
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Ivan Sović

ALGORITHMS FOR DE NOVO GENOME
ASSEMBLY FROM THIRD GENERATION

SEQUENCING DATA

DOCTORAL THESIS

Zagreb, 2016

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Ivan Sović

ALGORITHMS FOR DE NOVO GENOME
ASSEMBLY FROM THIRD GENERATION

SEQUENCING DATA

DOCTORAL THESIS

Supervisors:
Associate Professor Mile Šikić, PhD

Professor Karolj Skala, PhD

Zagreb, 2016

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Ivan Sović

ALGORITMI ZA DE NOVO
SASTAVLJANJE GENOMA IZ

SEKVENCIRANIH PODATAKA TREĆE
GENERACIJE

DOKTORSKI RAD

Mentori:
Izv. prof. dr. sc. Mile Šikić
Prof. dr. sc. Karolj Skala

Zagreb, 2016.

The dissertation was made at the University of Zagreb Faculty of Electrical Engineering

and Computing, Department of Electronic Systems and Information Processing in co-

operation with Rud̄er Bošković Institute, Centre for Informatics and Computing and the

Genome Institute of Singapore.

Mentori:

Associate Professor Mile Šikić, PhD

Professor Karolj Skala, PhD

The dissertation has: 157 pages

The dissertation number:

About the Supervisors

Mile Šikić was born in Zagreb in 1972. He received B.Sc and M.Sc degrees in electrical engi-

neering from the University of Zagreb, Faculty of Electrical Engineering in Zagreb in 1996, and

2002 respectively. In 2008 he defended his PhD thesis "Computational method for prediction

of protein-protein interaction" in computing at the same faculty.

He started his career at University of Zagreb in 1997 as research associate at Faculty of

Electrical Engineering and Computing. He worked as teaching assistant in the period from

2005 to 2009, and as assistant professor from 2009-2014. From 2015 he has been working

as associate professor. Using his annual leave he joined Bioinformatics Institute, A*STAR

Singapore as postdoc in the period from 2011 to 2012. In 2013 he was appointed as adjunct

scientist at the same institute.

He has been working as consultant and project manager on tens of industry projects in the

ICT field. Also he has been leading several research projects in bioinformatics and computa-

tional biology. He was a one of leading investigators on the project „Complex network analysis

of cis and trans chromatin interactions” financed by JCO Singapore. In 2014 he received Proof

of Concept BICRO grant, Croatian Science Foundation grant and a donation from ADRIS Foun-

dation. In the fields of bioinformatics and complex networks he has authored or co-authored

15 journal papers (CC, SCI, SCI expanded), 8 papers in conference proceedings and one book

chapter. His work has been cited over 400 times (h-index = 8). He teaches Software Engineer-

ing, Algorithms and data structures and bioinformatics. At University of Zagreb, he created

and co-created new courses Bioinformatics and Creative Laboratory. He has supervised over

50 undergraduate and master thesis, 2 master dissertations, one phd thesis, and currently is

supervising seven PhD students.

Assoc. Prof. Šikić is a member of IEEE and ISCN. He participated in 2 conference

international program committees and he servers as technical reviewer for various international

journals. He is a member of steering committee of Science and Society Synergy Institute -

ISZD.

Mile Šikić rod̄en je u Zagrebu 1972. Diplomirao je i magistrirao u polju elektrotehnike na

Sveučilištu u Zagrebu Fakultetu elektrotehnike i računarstva (FER), 1996, odnosno 2002. Go-

dine. Doktorsku disertacijom u polju računarstva pod naslovom „Računalna metoda za pred-

vid̄anje mjesta proteinskih interakcija“ obranio je 2008. godine na istom fakultetu.

Od 1997 do 2005 je radio kao zavodski suradnik na Zavodu za elektroničke sustave i

obradbu informacija, Fakulteta elektrotehnike i računarstva, Sveučilišta u Zagrebu, od 2005

do 2009 kao asistent, 2009 izabran je u zvanje docenta, a 2015 u izvanrednoga profesora. Od

1.5.2011 – 1.9.2002 kao poslijedoktorand je radio na Bioinformatics Institut, A*STAR u Sin-

gapuru, a od 2013 na istom institutu djeluje kao pridruženi znanstvenik.

Sudjelovao je i vodio nekoliko desetaka projekata s industrijom u području ICT-a te neko-

liko istraživačkih projekata primarno u području bioinformatike i računalne biologije. Kao

jedan od vodećih istraživača aktivno je sudjelovao na projektu „Complex network analysis of

cis and trans chromatin interactions” financiranim od strane JCO Singapur. Voditelj je HRZZ

uspostavnoga projekta te Proof of Concept BICRO projekta. Projekti koje je vodio su dobili

donacije Zaklade Adris i Zaklade HAZU. Do sada je, većinom u području bioinformatike i raču-

nalne biologije, objavio petnaest znanstvenih radova (CC, SCI, SCI expanded), jedno poglavlje

u knjizi i osam radova na konferencijama s med̄unarodnom recenzijom. Njegovi radovi su do

sada citirani preko 400 puta (h-index = 8). Predaje na prediplomskoj i diplomskoj razini pred-

mete vezane uz programiranje, algoritme i strukture podataka, bioinformatiku i kreativnost. U

nastavu je na diplomskoj razini uveo predmete Bioinformatika te Kreativni laboratorij koji je

pokrenuo zajedno s još 5 kolega s različitih sastavnica Sveučilišta u Zagrebu. Vodio je više od

70 završnih i diplomskih radova, dva magistarska rada, jedan doktorat, a trenutno je mentor

sedmero doktorskih studenata.

Izv. Prof. Šikić je član stručnih udruga IEEE i ISCB. Sudjeluje u 2 med̄unarodna pro-

gramska odbora znanstvenih konferencija te sudjeluje kao recenzent u većem broju inozemnih

časopisa. Član je upravnoga vijeća Instituta sinergije znanosti i društva.

ii

Karolj Skala was born in 1951 in Subotica. He received B.Sc., M.Sc. and Ph.D. degrees in

the field of electrical engineering at the University of Zagreb Faculty of Electrical Engineering

(ETF), 1974, 1979 or 1983. From November 1974 he is working at Rud̄er Bošković Institute in

the department of Laser research and development, since from 1991 is on head of the Centre for

Informatics and Computing as a consultant in permanent title from 2008. From 1996 to 2012

he is a teacher at the Faculty of Graphic Arts in the position of full professor. Since 2013, a

professor in ’permanent title at the University of Osijek. He was lead of four research projects

of the Ministry of Science, Education and Sports of the Republic of Croatia. He participated

in five Framework Programme of the European Union EU FP6 and seven EU FP7 projects.

Now providing 3 EU H2020 projects: EGI Engange, Engaging the EGI Community towards

an Open Science Commons Horizon 2020, 2015-2018; INDIGO Data Cloud INtegrating Dis-

tributed data Infrastructures for Global ExplOitation, Horizon 2020, 2015-2018; SESAME Net,

Supercomputing Expertise for Small And Medium Enterprises Horizon 2020, 2015-2017 He

is a national representative of COST IC 1305, Network for Sustainable Ultrascale Computing

(NESUS). Further he was the national representative of the European Commission at Research

Infrastructure Programme Committee EC FP7 (2010-2013) and he currently represent Croatia

in EC at European Research Infrastructure Consortium (ERIC). He has published more than 90

scientific papers in the fields of; laser communications, scientific visualization and distributed

computing systems.

Prof. Skala is programme committee member of MIPRO association and regular member of

Croatian Academy of Engineering (HATZ). Chair of the Annual Conference; Distributed Com-

puting and Visualisation Systems and participates as a reviewer in a number of international

projects and scinetific journals. He has won medals from Hungarian Academy of Sciences in

2010.

Karolj Skala rod̄en je 1951. u Subotici. Diplomirao je, magistrirao i doktorirao u polju

elektrotehnike na Sveučilištu u Zagrebu, Fakultetu elektrotehnike (ETF), 1974., 1979. odnosno

1983. godine. Od studenog 1974. godine radi na Institutu Rud̄er Bošković u odjelu za Laserska

i atomska istraživanja i razvoj, a od 1991 je voditelj Centra za informatiku i računartvo kao

savjetnik u trajnome zvanju od 2008. Od 1996 do 2012. je nastavnik na Grafičkom fakultetu

u Zagrebu u naslovnom zvanju redovitog profesora. Od 2013. je profesor u trajnome zvanju

Sveučilišta u Osijeku. Bio je voditelj četiri znanstvena projekta Ministarstva znanosti, obrazo-

vanja i sporta Republike Hrvatske. Sudjelovao je u okvirnim programima Europske unije, pet

EU FP6 i sedam EU FP7 projekata. Trenutno je konzorcijski nacionalni partner koordinator tri

EU H2020 projekta: EGI Engange, Engaging the EGI Community towards an Open Science

Commons Horizon 2020, 2015-2018; INDIGO Data Cloud INtegrating Distributed data Infras-

tructures for Global ExplOitation, Horizon 2020, 2015-2018; SESAME Net, Supercomputing

iii

Expertise for Small And Medium Enterprises Horizon 2020, 2015-2017.

Sudjeluje u COST IC 1305 - Network for Sustainable Ultrascale Computing (NESUS). Bio

je nacionalni predstavnik u Europskoj komisiji; Research Infrastructure Programme Committee

EC FP7 (2010-2013) i trenutno obnaša funkciju predstavnika u; European Research Infras-

tructure Consortium (ERIC). Objavio je više od 90 znastvenih radova iz područja laserskih

komunikacija, znanstvene vizualizacije i distribuiranih računalnih sustava. Prof. Skala je član

programskog odbora udruge MIPRO i redoviti član Akademije tehničkih znanosti Hrvatske

(HATZ). Voditelj je godišnje konferencije Distributed Computing and Visualisation Systems te

sudjeluje kao recenzent u većem broju inozemnih projekata i časopisa. Dobitnik je medalje

Mad̄arske Akademije znanosti 2010. godine.

iv

Acknowledgements

Looking back through the past years, I cannot imagine that any of this would be possible without

the immense love, support, patience and encouragement, selflessly given to me by my better half

- Iva. You were always there for me, and you’ve always been that special someone to me who

made me smile and got me cheery when times were getting hard. I never took any of this for

granted, and never will.

To my mom and dad, Ljiljana and Ivan, who always supported my decisions and backed me

up every step of the way. You thought me to first look before I leap, to set priorities, and to look

beyond limits, pushing far.

To my sister Ana who was always there when I pushed too far. I always could count on

you, in any situation, which you’ve proven numerous times. You also thought me so much -

everything from coding in Logo to signal processing.

To the rest of my family, thank you for everything!

Finally, to the people who guided me for the past six years - my supervisors: Karolj Skala

from whom I learned an incredible amount about projects, priorities and how to take a stand;

Niranjan Nagarajan who welcomed me into his group, enabled the major part of this research

and thought me everything I know about writing journal papers; and especially Mile Šikić.

Mile, you steered me, educated me and pushed me whenever I got stuck. You thought me

about critical thinking, and how to objectively filter ideas - a skill which I desperately needed.

You were always open to discussions without which none of these projects would ever get

realized. Thank you for introducing me to this incredible field. I consider you not only as my

mentor, but a very good friend as well.

I want to thank Tomislav Lipić and Bono Lučić for endless constructive discussions through-

out the years, and Krešimir Križanović, Robert Vaser and Andreas Wilm for helping me solve

many of these interesting puzzles along the way.

In the end, I would like to thank all my colleagues and friends who stuck by me, even when

I got so obsessed with my work.

Once again, here I thank you all from the bottom of my heart. I truly appreciate everything

you have done for me. Without you, this would not have been possible.

Abstract

During the past ten years, genome sequencing has been an extremely hot and active topic, with

an especial momentum happening right now. New, exciting and more affordable technologies

have been released, requiring the rapid development of new algorithmic methods to cope with

the data. Affordable commercial availability of the sequencing technology and algorithmic

methods which can leverage the data could open doors to a vast number of very important

applications, such as diagnosis and treatment of chronic diseases through personalized medicine

or identification of pathogenic microorganisms from soil, water, food or tissue samples.

Sequencing the entire genome of an organism is a difficult problem, because all sequencing

technologies to date have limitations on the length of the molecule that they can read (much

smaller than the genomes of a vast majority of organisms). In order to obtain the sequence of an

entire genome, reads need to be either stitched together (assembled) in a de novo fashion when

the genome of the organism is unknown in advance, or mapped and aligned to the reference

genome if one exists (reference assembly or mapping). The main problem in both approaches

stems from the repeating regions in the genomes which, if longer than the reads, prevent com-

plete assembly of the genome. The need for technologies that would produce longer reads which

could solve the problem of repeating regions has resulted in the advent of new sequencing ap-

proaches – the so-called third generation sequencing technologies which currently include two

representatives: Pacific Biosciences (PacBio) and Oxford Nanopore. Both technologies are

characterized, aside from long reads, by high error rates which existing assembly algorithms of

the time were not capable of handling. This caused the development of time-consuming read

error correction methods which were applied as a pre-processing step prior to assembly.

Instead, the focus of the work conducted in the scope of this thesis is to develop novel

methods for de novo DNA assembly from third generation sequencing data, which provide

enough sensitivity and precision to completely omit the error-correction phase. Strong focus is

put on nanopore data.

In the scope of this thesis, four new methods were developed: (I) NanoMark - an eval-

uation framework for comparison of assembly methods from nanopore sequencing data; (II)

GraphMap - a fast and sensitive mapper for long error-prone reads; (III) Owler - a sensitive

overlapper for third generation sequencing; and (IV) Racon - a rapid consensus module for cor-

recting raw assemblies. Owler and Racon were used as modules in the development of a novel

de novo genome assembler Aracon. The results show that Aracon reduces the overall assembly

time by at least 3x and up to even an order of magnitude less compared to the state-of-the-art

methods, while retaining comparable or better quality of assembly.

Keywords: de novo, assembly, PacBio, nanopore, NanoMark, GraphMap, Racon, Aracon

Produženi sažetak

Algoritmi za de novo sastavljanje genoma iz sekvenciranih podataka treće generacije

Tijekom proteklih desetak godina, sekvenciranje genoma postalo je iznimno aktivno i zan-

imljivo područje, a pravi zamah dogad̄a se upravo sada. Nedavno su se počele pojavljivati

nove, uzbudljive i pristupačne tehnologije, koje povlače i potrebu za razvojem novih algorita-

mskih metoda koje će se moći uhvatiti u koštac s količinom i kvalitetom podataka koje one

generiraju. Komercijalna isplativost i dostupnost tehnologije za sekvenciranje, kao i pratećih

algoritamskih rješenja kojima bi se maksimizirao potencijal ovih tehnologija, mogao bi otvoriti

vrata širokom spektru važnih primjena: od dijagnoze i tretmana kroničnih bolesti kroz personal-

iziranu medicinu, preko identifikacije patogenih mikroorganizama iz uzoraka tla, vode ili tkiva

pa do istraživačkih projekata ciljanih otkrivanju znanja biološke pozadine živog svijeta oko nas.

Za uspješnu realizaciju svih ovih primjena ključne su računalne metode za analizu i procesiranje

prikupljenih podataka.

