Modeling interfaces and surfaces using density functional theory and Non-Equilibrium Green's Functions

Umberto Martinez Pozzoni, PhD
QuantumWise – company background

- Market leader in atomic-scale modeling software for the semiconductor industry
- Growing usage in the materials and chemical industry
- More than 300 users worldwide
- Rapidly expanding number of academic and industrial users

- Founded in 2008 (but goes back to 2003)
- Specialists in simulation software for atomic-scale modeling
- 35 FTEs; majority has a PhD (+3-5/year)
- Headquarter in Copenhagen, Denmark
- Sales reps in USA, Singapore, Japan
- Resellers in India, China, Taiwan, Korea, ...
- Profitable with 25% growth rate – no external capital
• **Modeling metal-semiconductor interfaces using Atomistix ToolKit (ATK)**
 1) Description of the interface using the DFT+NEGF method
 2) Semiconductor band-gap using MGGA xc-functional
 3) Semiconductor effective doping

• **Results: Ag(100)/Si(100) interface**
 1) Validation of the activation energy model
 2) I-V analysis based on the electronic properties of the interface

• **One-probe surface configuration**
 1) Si(100) surface
 2) Band alignment in semiconductor heterostructure, Si film on Ge(100)
Motivation

Metal-semiconductor interface

Sze, Ng Physics of Semiconductor Interfaces 3rd ed. Wiley 2007
Motivation

Metal-semiconductor interface – Key aspects

Finite bias

Shottky barrier

Doping

Depletion region
Motivation

- Interface model is much smaller than the depletion region
- No doping
- No bias
- Very indirect comparison to experimental measurements

Metal-semiconductor interface

Traditional modeling – finite size slab

- Shottky barrier
- Depletion region
- Doping

Finite bias
Motivation

Metal-semiconductor interface

Two-probe configuration using Atomistix ToolKit (ATK)

1) Description of the interface using the DFT+NEGF method
2) Semiconductor band-gap using MGGA xc-functional
3) Semiconductor effective doping
1) Description of the interface using the DFT+NEGF method

- Two-probe model \rightarrow central region coupled to two electron reservoirs
- Exact representation of the non-periodic interface
- Setting $\mu_L \neq \mu_R$ allows to simulate the interface in the presence of a bias voltage

2) Semiconductor band-gap using MGGA xc-functional

\[E_{\text{gap}}^{\text{exp}}(\text{opt-c}) = 1.17 \text{ eV} \]

\[E_{\text{gap}}(\text{LDA}) = 0.44 \text{ eV} \]

\[v_x^{\text{TB09}}(\mathbf{r}) = c v_x^{\text{BR}}(\mathbf{r}) + \frac{3c - 2}{\pi} \sqrt{\frac{4\tau(\mathbf{r})}{6\rho(\mathbf{r})}} \]

\[c = \text{adjustable enhancement parameter} \]

3) Semiconductor effective doping

Unperturbed atomic densities + compensation charge bound the atomic cores (+\(\Delta \rho_{\text{compensation}}\))

Advantages:
1- not depending on the precise atomistic details of the doping impurities
2- completely independent of the size and exact geometry of the system

Stradi et al. PRB 93, 155302 (2016)
1) Validation of the activation energy model

2) I-V analysis based on the electronic properties of the interface

Results: Ag(100)/Si(100) interface

\[n_d = 10^{18} \text{ cm}^{-3} \]
According to thermionic emission theory

\[I = I_0 \left(\frac{e^{V_{bias}/kT}}{e^{nV_{bias}/kT}} - 1 \right) \]

\[n_d = 10^{18} \text{ cm}^{-3} : \text{Nearly ideal Schottky diode} \]
Current-Voltage characteristics and ideality factor

According to thermionic emission theory:

\[I = I_0 \left(\frac{qV_{bias}}{nk_BT} - 1 \right) \]

- \(n_d = 10^{18} \text{ cm}^{-3} \): Nearly ideal Schottky diode
- \(n_d = 10^{19} \text{ cm}^{-3} \): Not ideal Schottky diode
Activation Energy method

Experimental procedure to extract the Schottky barrier height from IV curves

Small constant bias
T around room temperature
A* and ϕ^{AE} are constant

\[IT^{-2} = A A^* e^{-\frac{q \phi^{AE}}{k_B T}} e^{\frac{q (V_{bias} / n)}{k_B T}}. \]

\[- \frac{k_B}{q} \frac{d[\ln(I/T^2)]}{d(1/T)} = \phi^{AE} - \frac{V_{bias}}{n}, \]
Activation Energy curves and Schottky barrier height

\[-\frac{k_B \ln[d(I/T^2)]}{q \cdot d(1/T)} = \Phi^{AE} - \frac{V_{bias}}{n} \]
The measured Schottky barrier depends on:

1) Applied source-drain bias
2) Semiconductor doping density

\[
\frac{-k_B \ln[d(I/T^2)]}{q} \cdot \frac{d(I/T)}{d(1/T)} = \Phi_{AE} - \frac{V_{bias}}{n}
\]
Electronic structure of the interface

