

Fast and accurate de novo genome assembly from long uncorrected

reads

Robert Vaser1*, Ivan Sović2*, Niranjan Nagarajan3, Mile Šikić1,4#

1Department of Electronic Systems and Information Processing, University of Zagreb, Faculty of

Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

2Centre for Informatics and Computing, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb,

Croatia

3Genome Institute of Singapore, Singapore 138672, Singapore

4Bioinformatics Institute, Singapore 138671, Singapore

*Contributed equally.

#Correspondence should be addressed to: mile.sikic@fer.hr

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

1

The assembly of long reads from Pacific Biosciences and Oxford Nanopore Technologies

typically requires resource intensive error correction and consensus generation steps to

obtain high quality assemblies. We show that the error correction step can be omitted and

high quality consensus sequences can be generated efficiently with a SIMD accelerated,

partial order alignment based stand-alone consensus module called Racon. Based on tests

with PacBio and Oxford Nanopore datasets we show that Racon coupled with Miniasm

enables consensus genomes with similar or better quality than state-of-the-art methods while

being an order of magnitude faster.

Racon is available open source under the MIT license at https://github.com/isovic/racon.git.

Introduction

With the advent of long read sequencing technologies from Pacific Biosciences (PacBio) and

Oxford Nanopore Technologies (ONT), the ability to produce genome assemblies with high

contiguity has received a significant fillip. However, to cope with the relatively high error rates

(>5%) of these technologies assembly pipelines have typically relied on resource intensive error

correction (of reads) and consensus generation (from the assembly) steps (Chin et al. 2013; Loman

et al. 2015). More recent methods such as Falcon (Chin et al. 2016;

https://github.com/PacificBiosciences/FALCON) and Canu (https://github.com/marbl/canu) have

refined this approach and have significantly improved runtimes but are still computationally

demanding for large genomes (Sović et al. 2016a). Recently, Li (Li 2016) showed that long

erroneous reads can be assembled without the need for a time-consuming error-correction step.

The resulting assembler, Miniasm, is an order of magnitude faster than other long-read assemblers,

but produces sequences which can have >10 times as many errors as other methods (Sović et al.

2016a). As fast and accurate long-read assemblers can enable a range of applications, from more

routine assembly of mammalian and plant genomes, to structural variation detection, improved

metagenomic classification and even online, "read until" assembly (Loose et al. 2016), a fast and

accurate consensus module is a critical need. This was also noted by Li (Li 2016), highlighting

that fast assembly was only feasible if a consensus module matching the speed of Minimap and

Miniasm was developed as well.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

https://github.com/isovic/racon.git
https://github.com/PacificBiosciences/FALCON
https://github.com/marbl/canu
http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

2

Here we address this need by providing a very fast consensus module called Racon (for Rapid

Consensus), which when paired with a fast assembler such as Miniasm, enables the efficient

construction of genome sequences with high accuracy (Q30) even without an error correction step.

Assemblies from this pipeline (Miniasm+Racon) are comparable to those from state-of-the-art

methods such as Falcon and Canu, while being an order of magnitude faster in many cases. Racon

provides a first standalone, platform-independent consensus module for long and erroneous reads

and can also be used as a fast and accurate read correction tool.

Results

Racon is designed as a user friendly standalone consensus module that is not explicitly tied to any

de novo assembly method or sequencing technology. It reads multiple input formats (GFA,

FASTA, FASTQ, SAM, MHAP and PAF), allowing simple interoperability and modular design

of new pipelines. Even though other stand-alone consensus modules, such as Quiver (Chin et al.

2013) and Nanopolish (Loman et al. 2015) exist, they require sequencer specific input and are

intended to be applied after the consensus phase of assembly to further polish the sequence. Racon

is run with sequencer-independent input, is robust enough to work with uncorrected read data and

is designed to rapidly generate high-quality consensus sequences. These sequences can be further

polished with Quiver or Nanopolish or by applying Racon for more iterations.