Sekvenciranje cijelog genoma nekog organizma predstavlja vrlo složen problem jer sva pos-

tojeća tehnologija za sekvenciranje sadrži jedno važno ograničenje - najveću duljinu molekule

koju ured̄aji mogu pročitati. Duljine očitanih sekvenci (očitanja) puno su kraće od duljine

genoma velike većine organizama. Kako bi se uspješno mogla dobiti cjelovita sekvenca nekog

genoma, očitanja je potrebno med̄usobno povezati (sastaviti) na de novo način koji se primjerice

koristi u slučaju kada genom promatranog organizma već nije poznat unaprijed. Drugi pristup

temelji se na mapiranju i poravnanju očitanja s referentnim genomom promatranog organizma

(prethodno visoko-kvalitetno sastavljeni genom organizma) u slučaju ako referentni genom već

postoji (sastavljanje uz referencu ili mapiranje).

Glavna pretpostavka svih algoritama za sastavljanje genoma je da vrlo slični fragmenti DNA

dolaze s iste pozicije unutar genoma. Ista ta sličnost predstavlja temelj za: (I) otkrivanje prekla-

panja izmed̄u pojedinih očitanja te njihovo povezivanje u duže, slijedne sekvence (kontige, eng.

contigs) u slučaju de novo sastavljanja, ili (II) za odred̄ivanje pozicije (eng. mapping) na ref-

erentnom genomu s kojeg je neko očitanje uzorkovano, te precizno poravnanje očitanja (eng.

alignment) s referentnim genomom. U oba slučaja, osnovni problem javlja se u ponavljajućim

regijama u genomu, koje, ako su duže od samih očitanja, onemogućuju jednoznačnu i potpunu

rekonstrukciju genoma. Na primjer, u idealnom slučaju, de novo sastavljanje rezultiralo bi

skupom kontiga od kojih svaki potpuno rekonstruira jedan od kromosoma analiziranog orga-

nizma, dok u praksi ponavljanja u genomu uzrokuju nejednoznačnosti u postupku sastavljanja.

Pri tome, rezultat sastavljanja obično je skup fragmentiranih kontiga nepoznate orijentacije,

odvojenih prazninama nepoznate veličine.

Potreba za tehnologijama koje bi mogle prevladati problem ponavljajućih regija rezul-

tirala je pojavom posljednje, treće generacije ured̄aja za sekvenciranje. Treća generacija

trenutno uključuje samo dva reprezentativna proizvod̄ača ured̄aja: Pacific Biosciences i Ox-

ford Nanopore Technologies. Prvi predstavnik ove generacije bili su ured̄aji proizvod̄ača Pa-

cific Biosciences (PacBio). Iako ovi ured̄aji generiraju znatno dulja očitanja (nekoliko desetaka

tisuća baza) u odnosu na ured̄aje druge generacije (≈100-400 baza), razina pogreške u očitan-

jima znatno je veća od druge generacije sekvencera (≈10-15% u usporedbi s≈1%). U trenutku

kada se ova tehnologija pojavila, postojeće metode za sastavljanje i poravnanje nisu bile u stanju

iskoristiti potencijal ovih podataka zbog vrlo visoke razine pogreške. To je uzrokovalo razvoj

novih metoda za hibridno i ne-hibridno ispravljanje grešaka u podatcima i njihovo sastavljanje

(HGAP, PBcR), osjetljivo poravnanje i preklapanje očitanja (BLASR), kao i prilagodbu posto-

jećih metoda poravnanja kako bi mogle baratati ovim podatcima (BWA-MEM).

Oxford Nanopore Technologies (ONT) drugi je i trenutno posljednji komercijalni

proizvod̄ač ured̄aja za sekvenciranje treće generacije. ONT MinION je malen, prenosiv, USB-

pogonjen i cjenovno prihvatljiv ured̄aj za sekvenciranje koji je u stanju proizvesti vrlo dugačka

očitanja (i do nekoliko stotina tisuća baza). Ove karakteristike pružaju mu transformativni po-

tencijal u istraživanjima, dijagnozi, te u primjenama s ograničenim resursima. No, MinION ima

bitan ograničavajući nedostatak - vrlo veliku pogrešku u očitanjima (≈10-40%). Specifičnosti

MinION tehnologije, kao i postupci pripreme uzoraka, omogućuju dvije vrste sekvenciranja

pomoću ovog ured̄aja: jednosmjerno (eng. one-directional, 1D) pri čemu se sekvencira samo

jedan lanac odred̄enog DNA fragmenta, ili dvosmjerno (eng. two-directional, 2D) pri čemu su

oba lanca nekog DNA fragmenta kemijski povezana i zajedno slijedno sekvencirana. Redun-

dancija kod 2D očitanja iskorištava se za postizanje veće točnosti očitanja (≈80-88% točnosti

kod R7.3 kemije) u odnosu na≈75% točnosti kod 1D očitanja. Ovakve razine i profil pogrešaka

stvorili su potrebu za razvojem još osjetljivijih algoritama za mapiranje, poravnanje i sastavl-

janje očitanja koji bi mogli otvoriti potpuni potencijal ove tehnologije.

U trenutku izrade rada opisanog u sklopu ove disertacije, sve metode sastavljanja genoma

koje su bile primjenjive za sekvencirane podatke treće generacije ovisile su o fazi ispravljanja

pogreške u podatcima kao pret-koraku sastavljanja. Ispravljanjem pogreške omogućilo se isko-

rištavanje veće količine ulaznih podataka, čime se kompenzirala potencijalno niska osjetljivost

sljedeće faze. Proces ispravljana pogreške temelji se na mapiranju i poravnanju svih očitanja u

ulaznom skupu podataka na isti taj skup, te primjenom statističkih metoda kako bi se odredio

konsenzus i razrješile pogreške. Iako je ovaj pristup temeljito ispitan i omogućuje dobivanje do-

brih rezultata, njegov glavni problem je vrlo velika vremenska zahtjevnost što posebice dolazi

do izražaja kod sastavljanja većih genoma.

Umjesto takvog pristupa, fokus rada provedenog u sklopu izrade ove disertacije je na razvoju

novih metoda i algoritama za de novo sastavljanje DNA iz sekvenciranih podataka treće gen-

eracije, koji će omogućiti dovoljnu osjetljivost i preciznost kako bi se potpuno preskočio korak

viii

ispravljanja pogrešaka. Cilj je pokazati kako na ovaj način možemo znatno reducirati vrijeme

izvod̄enja u usporedbi s najboljim postojećim metodama, dok pri tome zadržavamo istu ili višu

razinu točnosti.

Doprinosi ove disertacije uključuju sljedeće:

1. Radni okvir za usporedbu alata za de novo sastavljanje genoma definiranjem normiranih

kvalitativnih testova,

2. Optimirani algoritmi i strukture podataka za de novo sastavljanje genoma s naglaskom na

očitanjima treće generacije, i

3. Ocjena razvijenih algoritama korištenjem novog radnog okvira usporedbe.

Kako bi se postigli navedeni ciljevi, u okviru ove disertacije, razvijene su četiri nove metode:

• NanoMark - sustav za automatiziranu usporedbu i evaluaciju metoda za sastavljanje ONT

podataka

• GraphMap - brza i osjetljiva metoda za mapiranje dugačkih i greškovitih očitanja

• Owler - osjetljiva metoda za preklapanje očitanja dobivenih sekvenciranjem treće gen-

eracije

• Racon - iznimno brza konsenzus metoda za ispravljanje greškovitih dugačkih sekvenci

nakon što je proveden postupak sastavljanja

Owler i Racon korišteni su kao osnovni moduli za razvoj nove metode za de novo sastavljanje

genoma nazvane Aracon. Rezultati testiranja pokazuju kako je Aracon smanjio sveukupno

potrebno vrijeme sastavljanja genoma za faktor 1000x u odnosu na najtočniju metodu za ONT

podatke, te izmed̄u 3x−10x u usporedbi s ostalim trenutno vodećim dostupnim metodama, pri

čemu mu je kvaliteta sastavljenih genoma jednaka ili bolja od istih metoda.

Poglavlje 1 ("Uvod") disertacije nastoji objasniti motivaciju i potrebu za rješavanjem prob-

lema u bioinformatici, a naročito vezanih uz sastavljanje i analizu genoma organizama. U uvodu

su navedena dva specifična cilja istraživanja: (I) metoda za mapiranje/poravnanje sekvenciranih

podataka treće generacije s posebnim fokusom na očitanja dobivena ured̄ajima tvrtke Oxford

Nanopore Technologies, i (II) metodu za de novo sastavljanje genoma sekvenciranim podatcima

treće generacije s posebnim fokusom na očitanja dobivena ured̄ajima tvrtke Oxford Nanopore

Technologies.

U poglavlju 2 ove disertacije ("Teorijska podloga") predstavljeni su teorijski koncepti sas-

tavljanja genoma. Prezentirana je nužna terminologija, te je dan detaljan opis postojećih pris-

tupa u mapiranju i poravnanju sekvenci s referentnim genomom, kao i detaljan opis pris-

tupa za de novo sastavljanje genoma. Predstavljeni koncepti i pristupi nisu fokusirani samo

na sekvencirane podatke treće generacije već na cjelokupno područje kako bi se omogućio

uvid u ključne ideje koje su bile potrebne za realizaciju rada u sklopu ove disertacije. Na

kraju svakog od potpoglavlja dan je osvrt na trenutno stanje fokusirano na podatke dobivene

ONT tehnologijom kako bi se identificirali nedostatci i pobliže objasnila potreba za meto-

ix

dama razvijenim u ovome radu. Detaljno su opisani koraci za sastavljanje genoma koristeći

paradigmu Preklapanje-Razmještaj-Konsenzus (eng. Overlap-Layout-Consensus) kao prevla-

davajuće paradigme za sekvencirane podatke treće generacije, koja je na temelju razmatranja u

ovom poglavlju odabrana i kao paradigma koja će biti primijenjena u ovome radu. Zaključeno

je kako trenutno stanje oba potpodručja (mapiranja/poravnanja i de novo sastavljanja) sadrži

veliki potencijal za napredak koji se može ostvariti novim algoritmima i metodama.

Poglavlje 3 ("Evaluacija hibridnih i ne-hibridnih metoda za de novo sastavljanje genoma

koristeći nanopore očitanja") daje detaljnu usporedbu postojećih metoda (eng. state-of-the-art)

primjenjivih za sastavljanje genoma iz sekvenciranih podataka treće generacije. Provedena je

sistematična evaluacija ovih metoda, a fokus je stavljen na procjenu kvalitete metoda za sastavl-

janje ONT podataka (LQS, PBcR, Canu, Miniasm), dok je dodatno proveden i uspješan pokušaj

prilagodbe jedne metode koja je dizajnirana specifično za PacBio tehnologiju (Falcon). Osim

navedenih ne-hibridnih metoda, evaluirane su i dvije hibridne metode: SPAdes i ALLPATHS-

LG, koje koriste sekvencirane podatke druge generacije (Illumina) za početno sastavljanje te

naknadno podatke treće generacije za povezivanje kontiga u dulje cjeline. Sva ispitivanja prove-

dena su nad šest skupova podataka: jedan Illumina skup namijenjen samo za hibridne metode,

i pet ONT skupova podataka različite veličine i kvalitete. U svrhu jednostavnije evaluacije i

nadogradnje rezultata testiranja, razvijen je radni okvir (eng. framework) za uniformno i au-

tomatizirano pokretanje testova i formatiranje dobivenih rezultata - NanoMark. Rezultati su is-

crpno prezentirani kako bi se omogućio izravan uvid u podobnost pojedine metode za odred̄eni

skup podataka. Sve testirane metode pokazale su se uspješnim u sastavljanju cijelog bakter-

ijskog genoma (E. coli K-12) pod pravim uvjetima, no u većini slučajeva najtočnije rezultate

(od ne-hibridnih metoda) producirala je LQS metoda koja je ujedno i vremenski najzahtjevnija,

dok je s druge strane Miniasm iznimno brz i štedljiv na resursima, ali zbog nedostatka konsen-

zus faze njegovi rezultati nisu direktno sumjerljivi s drugim metodama. Od hibridnih metoda,

ALLPATHS-LG je producirao najbolje rezultate, rezultirajući i s neusporedivo manje pogrešaka

u odnosu na bilo koju od testiranih ne-hibridnih metoda.

Poglavlje 4 ("Preklapanje") predstavlja razvoj nove, vrlo osjetljive metode GraphMap za

brzo mapiranje očitanja na referentni genom i njezinu prilagodbu u novu metodu nazvanu

Owler za preklapanje očitanja u svrhu de novo sastavljanja genoma. GraphMap algoritam

strukturiran je u slijed od pet koraka koji omogućuju postizanje visoke osjetljivosti i brzine

u odnosu na postojeće metode kroz konzervativno smanjivanje broja kandidatnih lokacija za

mapiranje u svakom od koraka. Ovi koraci uključuju: (I) novu adaptaciju zrnatog pretraživanja

uz dozvoljene pogreške na odred̄enim mjestima u zrnu (eng. gapped spaced seeds). Pronad̄ena

zrna tada se grupiraju pomoću Houghove transformacije u grube kandidatne regije na refer-

entnom genomu. U koraku (II) svaka od ovih regija zasebno se procesira novom metodom

mapiranja na graf koristeći efikasni čvorno-centrični pristup. Rezultat ovog koraka dan je u

x

obliku niza uporišta (eng. anchors) za poravnanje. S obzirom na repetitivnost u genomima

i pogreške u sekvenciranju, uporišta se zatim u koraku (III) filtriraju korištenjem LCSk al-

goritma (eng. Longest Common Subsequence in k-length Substrings). Dodatno rafiniranje

uporišta svake regije postiže se u koraku (IV) primjenom L1 linearne regresije ili metodom

ulančavanja uporišta (eng. chaining). U posljednjem koraku (V), GraphMap odabire jednu ili

više najboljih regija te provodi proces konačnog poravnanja sekvenci. Za svako poravnanje

GraphMap prijavljuje i odgovarajuću aproksimaciju E-vrijednosti (eng. E-value) te kvalitetu

mapiranja (eng. mapping quality). GraphMap je detaljno testiran, evaluiran i uspored̄en s pos-

tojećim metodama na simuliranim i stvarnim podatcima. Na simuliranim podatcima, GraphMap

je jedina metoda koja je rezultirala osjetljivošću sličnoj BLAST-u, pri čemu je i do neko-

liko redova veličine brža od BLAST-a. Na stvarnim MinION podatcima, GraphMap je na

svim skupovima podataka nenadmašen u osjetljivosti u odnosu na ostale metode (BWA-MEM,

LAST, BLASR, DALIGNER), te mapira izmed̄u 10− 80% sekvenciranih baza više od ostalih

metoda. GraphMap omogućuje mapiranje koje je uglavnom agnostično na parametre za razliku

od ostalih metoda, te uz pred-zadane vrijednosti parametara postiže konstantno visoku pre-

ciznost na svim skupovima podataka i to tipično veću od 98%. Nadalje, GraphMap je ispitan

koristeći stvarne podatke u kontekstu nekoliko različitih važnih primjena: (a) otkrivanje prom-

jena u medicinski značajnim regijama ljudskog genoma, (b) odred̄ivanje strukturnih promjena

izravno iz mapiranih podataka, i (c) izravna identifikacija vrsta mapiranjem očitanja na bazu

referentnih genoma. U svim ovim primjenama, GraphMap ostvaruje rezultate znatno bolje od

postojećih metoda.

