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The assembly of long reads from Pacific Biosciences and Oxford Nanopore Technologies 

typically requires resource intensive error correction and consensus generation steps to 

obtain high quality assemblies. We show that the error correction step can be omitted and 

high quality consensus sequences can be generated efficiently with a SIMD accelerated, 

partial order alignment based stand-alone consensus module called Racon. Based on tests 

with PacBio and Oxford Nanopore datasets we show that Racon coupled with Miniasm 

enables consensus genomes with similar or better quality than state-of-the-art methods while 

being an order of magnitude faster.  

Racon is available open source under the MIT license at https://github.com/isovic/racon.git. 

Introduction 

With the advent of long read sequencing technologies from Pacific Biosciences (PacBio) and 

Oxford Nanopore Technologies (ONT), the ability to produce genome assemblies with high 

contiguity has received a significant fillip. However, to cope with the relatively high error rates 

(>5%) of these technologies assembly pipelines have typically relied on resource intensive error 

correction (of reads) and consensus generation (from the assembly) steps (Chin et al. 2013; Loman 

et al. 2015). More recent methods such as Falcon (Chin et al. 2016; 

https://github.com/PacificBiosciences/FALCON) and Canu (https://github.com/marbl/canu) have 

refined this approach and have significantly improved runtimes but are still computationally 

demanding for large genomes (Sović et al. 2016a). Recently, Li (Li 2016) showed that long 

erroneous reads can be assembled without the need for a time-consuming error-correction step. 

The resulting assembler, Miniasm, is an order of magnitude faster than other long-read assemblers, 

but produces sequences which can have >10 times as many errors as other methods (Sović et al. 

2016a). As fast and accurate long-read assemblers can enable a range of applications, from more 

routine assembly of mammalian and plant genomes, to structural variation detection, improved 

metagenomic classification and even online, "read until" assembly (Loose et al. 2016), a fast and 

accurate consensus module is a critical need. This was also noted by Li (Li 2016), highlighting 

that fast assembly was only feasible if a consensus module matching the speed of Minimap and 

Miniasm was developed as well.  
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Here we address this need by providing a very fast consensus module called Racon (for Rapid 

Consensus), which when paired with a fast assembler such as Miniasm, enables the efficient 

construction of genome sequences with high accuracy (Q30) even without an error correction step. 

Assemblies from this pipeline (Miniasm+Racon) are comparable to those from state-of-the-art 

methods such as Falcon and Canu, while being an order of magnitude faster in many cases. Racon 

provides a first standalone, platform-independent consensus module for long and erroneous reads 

and can also be used as a fast and accurate read correction tool. 

Results 

Racon is designed as a user friendly standalone consensus module that is not explicitly tied to any 

de novo assembly method or sequencing technology. It reads multiple input formats (GFA, 

FASTA, FASTQ, SAM, MHAP and PAF), allowing simple interoperability and modular design 

of new pipelines. Even though other stand-alone consensus modules, such as Quiver (Chin et al. 

2013) and Nanopolish (Loman et al. 2015) exist, they require sequencer specific input and are 

intended to be applied after the consensus phase of assembly to further polish the sequence. Racon 

is run with sequencer-independent input, is robust enough to work with uncorrected read data and 

is designed to rapidly generate high-quality consensus sequences. These sequences can be further 

polished with Quiver or Nanopolish or by applying Racon for more iterations. 

Racon can take as input a set of raw backbone sequences, a set of reads and a set of overlaps 

between reads and backbone sequences. Overlaps can be generated using any overlapper which 

supports either the MHAP or PAF output formats, such as Minimap (Li 2016), MHAP (Berlin et 

al. 2015) or GraphMap (Sović et al. 2016b). In our tests, we used Minimap as the overlapper as it 

was the fastest and provided reasonable results. Racon uses the overlap information to construct a 

partial order alignment graph, using a Single Instruction Multiple Data (SIMD) implementation to 

accelerate the process (SPOA). More details on Racon and SPOA can be found in the Methods 

section. 