Racon can take as input a set of raw backbone sequences, a set of reads and a set of overlaps

between reads and backbone sequences. Overlaps can be generated using any overlapper which

supports either the MHAP or PAF output formats, such as Minimap (Li 2016), MHAP (Berlin et

al. 2015) or GraphMap (Sović et al. 2016b). In our tests, we used Minimap as the overlapper as it

was the fastest and provided reasonable results. Racon uses the overlap information to construct a

partial order alignment graph, using a Single Instruction Multiple Data (SIMD) implementation to

accelerate the process (SPOA). More details on Racon and SPOA can be found in the Methods

section.

For the purpose of evaluation, we paired Racon with Miniasm to form a fast and accurate de novo

assembly pipeline (referred to here as Miniasm+Racon), which we then compared to other state-

of-the-art de novo assembly tools for third generation sequencing data (i.e. Falcon and Canu). Note

that Falcon and Canu have previously been benchmarked with other assembly methods such as

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

3

PBcR and a pipeline from Loman et al. (Loman et al. 2015) and shown to produce high quality

assemblies with improved running times (Sović et al. 2016a). Assembly pipelines were evaluated

in terms of consensus sequence quality (Table 1), runtime and memory usage (Table 2; Figure

1), and scalability with respect to genome size (Figure 2), on several PacBio and Oxford Nanopore

datasets (see Methods).

As can be seen from Table 1, all assembly pipelines were able to produce assemblies with high

coverage of the reference genome and in a few contigs. Canu, Falcon and the Miniasm+Racon

pipeline also constructed sequences with comparable sequence identity to the reference genome,

with the iterative use of Racon serving as a polishing step for obtaining higher sequence identity.

In addition, the Miniasm+Racon pipeline was found to be significantly faster for all datasets, with

a 3-23× speedup compared to Canu and 7-51× speedup compared to FALCON (with two Racon

iterations; Figure 1).

Figure 1. Racon’s speed-up when compared to Falcon and Canu.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

4

Table 1. Assembly and consensus results accross 5 datasets of varying genome length and

sequencing data type.

Miniasm+Racon

1 iteration

Miniasm+Racon

2 iterations
Canu Falcon

Lambda

ONT

30×

Ref. genome size [bp] 48502 48502 48502 48502

Total bases [bp] 47917 47874 25077 7212

Ref. chromosomes [#] 1 1 1 1

Contigs [#] 1 1 1 1

Aln. bases ref. [bp] 48438 (99.87%) 48425 (99.84%) 25833 (53.26%) 7483 (15.43%)

Aln. bases query [bp] 47917 (100.00%) 47874 (100.00%) 25077 (100.00%) 7212 (100.00%)

Avg. Identity 97.57 97.90 96.87 95.77

CPU time [min] 0.22 0.43 2.87 2.30

Memory [GB] 0.066 0.066 1.897 0.854

E. coli
K-12

ONT

R7.3

54×

Ref. genome size [bp] 4641652 4641652 4641652 4641652

Total bases [bp] 4637221 4632092 4601503 4580230

Ref. chromosomes [#] 1 1 1 1

Contigs [#] 1 1 1 1

Aln. bases ref. [bp] 4640867 (99.98%) 4641323 (99.99%) 4631173 (99.77%) 4627613 (99.70%)

Aln. bases query [bp] 4636904 (99.99%) 4632089 (100.00%) 4601365 (100.00%) 4580230 (100.00%)

Avg. Identity 99.13 99.32 99.28 98.84

CPU time [min] 36 70 1328 829

Memory [GB] 3.32 3.32 4.03 12.29

E. coli

K-12

PacBio

P6C4

160×

Ref. genome size [bp] 4641652 4641652 4641652 4641652

Total bases [bp] 4653227 4645508 4664416 4666788

Ref. chromosomes [#] 1 1 1 1

Contigs [#] 1 1 1 1

Aln. bases ref. [bp] 4641501 (100.00%) 4641439 (100.00%) 4641652 (100.00%) 4641652 (100.00%)

Aln. bases query [bp] 4653139 (100.00%) 4645508 (100.00%) 4664416 (100.00%) 4666788 (100.00%)

Avg. Identity 99.63 99.90 99.99 99.90

CPU time [min] 116 225 773 2908

Memory [GB] 9.74 9.74 3.59 9.93

S.
cerevisiae

W303

PacBio
P4C2

127×

Ref. genome size [bp] 12071326 12071326 12071326 12071326

Total bases [bp] 12071319 12051772 12402332 12003077

Ref. chromosomes [#] 16 16 16 16

Contigs [#] 30 30 29 44

Aln. bases ref. [bp] 11939290 (98.91%) 11939845 (98.91%) 12042102 (99.76%) 11922591 (98.77%)