Problem preklapanja očitanja može se promatrati kao specijalni slučaj problema mapiranja

na referencu, pri čemu se ulazni skup očitanja umjesto na referentni genom mapira sam na

sebe. GraphMap metoda preured̄ena je i prilagod̄ena problemu otkrivanja preklapanja te imple-

mentirana kao modul nazvan Owler (eng. Overlap with long erroneous reads). Owler način

rada koristi reducirani GraphMap algoritam u kojem se preskaču neki vremenski zahtjevni ko-

raci. Konkretno, Owler algoritam sastoji se od sljedećih koraka: (I) konstrukcija indeksa iz

skupa očitanja za jedan oblik zrna s mogućnošću pogreške, (II) za svako očitanje iz skupa do-

hvaćaju se i sortiraju sve odgovarajuće lokacije zrna iz indeksa, (III) provod̄enje LCSk postupka

izravno nad dohvaćenim lokacijama zrna, (IV) ulančavanje zrna kao dodatna metoda filtriranja

čime se izgrad̄uje prvi skup preklapanja, i (V) grubo filtriranje potencijalno loših preklapanja

(na temelju duljine preklapanja, početnih i završnih lokacija). Owler je uspored̄en s postojećim

metodama za preklapanje očitanja treće generacije (Minimap, MHAP, DALIGNER i BLASR)

na stvarnim skupovima podataka (istim skupovima koji su korišteni u Poglavlju 3 za evaluaciju

metoda sastavljanja). U svim testovima, Owler konzistentno zadržava visoke razine preciznosti

i odziva u odnosu na ostale metode kod kojih je vidljiva velika varijabilnost. Iznimka je Min-

imap koji takod̄er demonstrira visoku preciznost na svim skupovima podataka, dok mu odziv

xi

znatno opada pri vrlo velikoj pokrivenosti genoma, što nije slučaj kod Owler metode.

Poglavlje 5 ("Racon - Brzi modul za konsenzus za grubo sastavljanje genoma koristeći

dugačka nekorigirana očitanja") opisuje novi algoritam Racon (eng. Rapid Consensus) koji

se može koristiti kao završni korak u Preklapanje-Razmještaj-Konsenzus pristupu za de novo

sastavljanje genoma. U sklopu analize provedene u Poglavlju 2, zaključeno je kako u trenut-

nom stanju ovog područja nedostaje samostojeća metoda koja će omogućiti brzo i kvalitetno

dobivanje konsenzusnih sekvenci iz grubo sastavljenih genoma, dobivenih primjerice Miniasm

metodom. Postojeće metode za konsenzus podataka treće generacije namijenjene su uglavnom

ili za ispravljanje pogrešaka u ulaznim podatcima, ili za fino poliranje već sastavljenih genoma

koji su prošli konsenzus fazu (kao integriranu fazu postojećih metoda sastavljanja). Racon je

temeljen na brzoj implementaciji pristupa baziranog na POA grafovima (eng. Partial Order

Alignment) pri čemu je glavnina ubrzanja postignuta SIMD (eng. Single Instruction Multiple

Data) akceleracijom poravnanja sekvenci na graf. Cijeli Racon algoritam sastoji se od nekoliko

koraka: (I) ulazni skup očitanja poravna se sa skupom grubih kontiga, (II) svaki kontig proce-

sira se zasebno i to tako da se podijeli na slijedne, nepreklapajuće prozore predodred̄ene duljine.

Svaki prozor procesira se zasebno, pri čemu se (III) iz sekvence kontiga izgradi POA graf na

koji se zatim SIMD-akceleriranim pristupom poravna odgovarajući dio svih očitanja koja pokri-

vaju trenutno analizirani prozor. (IV) Za svaki prozor odredi se konsenzus sekvenca traženjem

najtežeg puta kroz graf, te se (V) konsenzusi pojedinih prozora zalijepe u konačnu sekvencu

ispravljenog kontiga. Racon je ispitan tako da je prvo uklopljen kao dodatna konsenzus faza

nakon Minimap+Miniasm metode za sastavljanje genoma, te je ukupni rezultat evaluiran na

stvarnim ONT i PacBio skupovima podataka različitih veličina i kvaliteta i uspored̄en s drugim

aktualnim metodama (Canu, Falcon i LQS). Miniasm+Racon kombinacija u gotovo svim sluča-

jima rezultira jednakom ili boljom kvalitetom sastavljenih genoma u usporedbi s ostalim meto-

dama, pri čemu je za čak oko red veličine brža od ostalih metoda. Takod̄er, u gotovo svim

ispitanim slučajima, Miniasm+Racon rezultira ispravljenim kontizima koji su po duljini sličniji

referentnom genomu od ostalih metoda. Generalni dizajn Racona omogućuje mu da osim za

ispravljanje pogrešaka u kontizima bude primjenjiv i za ispravljenje pogrešaka u ulaznim oči-

tanjima.

U poglavlju 6 ("Integracija i evaluacija - Aracon alat za sastavljanje genoma") opisana je

integracija novorazvijenih metoda, predstavljenih u prethodnim poglavljima, u novi alat za de

novo sastavljanje genoma iz sekvenciranih podataka treće generacije - Aracon (eng. Assembly

with Rapid Consensus). Aracon je implementiran kao skripta koja povezuje: Owler za odred̄i-

vanje preklapanja iz ulaznog skupa očitanja, Miniasmov modul za odred̄ivanje razmještaja, te

dvije iteracije Racona za produciranje konačnih kontiga s ispravljenom pogreškom. Miniasm

modul korišten je za odred̄ivanje razmještaja jer je razvoj novog modula za ovu fazu bio izvan

okvira ove disertacije, a teorija iza string-graf pristupa već dobro utemeljena i poznata. Aracon

xii

je evaluiran koristeći istu metodologiju koja je razvijena u sklopu Poglavlja 3 (NanoMark), te

je uspored̄en s ostalim ne-hibridnim metodama za sastavljanje genoma iz ONT podataka: LQS,

PBcR, Canu, Miniasm (bez konsenzus koraka) i Falcon. Aracon je u svim slučajima producirao

kontige s točnošću gotovo jednakoj kao LQS (najtočnija metoda), pri čemu je bio čak tri reda

veličine brži od LQS-a. U usporedbi s ostalim metodama, kontizi producirani Araconom uvijek

su sličniji u odnosu na referentni genom, pri čemu je Aracon barem tri puta brži od sljedeće

najbrže metode.

Uzevši sve navedeno u obzir, dobivenim rezultatima uspješno je potvrd̄ena hipoteza da

je moguće ostvariti visoko-kvalitetno de novo sastavljanje genoma bez prethodnog koraka

ispravljanja pogreške u ulaznim podatcima, pri čemu se postiže znatno ubrzanje cijelog

procesa. Važnost istraživanja provedenih u sklopu ove disertacije takod̄er je prepoznata i od

strane znanstvene zajednice, te su dijelovi ovog istraživanja objavljeni u visoko-rangiranim

znanstvenim časopisima (Nature Communications i Oxford Bioinformatics). NanoMark,

GraphMap, Owler, Racon i Aracon otvoreno su dostupni pod MIT licencom na: https://

github.com/kkrizanovic/NanoMark, https://github.com/isovic/graphmap, https:

//github.com/isovic/racon, https://github.com/isovic/aracon.

Ključne riječi: de novo, sastavljanje, PacBio, nanopore, NanoMark, GraphMap, Racon, Ara-

con

xiii

https://github.com/kkrizanovic/NanoMark
https://github.com/kkrizanovic/NanoMark
https://github.com/isovic/graphmap
https://github.com/isovic/racon
https://github.com/isovic/racon
https://github.com/isovic/aracon

Contents

1. Introduction . 1

1.1. Objectives . 4

1.2. Organization of the Dissertation . 4

2. Background . 6

2.1. Terminology . 8

2.2. Approaches to sequence alignment/mapping 8

2.2.1. Sequence alignment . 10

2.2.2. Sequence mapping . 17

2.2.3. Mapping nanopore reads . 21

2.3. Approaches to de novo DNA assembly . 22

2.3.1. Overlap-Layout-Consensus approach (OLC) 22

2.3.2. The de Bruijn graph approach . 24

2.3.3. Assembly of nanopore reads . 26

3. Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore
reads . 39

3.1. Methods . 40

3.1.1. Datasets . 40

3.1.2. Data preparation . 41

3.1.3. Assembly pipelines . 41

3.1.4. Evaluating the results . 42

3.2. Results . 43

3.2.1. Non-hybrid assembly quality . 44

3.2.2. Hybrid pipeline comparison . 47

3.2.3. Resource usage . 49

3.2.4. Polishing the assembly . 50

3.2.5. Discussion . 50

4. Overlap . 53

4.1. GraphMap - Fast and sensitive mapping of nanopore sequencing reads 53

4.1.1. Methods . 54

4.1.2. Results . 75

4.1.3. Discussion . 84

4.2. Owler - Overlap With Long Erroneous Reads 85

4.2.1. Methods . 86

4.2.2. Implementation and reproducibility 87

4.2.3. Results . 91

4.2.4. Discussion . 92

5. Racon - Fast consensus module for raw de novo genome assembly of long uncor-
rected reads . 94

5.1. Methods . 94

5.1.1. Algorithm description . 95

5.1.2. Implementation and reproducibility 103

5.1.3. Datasets . 103

5.1.4. Evaluation methods . 104

5.2. Results . 104

5.3. Discussion . 107

6. Integration and evaluation - Aracon assembler 108

6.1. Methods . 108

6.1.1. Implementation and reproducibility 110

6.1.2. Datasets . 110

6.1.3. Assembly pipelines . 110

6.1.4. Evaluation methods . 111

6.2. Results . 111

6.3. Discussion . 114

7. Conclusion . 116

7.1. Contributions of the dissertation . 117

7.2. Future research avenues . 119

A. Additional benchmarking results . 121

B. Supplementary information for GraphMap . 126

B.1. Evaluating GraphMap on synthetic datasets 126

B.2. GraphMap’s sensitivity on ONT datasets . 126

References . 137

Biography . 153

Životopis . 157

List of Figures

2.1. Depiction of the sequencing process. 7

2.2. An example of alignment of two sequences test and best, where the only form

of difference between the two sequences are substitutions. Character "|" denotes

a match between two sequences, while "x" denotes a mismatch. 9

2.3. An example of a gapped alignment of two nucleotide sequences. A dash "−" in

any of the sequences means there is a missing nucleotide at that position, which

is present in the other sequence. 9

2.4. Example of the steps in the global alignment of sequences ATCG and TCG. Ar-

rows show the traceback of the optimal alignment between the two sequences,

starting from the bottom right corner of the matrix. 12

2.5. Example of a local alignment of sequences GGCTCAATCA and ACCTAAGG

using a match score of +2, mismatch penalty of −1 and a gap penalty of −2.

The first row and the first column of the matrix are initialized to 0. Arrows

show the direction of the traceback, starting from the maximum element in the

DP matrix. 13

2.6. An example of assembly using the overlap graph by finding a Hamiltonian path.

In this simple example, the set of input fragments consists of five reads of equal

length, {ATC, CCA, CAG, TCC, AGT }, represented as nodes in the graph.

Edges represent overlaps between nodes with corresponding edge weights.

Edge weights for an overlap x→ y are calculated as |y|−ov(x,y). The result of

assembly is a walk depicted in red edges starting from ATC and ending in AGT ,

which provides the reconstruction of the sequence ATCCAGT 23

2.7. An example of assembly using the de Bruijn graph. Let ACCAT TCCA be

a genome sequence we are trying to assemble from two reads {ACCAT TC,

AT TCCAA}. The k-mer spectrum for k = 4, is obtained from the reads: {ACCA,

CCAT , CAT T , AT TC, T TCC, TCCA, CCAA}, and the (k− 1)-mer spectrum,

{ACC, CCA, CAT , AT T , T TC, TCC, CAA}, required to construct the graph.

The graph is constructed by placing k-mers on the edges, and (k− 1)-mers on

the vertices. The original sample sequence is fully reconstructed by traversing

all edges of the graph (Eulerian path). 25

2.8. Classification of overlap types: 2.8a and 2.8b depict contained overlaps where

one read completely falls within the other; 2.8c - 2.8f depict all variations of

dovetail overlaps between a pair of reads. A and B stand for reverse comple-

ments of A and B, respectively. The ball-point end of each read presents the

start of the read, whereas the arrowhead presents its end. 29

2.9. Depiction of a partial overlap between reads. Unlike dovetail overlaps, the over-

lapping region does not reach the ends of the reads. 29

2.10. Depiction of an overlap graph containing a transitive edge. 32

2.11. Additional complexities in the string/assembly graphs. 33

2.12. Depiction of sequence MSA and consensus. 35

3.1. Dotplots of largest contigs generated by Miniasm for: a) Dataset 3, b) Dataset

4 and c) Dataset 5. 46

3.2. Error rate analysis of raw nanopore reads from Dataset 3. Insertion, deletion

and mismatch rates in the table below are presented by the median values of the

entire dataset. Coverage value refers to the average coverage of the entire raw

dataset. 47

3.3. Error rate analysis of error-corrected nanopore reads obtained with different

error correction methods. Insertion, deletion and mismatch rates are presented

by the median values of the entire dataset. Coverage value refers to the average

coverage of the corresponding error-corrected dataset. 48

4.1. A schematic representation of stages in GraphMap. GraphMap refines candi-

date locations through stages and reduces the number of candidate locations to

one. 54

4.2. Structure of spaced seeds used for index construction and index lookup. For

each position in the reference one seed is inserted into the index and for each

position in the query, three seeds are looked up. 56

4.3. Region selection by clustering of candidate seeds on the reference. Diagonals

with sufficient number of seed hits are used to identify regions for further pro-

cessing. 58

4.4. Generating alignment anchors through a fast graph based ordering of seeds

(Graph Mapping). Seeds from the query (2-mers here; starting from the green

seed) are looked up, and information in the graph propagated, to construct a

maximal walk that serves as an anchor. 61

4.5. Filtering of seed matches using LCSk and L1 regression. Anchors are chained

into a monotonically increasing sequence, with outliers trimmed using L1 re-

gression, to get an approximate alignment. 67

4.6. Evaluating GraphMap’s precision and recall on synthetic ONT data. a)

GraphMap (shaded bars) performance in comparison to BLAST (solid bars)

on ONT 2D and 1D reads. Genomes are ordered horizontally by genome size

from smallest to largest. For each dataset, the graph on the left shows perfor-

mance for determining the correct mapping location (within 50bp; y-axis on the

left) and the one on the right shows performance for the correct alignment of

bases (y-axis on the right; see 4.1.1 Methods section). b) Precision and recall

for determining the correct mapping location (within 50bp) for various mappers

on synthetic ONT 1D reads. 76

4.7. Sensitivity and mapping accuracy on nanopore sequencing data. a) Visualiza-

tion of GraphMap and LAST alignments for a lambda phage MinION sequenc-

ing dataset (using IGV). Grey columns represent confident consensus calls

while colored columns indicate lower quality calls. b) Mapped coverage of

the lambda phage and the E. coli K-12 genome (R7.3 data) using MinION se-

quencing data and different mappers. c) Consensus calling errors and uncalled

bases using a MinION lambda phage dataset and different mappers. d) Con-

sensus calling errors and uncalled bases using a MinION E. coli K-12 dataset

(R7.3) and different mappers. 78

4.8. Structural variant calling using nanopore sequencing data and GraphMap. An

IGV view of GraphMap alignments that enabled the direct detection of a 300bp

deletion (delineated by red lines). b) GraphMap alignments spanning a ≈ 4kbp

deletion (delineated by red lines). 81

4.9. Species identification using nanopore sequencing data and GraphMap. Num-

ber of reads mapping to various genomes in a database (sorted by GraphMap

counts and showing top 10 genomes) using different mappers (GraphMap,

BWA-MEM, LAST, DALIGNER and BLASR) and three MinION sequenc-

ing datasets for a) E. coli K-12 (R7.3) b) S. enterica Typhi and c) E. coli

UTI89. Note that GraphMap typically maps the most reads to the right refer-

ence genome (at the strain level) and the S. enterica Typhi dataset is a mixture

of sequencing data for two different strains for which we do not have reference

genomes in the database. Results for marginAlign were nearly identical to that

of LAST (within 1%) and have therefore been omitted. 83

4.10. A Tablet plot of a region of extremely high coverage in Dataset 4. 91

5.1. Overview of the Racon consensusprocess. 95

5.2. Depiction of the SIMD vectorization used in our POA implementation. 101

6.1. Depiction of the Aracon assembly workflow. 109

6.2. Inspecting the quality of Aracon assemblies visually using the dotplot represen-

tation. Datasets 3 and 5 were assembled into single contigs which fully match

the E. Coli reference genome, as shown in a and b. Dataset 4 was assembled

into two contigs: a large one covering almost the entire genome, and a much

shorter one. Together they provide a full assembly of the E. Coli. Figure c shows

the assembly as-is produced by Aracon. Since strands for each contig are arbi-

trary, the second (smaller) contig was reversed and the dotplot re-generated (d).