For the purpose of evaluation, we paired Racon with Miniasm to form a fast and accurate de novo 

assembly pipeline (referred to here as Miniasm+Racon), which we then compared to other state-

of-the-art de novo assembly tools for third generation sequencing data (i.e. Falcon and Canu). Note 

that Falcon and Canu have previously been benchmarked with other assembly methods such as 
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PBcR and a pipeline from Loman et al. (Loman et al. 2015) and shown to produce high quality 

assemblies with improved running times (Sović et al. 2016a). Assembly pipelines were evaluated 

in terms of consensus sequence quality (Table 1), runtime and memory usage (Table 2; Figure 

1), and scalability with respect to genome size (Figure 2), on several PacBio and Oxford Nanopore 

datasets (see Methods).  

As can be seen from Table 1, all assembly pipelines were able to produce assemblies with high 

coverage of the reference genome and in a few contigs. Canu, Falcon and the Miniasm+Racon 

pipeline also constructed sequences with comparable sequence identity to the reference genome, 

with the iterative use of Racon serving as a polishing step for obtaining higher sequence identity. 

In addition, the Miniasm+Racon pipeline was found to be significantly faster for all datasets, with 

a 3-23× speedup compared to Canu and 7-51× speedup compared to FALCON (with two Racon 

iterations; Figure 1). 

 

Figure 1. Racon’s speed-up when compared to Falcon and Canu. 
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Table 1. Assembly and consensus results accross 5 datasets of varying genome length and 

sequencing data type. 

  
Miniasm+Racon 

1 iteration 

Miniasm+Racon 

2 iterations 
Canu Falcon 

Lambda 

ONT 

30× 

Ref. genome size [bp] 48502 48502 48502 48502 

Total bases [bp] 47917 47874 25077 7212 

Ref. chromosomes [#] 1 1 1 1 

Contigs [#] 1 1 1 1 

Aln. bases ref. [bp] 48438 (99.87%) 48425 (99.84%) 25833 (53.26%) 7483 (15.43%) 

Aln. bases query [bp] 47917 (100.00%) 47874 (100.00%) 25077 (100.00%) 7212 (100.00%) 

Avg. Identity 97.57 97.90 96.87 95.77 

CPU time [min] 0.22 0.43 2.87 2.30 

Memory [GB] 0.066 0.066 1.897 0.854 

E. coli  
K-12 

ONT 

R7.3 

54× 

Ref. genome size [bp] 4641652 4641652 4641652 4641652 

Total bases [bp] 4637221 4632092 4601503 4580230 

Ref. chromosomes [#] 1 1 1 1 

Contigs [#] 1 1 1 1 

Aln. bases ref. [bp] 4640867 (99.98%) 4641323 (99.99%) 4631173 (99.77%) 4627613 (99.70%) 

Aln. bases query [bp] 4636904 (99.99%) 4632089 (100.00%) 4601365 (100.00%) 4580230 (100.00%) 

Avg. Identity 99.13 99.32 99.28 98.84 

CPU time [min] 36 70 1328 829 

Memory [GB] 3.32 3.32 4.03 12.29 

E. coli  

K-12 

PacBio 

P6C4 

160× 

Ref. genome size [bp] 4641652 4641652 4641652 4641652 

Total bases [bp] 4653227 4645508 4664416 4666788 

Ref. chromosomes [#] 1 1 1 1 

Contigs [#] 1 1 1 1 

Aln. bases ref. [bp] 4641501 (100.00%) 4641439 (100.00%) 4641652 (100.00%) 4641652 (100.00%) 

Aln. bases query [bp] 4653139 (100.00%) 4645508 (100.00%) 4664416 (100.00%) 4666788 (100.00%) 

Avg. Identity 99.63 99.90 99.99 99.90 

CPU time [min] 116 225 773 2908 

Memory [GB] 9.74 9.74 3.59 9.93 

S. 
cerevisiae 

W303 

PacBio 
P4C2 

127× 

Ref. genome size [bp] 12071326 12071326 12071326 12071326 

Total bases [bp] 12071319 12051772 12402332 12003077 

Ref. chromosomes [#] 16 16 16 16 

Contigs [#] 30 30 29 44 

Aln. bases ref. [bp] 11939290 (98.91%) 11939845 (98.91%) 12042102 (99.76%) 11922591 (98.77%) 

Aln. bases query [bp] 11962050 (99.09%) 11942005 (99.09%) 12269365 (98.93%) 11900584 (99.15%) 

Avg. Identity 99.44 99.73 99.79 99.58 

CPU time [min] 150 290 6375 14808 

Memory [GB] 16.07 16.07 3.65 4.78 

C. 