Aln. bases query [bp] 11962050 (99.09%) 11942005 (99.09%) 12269365 (98.93%) 11900584 (99.15%)

Avg. Identity 99.44 99.73 99.79 99.58

CPU time [min] 150 290 6375 14808

Memory [GB] 16.07 16.07 3.65 4.78

C.

elegans

PacBio

P6C4

81×

Ref. genome size [bp] 100272607 100272607 100272607 100272607

Total bases [bp] 106352656 106387537 106687886 105858394

Ref. chromosomes [#] 6 6 6 6

Contigs [#] 77 77 134 242

Aln. bases ref. [bp] 100017755 (99.75%) 100015191 (99.74%) 100166301 (99.89%) 99295695 (99.03%)

Aln. bases query [bp] 101710096 (95.63%) 101772785 (95.66%) 102928910 (96.48%) 102008289 (96.36%)

Avg. Identity 99.44 99.74 99.89 99.74

CPU time [min] 1561 2567 37852 119766

Memory [GB] 85.53 85.53 10.16 7.59

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

5

Racon's speedup was more pronounced for larger genomes and is likely explained by the

observation that it scales linearly with genome size (for fixed coverage; Figure 2).

Figure 2. Scalability of Racon as a function of genome size. Read coverage was subsampled to

be 81× (limited by the C. elegans dataset) and the figure shows results for one iteration of Racon.

Table 2. Resource usage for various parts of the Miniasm+Racon assembly pipeline. Results

are presented in the format “CPU time [s] / Maximum memory [GB]”.

 Lambda ONT
E. coli

ONT
E. coli PacBio

S. cerevisiae

PacBio
C. elegans

PacBio

Minimap overlap 0.58 / 0.038 170 / 3 670 / 10 1393 / 16 33203 / 48

Miniasm 0.01 0.001 4 / 0.06 25 / 0.39 31 / 0.46 236 / 3

Minimap mapping 1st iter. 0.07 / 0.007 14 / 0.23 37 / 0.23 86 / 0.26 814 / 1

Racon consensus 1st iter. 13 / 0.066 1995 / 3 6216 / 8 7470 / 14 59393 / 86

Minimap mapping 2nd iter. 0.08 / 0.005 16 / 0.23 43 / 0.23 97 / 0.26 880 / 1

Racon consensus 2nd iter. 12 / 0.06 1976 / 2 6537 / 6 8338 / 13 59493 / 71

Total CPU time / Max. mem. 26 / 0.066 4175 / 3 13528 / 10 17415 / 16 154019 / 86

Lambda ONT

E. coli ONT

S. cerevisiae
PacBio

C. elegans PacBio

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

C
P

U
 t

im
e

(m
in

u
te

s)

Genome size (Mbp)

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

6

The runtime of the Miniasm+Racon pipeline was dominated by the time for the consensus

generation step in Racon, highlighting that this step is still the most compute intensive one for

small genomes (Table 2). However, the results in Table 2 suggest that for larger genomes the

overlap computation stage can catch up in terms of resource usage. Furthermore, if a polishing

stage is used, this would typically be more resource intensive. Comparison of the results of the

various assembly pipelines after a polishing stage confirmed that the use of Racon provided better

results than just the Miniasm assembly (avg. identity of 99.80% vs 98.06%) and that the

Miniasm+Racon assembly matched the best reported sequence quality for this dataset (from the

Loman et al. pipeline; Sović et al. 2016a), while providing a better match to the actual size of the

reference genome (4641652 bp; Table 3). We additionally observed that Nanopolish executed >6×

faster on Miniasm+Racon contigs than on raw Miniasm assemblies (248.28 CPUh vs. 1561.80

CPUh), and the Miniasm+Racon+Nanopolish approach achieved the same sequence quality as the

original Loman et al. pipeline, while being much faster.

Table 3. Results after polishing assemblies with Nanopolish.