All figures show that there are no misassemblies of the genome or structural

variations. 114

B.1. Performance evaluation on synthetic datasets. a) GraphMap compared to

BLAST on synthetic Illumina and PacBio reads b) BWA-MEM location results

with different settings (S. cerevisiae genome; 1D reads) c) Runtime scalability

for GraphMap (1D reads). 134

B.2. Consensus calling errors and uncalled bases using MinION datasets and
different mappers. Note that in the case of the S. enterica Typhi dataset, some

of the observed variants (typically a few hundred SNPs and a handful of indels)

could be true variants from the S. enterica Typhi Ty2 strain that was used as

reference. Percentage of bases mapped (B%) and average coverage (C) of the

genome is reported in the table below (in the format: B%, C; maximum values

in each column are bolded). 135

B.3. Error rate distributions estimated using different aligners for ONT data. . 135

B.4. Mapping of targeted sequencing reads from Ammar et al. Figures show

a IGV browser view of GraphMap mappings to the targeted regions. Note that

CYP2D6 has an orthologous gene CYP2D7 that is adjacent to it with 94% iden-

tity and yet has very few reads mapped to it. 136

List of Tables

3.1. Description of the benchmarking datasets used for evaluation. 41

3.2. Since Falcon was not designed for Oxford Nanopore data, we experimented

with its configuration parameters to try to achieve the best assemblies. Through

trial and error we derived the following set of parameters which were used in

our benchmarks. 43

3.3. Assembly quality assessment using Quast and Dnadiff. 44

3.4. Comparing ALLPATHS-LG and SPAdes results. 49

3.5. CPU time (hours) / Maximum memory usage (GB). 50

3.6. Quality assessment of polished assemblies. 51

4.1. Comparison of various mappers for single nucleotide variant calling. Results

are based on amplicon sequencing data for a human cell line (NA12878) for

the genes CYP2D6, HLA-A and HLA-B. Precision values are likely to be an

underestimate of what can be expected genome-wide due to the repetitive nature

of the regions studied and the incompleteness of the gold-standard set. Results

for marginAlign using marginCaller are shown in parentheses. 80

4.2. Comparison of various mappers for structural variant calling. Results

are based on mapping a MinION dataset for E. coli K-12 (R7.3) on

a mutated reference containing insertions and deletions in a range of

sizes ([100bp,300bp,500bp,1kbp,1.5kbp,2kbp,2.5kbp,3kbp,3.5kbp,4kbp];

20 events in total). Bold values indicate the best results for each metric. The F1

score is given by a weighted average of precision and recall. Values in paren-

theses for BWA-MEM show the results using LUMPY. 82

4.3. Precision and Recall for species identification using MinION reads. Bold values

indicate the best results for each dataset and metric. Results for marginAlign

were nearly identical to that of LAST (within 1%) and have therefore been

omitted. 82

4.4. Scalability of PBcR error-correction across three genomes of differ-

ent sizes. The datasets are composed of PacBio sequences of Lambda

phage (http://www.cbcb.umd.edu/software/PBcR/data/sampleData.

tar.gz), E. Coli K-12 (https://github.com/PacificBiosciences/

DevNet/wiki/E.-coli-Bacterial-Assembly), and S. Cerevisiae

W303 (https://github.com/PacificBiosciences/DevNet/wiki/

Saccharomyces-cerevisiae-W303-Assembly-Contigs), subsampled to

40x coverage. Fraction of bases corrected reports the size of the dataset which

was output from the error-correction process compared to the initial, raw dataset. 86

4.5. Description of the benchmarking datasets used for evaluation. 90

4.6. Results of comparison between the newly developed Owler and GraphMap

overlap methods and the current state-of-the-art for overlapping raw third gen-

eration sequencing reads. 93

5.1. Assembly and consensus results across 4 datasets of varying length and type. . 105

5.2. Polished assemblies for all methods (using Nanopolish). 106

5.3. Comparison of error-correction modules on E. Coli K-12 MAP006 R7.3 54x

dataset. Values presented in the table are median values of the error and match

rate estimates. Time measurements for Falcon and Canu were not available, as

their error correction modules are run as a wrapped part of the pipeline, whereas

Nanocorrect is a stand-alone module. 106

5.4. Timings of various parts of the Miniasm+Racon assembly pipeline. 106

5.5. Scalability of Racon accross genome sizes for same coverage is linear. Table

shows results for one iteration of Racon. 107

6.1. Description of the datasets used for evaluation of Aracon. 110

6.2. Detailed comparison of the newly developed Aracon assembler and the state-

of-the-art methods. Genome fraction and Avg. Identity 1-to-1 are marked in

bold for Aracon as well as for the best other assembler. 112

6.3. CPU time (hours) / Maximum memory usage (GB). Bold values present the re-

sults for Aracon and the best other method, except for Miniasm. Although most

efficient, Miniasm was excluded because it is not directly comparable to other

methods since it does not employ neither an error-correction nor a consensus

step. Dataset 1 was also not marked in bold, as none of the assemblers managed

to assemble the dataset with quality, and the results may not be comparable. . . 113

A.1. Error rate analysis of raw read datasets. Numbers in the table represent median

values. 121

A.2. Detailed Quast results for all assembly pipelines and all datasets. 122

http://www.cbcb.umd.edu/software/PBcR/data/sampleData.tar.gz
http://www.cbcb.umd.edu/software/PBcR/data/sampleData.tar.gz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs

A.3. Determining the lowest coverage for which each assembly pipeline produces a

sufficiently good assembly. At 29x coverage only LQS produces a good assem-

bly, while at 40x coverage all non-hybrid assemblers produce a good assembly.

To investigate this further, we prepared several datasets with coverages between

30x and 40x. These datasets were subsampled from Dataset 5 in a way that a

larger dataset is a superset of a smaller one. Falcon, PBcR, Canu and Mini-

asm were then run on these Datasets, while LQS was left out because it already

produced a good assembly at 29x coverage. 123

A.4. Detailed Dnadiff results for all “Big Contigs”. For each assembly which con-

tained a contig of at least 4Mbp in length, that contig was extracted and com-

pared to the reference using Dnadiff. The table does not contain entries for

assemblers which did not produce contigs of 4Mbp for a certain dataset. 124

A.5. Falcon assembly using Nanocorrect processed reads as the input datasets. . . . 124

A.6. Miniasm assembly using Nanocorrect processed reads as the input datasets. . . 125

B.1. Precision/Recall in mapping of synthetic reads to the correct genomic location

(±50bp). 127

B.2. Precision/Recall in reconstructing the correct alignment of synthetic reads. . . . 128

B.3. CPU time (in seconds) taken to execute each test on synthetic reads. 129

B.4. Maximum memory consumption (RSS; in MB) required to execute each test on

synthetic reads. 130

B.5. Results of mapping on various real datasets, part 1 / 2. 131

B.6. Results of mapping on various real datasets, part 2 / 2. 132

B.7. Impact of various stages of GraphMap on its precision and recall. 132

B.8. Parameters used for generating simulated ONT reads 133

B.9. Precision and recall of alignment for GraphMap using various read alignment

settings . 133

B.10. Scalability as a function of read length and error rate. Data is in the format:

CPU time [s] / Memory [MB]. 133

B.11. Testing for reference bias in GraphMap alignments 133

B.12. Speed comparison across mappers on real datasets 134

Chapter 1

Introduction

An extremely important research subject in biology is the determination of the sequence of

naturally occurring deoxyribonucleic acid (DNA) molecules. The DNA is a long molecule con-

sisting of a large number of simple components called nucleotides or bases, that comprise a long

chain (sequence). DNA sequencing is the process of determining this sequence of nucleotides.

During the past ten years, sequencing has been an extremely hot and active topic, with an

especial momentum of upswing happening right now. In the past year, new, exciting and more

affordable technologies have been released, allowing large amounts of data to be acquired,

but also requiring the rapid development of new algorithmic methods to cope with the data.

Affordable commercial availability of the sequencing technology is the most important driving

factor of an upcoming revolution in many aspects of our everyday lives. This includes the

rapid and accurate detection and identification of pathogenic microorganisms from soil, water,

food or tissue samples [1][2], diagnosis and treatment of chronic diseases through personalized

medicine, or simply the collection of information about genomic make-up of a large number

of individuals of some species in order to generate a better understanding of the variations in

certain populations, and overall to generate a better and more accurate image of the known, or

better yet, the unknown living world.

For all of these applications of DNA sequencing to be possible, the key components are

the computational methods for processing and analysis of the acquired data. Modern DNA

sequencing instruments produce read sequences (reads) which are considerably shorter than the

length of the originating genomes, or of the studied genomic features [3]. In order to obtain

the sequence of an entire genome, reads need to be either stitched together (assembled) in a

de novo fashion when the genome of the organism is unknown in advance, or mapped and

aligned to the reference genome if one exists (reference assembly or mapping). For this reason,

mapping/alignment and assembly are the first and the most important steps in any genomics

project.

To date, three generations of sequencing instruments exist: first (longer reads, lower error

1

Introduction

rate) was based on Sanger sequencing method; second, also called next generation, (short reads,

low to medium error rates) based on several different technologies most of which are no longer

commercially available (e.g. Roche 454, Illumina Solexa, ABi SOLiD, Ion Proton); and third

(very long reads, high error rates) currently in development (e.g. Pacific Biosciences, Oxford

Nanopore Technologies) [3][4][5].

Sanger sequencing was the first successful method for sequencing the DNA, developed by

Frederic Sanger in 1977, and was the most widely used sequencing technique for over 25 years.

The approach is based on the modification of the process of DNA synthesis. During this process,

the two chains of DNA are separated, followed by the addition of nucleotides that are comple-

ments to those contained within the chains. Sanger’s method contains modified nucleotides

in addition to the normal ones, where each modified nucleotide is missing an oxygen on the

3′ end, and has also been fluorescently marked [6]. Integrating these nucleotides into a DNA

chain causes a halt (or termination) in the elongation process. Using capillary electrophoresis,

sequences are separated by their length (mass) and the termination base is read. This process of

sequencing can deliver read lengths up to ≈ 2000 bases, high raw accuracy, and allow for 384

samples to be sequenced in parallel, generating 24 bases per instrument second [6]. Great short-

comings of this method are its high price of about $10 per 10000 bases, and long sequencing

time.

In the last ten years Next Generation Sequencing (NGS) devices have dominated genome

sequencing market. In contrast to previously used Sanger sequencing, NGS is much cheaper,

less time consuming and not so labor intensive. Yet, when it comes to de novo assembly of

longer genomes many researchers are being skeptical of using NGS reads. These devices pro-

duce reads a few hundred base pairs long, which is too short to unambiguously resolve repetitive

regions even within relatively small microbial genomes [3]. To ameliorate the effectiveness of

short reads, some NGS technologies such as Illumina allow for so-called paired-end sequencing

where both ends of a genomic fragment (< 2kb) are sequenced. Most often, the two sequenced

ends do not overlap and there is an (approximately) known gap distance between the two ends,

the sequence of which is unknown. Larger gaps can be achieved using mate-pair sequencing,

where a larger (≈ 2kb−100kb) fragment is inserted in a BAC (Bacterial Artificial Chromosome)

and sequenced from both ends. Although the use of paired-end and mate-pair technologies has

improved the accuracy and completeness of assembled genomes, NGS sequencing still produces

highly fragmented assemblies due to long repetitive regions. These incomplete genomes had

to be finished using a more laborious approach that includes Sanger sequencing and specially

tailored assembly methods. Owing to NGS, many efficient algorithms have been developed to

optimize the running time and memory footprints in sequence assembly, alignment and down-

stream analysis steps.

The need for technologies that would produce longer reads which could solve the problem of

2

Introduction

repeating regions has resulted in the advent of new sequencing approaches – the so-called third

generation sequencing technologies. The first among them was a single-molecule sequencing

technology developed by Pacific Biosciences (PacBio). Although PacBio sequencers produce

much longer reads (up to several tens of thousands of base pairs), their reads have significantly

higher error rates (≈10-15%) than NGS reads (≈1%) [7]. Existing assembly and alignment

algorithms were not capable of handling such high error rates. This caused the development of

read error correction methods. At first, hybrid correction was performed using complementary

NGS (Illumina) data [8]. Later, self-correction of PacBio-only reads was developed [9] which

required higher coverage (>50x). The development of new, more sensitive aligners (BLASR

[10]) and optimization of existing ones (BWA-MEM [11]) was required.