elegans 

PacBio 

P6C4 

81× 

Ref. genome size [bp] 100272607 100272607 100272607 100272607 

Total bases [bp] 106352656 106387537 106687886 105858394 

Ref. chromosomes [#] 6 6 6 6 

Contigs [#] 77 77 134 242 

Aln. bases ref. [bp] 100017755 (99.75%) 100015191 (99.74%) 100166301 (99.89%) 99295695 (99.03%) 

Aln. bases query [bp] 101710096 (95.63%) 101772785 (95.66%) 102928910 (96.48%) 102008289 (96.36%) 

Avg. Identity 99.44 99.74 99.89 99.74 

CPU time [min] 1561 2567 37852 119766 

Memory [GB] 85.53 85.53 10.16 7.59 
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Racon's speedup was more pronounced for larger genomes and is likely explained by the 

observation that it scales linearly with genome size (for fixed coverage; Figure 2). 

 

Figure 2. Scalability of Racon as a function of genome size. Read coverage was subsampled to 

be 81× (limited by the C. elegans dataset) and the figure shows results for one iteration of Racon. 

Table 2. Resource usage for various parts of the Miniasm+Racon assembly pipeline. Results 

are presented in the format “CPU time [s] / Maximum memory [GB]”. 

 Lambda ONT 
E. coli 

ONT 
E. coli PacBio 

S. cerevisiae 

PacBio 
C. elegans 

PacBio 

Minimap overlap 0.58 / 0.038 170 / 3 670 / 10 1393 / 16 33203 / 48 

Miniasm 0.01 0.001 4 / 0.06 25 / 0.39 31 / 0.46 236 / 3 

Minimap mapping 1st iter. 0.07 / 0.007 14 / 0.23 37 / 0.23 86 / 0.26 814 / 1 

Racon consensus 1st iter.  13 / 0.066 1995 / 3 6216 / 8 7470 / 14 59393 / 86 

Minimap mapping 2nd iter. 0.08 / 0.005 16 / 0.23 43 / 0.23 97 / 0.26 880 / 1 

Racon consensus 2nd iter. 12 / 0.06 1976 / 2 6537 / 6 8338 / 13 59493 / 71 

Total CPU time / Max. mem. 26 / 0.066  4175 / 3 13528 / 10 17415 / 16 154019 / 86 
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The runtime of the Miniasm+Racon pipeline was dominated by the time for the consensus 

generation step in Racon, highlighting that this step is still the most compute intensive one for 

small genomes (Table 2). However, the results in Table 2 suggest that for larger genomes the 

overlap computation stage can catch up in terms of resource usage. Furthermore, if a polishing 

stage is used, this would typically be more resource intensive. Comparison of the results of the 

various assembly pipelines after a polishing stage confirmed that the use of Racon provided better 

results than just the Miniasm assembly (avg. identity of 99.80% vs 98.06%) and that the 

Miniasm+Racon assembly matched the best reported sequence quality for this dataset (from the 

Loman et al. pipeline; Sović et al. 2016a), while providing a better match to the actual size of the 

reference genome (4641652 bp; Table 3). We additionally observed that Nanopolish executed >6× 

faster on Miniasm+Racon contigs than on raw Miniasm assemblies (248.28 CPUh vs. 1561.80 

CPUh), and the Miniasm+Racon+Nanopolish approach achieved the same sequence quality as the 

original Loman et al. pipeline, while being much faster. 

Table 3. Results after polishing assemblies with Nanopolish. 

  
Raw 

Miniasm 

Miniasm+Racon 

2 iterations 
Canu Falcon 

Loman et. 

al pipeline 

E. coli K-12 

ONT MAP006 

54× 

Total bases [bp] 4696482 4641756 4631443 4624811 4695512 

|Total bases - Genome size| [bp] 54830 104 10209 16841 53860 

Aligned bases ref. [bp] 4635941 

(99.88%) 

4641312 

(99.99%) 

4633324 

(99.82%) 

4627571 

(99.70%) 

4641325 

(99.99%) 

Aligned bases query [bp] 4687686 

(99.81%) 

4641756 

(100.00%) 

4631361 

(100.00%) 

4624811 

(100.00%) 

4695463 

(100.00%) 

Avg. Identity 98.06 99.80 99.80 99.78 99.80 

 

Finally, we also evaluated Racon's use as an error-correction module. We noted that Racon 

corrected reads had error rates comparable to Falcon and Canu but provided better coverage of the 

genome (Table 4). Overall, Nanocorrect (Loman et al. 2015) had the best results in terms of error 

rate but it had lower reference coverage and was more than two orders of magnitude slower than 

Racon.  
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Table 4. Comparison of error-correction modules on E. coli K-12 MAP006 R7.3 54× dataset. 