Raw

Miniasm

Miniasm+Racon

2 iterations
Canu Falcon

Loman et.

al pipeline

E. coli K-12

ONT MAP006

54×

Total bases [bp] 4696482 4641756 4631443 4624811 4695512

|Total bases - Genome size| [bp] 54830 104 10209 16841 53860

Aligned bases ref. [bp] 4635941

(99.88%)

4641312

(99.99%)

4633324

(99.82%)

4627571

(99.70%)

4641325

(99.99%)

Aligned bases query [bp] 4687686

(99.81%)

4641756

(100.00%)

4631361

(100.00%)

4624811

(100.00%)

4695463

(100.00%)

Avg. Identity 98.06 99.80 99.80 99.78 99.80

Finally, we also evaluated Racon's use as an error-correction module. We noted that Racon

corrected reads had error rates comparable to Falcon and Canu but provided better coverage of the

genome (Table 4). Overall, Nanocorrect (Loman et al. 2015) had the best results in terms of error

rate but it had lower reference coverage and was more than two orders of magnitude slower than

Racon.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

7

Table 4. Comparison of error-correction modules on E. coli K-12 MAP006 R7.3 54× dataset.

Values presented in the table are median values of the error and match rate estimates.

CPU time

[h]
Coverage

Insertion

rate (%)

Deletion

rate (%)

Mismatch

rate (%)

Match

rate (%)

Error rate

(I+D+M)

(%)

Raw - 53.55× 5.23 2.83 4.89 89.81 13.16

Racon 13 50.20× 0.58 0.60 0.15 99.26 1.31

Nanocorrect 8100 44.74× 0.14 0.43 0.03 99.83 0.62

Falcon n.a. 46.95× 0.04 1.11 0.06 99.90 1.23

Canu n.a. 35.53× 0.06 1.25 0.08 99.85 1.40

Discussion

The principal contribution of this work is to take the concept of fast, error-correction-free, long

read assembly, as embodied by the recently developed program Miniasm, to its logical end.

Miniasm is remarkably efficient and effective in taking erroneous long reads and producing contig

sequences that are structurally accurate (Sović et al. 2016a). However, assemblies from Miniasm

do not match up in terms of sequence quality when compared with the best assemblies that can be

produced with existing assemblers. This serves as a significant barrier for adopting this 'light-

weight' approach to assembly, despite its attractiveness for greater adoption of de novo assembly

methods in genomics. In this work we show that the sequence quality of a correction-free

assembler can indeed be efficiently boosted to a quality comparable to other resource-intensive

state-of-the-art assemblers. This makes the tradeoff offered much more attractive and the concept

of a correction-free assembler more practically useful.

Racon is able to start from uncorrected contigs and raw reads and still generate accurate sequences

efficiently because it exploits the development of a Single Instruction Multiple Data (SIMD)

version of the robust partial order alignment framework. This makes the approach scalable to large

genomes and general enough to work with data from very different sequencing technologies. With

the increasing interest in the development of better third generation assembly pipelines, we believe

that Racon can serve as useful plug-in consensus module that enables software reuse and modular

design.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

8

Methods

Racon is based on the Partial Order Alignment (POA) graph approach (Lee et al. 2002; Lee 2003)

and we report the development of a Single Instruction Multiple Data (SIMD) version that

significantly accelerates this analysis. An overview of Racon’s steps is given in Figure 3. The

entire process is also shown in detail in Algorithm 1.

Figure 3. Overview of the Racon consensus process.

To perform consensus calling (or error-correction), Racon depends on an input set of query-to-

target overlaps (query is the set of reads, while a target is either a set of contigs in the consensus

context, or a set of reads in the error-correction context). Racon then loads the overlaps and

performs simple filtering (Algorithm 1, lines 1−3; Algorithm 2): (I) at most one overlap per read

is kept in consensus context (in error-correction context this particular filtering is disabled), and

(II) overlaps which have high error-rate (i.e. |1 − min(𝑑𝑞 , 𝑑𝑡)/max(𝑑𝑞 , 𝑑𝑡)| ≥ 𝑒, where 𝑑𝑞 and

𝑑𝑡 are the lengths of the overlap in the query and the target respectively and 𝑒 is a user-specified

error-rate threshold) are removed. For each overlap which survived the filtering process, a fast

edit-distance based alignment is performed (Myers 1999) (Algorithm 1, lines 4−10). We used

Edlib implementation of Myers algorithm (https://github.com/Martinsos/edlib). This alignment is

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

https://github.com/Martinsos/edlib
http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

9

needed only to split the reads into chunks which fall into particular non-overlapping windows on

the backbone sequence. Each window is then processed independently in a separate thread by

constructing a POA graph using SIMD acceleration and calling the consensus of the window. The

final consensus sequence is then constructed by splicing the individual window consensuses

together (per contig or read to be corrected).