The release of Oxford Nanopore Technologies (ONT) MinION sequencers in 2014 ushered

in a new era of cheap and portable long-read sequencing. Nanopore sequencers have transfor-

mative potential for research, diagnostic, and low resource applications. In 2014, ONT estab-

lished an early access programme to make their technology available worldwide while still in

the pre-commercial phase. In May 2015, the MinION technology was finally commercialized in

the form of the MinION MkI device. MinIONs are small, portable, USB-powered, inexpensive

sequencing devices that produce incredibly long reads (currently up to several hundred thousand

base pairs), with potential applications not only in biological research, but also in personalized

medicine, ecology, pharmacy and many other fields – this technology should open the door to

not only new kinds of research, but also to a multi-billion dollar industry which will stem from

that. The specifics of the MinION technology and library preparation procedures allow two

types of sequencing to be performed: one-directional (1D) where only one strand of a DNA

fragment is sequenced (the template or the complement), or two-directional (2D) where both

strands of the DNA fragment are ligated together and sequenced successively. 2D sequencing

produces redundant information, in that it sequences the same fragment twice (in the forward

and reverse orientations), which can be, and is, leveraged to produce higher quality data. 1D

reads from the MinION sequencer (with the R7.3 chemistry) have raw base accuracy less than

75%, while higher quality pass 2D reads (80-88% accuracy) comprise only a fraction of all 2D

reads [12][13]. This again spurred the need for development of even more sensitive algorithms

for mapping and realignment, such as GraphMap [14] and marginAlign [15]. Any doubt about

the possibility of using MinION reads for de novo assembly was resolved in 2015 when Loman

et al. demonstrated that the assembly of a bacterial genome (E. Coli K-12) using solely ONT

reads is possible even with high error rates [16]. To achieve this, Loman et al. developed two

error-correction methods for nanopore data: Nanocorrect as a pre-processing method to heavily

reduce the input error rate for the next stage of assembly, and Nanopolish as a post-processing

method to smooth out the left-over errors using signal level data.

In fact, all current assembly methods capable of handling third generation sequencing data

3

Introduction

depend on an error correction phase to increase the sensitivity of the next phase. The problem

which arises in this approach is that error correction is a very time-consuming process which

requires performing all-to-all mapping of the entire input dataset (or a subset of), alignment, and

applying statistics in the form of consensus calling to resolve errors. Although this approach is

well tested and yields good results, it is very time consuming which is especially evident when

assembling larger genomes.

Instead, the focus of the work conducted in the scope of this thesis is to develop novel

methods for de novo DNA assembly from third generation sequencing data, which provide

enough sensitivity and precision to completely omit the error-correction phase, and still produce

high-quality assemblies. Strong focus will be put on data obtained with Oxford Nanopore

devices. It will be shown that this approach can reduce the overall running time by at least

several times and up to even an order of magnitude compared to the state-of-the-art methods,

while retaining comparable or better quality.

1.1 Objectives

The goal of this research is to develop efficient algorithms which can successfully handle a

combination of read sequences of variable length and accuracy, with a strong focus towards

longer, error-prone reads. The expected results of the project are:

1. A method for reference mapping/alignment of third generation sequencing data with

strong focus on Oxford Nanopore technologies. The method will be used throughout

the project for applications such as: overlapping, consensus calling and verification of

results.

2. A method for de novo genome assembly from third generation sequencing data with

strong focus on Oxford Nanopore technologies. The method will be designed with sen-

sitivity and precision in mind, allowing the omission of the error-correction step while

allowing for faster assembly of similar or better quality compared to the state-of-the-art.

The contributions of this thesis include the following:

1. A framework for systematic benchmarking of de novo genome assembly tools.

2. Optimized algorithms and data structures for de novo genome assembly with emphasis

on third generation sequencing data.

3. Evaluation of developed algorithms using the novel benchmarking framework.

1.2 Organization of the Dissertation

Chapter 2 starts with a detailed background of existing state-of-the-art approaches and methods

to sequence alignment and de novo assembly.

4

Introduction

Chapter 3 presents the newly developed framework for benchmarking the assembly meth-

ods, as well as the results of detailed comparison of the state of the art methods.

Chapters 4 and 5 describe the two main components of the newly developed method in

detail: overlap and consensus. The complete assembly method is designed in a modular manner,

and as such each module was tested individually.

In Chapter 6, the modules were integrated in a single de novo assembly pipeline and tested as

a whole. The results were compared to the state-of-the-art using the benchmarking framework

developed in the scope of the Chapter 3.

5

Chapter 2

Background

Significant effort has been put into the development of methods for determining the exact se-

quence of nucleotides comprising a DNA molecule. Sequencing the entire genome of an organ-

ism is a difficult problem - as mentioned in the Introduction section, all sequencing technologies

to date have limitations on the length of the molecule that they can read. These lengths are al-

ways much smaller than the genomes of a vast majority of organisms. For this reason, a whole

genome shotgun sequencing approach is usually applied, where multiple physical copies of the

analyzed genome are randomly broken by enzymes into small fragments of such size which

can be read by modern technologies. Given a large enough number of DNA samples and the

assumption of random fragmentation, the randomly created fragments from different copies of

the genome will start to cover the same genomic regions and overlap with each other. This in

turn gives us the only available information about putting those fragments back together. The

average number of reads (fragments) that independently contain a certain nucleotide is called

the depth of coverage (often only coverage) [17]. Combining the fragments back into a sin-

gle chain of nucleotides is called DNA assembly. DNA assembly is a computational process

performed by programs called genome assemblers [18]. Image 2.1 depicts this process.

The main assumption behind all assembly approaches is that highly similar fragments of the

DNA originate from the same position within a genome [3]. This similarity is used to find over-

laps between reads and join them into longer, contiguous sequences (contigs), or to align the

reads to a reference sequence (a previously assembled high quality representation of an organ-

ism’s genome). However, the similarity assumption is not entirely correct because of genomic

repeats and sequencing errors. Ideally, a de novo assembly would consist only of contigs which

fully span individual chromosomes of an organism’s genome. Repeats in the genome cause

ambiguities in assembly, in turn creating fragmented contigs of unknown orientation separated

by gaps of unknown length. Assemblies containing gaps are called draft assemblies, while the

process of filling the gaps is called finishing. The final, completed assemblies are often referred

to as closed or finished.

6

Background

Figure 2.1: Depiction of the sequencing process.

Repeats are thus one of the key problems in assembly [19]. The problem of repeats can

only be resolved either by long reads which span the repeat region (first and third generation

technologies), or by paired-end/mate-pair reads (NGS technologies) where each end is uniquely

anchored at both sides of a repeat. Read pairs allow a span of several tens of kilobases (kb)

between their ends, but they introduce an additional complexity because the gap between the

two ends cannot be precisely sized [20]. In most bacteria and archaea, the largest repeat class is

the rDNA operon, sized around 5−7kbp [20]. According to estimates presented in [20], having

reads longer than 7kbp would automatically close > 70% of the complete set of bacteria and

archaea present in GenBank (http://www.ncbi.nlm.nih.gov/genbank/).

The third generation of sequencing devices have come a long way in the past several years,

and now routinely enable sequencing of reads which are much longer than this limit. The latest

chemistry for Pacific Biosciences (PacBio) devices allows average read lengths of > 10kbp

[21], while Oxford Nanopore’s MinION enables practically unlimited read lengths, bound only

by the laws of physics which break the long DNA molecules during the process of sample

preparation. For MinION, the longest mappable reads reported so far exceed 100kbp in length

[22], however the DNA is usually fragmented into smaller chunks in a controlled fashion to

increase the throughput and quality of the data.

From this aspect, third generation sequencing holds a key to creating closed bacterial and

archaeal genomes, but also the potential to do the same for mammalian or even plant genomes

in the near future. Efficient and accurate assembly methods are thus of crucial importance to

allow such scaling across genome lengths and dataset sizes, especially considering high error

rates present in the third generation sequencing data.

7

http://www.ncbi.nlm.nih.gov/genbank/

Background

Genome assembly can generally be divided into two groups: de novo algorithms for assem-

bly of new genomes, and reference assembly (or mapping) algorithms when a reference genome

already exists [23]. Whereas reference assembly relies on alignment algorithms for finding the

most probable location of each read on the reference genome, de novo algorithms attempt to

find the best possible combination of reads in the dataset to produce the most probable genomic

sequence. Both approaches are fundamental in the field of computational biology, and more

than that, they are tightly coupled: mapping/aligning reads would not be possible without a

reference sequence to map to, whereas the problem of mapping is closely related to the problem

of overlapping reads, which is the first step in (modern) the de novo assembly methods.

This chapter will present the background and the state-of-the art in both mapping/alignment

and de novo assembly, with a primary focus on Oxford Nanopore data.

2.1 Terminology

Let Σ = {A,C,T,G} be the alphabet, s ∈ Σ be a nucleotide (base), and s ∈ Σ be a Watson-Crick

complement of s. Watson-Crick complements are defined as: A = T , C = G, T = A and G =C.

A DNA sequence is a string S = s0s1 · · ·sn−1, where n = |S|. A reverse complement of the

sequence S is S = s0s1 · · ·sn−1 = sn−1sn−2 · · ·s0.

A substring of a string S between coordinates i and j can be denoted as S[i... j] =

sisi+1 · · ·s j−1, where 0 ≤ i < j ≤ |S|. Another way often used to denote the same substring

is S[i, j].

A k-mer is a sequence of k nucleotides: Sk
i = S[i...(i+k)] = sisi+1 · · ·si+k−1. k-mers are also

often referred to as seeds (or shingles in computer science).

2.2 Approaches to sequence alignment/mapping

In practice, sequences, such as biological sequences and sequencing data, rarely match perfectly

to each other. In order to find the similarities and differences between two sequences, they need

to be aligned together. Sequence alignment is, most often, the first step in any sequence analysis

today:

1. From the biological aspect, the difference between two genomic sequences can carry a lot

of information - the level of similarity directly reflects the evolution of species and allows

the construction of phylogenetic trees, while the dissimilarities within a species can give

an image of possible genetic mutations which occurred and diseases/disorders they might

have caused.

2. From the technological aspect, sequencing data originating from the exact same sample,

and from the exact same position in the genome might differ due to sequencing error.

8

Background

On the other hand, similarities between genomic fragments originating from adjacent

(overlapping) genomic regions carry the only information one can use to successfully

reconstruct (assemble) a genome de novo.

Pairwise alignment is the process of lining up two sequences in order to achieve the maxi-

mal levels of identity amongst the two, where the identity is the extent to which two sequences

are invariant [24]. Alignment would be a simple procedure would the only possible difference

between two sequences be substitutions (mismatches). In this definition, the measure of dif-

ference between two sequences could be expressed as the Hamming distance between the two,

which only counts the non-matching characters. Consider the following alignment of two string

sequences test and best, shown in Figure 2.2.

Figure 2.2: An example of alignment of two sequences test and best, where the only form of difference
between the two sequences are substitutions. Character "|" denotes a match between two sequences,
while "x" denotes a mismatch.

In this example, each letter of the first string sequence is matched to exactly one letter of the

other. However, in general terms, substitutions are not the only type of differences which might

occur during alignment - instead one needs to consider the possibilities of missing letters (or

nucleotides) in any of the sequences. This type of differences are referred to as gaps. A gap,

or deletion, in one sequence means there was an extra symbol, or an insertion, in the other. An

example alignment including gaps is shown in Figure 2.3.

Figure 2.3: An example of a gapped alignment of two nucleotide sequences. A dash "−" in any of the
sequences means there is a missing nucleotide at that position, which is present in the other sequence.

In this definition of alignment, the difference between two sequences is expressed in the

terms of the Levenshtein distance which generalizes the Hamming distance by counting gaps

as well as mismatches. Levenshtein distance is the minimum number of operations needed to

transform (edit) one string into another. This distance is therefore also referred to as the edit

distance. To calculate the edit distance, each edit operation contributes to the total count with a

score of 1.

To achieve an optimal alignment, one first needs to define the measure of optimality. There

are two perspectives used in practice:

1. Minimization of the edit distance. In this case, every edit operation is penalized by a

value of −1. Minimum number of edits equals the best alignment.

9

Background

2. Maximization of the alignment score. Match operations (same bases in both sequences

at an aligned position) are awarded a positive score s, while mismatch operations are

penalized with a negative penalty x, and gaps with a negative penalty e. In some types

of alignment (e.g. Gotoh), every opening of a streak of gap operations is also penalized

by a factor of g. Optimal alignment is susceptible to these, arbitrary and user defined

parameters, but is better suited to achieve biologically relevant alignment as compared to

only the edit distance alignment [25].

Optimal algorithms that solve the alignment of two sequences have been proposed by

Needleman and Wunsch in 1970 for global alignment of sequences [26] and Smith and Wa-

terman in 1981 for local alignment [27]. There are also several variations on these algorithms

in the form of semiglobal alignment, also known as glocal (global-local), where gaps at the

beginning and/or end of one or both sequences are not penalized. Semiglobal alignment is es-

pecially well suited for detecting sequence overlaps. Although all of these algorithms provide

optimal solutions in some sense, they are all based on a similar dynamic programming approach

and share the same algorithmic complexity of O(mn), where m and n are the lengths of the input

sequences. Optimal alignment, although feasible for smaller sequences, is prohibitively slow

should one try to align larger sequences, such as searching a large database of sequences or

aligning two entire mammalian genomes. For example, order of magnitude for the length of

such genomes is 109bp, which means that the alignment could take years to complete.

In order to cope with larger input sequences (and databases of sequences), heuristic ap-

proaches were proposed by Lipman and Pearson in 1985 with their FASTP algorithm for pro-

tein alignment [28] and reworked in 1988 into the popular FASTA algorithm for alignment of

nucleotide sequences [29], and later by Altschul et al. in 1990 with the BLAST algorithm [30].

These were the first sequence mappers used for local alignment, which reduce the search space

for alignment using heuristic approaches by first checking short homologies between sequences,

which can be performed very efficiently. There have been many efficient mappers developed

and published since, such as BLAT [31], LAST [32], BWA-MEM [11], BLASR [10] and many

others, most of which targeted at aligning short highly accurate sequences generated by the

second generation sequencing devices.

The rest of this section will give a brief description of the alignment algorithms, mapping

of sequences, and then give a description of the state-of-the-art in mapping of nanopore reads.

2.2.1 Sequence alignment

Global alignment

Global alignment is suitable for aligning two sequences of similar size which share similarities

across their entire lengths. Needleman and Wunsch were the first to formulate the problem

10

Background

of global sequence alignment, and to propose calculating its optimal solution based on the

dynamic programming [26]. The initial proposed solution had an O(n3) complexity and was

impractical. The first O(n2) complexity algorithm for solving global alignment was proposed

by David Sankoff [33].

The algorithm is based on constructing a matrix, calculating smaller sub-problems of the so-

lution iteratively to find the final optimal alignment, and storing the intermediate results (scores)

in the matrix. To perform the alignment between two sequences M and N, several parameters

need to be defined: the score s of a match between a base on M and a base on N; the penalty x

for a mismatch; and e, the penalty for "skipping" a base (gap penalty).

The algorithm is composed of three steps (Figure 2.4):

1. Initialization - a matrixH of (m+1)(n+1) elements is initialized, where m is the length

of M and n the length of N. The first row and the first column of the matrix are initialized

to the multiples of the gap penalty e, as shown in Figure 2.4a.

2. Scoring - the elements of matrix H are calculated iteratively from left to right, top to

bottom, using Equations 2.1 and 2.2 (Figure 2.4b). That is, the score of every element

H(i, j) is determined based on the element above H(i− 1, j) plus a gap penalty, the

element to the leftH(i, j−1) plus a gap penalty and the element on the upper left diagonal

H(i−1, j−1) plus a match score/mismatch penalty. The maximum of these elements is

marked as the predecessor of H(i, j). If the diagonal element was chosen, s is added if

Mi = N j and x is added otherwise. In case the upper element or the element to the left

were chosen, e is added to the score.