Values presented in the table are median values of the error and match rate estimates. 

 
CPU time 

[h] 
Coverage 

Insertion 

rate (%) 

Deletion 

rate (%) 

Mismatch 

rate (%) 

Match 

rate (%) 

Error rate 

(I+D+M) 

(%) 

Raw - 53.55× 5.23 2.83 4.89 89.81 13.16 

Racon 13 50.20× 0.58 0.60 0.15 99.26 1.31 

Nanocorrect 8100 44.74× 0.14 0.43 0.03 99.83 0.62 

Falcon n.a. 46.95× 0.04 1.11 0.06 99.90 1.23 

Canu n.a. 35.53× 0.06 1.25 0.08 99.85 1.40 

 

Discussion 

The principal contribution of this work is to take the concept of fast, error-correction-free, long 

read assembly, as embodied by the recently developed program Miniasm, to its logical end. 

Miniasm is remarkably efficient and effective in taking erroneous long reads and producing contig 

sequences that are structurally accurate (Sović et al. 2016a). However, assemblies from Miniasm 

do not match up in terms of sequence quality when compared with the best assemblies that can be 

produced with existing assemblers. This serves as a significant barrier for adopting this 'light-

weight' approach to assembly, despite its attractiveness for greater adoption of de novo assembly 

methods in genomics. In this work we show that the sequence quality of a correction-free 

assembler can indeed be efficiently boosted to a quality comparable to other resource-intensive 

state-of-the-art assemblers. This makes the tradeoff offered much more attractive and the concept 

of a correction-free assembler more practically useful.  

Racon is able to start from uncorrected contigs and raw reads and still generate accurate sequences 

efficiently because it exploits the development of a Single Instruction Multiple Data (SIMD) 

version of the robust partial order alignment framework. This makes the approach scalable to large 

genomes and general enough to work with data from very different sequencing technologies. With 

the increasing interest in the development of better third generation assembly pipelines, we believe 

that Racon can serve as useful plug-in consensus module that enables software reuse and modular 

design. 
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Methods 

Racon is based on the Partial Order Alignment (POA) graph approach (Lee et al. 2002; Lee 2003) 

and we report the development of a Single Instruction Multiple Data (SIMD) version that 

significantly accelerates this analysis. An overview of Racon’s steps is given in Figure 3. The 

entire process is also shown in detail in Algorithm 1.  

 

Figure 3. Overview of the Racon consensus process. 

To perform consensus calling (or error-correction), Racon depends on an input set of query-to-

target overlaps (query is the set of reads, while a target is either a set of contigs in the consensus 

context, or a set of reads in the error-correction context). Racon then loads the overlaps and 

performs simple filtering (Algorithm 1, lines 1−3; Algorithm 2): (I) at most one overlap per read 

is kept in consensus context (in error-correction context this particular filtering is disabled), and 

(II) overlaps which have high error-rate (i.e. |1 − min(𝑑𝑞 , 𝑑𝑡)/max(𝑑𝑞 , 𝑑𝑡)| ≥ 𝑒, where 𝑑𝑞 and 

𝑑𝑡 are the lengths of the overlap in the query and the target respectively and 𝑒 is a user-specified 

error-rate threshold) are removed. For each overlap which survived the filtering process, a fast 

edit-distance based alignment is performed (Myers 1999) (Algorithm 1, lines 4−10). We used 

Edlib implementation of Myers algorithm (https://github.com/Martinsos/edlib). This alignment is 
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needed only to split the reads into chunks which fall into particular non-overlapping windows on 

the backbone sequence. Each window is then processed independently in a separate thread by 

constructing a POA graph using SIMD acceleration and calling the consensus of the window. The 

final consensus sequence is then constructed by splicing the individual window consensuses 

together (per contig or read to be corrected). 