Algorithm 1. The Racon algorithm for consensus generation.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

10

Algorithm 2. Functions for filtering overlaps in Racon.

Partial order alignment and SIMD vectorization.

POA performs Multiple Sequence Alignment (MSA) through a directed acyclic graph (DAG),

where nodes are individual bases of input sequences, and weighted, directed edges represent

whether two bases are neighboring in any of the sequences. Weights of the edges represent the

multiplicity (coverage) of each transition. Alternatively, weights can be set according to the base

qualities of sequenced data. The alignment is carried out directly through dynamic programming

(DP) between a new sequence and a pre-built graph. While the regular DP for pairwise alignment

has time complexity of 𝑂(3𝑛𝑚), where 𝑛 and 𝑚 are the lengths of the sequences being aligned,

the sequence to graph alignment has a complexity of 𝑂((2𝑛𝑝 + 1)𝑛|𝑉|), where 𝑛𝑝 is the average

number of predecessors in the graph and |𝑉| is the number of nodes in the graph (Lee et al. 2002).

Consensus sequences are obtained from a built POA graph by performing a topological sort and

processing the nodes from left to right. For each node 𝑣, the highest-weighted in-edge 𝑒 of weight

𝑒𝑤 is chosen, and a score is assigned to 𝑣 such that 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] = 𝑒𝑤 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑤] where 𝑤 is the

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

11

source node of the edge 𝑒 (Lee 2003). The node 𝑤 is marked as a predecessor of 𝑣, and a final

consensus is generated by performing a traceback from the highest scoring node 𝑟. In case 𝑟 is an

internal node (𝑟 has out edges), Lee (Lee 2003) proposed the idea of branch completion, where all

scores for all nodes except 𝑠𝑐𝑜𝑟𝑒𝑠[𝑟] would be set to a negative value, and the traversal would

continue from 𝑟 as before, with the only exception that nodes with negative scores could not be

added as predecessors to any other node.

One of the biggest advantages of POA compared to other MSA algorithms is its speed, with its

linear time complexity in the number of sequences (Lee et al. 2002). However, even though it is

faster than other MSA algorithms, the implementations of POA in current error-correction

modules, such as Nanocorrect, are prohibitively slow for larger datasets. In order to increase the

speed of POA while retaining its robustness, we explored a Single Instruction Multiple Data

(SIMD) version of the algorithm (SPOA).

Figure 4. Depiction of the SIMD vectorization approach used in SPOA.

SPOA (Figure 4; Algorithm 3) is inspired by the Rognes and Seeberg Smith-Waterman intra-set

parallelization approach (Rognes and Seeberg 2000). It places the SIMD vectors parallel to the

query sequence (the read), while placing a graph on the other dimension of the DP matrix (Figure

4). In our implementation, the matrices used for tracking the maximum local-alignment scores

ending in gaps are stored entirely in memory (Algorithm 3, line 8 and 10). These matrices are

needed to access scores of predecessors of particular nodes during alignment. Unlike regular Gotoh

alignment, for each row in the POA DP matrix all its predecessors (via in-edges of the

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

12

corresponding node in graph) need to be processed as well (Algorithm 3, line 17). All columns

are then processed using SIMD operations in a query-parallel manner and the values of Gotoh’s

vertical matrix (Algorithm 3, line 20) and a partial update to Gotoh’s main scoring matrix

(Algorithm 3, line 24) are calculated. SIMD operations in Algorithm 3 process 8 cells of the DP

matrix at a time (16-bit registers). A temporary variable is used to keep the last cell of the previous

vector for every predecessor (Algorithm 3, lines 21−23), which is needed to compare the upper-

left diagonal of the current cell to the cell one row up. Processing the matrix horizontally is not

performed using SIMD operations due to data dependencies (each cell depends on the result of the

cell to the left of it), and are instead processed linearly (Algorithm 3, lines 25−33). SPOA uses

shifting and masking to calculate every particular value of a SIMD vector individually (Algorithm

3, lines 29-31). After the alignment is completed, the traceback is performed (Algorithm 3, line

39) and integrated into the existing POA graph (Algorithm 3, line 40).

