figure 15.AFM images of theCaF2 (111) surface after irradiationwith (a) 23 MeV I at 1° incidence angle and fluence of 15 ion
impacts μm–2, (b) 10 MeV I at 1° incidence angle andfluence of 10 ion impacts μm–2.
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to e-beam irradiation, as well as larger uncertainties due to a not sowell defined geometry of the ion tracks
[32, 33]. For that reason, we consider the RBS/c data (figure 14(b)) a better choice for thermal spike analysis than
TEMdata. AlthoughRBS/cmeasurements also induce electronic excitations, the repeatability of the
measurements indicate stability of the ion tracks during thesemeasurements, probably due tomuch lower
energies of the secondary electrons generated by the probing beam [54]. Thereforewe conclude that byRBS/c
pristine ion tracks can be observed, while during imaging by TEM ion tracks undergo certain development
processes.

Despite the uncertainties with respect to the absolute size determination byTEM, our present study shows
there can be no doubt that well-developed tracks form at stopping powers as low as 3 keV nm−1. Such a low
value for ion track formation is not predicted by either one of the thermal spikemodels. To describe small ion
track diameters inCaF2, ITSM invokes boiling as requirement for track formation observable by TEM,with a
minimumdeposited energy density of 1.7 eV at–1 [27]. Compared to themelting requirement for nanohillock
formationwith aminimumdeposited energy density of 0.58 eV at–1 that is achieved at an electronic stopping
power of 2.75 keV nm−1 for very low velocity ion irradiation [30], boiling (hence appearance of ion tracks
observable by TEM) should not appear below an electronic stopping power of 8 keV nm−1.

TheATSMalso faces difficulties in explaining the new experimental data presented here. Previously, the
threshold of 9.5 keV nm−1 for ion track formation determined byTEM studies was attributed either to the

Figure 16.Calculated F/Ca ratio fromoffline analysis of the in situToF-ERDAmeasurements, obtained from thefirst 10 nmof the
CaF2 sample.Measurements were performed using 23 MeV I ions at 1° grazing incidence angle.

Figure 17.Track sizes inCaF2 observed by TEM.Newdata from the present study (only TEMdata from section 3.1.) shown in green.
Old data are taken from [32, 34, 35]. Lines are prediction of the ATSMaccording to [26].
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absence of the velocity effect [31], i.e. the non-existence of a Coulomb explosion contribution at low velocities
[24], or to the boilingmechanism like in the ITSM framework [26]. In both cases, ion tracks should appear along
the ion trajectory at an electronic stopping power of 9.5 keV nm−1. Our observation, the appearance of tracks at
3 keV nm−1 is in clear contrast to these predictions. Even if we take into account that later on the predicted
thresholdwas shifted down to 7 keV nm−1 (see figure 1 in [28]) a large discrepancy remains. Therefore, we can
only conclude that the current descriptions of the ion track formation inCaF2 using thermal spikemodels are
not entirely correct.

4.2.Discussion of RBS/c results
Wenow turn our attention to the RBS/c results. First, in agreementwith the TEMdata, disordering is observed
already after 10 MeV I irradiation and increases with kinetic energy, hence it is an effect due to the electronic
stopping power. Disordering is seen as an enhanced RBS/c yield due to dechannelling, while direct
backscattering fromdisorderedCa atoms is observed only for the highest fluences, in the formof an enlarged
surface peak. As shown exemplary for 1MeVprotonRBS/c (figure 13), this dechannelling originates from the
disordered fluorine sublattice, and it should also represent the density of defects [51]. A similar approachwas
also used recently to assess SHI damage in diamond by simply integrating theRBS/c spectrumwithin the region
of interest [55]. By applying the Poisson formula, we calculated fromRBS/c spectra the ion track radii that
corresponds to the extent of disorder within the fluorine sublattice after the ion impact (figure 14), indicating
threshold at∼2 keV nm−1. Qualitatively, the alleged anti-correlationwith the TEM results is not completely
unexpected. Close to the threshold, ion tracks observed by TEMare known to be bigger than tracks observed by
RBS/c because of the discontinuousmorphology of tracks having diameters below 2 nm [20]. Possible
deviations from the Poisson formulawould require accumulation ofmuchmore RBS/c data points that is out of
the scope of the present work. Therefore, given the difficulties of the TEManalysis revealed in this paper,more
than a qualitative agreement cannot be expected at present.