Algorithm 1. The Racon algorithm for consensus generation.  
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Algorithm 2. Functions for filtering overlaps in Racon. 

 

Partial order alignment and SIMD vectorization. 

POA performs Multiple Sequence Alignment (MSA) through a directed acyclic graph (DAG), 

where nodes are individual bases of input sequences, and weighted, directed edges represent 

whether two bases are neighboring in any of the sequences. Weights of the edges represent the 

multiplicity (coverage) of each transition. Alternatively, weights can be set according to the base 

qualities of sequenced data. The alignment is carried out directly through dynamic programming 

(DP) between a new sequence and a pre-built graph. While the regular DP for pairwise alignment 

has time complexity of 𝑂(3𝑛𝑚), where 𝑛 and 𝑚 are the lengths of the sequences being aligned, 

the sequence to graph alignment has a complexity of 𝑂((2𝑛𝑝 + 1)𝑛|𝑉|), where 𝑛𝑝 is the average 

number of predecessors in the graph and |𝑉| is the number of nodes in the graph (Lee et al. 2002).  

Consensus sequences are obtained from a built POA graph by performing a topological sort and 

processing the nodes from left to right. For each node 𝑣, the highest-weighted in-edge 𝑒 of weight 

𝑒𝑤 is chosen, and a score is assigned to 𝑣 such that 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] = 𝑒𝑤 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑤] where 𝑤 is the 
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source node of the edge 𝑒 (Lee 2003). The node 𝑤 is marked as a predecessor of 𝑣, and a final 

consensus is generated by performing a traceback from the highest scoring node 𝑟. In case 𝑟 is an 

internal node (𝑟 has out edges), Lee (Lee 2003) proposed the idea of branch completion, where all 

scores for all nodes except 𝑠𝑐𝑜𝑟𝑒𝑠[𝑟] would be set to a negative value, and the traversal would 

continue from 𝑟 as before, with the only exception that nodes with negative scores could not be 

added as predecessors to any other node.  

One of the biggest advantages of POA compared to other MSA algorithms is its speed, with its 

linear time complexity in the number of sequences (Lee et al. 2002). However, even though it is 

faster than other MSA algorithms, the implementations of POA in current error-correction 

modules, such as Nanocorrect, are prohibitively slow for larger datasets. In order to increase the 

speed of POA while retaining its robustness, we explored a Single Instruction Multiple Data 

(SIMD) version of the algorithm (SPOA).  

 

Figure 4. Depiction of the SIMD vectorization approach used in SPOA. 

SPOA (Figure 4; Algorithm 3) is inspired by the Rognes and Seeberg Smith-Waterman intra-set 

parallelization approach (Rognes and Seeberg 2000). It places the SIMD vectors parallel to the 

query sequence (the read), while placing a graph on the other dimension of the DP matrix (Figure 

4). In our implementation, the matrices used for tracking the maximum local-alignment scores 

ending in gaps are stored entirely in memory (Algorithm 3, line 8 and 10). These matrices are 

needed to access scores of predecessors of particular nodes during alignment. Unlike regular Gotoh 

alignment, for each row in the POA DP matrix all its predecessors (via in-edges of the 
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corresponding node in graph) need to be processed as well (Algorithm 3, line 17). All columns 

are then processed using SIMD operations in a query-parallel manner and the values of Gotoh’s 

vertical matrix (Algorithm 3, line 20) and a partial update to Gotoh’s main scoring matrix 

(Algorithm 3, line 24) are calculated. SIMD operations in Algorithm 3 process 8 cells of the DP 

matrix at a time (16-bit registers). A temporary variable is used to keep the last cell of the previous 

vector for every predecessor (Algorithm 3, lines 21−23), which is needed to compare the upper-

left diagonal of the current cell to the cell one row up. Processing the matrix horizontally is not 

performed using SIMD operations due to data dependencies (each cell depends on the result of the 

cell to the left of it), and are instead processed linearly (Algorithm 3, lines 25−33). SPOA uses 

shifting and masking to calculate every particular value of a SIMD vector individually (Algorithm 

3, lines 29-31). After the alignment is completed, the traceback is performed (Algorithm 3, line 

39) and integrated into the existing POA graph (Algorithm 3, line 40). 