SIMD intrinsics decrease the time complexity for alignment from 𝑂((2𝑛𝑝 + 1)𝑛|𝑉|)to roughly

𝑂((2𝑛𝑝/𝑘 + 1)𝑛|𝑉|), where 𝑘 is the number of variables that fit in a SIMD vector, 𝑛𝑝 is the

average number of predecessors in the graph and |𝑉| is the number of nodes in the graph. SPOA

supports Intel SSE version 4.1 and higher, which embed 128 bit registers. Both short (16 bits) and

long (32 bits) integer precisions are supported (therefore 𝑘 equals 8 and 4 variables, respectively).

8 bit precision is insufficient for the intended application of SPOA and is therefore not used.

Alongside global alignment displayed in Algorithm 3., SPOA supports local and semi-global

alignment modes, in which SIMD vectorization is implemented as well.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

13

Algorithm 3. Pseudocode for the SPOA algorithm. The displayed function aligns a sequence to

a pre-constructed POA graph using SIMD intrinsics. Capitalized variables are SIMD vectors.

Alignment mode is Needleman-Wunsch.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

14

Implementation and reproducibility

Racon and SPOA are both implemented in C++. All tests were run using Ubuntu based systems

with two 6-core Intel(R) Xeon(R) E5645 CPUs @ 2.40GHz with Hyperthreading, using 12 threads

where possible. The versions of various methods used in the comparisons reported here are:

• Minimap - https://github.com/lh3/minimap.git, commit: 1cd6ae3bc7c7

• Miniasm - https://github.com/lh3/miniasm.git, commit: 17d5bd12290e

• Canu - https://github.com/marbl/canu.git, version 1.2, commit: ab50ba3c0cf0.

• FALCON-integrate project - https://github.com/PacificBiosciences/FALCON-

integrate.git, commit: 8bb2737fd1d7.

• Nanocorrect - https://github.com/jts/nanocorrect.git, commit: b09e93772ab4.

• Nanopolish - https://github.com/jts/nanopolish.git, commit: 47dcd7f147c.

• MUMmer - DNAdiff version 1.3, NUCmer version 3.1.

Datasets

Five publicly available PacBio and Oxford Nanopore datasets were used for evaluation. These are:

1. Lambda phage, Oxford Nanopore, ENA submission ERA476754, with 113× coverage of

the NC_001416 reference genome (48502bp). Link:

ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.t

ar.gz. This dataset was subsampled to coverages of 30× and 81× for testing.

2. E. coli K-12 MG1655 SQK-MAP006-1 dataset, Oxford Nanopore, R7.3 chemistry, 54×

pass 2D coverage of the genome (U00096.3, 4.6Mbp). Link:

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

3. E. coli K-12 PacBio P6C4 PacBio dataset, 160× coverage of the genome (U00096.3). The

dataset was generated using one SMRT Cell of data gathered with a PacBio RS II System

and P6-C4 chemistry on a size selected 20kbp library of E. coli K-12. Link:

https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-

P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz

4. S. cerevisiae W303 P4C2 PacBio dataset (

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-

Assembly-Contigs). The dataset is composed of 11 SMRT cells, of which one was not used

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

https://github.com/lh3/minimap.git
https://github.com/lh3/miniasm.git
https://github.com/marbl/canu.git
https://github.com/PacificBiosciences/FALCON-integrate.git
https://github.com/PacificBiosciences/FALCON-integrate.git
https://github.com/jts/nanocorrect.git
https://github.com/jts/nanopolish.git
ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz
ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

15

in this study because the containing folder (“0019”) was incomplete and the data could not

be extracted. The S288C reference (12.1 Mbp) was used for comparison

(http://downloads.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/).