Cell Length Z (Å)

Local density of states

$E-E_\mu (\text{eV})$

Hartree potential

$n_d = 10^{18} \text{ cm}^{-3}$
Analysis of the spectral current

\[E-X-\mu_L \] (eV)

\[\phi_{\text{pot}} = 412 \text{meV} \]

Local density of states

\[H_{\text{Hartree potential}} \]

Thermionic

Tunnelling

\[n_d = 10^{18} \text{cm}^{-3} \]
Analysis of the spectral current

Spectral current

\[I(E) = \frac{2q}{\hbar} T(E, \mu_L, \mu_R) \left[f\left(\frac{E - \mu_L}{k_B T} \right) - f\left(\frac{E - \mu_R}{k_B T} \right) \right] \]

\[\phi_{pot} = 412 \text{ meV} \]

\[n_d = 10^{18} \text{ cm}^{-3} \]
Analysis of the spectral current

$n_d = 10^{18}$ cm$^{-3}$

Thermionic emission $>>$ Tunnelling
Analysis of the spectral current

$n_d = 10^{18} \text{ cm}^{-3}$

Thermionic emission \gg Tunnelling

$n_d = 10^{19} \text{ cm}^{-3}$

Tunnelling \gg Thermionic emission
Conclusions

• We have implemented in ATK a general atomistic approach based on DFT+NEGF for simulating metal-semiconductor interfaces

• This approach:
 ○ includes all the necessary ingredients to describe realistic metal-semiconductor interfaces
 ○ allows for a direct comparison between theory and experiment as it can simulate I-V characteristics
 ○ provides an alternative to analytical methods to evaluate the properties of metal-semiconductor interfaces
 ○ is a better alternative to finite-size models to describe the interface between metals and doped semiconductors

PHYSICAL REVIEW B 93, 155302 (2016)
One-probe surface configuration

• The ideal model for a surface is periodic in 2 directions, but semi-infinite in the third:

• Standard DFT software packages (VASP, QuantumEspresso, etc) provide only the following approximation, called the slab model:
QuantumWise is introducing an alternative computational approach for properly describing surfaces

Goal: Calculate the surface properties of materials with more systematic convergence and effort (order of magnitude) than the slab approach

Methodology: numerical contour integration of the surface Green's functions, coupled to DFT
Silicon (100) electronic structure – preliminary results

![Silicon (100) electronic structure graph](image-url)
Band alignment in semiconductor heterostructure, Si film on Ge(111) – preliminary results

-0.61 eV
-0.8 eV
-1.33 eV
1) Band bending of Ge conduction band is clearly seen.

2) Band gap of Ge substrate increases near the interface.

3) There exists a strong penetration of Ge valence states into the Si film within the Si film band gap.

One probe surface calculations combined with Projected LDOS analysis seems to be an insightful approach for studying the band alignment.
Thank You!

Quantum Wise
Activation Energy curves and Schottky barrier height

\[
-k_B \ln \left(\frac{d(I/T^2)}{d(1/T)} \right) = \Phi_{AE} - \frac{V_{bias}}{n}
\]

\[I T^{-2} \text{ (A K^{-2})} \]

\[V_{bias} \text{ (V)} \]

\[1000 \frac{T^{-1}}{\text{K}^{-1}} \]

\[2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 \]

\[10^{-13} 10^{-14} 10^{-15} 10^{-16} 10^{-17} 10^{-18} 10^{-19} 10^{-20} 10^{-21} \]

\[0.02 \]
Activation Energy curves and Schottky barrier height

\[\frac{k_B \ln[d(I/T^2)}/ q - d(1/T)]}{\Phi^{AE} - \frac{V_{bias}}{n}} \]

![Graph showing Activation Energy curves and Schottky barrier height.](image)
Activation Energy curves and Schottky barrier height

\[-\frac{k_B \ln[d(I/T^2) - d(1/T)]}{q} = \Phi_{AE} - \frac{V_{bias}}{n} \]
Activation Energy curves and Schottky barrier height

\[-\frac{k_B \ln[d(I/T^2)]}{q d(1/T)} = \Phi_{AE} - \frac{V_{bias}}{n}\]
Comparison of the two-probe with the finite-size model

- Band diagrams using a finite-size model of the interface

Potential of the interface model used to align the electronic bands

Two-probe model (DFT+NEGF)

Finite-size model (DFT)
Comparison of the two-probe with the finite-size model

\[n_d = 10^{18} \text{ cm}^{-3} \]

\[n_d = 10^{19} \text{ cm}^{-3} \]

\[n_d = 10^{20} \text{ cm}^{-3} \]
Comparison of the two-probe with the finite-size model

<table>
<thead>
<tr>
<th>Model</th>
<th>Time/SCF step [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-probe</td>
<td>46.6</td>
</tr>
<tr>
<td>Slab (short)</td>
<td>47.1</td>
</tr>
<tr>
<td>Slab (long)</td>
<td>338.6</td>
</tr>
</tbody>
</table>