SIMD intrinsics decrease the time complexity for alignment from 𝑂((2𝑛𝑝 + 1)𝑛|𝑉|)to roughly 

𝑂((2𝑛𝑝/𝑘 + 1)𝑛|𝑉|), where 𝑘 is the number of variables that fit in a SIMD vector, 𝑛𝑝 is the 

average number of predecessors in the graph and |𝑉| is the number of nodes in the graph. SPOA 

supports Intel SSE version 4.1 and higher, which embed 128 bit registers. Both short (16 bits) and 

long (32 bits) integer precisions are supported (therefore 𝑘 equals 8 and 4 variables, respectively). 

8 bit precision is insufficient for the intended application of SPOA and is therefore not used. 

Alongside global alignment displayed in Algorithm 3., SPOA supports local and semi-global 

alignment modes, in which SIMD vectorization is implemented as well. 
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Algorithm 3. Pseudocode for the SPOA algorithm. The displayed function aligns a sequence to 

a pre-constructed POA graph using SIMD intrinsics. Capitalized variables are SIMD vectors. 

Alignment mode is Needleman-Wunsch. 
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Implementation and reproducibility 

Racon and SPOA are both implemented in C++. All tests were run using Ubuntu based systems 

with two 6-core Intel(R) Xeon(R) E5645 CPUs @ 2.40GHz with Hyperthreading, using 12 threads 

where possible. The versions of various methods used in the comparisons reported here are:  

• Minimap - https://github.com/lh3/minimap.git, commit: 1cd6ae3bc7c7  

• Miniasm - https://github.com/lh3/miniasm.git, commit: 17d5bd12290e  

• Canu - https://github.com/marbl/canu.git, version 1.2, commit: ab50ba3c0cf0.  

• FALCON-integrate project - https://github.com/PacificBiosciences/FALCON-

integrate.git, commit: 8bb2737fd1d7.  

• Nanocorrect - https://github.com/jts/nanocorrect.git, commit: b09e93772ab4.  

• Nanopolish - https://github.com/jts/nanopolish.git, commit: 47dcd7f147c. 

• MUMmer - DNAdiff version 1.3, NUCmer version 3.1.  

Datasets 

Five publicly available PacBio and Oxford Nanopore datasets were used for evaluation. These are: 

1. Lambda phage, Oxford Nanopore, ENA submission ERA476754, with 113× coverage of 

the NC_001416 reference genome (48502bp). Link: 

ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.t

ar.gz. This dataset was subsampled to coverages of 30× and 81× for testing. 

2. E. coli K-12 MG1655 SQK-MAP006-1 dataset, Oxford Nanopore, R7.3 chemistry, 54× 

pass 2D coverage of the genome (U00096.3, 4.6Mbp). Link: 

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/  

3. E. coli K-12 PacBio P6C4 PacBio dataset, 160× coverage of the genome (U00096.3). The 

dataset was generated using one SMRT Cell of data gathered with a PacBio RS II System 

and P6-C4 chemistry on a size selected 20kbp library of E. coli K-12. Link: 

https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-

P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz  

4. S. cerevisiae W303 P4C2 PacBio dataset ( 

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-

Assembly-Contigs). The dataset is composed of 11 SMRT cells, of which one was not used 
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in this study because the containing folder (“0019”) was incomplete and the data could not 

be extracted. The S288C reference (12.1 Mbp) was used for comparison 

(http://downloads.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/). 

Coverage of the dataset with respect to the S288C reference is approx. 127×. 

5. C. elegans, a Bristol mutant strain, 81× coverage of the genome (gi|449020133). The 

dataset was generated using 11 SMRT cells P6-C4 chemistry on a size selected 20kbp 

library. Link: https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set 

Evaluation methods 

The quality of called consensus sequences was evaluated primarily using Dnadiff (Delcher et al. 

2003).  The parameters we took into consideration for comparison include: total number of bases 

in the query, aligned bases on the reference, aligned bases on the query and average identity. In 

addition, we measured the time required to perform the entire assembly process by each pipeline. 

The quality of error-corrected reads was evaluated by aligning them to the reference genome using 

GraphMap (Sović et al. 2016b) with settings "-a anchorgotoh", and counting the match, mismatch, 

insertion and deletion operations in the resulting alignments. 

Data access 

No new sequencing datasets were generated in the course of this study. 
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