Coverage of the dataset with respect to the S288C reference is approx. 127×.

5. C. elegans, a Bristol mutant strain, 81× coverage of the genome (gi|449020133). The

dataset was generated using 11 SMRT cells P6-C4 chemistry on a size selected 20kbp

library. Link: https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

Evaluation methods

The quality of called consensus sequences was evaluated primarily using Dnadiff (Delcher et al.

2003). The parameters we took into consideration for comparison include: total number of bases

in the query, aligned bases on the reference, aligned bases on the query and average identity. In

addition, we measured the time required to perform the entire assembly process by each pipeline.

The quality of error-corrected reads was evaluated by aligning them to the reference genome using

GraphMap (Sović et al. 2016b) with settings "-a anchorgotoh", and counting the match, mismatch,

insertion and deletion operations in the resulting alignments.

Data access

No new sequencing datasets were generated in the course of this study.

Acknowledgements

This work has been supported in part by Croatian Science Foundation under the project

UIP-11-2013-7353. IS is supported in part by the Croatian Academy of Sciences and Arts under

the project "Methods for alignment and assembly of DNA sequences using nanopore sequencing

data". NN is supported by funding from A*STAR, Singapore.

Author contributions

IS, MS and RV devised the original concept for Racon. IS developed and implemented several

prototypes for Racon. RV suggested and implemented the SIMD POA version. IS implemented a

version of Racon which uses SPOA for consensus generation and error-correction. IS and RV

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://downloads.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

16

tested Racon and SPOA. MS and NN provided helpful discussions and guidance for the project.

MS helped define applications and devised tests for the paper; IS ran the tests, and collected and

formatted the results. IS and RV wrote the paper with input from all authors. MS and RV designed

the figures for the paper. NN proof-read and corrected parts of the paper. All authors read the paper

and approve of the final version. MS coordinated the project and provided computational

resources.

Disclosure declaration

There are no competing financial interests or conflicts of interest to declare.

Code Availability

Racon and SPOA are available open source under the MIT license at

https://github.com/isovic/racon.git and https://github.com/rvaser/spoa.git.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

https://github.com/isovic/racon.git
https://github.com/rvaser/spoa.git
http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

17

References

Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large

genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology

33(6): 623–630.

Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A,

Huddleston J, Eichler EE et al. 2013. Nonhybrid, finished microbial genome assemblies from long-

read SMRT sequencing data. Nature Methods 10(6): 563–569.

Chin, C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Dunn C, Malley RO, Figueroa-

Balderas R, Morales-Cruz A, Grant R et al. 2016. Phased Diploid Genome Assembly with Single

Molecule Real-Time Sequencing. bioRxiv doi: 10.1101/056887.

Lee C. 2003. Generating consensus sequences from partial order multiple sequence alignment

graphs. Bioinformatics 19(8): 999–1008.

Lee C, Grasso C, Sharlow MF. 2002. Multiple sequence alignment using partial order graphs.

Bioinformatics 18(3): 452–464.

Li H. 2016. Minimap and Miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics 32(14): 2103-2110.

Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo using

only nanopore sequencing data. Nature Methods 12(8): 733–735.

Loose M, Malla S, Stout M. 2016. Real-time selective sequencing using nanopore technology.

Nature Methods doi:10.1038/nmeth.3930.

Myers G. 1999. A Fast Bit-Vector Algorithm for Approximate String Matching Based on Dynamic

Programming. Journal of the ACM 46(3): 395–415.

Rognes T, Seeberg E. 2000. Six-fold speed-up of Smith-Waterman sequence database searches

using parallel processing on common microprocessors. Bioinformatics 16(8): 699–706.

Sović I, Križanović K, Skala K, Šikić M. 2016a. Evaluation of hybrid and non-hybrid methods for

de novo assembly of nanopore reads. Bioinformatics doi: 10.1093/bioinformatics/btw237.

Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. 2016b. Fast and sensitive mapping

of error-prone nanopore sequencing reads with GraphMap. Nature Communications 7.

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/068122doi: bioRxiv preprint first posted online Aug. 5, 2016;

http://dx.doi.org/10.1101/068122
http://creativecommons.org/licenses/by-nc/4.0/