3. Traceback - the reconstruction of the actual alignment. Traceback starts at the bottom

right corner of the matrix H(m,n), and traverses the matrix in reverse order, selecting

one of its predecessors (either left, up, or diagonal) and continues the traversal until the

top-left corner of the matrix is reached (Figure 2.4c).

H(i, j) =



0, if i = 0, j = 0

e · i, if i 6= 0, j = 0

e · j, if i = 0, j 6= 0

max


H(i−1, j−1)+w(Mi,N j)

H(i−1, j)+ e

H(i, j−1)+ e

, otherwise

(2.1)

w(Mi,N j) =

s, if Mi = N j

x, otherwise
(2.2)

Regarding the definition of optimality, Peter H. Sellers demonstrated the equivalence of

11

Background

global alignment with respect to maximizing the similarity versus minimizing the difference

(distance) between two sequences when s = 0,x = −1 and e = −1 [34]. However, the equiva-

lence only applies to the global alignment and not to the local as well.

(a) Initialization (b) Scoring

(c) Traceback

Figure 2.4: Example of the steps in the global alignment of sequences ATCG and TCG. Arrows show
the traceback of the optimal alignment between the two sequences, starting from the bottom right corner
of the matrix.

Local alignment

Global alignment is not well suited when sequences share similarities only in some of their

smaller, more isolated (local) regions. This required a definition of a local measure of similarity

as well as the development of an algorithm which could find an optimal local alignment. Such an

algorithm was proposed by Smith and Waterman in 1981 [27]. Similar to the global alignment

algorithm, Smith-Waterman is also based on calculating the dynamic programming (DP) matrix.

However, in this case there are some subtle but important differences:

1. Gaps at the beginning of both sequences are not penalized,

2. If the score at any element of the DP matrix becomes < 0, it is set to 0,

3. Traceback begins from the maximum element of the entire matrix.

12

Background

Similar to Equation 2.1, the value of an element in the Smith-Waterman alignment matrix is

calculated using Equation 2.3:

H(i, j) =



0, if i = 0or j = 0

max



0

H(i−1, j−1)+w(Mi,N j)

H(i−1, j)+ e

H(i, j−1)+ e

, otherwise
(2.3)

The function w(Mi,N j) is defined the same as in Equation 2.2. Also similar to global align-

ment, in order to obtain the actual alignment of sequences, the directions of traversing the DP

matrix need to be stored during the process of filling the matrix. This makes the memory com-

plexity of the algorithm equal to O(mn) as well. An example of a local alignment matrix is

given in Figure 2.5.

Figure 2.5: Example of a local alignment of sequences GGCTCAATCA and ACCTAAGG using a match
score of +2, mismatch penalty of −1 and a gap penalty of −2. The first row and the first column of
the matrix are initialized to 0. Arrows show the direction of the traceback, starting from the maximum
element in the DP matrix.

Variations and optimizations

Many modifications and enhancements to the basic Needleman-Wunsch and Smith-Waterman

algorithms have been developed over the years. Here we present some, most often used in

practice.

13

Background

Semiglobal or overlap alignment, sometimes also referred to as glocal (global-local) align-

ment, is a variation of the global alignment approach in which the gaps are not penalized at the

beginning and/or ending of one or both sequences. Allowing arbitrary gaps at the beginning

of a sequence can be achieved by setting the first row or column of the matrix to 0 (i.e. initial

penalization is 0). Allowing arbitrary gaps at the ending of the sequences can be achieved by

starting the traceback from the maximum element of the last row or column of the matrix, in-

stead of the bottom right element as in normal global alignment. This alignment mode is useful

for, e.g., aligning short accurate reads to a larger sequence, or determining whether two reads

overlap in a suffix-prefix manner.

Alignment of biological sequences (Gotoh). When analyzing and comparing biological se-

quences, there is a general assumption that it is more likely that evolution would insert one large

gap instead of several closely positioned smaller gaps. This means that the gap cost should ide-

ally be non-linear and sub-additive, as compared to the classic Smith-Waterman which uses a

linear x · e penalty for gaps, where x is the length of the gap and e is the gap penalty. Ideally,

a good penalty would be a convex function (e.g. log) in the length of the gap. Such functions

are not used in practice because the algorithm has an O(mn2) (where m ≤ n) time complexity.

In practice, the convex function is approximated using an affine function of the form g+ x · e,

where g is the cost (penalty) of opening a gap and e is the cost of gap extension. Gotoh pro-

posed in 1982 an O(nm) algorithm for biologically relevant alignment which uses the affine gap

penalty [25]. When aligning two sequences M and N, in addition to the alignment matrix H,

Gotoh defines two further matrices E and F which are used to track the score of best alignment

which ends with a deletion in M or a deletion in N, respectively. These matrices are calculated

as shown in Equations 2.4-2.6:

E [i][j] = max(E [i][j−1]− e,H[i][j−1]−g− e) (2.4)

F [i][j] = max(F [i−1][j]− e,H[i−1][j]−g− e) (2.5)

H[i][j] = max(E [i][j],F [i][j],H[i−1][j−1]+w(Ni,M j) (2.6)

The traceback is performed in a similar manner to Smith-Waterman, but is expanded to account

for possible switching of matrices. That is, there are three traceback matrices, one for each E ,

F andH which keep track of the originating direction (be it in the same or a different matrix).

Linear memory complexity (Hirschberg). An important problem which occurs when align-

ing long genomic sequences is the quadratic memory complexity of the algorithms - for exam-

ple, aligning a human and a mouse genome would require almost 9 ·1018 matrix elements, each

of which can consume several bytes of memory. Such large numbers are not feasible in mod-

14

Background

ern computers. Instead, Hirschberg proposed an elegant and practical algorithm in 1975 which

reduces the required space for global alignment from O(nm) to O(n) (for n < m), while only

doubling the worst case time bound [35]. The algorithm is based on the observation that, given

a global alignment A of sequences Q and T , the alignment Ar of the reverse complemented

sequences Q and T is the reverse ofA. Hirschberg’s algorithm is based on partitioning - the DP

matrix is divided into two halves, and Needleman-Wunsch is performed twice: first the align-

mentA between Q[0...h] and T is calculated, and secondAr between Q[(h+1)...(|Q|−1)] and

T . An index k of a column is chosen in such a way that the sum of the neighbouring elements

of the last lines of A and Ar is maximum. This transition if part of the optimal path. The al-

gorithm is then repeated recursively on two sets of substrings: (i) Q[0...h] and T [0...k], and (ii)

Q[(h+1)...(|Q|−1)] and T [(k+1)...(|T |−1)], until the entire alignment path is constructed.

Banded alignment. Unlike the modifications which achieve linear memory complexity,

reducing the time complexity from O(nm) cannot be performed optimally. This means that

heuristics need to be applied, possibly causing that a sub-optimal alignment will be reported.

One approximation to reduce the time complexity is to restrict the computation of the elements

to a band of diagonals around the main diagonal in each DP matrix. For a given diagonal k, only

elements of the matrix that have coordinates such that −k ≤ (j− i)≤+k are evaluated. If two

sequences M and N are very similar, it is likely that their optimal alignment will be in a very

narrow band of diagonals and that the vast majority of DP matrix elements will not be part of

this alignment. Skipping the evaluation of these elements entirely can have a tremendous effect

on the speed of alignment. Limiting the computation to within a band effectively places a limit

on the maximum allowed gap in the alignment. By discarding the elements outside of the band,

we need to calculate only nm− (n− k)(m− k) = mk+ nk− k2 elements. For k much smaller

than min(m,n) the time complexity is then O((n+m)k). The idea of a banded alignment was

first proposed by Fickett in 1984 [36] and later independently developed by Ukkonen 1985 [37].

Implementation-based optimizations

Bit-vector alignment. Myers proposed a fast edit distance based bit-vector algorithm for

approximate string matching in 1999 [38]. This algorithm processes the dynamic programming

(DP) matrix using bit-parallelism, where multiple cells of the DP matrix are encoded in the same

machine word. This enables simultaneous processing of multiple cells, effectively increasing

the speed of computation. The real power of Myers’ method comes from the idea that instead

of storing the absolute values of scores in the rows of the DP matrix, only their differences

(deltas) are kept. For edit distance alignment, this means that the only possible values of deltas

are {−1,0,1} which can be efficiently encoded, and processed by logic equations developed

by Myers. The algorithm has O(nm/w) time complexity, where w is the width of the machine

word.

SIMD acceleration. Several methods have been proposed which utilize Single Instruction

15

Background

Multiple Data (SIMD) technology, available in all modern CPUs, to accelerate the computation

of the optimal alignment. The acceleration is achieved through vectorization of multiple cells

of the DP matrix, similar to Myers’ bit-vector algorithm. The major difference is that SIMD

enables concurrent calculations on a vector of independent larger integers (8bit, 16bit,...) which

fit into a SIMD word, thus enabling implementations of Smith-Waterman and other modes of

alignment which require custom scoring parameters while achieving several-fold speed-up per

CPU core. Rognes and Seeberg implemented the Smith-Waterman algorithm with Gotoh exten-

sions by arranging the SIMD vectors to be parallel with the query sequence (unlike previous im-

plementations which parallelized vectors along the diagonals of the DP matrix) [39]. Although

this approach has some data dependencies it appeared to be faster because loading values along

the minor diagonal is a time consuming process [40]. In 2007, Farrar proposed a "striped" ap-

proach [41] which addresses some of the computational dependencies of Rognes and Seeberg

method. In general, computation is still carried out parallel to the query sequence, but instead of

utilizing sequential row access like Rognes, Farrar processes several separate stripes covering

different parts of the query sequence. Zhao et al. re-implemented and extended Farrar’s algo-

rithm into a stand-alone C/C++ library called SSW [42]. Many other SIMD implementations

exist.

GPU acceleration. Modern Graphics Processing Units (GPUs) are composed of a large

number of vector processors, oriented towards efficient computation. GPUs offer application

performance by offloading compute-intensive portions of a program to the GPU. Since opti-

mal dynamic programming based alignment is very compute intensive, GPU acceleration is

a natural hardware complement to the algorithmic software implementation. Many GPU im-

plementations of the alignment algorithms have appeared in the recent years, notably: SW#

and SW#db [43][44], CUDASW++ [45], BarraCUDA [46], DOPA [47] and many more. The

very recent SW#db method reports runtimes for protein database search comparable to that of a

heuristic CPU-only BLASTP query and faster than other accelerated methods, which is a very

significant result considering it utilizes exact, optimal alignment.

FPGA acceleration. Field Programmable Gate Arrays (FPGAs) provide a different, al-

beit more specialized avenue. FPGAs are reconfigurable devices which natively provide high

levels of parallelism, but to optimally utilize FPGA architectures one needs to be familiar

with the low-level design of hardware components. Not many FPGA implementations of

the dynamic programming alignment exist, most of which are based on implementing the

alignment process through a systolic array of identical processing elements which imple-

ment computations located on the anti-diagonals of the DP matrix. Another approach is to

run a soft-core processor inside an FPGA, with custom optimized instructions implemented

into the processor which will allow for accelerated computation. Example implementations

of alignment algorithms include Shah et al. [48], SeqAlign (a student project, unpublished,

16

Background

http://www.chrisfenton.com/seqalign/), a M.Sc. thesis from Adam Hall [49] and Cray’s

commercial solution from 2005 (http://investors.cray.com/phoenix.zhtml?c=98390&

p=irol-newsArticle&ID=779228). The Cray system was reported to provide a 28x speed-up

for Smith-Waterman calculation compared to a pure CPU implementation of the same algo-

rithm.

2.2.2 Sequence mapping

FASTA [29] and BLAST [30] were arguably the first sequence mappers, with FASTA being

older of the two. Ideas presented in these works were quite innovative at the time - from the

introduction of short homology searches, to very accurate statistical estimates for alignment

accuracy; and they left an important legacy in the field of computational biology. Furthermore,

many of these ideas are still employed today, in modern sequence mapping algorithms. As such,

they present the basis of modern mapping algorithms, and will be presented in more detail.

FASTA

FASTA algorithm [29], originally published as FASTP and targeted at protein alignment [28]

and later reworked into a nucleotide aligner, was the first published sequence alignment method

which used the k-mers for identification of short homologies. The algorithm proceeds through

four steps to determine the score for pairwise similarity [29]:

1. Identification of common k-mers between two sequences (in the original publication, k-

mers are referred to as ktups). FASTA and FASTP achieve much of their speed and

selectivity in the first step. k-mers are looked up in a hash table to locate all identities or

groups of identities between two DNA or amino acid sequences. For each match, FASTA

calculates its "diagonal" in the dynamic programming matrix. The diagonal is given as

l = y− x, where x is the position of the match on one sequence, and y its position on the

other. Diagonal hits are counted, and 10 best diagonal regions are selected.

2. The 10 regions are rescored using a scoring matrix that allows conservative replacements

and runs of identities shorter than ktup to contribute to the similarity score. For each of

the best diagonal regions, a subregion with maximal score is identified - these are called

"initial regions".

3. Whereas FASTP uses a single best scoring initial region to characterize the pairwise simi-

larity, FASTA checks to see whether several initial regions may be joined together. Given

the locations of the initial regions, their scores, and a "joining" penalty which is analo-

gous to the gap penalty, FASTA calculates an optimal alignment of initial regions as a

combination of compatible regions with maximal score.

4. The highest scoring database sequences are aligned using dynamic programming. The

17

http://www.chrisfenton.com/seqalign/
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle&ID=779228
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle&ID=779228

Background

final comparison considers all possible alignments of the query and the library sequence

that fall within a band centered around the highest scoring initial region.

FASTA uses very short subsequences in the first step (ktup = 4 for nucleotide and ktup = 1

for amino acid sequences) which makes the method very sensitive, but also generates a high

number of regions which are not part of an optimal alignment path, especially on larger

databases. As an interesting note, one of the legacies of the FASTA mapper is the equally

named FASTA file format for storing nucleotide and aminoacid sequences, still in widespread

use today.

BLAST

BLAST (Basic Local Alignment Search Tool) [30], also designed for aligning both nucleotide

and protein sequences, takes on a similar approach of analyzing short subsequences of length k.

However, it employs a larger k (k = 11 for nucleotide and k = 3 for amino acid sequences) (in

the original publication authors call this parameter w instead of k; in continuation we will use

k for consistency). BLAST has had many updates and modifications (e.g. Gapped BLAST and

PSI-BLAST [50]) and is still in widespread use today, especially through the NCBI web-based

interface [51] for searching the entire database of known organisms with a query sequence, be

it nucleotide or aminoacid. The basic BLAST algorithm is composed of three steps:

1. List - A list L of words is compiled from the query sequence. Words are short fixed-length

k substrings of the query. Commonly, for searching aminoacid sequences, k = 3, while

for nucleotides k = 11. For proteins, only words that score at least T when compared to

some word in the query sequence are used (e.g. using the PAM-120 scoring matrix).

2. Scan - Every word from L is looked-up in the index of all words present in the database.

For the search, a deterministic finite automaton is used (as opposed to e.g. a hash table).

3. Extend - All k-mer matches found in step 2 are extended into alignments. Extension

is stopped when the score falls a certain distance below the highest score so far. Such

alignments are referred to as High-scoring Segment Pairs (HSP).