Next, we note that at least for the samples irradiatedwith 23MeV I, the RBS/c spectra exhibit a saturation
behaviour, inwhich case CaF2 is never fully disordered, in agreement with previous data [27]. This is an
indication for a structural recovery of theCa sublattice during high-fluence irradiation. At themoment it is not
known if this is due to a so-called particle assisted prompt anneal (PAPA)mechanism [40] or a SHI beam
induced epitaxial crystallisation (SHIBIEC)mechanism [56] operating on already existing ion tracks. The
difference between the twomechanisms is that, in the first case, a recrystallisationwould occur in thewake of the
impacting ion (probably themechanism responsible for the absence of ion tracks in crystalline Si [57]), while the
second one considers the recrystallisation of defects produced by a previous ion impact. Regardless of the origin
of this effect, the saturation in RBS/c spectra was also observed before in sapphire [58], reproduced here in
figure 18. Actually, in the samework an enlargement of the aluminium surface peakwas also observed, and it was
stated that the damage kinetics is a two-step process. The driving force for the enlargement of the surface peak
observed in sapphire ismost likely due to the suppression of the recrystallisation process at the surface and at the
crystal-amorphous interface [58–60].

It can be observed (figure 18) that up to the onset of the second step, i.e. up to the fluence of
4×1012 ions cm−2, enhanced RBS/c yield from the aluminium step due to dechannelling increases with
appliedfluence. This can be attributed to disordering of the oxygen sublattice (that contributes only to

Figure 18.RBS/c spectra for sapphire irradiated by 90 MeVXe. Reproducedwith permission from [58].
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dechannellingwithin theAl step), and indeed amonotonous increase of the oxygen edge due to backscattering of
the RBS/c probing beam can be clearly seen. Saturation of the RBS/c yield observed forfluences of
3×1013 ions cm−2 and above coincides with a fully developed oxygen step, corresponding to a completely
disordered oxygen sublattice. Apparently, the onset of the second stage of the damage evolution occurs when the
oxygen lattice is fully disordered, but amore detailed analysis would be needed to verify this. Our results indicate
that a similar two-stage process is active inCaF2. The reasonwhy it was not observed in the previous study [27] is
probably that it occurs only at highfluences, which are difficult to access by accelerators providing very high
energy ions.

We note that for all of our RBS/c data points, disordering of the calcium lattice has not been observed
(except for the surface peak enlargement at very high fluences during the second stage thatwe do not analyse
here). Indeed, as shown in [27, 28], only for stopping power values above 7 keV nm−1, disordering of the
calcium lattice can be seen. Butwe also note that for the 2 MeVHeRBS/c spectrumof a CaF2 sample irradiated
with lowfluence high energy ions (375MeVPb, dE/dx=29 keV nm−1 shownonfigure 11(a) in [27], that
dechannelling is substantial while direct backscattering of ions from theCa lattice isminimal. Only for higher
fluences can backscattering fromdisorderedCa atoms be observed due to disordering of theCa sublattice.
Therefore, we conclude that two separate values of the ion tracks (and corresponding thresholds) can be
extracted from the analysis of RBS/c data: one that is related to disordering of the fluorine sublattice and another
one that is related to disordering of the calcium sublattice. In our opinion, both values are relevant for the
present and previous RBS/c analyses of ion tracks inCaF2 and both cannot be describedwith a single set of
model parameters, unless one invokes different track formation criteria. Perhaps other techniques, like for
example optical absorption spectroscopy, can providemore insight into these defects because the observed
formation of coloured centres was identified to be due to the electronic excitations [61], even below
5 keV nm−1 [37].

4.3. Elemental composition of ion tracks inCaF2
Finally, we turn our attention to the question of the composition of the individual ion tracks inCaF2. Based on
previous observations of electron induced defects inCaF2 [39], anion nanovoids were assumed to be the building
blocks of intermittent ion tracks inCaF2 observed byTEM [32–35]. Still, thewhereabouts of the fluorine
remained an open question. Presumably released as a gas, it was proposed that it is efficiently released from
within the ion track [35]. Alternatively, it was proposed byChadderton [40] thatfluorine can remain trapped
within thematerial but outside the ion track.