In the basic, non-gapped version, BLAST extends words into HSPs by simply checking for

matches or mismatches in the sequences, not accounting for potential insertions or deletions.

BLAST then takes the highest scoring HSPs and determines their statistical significance and

reports them as a list of final results together with two statistical measures: E-value and p-value

(see below).

In the gapped version, BLAST takes two or more of the initial k-mer matches located on

the same diagonal that are at most A bases away from each other. If such matches do not have

statistically significant similarities they are discarded, otherwise Smith-Waterman algorithm is

applied to obtain the final alignments. All such alignments are reported, together with their

statistical measures (E-value and p-value).

18

Background

E-value (Expected value), defined by the authors of BLAST, is a statistical measure used to

unambiguously report statistical significance of a match [52]. This statistic was defined through

analysis of how high a score is likely to arise by chance in the case of alignment of two random

sequences. It was shown that, similar to how the sum of a large number of independent iden-

tically distributed (IID) random variables tends toward the normal distribution, the maximum

of a large number of IID random variables tends to an extreme value distribution (EVD; Gum-

bel type distribution) [53]. Karlin and Altschul have shown that the scores of local alignments

(unlike global) behave according to the EVD, which enabled the development of the statistical

estimate of the probability that the alignment occurred by chance [54] (Equation 2.7):

P(S≥ x) = 1− exp(−κmne−λx), (2.7)

where S is the local alignment score, m is the length of the query, n the length of the database

and λ and κ are Karlin-Altschul statistical parameters [54][50] (also referred to as Gumbel pa-

rameters). The values of λ and κ depend on the scoring parameters used to generate the align-

ment score, and are usually pre-calculated for a given combination of the scoring parameters.

The E-value of a single distinct alignment of a score S represents the expected number of

alignments which may occur with the same score when aligning a random query sequence of

length m to a database of length n. The E-value can then be calculated by the Equation 2.8:

E = κmne−λS (2.8)

Further, the values of κ and λ can also be used to normalize the score S and make scores

(potentially computed using different scoring schemes) mutually comparable. The normalized

score is referred to as the bit-score S′, and can be calculated using Equation 2.9:

S′ = (λS− lnκ)/ ln2 (2.9)

An important thing to note here is that, for ungapped alignments, Karlin-Altschul parameters

can be explicitly calculated, while for gapped alignments the exact theory is not yet developed

and the parameters are currently obtained only by simulation. For this reason, sets of Karlin-

Altschul parameters are usually pre-computed for different gapped scoring systems (i.e. values

of match score and mismatch, gap open and gap extend penalties).

Recent mapping methods

FASTA, and especially BLAST, influenced and inspired a great number of sequence mapping

methods which appeared since their original publications. Some, such as BLAT (BLAST-Like

Alignment Tool) [31], BLASTZ [55], PatternHunter [56] MUMmer [57][58] pre-date the sec-

19

Background

ond generation sequencing era. PatternHunter is especially interesting because of its intro-

duction of spaced seeds for increased sensitivity, while MUMmer allows very fast comparison

of entire genomes by constructing a suffix tree and looking-up the maximum unique matches

(MUMs).

Most of the mapping tools, however, sprung up during the NGS era and were targeted at

mapping and aligning short accurate reads: Novoalign (a commercial tool) [59], Bowtie and

Bowtie2 [60], SOAP and SOAP2 [61], SHRiMP [62], while some were also designed to han-

dle accurate chromosome-sized sequences and contigs: LASTZ[63], LAST [32], BWA [64]

and BWA-MEM [11]. Majority of the mappers from this era were unable to handle the third

generation sequencing data when it first appeared, mainly due to the error-rates present in the

data. This required the development of a new long-read mapper for error-prone PacBio reads,

BLASR [10]. BWA-MEM was later updated to accommodate PacBio, and subsequently Ox-

ford Nanopore reads as well. LAST proved to be extremely sensitive and fast, even on very

erroneous sequencing data should the right set of alignment parameters be used.

Since BWA-MEM, LAST and BLASR are among the most used mappers today, we will

provide a short overview of these methods.

BWA-MEM follows the seed-and-extend paradigm; it initially seeds an alignment with su-

permaximal exact matches (SMEMs) - longest exact matches covering a certain position of a

query. Since true alignments occasionally might not contain any SMEMs, BWA-MEM per-

forms re-seeding with the longest exact matches that cover the middle base of the SMEM, and

which occur at least (k+1) times in the genome, where k is the number of occurrences of the

original SMEM. BWA-MEM then finds colinear seeds and greedily chains them. Chains which

are contained in larger chains are filtered out. The remaining seeds are extended using dynamic

programming alignment.

LAST is the first method that can find and align similar regions in gigascale biological

sequences, without certain severe restrictions, such as the necessity for heavy repeat masking

(BLAST and similar methods) or restriction to strong similarities (usually present in DNA read

mapping algorithms) [32]. Authors proposed the adaptive seeds as an alternative to fixed-length

seeds commonly used in tools such BLAST, BLAT, BLASTZ and PatternHunter. The adaptive

seeds can vary in length, and are extended until the number of matches in the target sequence

is less than or equal to a frequency threshold f . LAST also implements the concept of spaced

seeds [56] which is unified with the adaptive seed approach.

BLASR (Basic Local Alignment with Successive Refinement) is the first published method

for mapping single molecule sequencing reads (PacBio third generation sequencing data) that

are thousands to tens of thousands of bases long with divergence between the read and genome

dominated by insertion and deletion error. BLASR also develops a combinatorial model of

the sequencing error to demonstrate the effectiveness of the proposed approach. BLASR uses

20

Background

a suffix array or a BWT-index to find initial clusters of short exact matches between the read

and the genome. It then clusters the exact matches and gives approximate coordinates in the

genome for where a read should align. A rough alignment is generated using sparse dynamic

programming on a set of short exact matches in the read to the region it maps to, and a final

detailed alignment is generated using dynamic programming within the area guided by the

sparse dynamic programming alignment.

2.2.3 Mapping nanopore reads

While some initial nanopore sequencing based applications have been reported (e.g. scaffolding

and resolution of repeats in genomes [65], variant detection in clonal haploid samples [15] and

de novo genome assembly [16]), many others remain to be explored. In particular, diploid and

rare-variant calling [66], metagenome assembly and pathogen identification are all promising

applications that will likely require development of new in silico techniques.

Read mapping and alignment tools are critical building blocks for many such applications.

For mapping, reads from nanopore sequencing are particularly challenging due to their higher

error rates and non-uniform error profiles [67]. For example, 1D reads from the MinION se-

quencer have raw base accuracy less than 65−75%; higher quality 2D reads (80−88% accu-

racy) comprise a fraction of all 2D reads and the total dataset, with overall median accuracy be-

ing between 70−85% [65][12][68][69][13]. Reads from other short read (e.g. Illumina; < 1%

error rate) and long read (e.g. PacBio; ≈ 10% error rate) sequencing technologies have lower

overall and mismatch (< 1%) error rates. The increased read lengths in nanopore sequencing

should facilitate mapping, reducing the ambiguity in location that is the major challenge for

short read mappers. However, with current mappers, high error rates result in a large fraction

of reads and bases (10−30%) remaining unmapped or unused (e.g. 1D reads) for downstream

applications [65][12][68]. This is further compounded when comparing two error-prone reads

to each other or mapping to an imperfect or distant reference.

Thus, retaining sensitivity while accommodating high error or divergence rates is the key

difficulty for current mapping methods. MinION error rates and profiles (i.e. ratio of insertions,

deletions and substitutions) can vary across chemistries, sequencing runs, read types and even

within a read. Furthermore, other nanopore and single molecule sequencing technologies may

present a different distribution of error rates and profiles. Therefore, a general solution to map-

ping that is applicable to different error characteristics would have high utility for both current

and future applications.

While alignment algorithms have been widely studied, gold-standard solutions such as dy-

namic programming (or even fast approximations such as BLAST) are too slow in practice for

aligning high-throughput sequencing reads. To address this need, a range of read mapping tools

have been developed that exploit the characteristics of second-generation sequencing reads (rel-

21

Background

atively short and accurate) by trading-off a bit of sensitivity for dramatic gains in speed [64][70].

The design decisions employed in these mappers are often tuned for specific error characteris-

tics of a sequencing technology, potentially limiting their utility across technologies and error

profiles. The less than ideal results reported in early studies using MinION data [71] could

therefore be in part due to the use of mappers (e.g. BWA-MEM [11], BLASR [10] or LAST

[32]) that are not suited to its error characteristics.

2.3 Approaches to de novo DNA assembly

Approaches to de novo DNA assembly are based either on greedy or on graph algorithms.

Greedy algorithms were common in early genome assemblers for Sanger data [72]. They oper-

ate by joining reads into contigs iteratively, starting with the reads that have best overlaps; the

process is repeated until there are no more reads or contigs that can be joined. This approach

may not lead to a globally optimal solution, and is generally not applied for third generation

sequencing data. Examples of assemblers that use the greedy approach include SSAKE [73],

VCAKE [74] and SHARCGS [75].

Graph-based assembly algorithms are the most represented ones today. They fall into one

of two categories: Overlap-Layout-Consensus (OLC) and de Bruijn graph (DBG) [18]. As a

general summation of both approaches - overlaps between reads are detected (implicitly or ex-

plicitly), and then this information is used to construct a graph where vertices denote sequences

(reads) and edges overlaps between them, or vice versa.

2.3.1 Overlap-Layout-Consensus approach (OLC)

Let S = {S1,S2...,Sn} be a set of non-empty strings over an alphabet Σ. An overlap graph [76]

of S is a complete weighted directed graph where each string in S is a vertex and the length of

an edge between vertices x and y, x→ y, is |y|−ov(x,y) [77].

An example of assembly using the overlap graph is depicted in Figure 2.6. The construction

of the overlap graph is the first step of the OLC approach. General process of this approach

consists of three main phases [72][23][78], from which it derives its name:

1. Overlap - reads are compared to each other in a pairwise manner to construct an overlap

graph.

2. Layout - the overlap graph is analysed and simplified with the application of graph al-

gorithms to identify the appropriate paths traversing through the graph and producing an

approximate layout of the reads along the genome. The ultimate goal is a single path that

traverses each node in the overlap graph exactly once [18]. In most cases paths extracted

from the graph do not cover the entire genome. Instead, individual paths through the

22

Background

Figure 2.6: An example of assembly using the overlap graph by finding a Hamiltonian path. In this
simple example, the set of input fragments consists of five reads of equal length, {ATC, CCA, CAG, TCC,
AGT }, represented as nodes in the graph. Edges represent overlaps between nodes with corresponding
edge weights. Edge weights for an overlap x→ y are calculated as |y|−ov(x,y). The result of assembly
is a walk depicted in red edges starting from ATC and ending in AGT , which provides the reconstruction
of the sequence ATCCAGT .

graph construct contiguous sequences (contigs) - partial representations of the genome.

Unambiguous paths through the graph, that is, paths which do not contain extra edges

along their way, are called unitigs.

3. Consensus - multiple sequence alignment of all reads covering the genome is performed,

and the original sequence of the genome being assembled is inferred through the consen-

sus of the aligned reads.

A very important observation is that the identification of a path that traverses every node in

the graph only once is a computationally difficult Hamiltonian path problem. The problem is

also known as the Travelling Salesman Problem, and is NP-complete [79]. For this reason the

mentioned graph simplification methods are needed to create an assembly.

String graph [80] is a variant of the overlap graph approach where the nodes of the graph

do not represent individual reads. Instead, there are two nodes per read: one to represent it’s

beginning, and one to represent it’s ending. The string graph follows the same concepts of

the overlap graph by removing the contained reads and transitive edges from the graph. The

string graph paper [80] proposes a novel linear-time transitive reduction algorithm to remove

the transient edges.

An assembly graph, introduced in [81], is a variant of the string graph with the same topol-

ogy as the string graph, though the interpretation of the vertex set V is different (and similar to

that of the overlap graph). In a string graph, V is the set of the two ends of sequences, while

in an assembly graph V is actually composed of the forward and the reverse-complemented

sequences. The assembly graph still undergoes all the simplification procedures as the overlap

and the string graph.

23

Background

More details on each of the OLC steps can be found in section 2.3.3.

Discussion
The three-phase definition of the OLC approach enables natural modular design of assembly

tools employing this method, which allows for simpler modification and optimization of distinct

assembly steps. Another advantage of OLC assemblers is that the overlaps among reads may

vary in length, which equips them to handle the data from any generation of sequencing tech-

nologies.

On the other hand, the processing cost of the overlap phase is very high as it needs to

be conducted for every pair of reads in the data set. Although the OLC approach is capable

of handling NGS data, these datasets commonly consist of an order of magnitude more reads

than were commonly generated in Sanger-based projects [18] (for which the OLC was initially

designed), causing a significant increase of the overlap calculation time (quadratic complexity).

Examples of assembly methods which employ the OLC paradigm include: Cel-

era assembler [82] (recently discontinued), Canu [83] (successor to Celera, unpublished,

https://github.com/marbl/canu), Newbler [84], Edena [85], Shorty [86], Minimus [87], SGA

[88], Miniasm [89] and Falcon [90].

2.3.2 The de Bruijn graph approach

Similar to the definition given for the OLC approach, let S = {S1,S2...,Sn} be a set of non-

empty strings over an alphabet Σ. Given a positive integer parameter k, the de Bruijn graph

G = Bk(S) is a directed graph with vertices defined as a set of all k-mers generated from S (k-

spectrum), and edges connecting k-mers with a perfect (k− 1) suffix-prefix overlap. A vertex

of the de Bruijn graph is simply identified through its associated k-mer.

An example of the assembly using the de Bruijn graph is depicted in Figure 2.7. The process

of constructing a de Bruijn graph consists of the following steps [91]:

1. Construction of k-spectrum - reads are divided into overlapping subsequences of length

k.

2. Graph node creation - a node is created for every (k−1)-spectrum of each unique k-mer.

3. Edge creation - a directed edge is created from node a to node b if and only if there exists

a k-mer such that its prefix is equal to a and its suffix to b.

This approach was first proposed by Idury and Waterman in 1995 [92][80], and was later

expanded by Pevzner et al. in 2001 [93]. By converting the set of reads into edges of the

de Bruijn graph, the assembly problem becomes equivalent to finding an Eulerian path in the

graph - a path that uses every edge in the graph - for which efficient algorithms do exist [18].

In this case, assembly is a by-product of the graph construction, which proceeds quickly using

a constant-time hash table lookup for the existence of each k-mer in the k-spectrum [72]. How-

ever, there can be an exponential number of distinct Eulerian paths in a graph, while only one

24

Background

Figure 2.7: An example of assembly using the de Bruijn graph. Let ACCAT TCCA be a genome sequence
we are trying to assemble from two reads {ACCAT TC, AT TCCAA}. The k-mer spectrum for k = 4, is
obtained from the reads: {ACCA, CCAT , CAT T , AT TC, T TCC, TCCA, CCAA}, and the (k− 1)-mer
spectrum, {ACC, CCA, CAT , AT T , T TC, TCC, CAA}, required to construct the graph. The graph is
constructed by placing k-mers on the edges, and (k− 1)-mers on the vertices. The original sample
sequence is fully reconstructed by traversing all edges of the graph (Eulerian path).

can be deemed to be the correct assembly of the genome, which makes this approach NP-hard

as well [77]. To reduce the complexity of the problem, similar heuristics are usually applied to

the constructed graph as for the overlap/string graph.