Our results provide some new insight on this topic. By corroborating themorphological and spectroscopic
information resulting from the diffraction contrast images in TEM,mass-thickness contrast images in STEM,
STEM–EELS elementalmapswe come to the following conclusions:

i. The observed ion irradiation tracks consist of rows of nano-voids (lower Ca signal in the EELS elemental
maps)where Fmay be trapped in gaseous state (higher F signal in the EELS elementalmaps).

ii. The e-beam induced defects consist in nanometric volumes where CaF2 dissociates with the likely loss of
gaseous F2 and formation of Ca-rich nanometric pockets where Ca is partially oxidised (due to the residual
oxygen atoms in the TEMcolumn vacuum). Asmentioned also in [33], themass density of Ca (1.54 g cm−3

is lower than the one ofCaF2 (3.18 g cm
−3, which explains the void-like behaviour of the diffraction contrast

in the TEM images of the e-beam induced defects. The remaining Ca-rich regions are partially oxidised as
proved by the SAEDpatterns and EEL spectra.

In addition, we have shown that by irradiating CaF2 at grazing incidence angle using a 23MeV I beam,well
developed ion tracks can form, as seen byAFM. In situToF-ERDAmeasurements using the same ion beam
parameters, provide evidence that the surface composition does not change. This evidence rules out the fluorine
gas release scenario, and STEM–EELS provides further support thatfluorine remains trappedwithin the ion
track.However, the loss of calcium as seen by STEM–EELS is surprising, and apparently at oddswith ToF-ERDA
results. But, these results are not necessarilymutually inconsistent, because ToF-ERDAprovides information on
themacroscopic scale, and STEMEELS on themicroscopic one. Furthermore, asmentioned in section 4.1,
secondary electrons generated by SHIs (in this case also ToF-ERDAbeam) havemuch lower kinetic energies [54]
than e-beamused for STEMEELS, and therefore less damaging to theCaF2 structure. In that sense, STEMEELS
results provide further insight about the development of the ion tracks during the TEMmeasurements
(section 3.2).

We propose the following interpretation of our results. Althoughmany of theCaF2 chemical bonds are
broken by SHI irradiation, Ca ions remain in place probably due to recrystallisation of theCa sublattice (inferred
fromRBS/c data [27]), while F ions are disordered, as indicated by theRBS/c results reported in the present
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work. The RBS/c probing beam seems to leave the ion track structure unaffected, but in the TEM the ion tracks
evolve continuously under the e-beam via radiolysis processes. At the beginning of the TEMobservation, no
contrast of ion tracks is visible, and this should correspond to the situation that wefind byRBS/cmeasurements,
with disordered F and non-disorderedCa sub-lattices. Only after a few tens of seconds, ion tracks are revealed in
the TEMbecause the brokenCa–F chemical bonds are not restored by the e-beam in themicroscope. On the
contrary, Ca partially diffuses inside the neighbouringCaF2 lattice, and the ion track becomes enriched in F, as
indicated by EELS–SI. TheCa out-diffusion from the ion tracks into the surrounding lattice corresponds to the
ion track developing process observed by in situTEM.The resulting ion track consists then of a channel formed
with a lower density of Ca atoms, i.e. enriched influorine, which explains the contrast observed by defocus in
conventional TEMobservation. Recent results on e-beam irradiatedCaF2 that indicate a loss of calcium for high
enough electron fluences provide further support for such scenario [50].

5. Conclusion

By using RBS/c andTEM techniques, we present evidence of ion track formation inCaF2 for electronic stopping
power values as low as 3 keV nm−1, which suggestsmelting as requirement for ion track formation.We also
present a newway of analysing RBS/c data giving clear indications for disordering of the fluorine sublattice at
these low stopping powers, even under conditions when the calcium sublattice remains undamaged, probably
due to recrystallisation. Bulk ion tracks observed byTEMafter SHI irradiation at low stopping powers used in
this study, indicate that current interpretations of ion track formation inCaF2 using the thermal spike
mechanism (either related to boilingwithin the ITSMor absence of Coulomb explosion contributionwithin the
ATSM) are likely inadequate. Alternative explanations such as the PAPA [40], SHIBIEC [56] or exciton related
mechanisms [6, 62] should be checked in future experimental studies.

The relationship between previously published RBS/c data [27] and data presented here remains
unaddressed, since the former should be re-evaluated using themethod demonstrated here. The TEMdata
presented here shows convincingly that the evaluation of ion track sizes using this technique results in
ambiguous results, depending on the imaging conditions. Towhat extent previous data are subject to these
effects remains unknown to us, butwe believe our findings provide support to Szenes questioning of TEMdata
in that respect.

Surface ion tracks were also produced after grazing incidence SHI irradiation for the same low value of
electronic stopping power, showing thewell-known intermittent structure. BothToF-ERDA and STEM–EELS
experiments provided evidence thatfluorine remainswithin thematerial when ion tracks are formed inCaF2.
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