Discussion
A great advantage of the de Bruijn approach is that explicit computations of pairwise over-

laps are not required, unlike is the case of the OLC approach. Finding pairwise overlaps is a

computationally very expensive process, and thus the de Bruijn approach provides great perfor-

mance when very large data sets are given (such as NGS data) [91].

However, de Bruijn graphs are very sensitive to sequencing errors and repeats, as they

lead to new k-mers, adding to the graph complexity [91]. Additionally, although de Bruijn

approach can handle both Sanger and NGS data, by dividing long reads into short k-mers, there

is an effective loss of long range connectivity information implied by each read [18].

It was later shown that both de Bruijn and overlap graphs can be transformed into the string

graph form, in which, similar to the DBG, an Eulerian path also needs to be found to obtain

the assembly [80]. Major differences lie in the implementation specifics of both algorithms.

Although the DBG approach is faster, OLC based algorithms perform better for longer reads

(Pop, 2009). Additionally, DBG assemblers depend on finding exact-matching k-mers between

reads (typically≈ 21−127 bases long [94]). Given the error rates in third generation sequencing

data, this presents a serious limitation. The OLC approach, on the other hand, should be able

to cope with higher error rates given a sensitive enough overlapper, but contrary to the DBG a

time-consuming all-to-all pairwise comparison between input reads needs to be performed.

Examples of assembly methods which employ the DBG paradigm include: Euler [93], Vel-

vet [95], AllPaths [96], AllPaths-LG [97], ABySS [98], SOAPdenovo2 [99], Ray [100] and

many others.

25

Background

2.3.3 Assembly of nanopore reads

Considering all the characteristics of both OLC and DBG approaches presented in sections

2.3.1 and 2.3.2, there are clear benefits of applying the OLC approach on long reads, especially

error prone third generation sequencing data.

Since the focus in the past decade has been on NGS reads, most of the state-of-the-art assem-

blers use the DBG paradigm. Hence, there are not many OLC assemblers that could be utilized

for long PacBio and ONT reads. In fact, methods developed to handle such data are mostly

pipelines based on the Celera assembler, including: HGAP [101], PBcR [8] and the pipeline

published by Loman et al. (in continuation LQS pipeline) [16]. Since its original publication

[82], Celera has been heavily revised to support newer sequencing technologies, including mod-

ifications for second generation data [102], adoptions for third generation (single molecule) data

via hybrid error correction [8], non-hybrid error correction [102][103] and hybrid approaches

to assembly which combine two or more technologies [104].

All of this contributed to the popularity of Celera which led to its wide adoption in assem-

bly pipelines for third generation sequencing data. Notably, one of the first such pipelines was

the Hierarchical Genome Assembly Process (HGAP). HGAP uses BLASR to detect overlaps

between raw reads during the error correction step. Unfortunately, HGAP requires input data

to be in PacBio-specific formats, which prevents its application to other (e.g. nanopore) se-

quencing technologies. PBcR pipeline employs a similar approach to HGAP - it starts with

an error correction step, and feeds Celera with corrected reads. PBcR, since recently, employs

the MHAP overlapper [103] for sensitive overlapping of reads during the error-correction step.

Also, recent updates allow it to handle reads from Oxford Nanopore MinION sequencers. The

LQS pipeline also follows a similar approach, but implements novel error-correction (Nanocor-

rect) and consensus (Nanopolish) steps. Instead of BLASR and MHAP, Nanocorrect uses

DALIGNER [105] for overlap detection. Nanopolish presents a new signal-level consensus

method for fine-polishing of draft assemblies using raw nanopore data. The LQS pipeline also

employs Celera as the middle layer, i.e. for assembly of error corrected reads.

Until very recently, the only non-hybrid alternative to Celera-based pipelines was Falcon.

Falcon is a new experimental diploid assembler developed by Pacific Biosciences, not yet offi-

cially published. It is based on a hierarchical approach similar to HGAP, consisting of several

steps: (I) raw sub-read overlapping for error correction using DALIGNER, (II) pre-assembly

and error correction, (III) overlapping of error-corrected reads, (IV) filtering of overlaps, (V)

construction of the string graph and (VI) contig construction. Unlike HGAP, it does not use

Celera as its core assembler. Since Falcon accepts input reads in the standard FASTA format

and not only the PacBio-specific format like HGAP does, it can potentially be used on any base-

called long-read dataset. Although originally intended for PacBio data, Falcon presents a viable

option for assembly of nanopore reads, even though they have notably different error profiles.

26

Background

In late 2015 the developers of Celera, PBcR and MHAP moved away from original Celera

and PBcR projects and started to develop a new assembler, Canu. Canu is derived from Celera

and also utilizes code from Pacific Biosciences’ Falcon and Pbdagcon projects.

Also in late 2015, a new long read assembly tool called Miniasm was released and later

published in the beginning of 2016 [89]. Miniasm attempts to assemble genomes from noisy

long reads (both PacBio and Oxford Nanopore) without performing error-correction. This is
coincidentally a closely related topic to the one explored by the author of this thesis, and
was conducted in parallel and independently. It is important to mention that the work on
this thesis was well under way and near completion at the time Miniasm was released, and
the author of Miniasm acknowledged our concurrent work in his paper [89]. However,
the two works still differ significantly. Namely, Miniasm lacks a consensus phase which
corrects the sequencing errors and instead outputs contigs containing same/similar error-
rates to the original input data. On the other hand, a consensus phase, developed and
described in the scope of this thesis, enables rapid correction of sequencing errors from
assembled contigs, with final results comparable to or better than the state of the art, while
overall being an order of magnitude faster than the state-of-the-art.

Aside from mentioned methods, hybrid assembly approaches present another avenue to uti-

lizing nanopore sequencing data. Liao et al. [106] recently evaluated several assembly tools

on PacBio data, including hybrid assemblers SPAdes [107] and ALLPATHS-LG [97] for which

they reported good results. Both of these are DBG-based, use Illumina libraries for the primary

assembly and then attempt to scaffold the assemblies using longer, less accurate reads. Further-

more, SPAdes was recently updated and now officially supports nanopore sequencing data as

the long read complement to NGS data.

Now, to take a step back and consider the OLC approach again - even though the defini-

tion of the OLC paradigm enables and promotes the modular design of algorithms for de novo

genome assembly and their software implementations, most methods follow this approach in

a very restricted fashion. For example, the Celera assembler [82] in it’s core is modular, but

all modules depend on information stored in Celera’s Store databases which are not commonly

used in any other assembly tools. Another similar example, inspired by Celera assembler [108],

is AMOS [109] (A Modular, Open-Source whole genome assembler; the encapsulating project

of the Minimus assembler; not used in third generation sequence assembly) which defines the

AMOS message format to enable communication between its various components. The AMOS

message format is again custom tailored and not generically used in other assembly projects.

Until very recently, there was a great lack of standardization in the aspect of inter-modular

information interchange. The appearance of standalone overlapping tools for third generation

sequencing data (BLASR [10], DALIGNER [105], MHAP [103] and Minimap [81]) as well as

standalone layout modules (Miniasm [81]) may have spun the wheel in development of such

27

Background

standards. Although official standards are not yet established, all of these overlappers generate

very similar outputs (BLASR’s M5 format, DALIGNER’s las, MHAP’s mhap and Minimap’s

pa f) which are mutually easily convertible. Furthermore, there is an advent of a standard for-

mat for representing the layout graphs called GFA (Graphical Fragment Assembly) [110][81],

currently supported by Miniasm, SGA and Canu. GFA is easily visualizible using the Bandage

visualization tool [111].

Overlap

Given a set of sequences (reads), the overlap phase performs a pairwise comparison of input

sequences, in an attempt to find all plausible prefix-suffix matches between them. It should

report overlaps between reads which are adjacent in the real genomic sequence (true positives)

and it should dismiss overlaps between reads which are not adjacent (false positive). False

positive overlaps can occur due to repeats in the genome as well as high levels of sequencing

errors, untrimmed adapter sequences and chimeric reads [72][81]. False negative overlaps can

also occur as a consequence of high levels of sequencing errors in the data and the lack of

sensitivity of an overlapper. Since the adjacency of any two read sequences is not known in

advance, overlappers actually shift the detection process from checking adjacency to similarity

comparison and adjacency prediction.

Early overlappers used in the Sanger sequencing era detected overlaps based on the seed-

and-extend approach, commonly used in read-to-reference mapping (Section 2.2). In this ap-

proach, the algorithm for overlap detection would first look for seeds in the form of short exact

matches of length k (k-mers). All reads that shared sufficiently many k-mers would be consid-

ered, and an alignment would then be constructed between such reads. Imprecise alignments

in this case are allowed to account for sequencing errors, however, those alignments which do

not meet certain quality requirements can easily be filtered out. Since the exact alignment is

applied in this approach, the entire prefix and/or suffix of a particular read should be completely

covered by the overlap.

Overlaps can be classified in three major groups: (I) contained overlaps, where both ends of

a read are included in the alignment (Figure 2.8a - 2.8b) [76], (II) dovetail overlaps, where each

read has exactly one of its ends in the alignment, and alignment begins at one read’s end and

continues until the other reads’s end (Figure 2.8c - 2.8f) [76], and (III) partial overlaps (Figure

2.9) where the alignment does not extend to the ends of the reads (e.g. because of chimeric

reads, presence of adapter sequences or higher sequencing errors toward read’s end) [112]. In

dovetail overlaps, the part of read A which is not in the alignment (overhang) is called ahang, and

the part of read B which is not in the alignment is called bhang (Figure 2.8c). If the overhangs

are positive values, then they represent the number of bases in the corresponding read which are

hanging outside the alignment. The values of overhangs can also be negative, which represents

28

Background

(a) Read A is contained in B. (b) Read B is contained in A.

(c) Suffix of A overlaps prefix of B. (d) Prefix of A overlaps suffix of B.

(e) Suffix of A overlaps prefix of B. (f) Prefix of A overlaps suffix of B.

Figure 2.8: Classification of overlap types: 2.8a and 2.8b depict contained overlaps where one read
completely falls within the other; 2.8c - 2.8f depict all variations of dovetail overlaps between a pair of
reads. A and B stand for reverse complements of A and B, respectively. The ball-point end of each read
presents the start of the read, whereas the arrowhead presents its end.

Figure 2.9: Depiction of a partial overlap between reads. Unlike dovetail overlaps, the overlapping
region does not reach the ends of the reads.

the number of bases that are missing from the corresponding fragment (or, the number of bases

in the other fragment that are hanging outside the alignment) (Figure 2.8d).

The seed-and-extend (mapping) approach, although effective, is prohibitively slow [113],

especially on third generation sequencing data. Novel overlap algorithms had to be developed

to harness the power of third generation data, especially for larger genomes. State-of-the-art in

overlap detection between raw, noisy, long reads currently includes only four methods: BLASR

[10], DALIGNER [105], MHAP [103] and Minimap [81].

BLASR was originally designed for mapping PacBio reads to a reference genome [10], and

was later reworked to support overlapping. According to a comparison of methods presented in

[103], BLASR is not ideally suited for overlapping all pairs of reads. It’s sensitivity is primarily

affected by the bestn parameter which controls how many alignments are reported for each read.

BLASR was used as an overlapper in the Hierarchical Genome Assembly Process (HGAP)

pipeline, one of the first assembly methods for third generation sequencing data, targeted at

assembling microbial genomes from PacBio reads [101].

29

Background

DALIGNER [105], published by Myers in 2014, was, contrary to BLASR, first designed

as a fast overlapper for PacBio reads, and only later converted into a mapper/aligner. To be

more precise, even though used for detecting overlaps, DALIGNER defines itself as being a

tool for finding all significant local alignments between reads, which is a more general ap-

proach than only finding overlaps. DALIGNER identifies k-mer matches between two sets

of reads by sorting their k-mers and merging the sorted lists [81]. It’s speed is primarily de-

rived through careful cache-friendly implementations of radix-sort and merge operations. A

linear-time difference algorithm is then applied on the matching k-mer seeds to compute the

overlap [103]. To maintain the efficiency accross datasets, DALIGNER must rely heavily on

filtering the repetitive k-mers [103], potentially causing problems in repetitive genomic regions.

DALIGNER’s implementation also supports running on large-scale High Performance Com-

puting (HPC) distributed memory environments, enabling it to be used in assembly projects of

large (mammalian size) genomes. DALIGNER is used as an overlapper in the Falcon PacBio

assembler [90] (https://github.com/PacificBiosciences/FALCON) and the LQS assem-

bly pipeline [16] for nanopore data. Compared to BLASR, DALIGNER is more than an order

of magnitude faster on a 54x whole human genome dataset (15600 CPUh vs 404000 CPUh)

[105].

MHAP (MinHash Alignment Process) [103] takes on a different approach to overlapping

than any previous overlapper. It uses a dimensionality reduction technique called MinHash to

create a more compact representation of sequencing reads. MinHash was originally developed

by Altavista to determine the similarity of web pages [114]. MHAP takes a DNA sequence and

creates a MinHash sketch. First, all k-mers are converted to integer fingerprints using multiple,

randomized hash functions. For each k-mer, only the minimum valued fingerprint is retained,

and the collection of such min-mers for a sequence makes its sketch. Then, the Jaccard simi-

larity measure amongst two k-mer sets can be estimated by computing the Hamming distance

between their sketches, and the resulting estimate is strongly correlated with the number of

shared k-mers between two sequences [103]. This is a computationally efficient technique for

estimating similarity because the sketches are relatively small. The approach of generating

MinHash sketches can also be viewed as a generalization of minimizers [115]. A limitation of

this approach is that a fixed number of hash values is required to generate a sketch, regardless

of the length of the sequences, which may waste space or hurt sensitivity when input sequences

vary greatly in length [81].

Minimap [81] is the most recent addition to the list. It is heavily influenced by all of the

above methods - similarly to MHAP, it adopts the idea of sketches but instead of MinHash

uses minimizers as a reduced representation; it uses a hash table to store k-mers, and uses sort-

ing extensively like DALIGNER [81]. Minimap is a versatile tool not intended only for read

overlapping, but also for read-to-genome and genome-to-genome mapping. Minimap is blaz-

30

https://github.com/PacificBiosciences/FALCON

Background

ingly fast - it takes only about 2 CPU minutes to overlap an entire E. Coli K-12 54x nanopore

dataset (genome size ≈ 4.6Mbp, size of the input dataset ≈ 250Mbp), and about 9 CPU hours

to overlap an entire C. Elegans 81x PacBio dataset (genome size ≈ 100Mbp, size of the input

dataset≈ 8Gbp). Minimap starts by creating a minimizer index of the input dataset. A (w,k,φ)-

minimizer of a string s at the position i, i ∈ [0, |s| − 1], is the smallest k-mer in a surrounding

window of w consecutive k-mers from position i. Here, φ denotes a hash function which con-

verts a k-mer string into a numerical form to be used for comparison. The minimizer is given

as a triple (h, i,r), where h is the minimizer hash key, i is the position on the string s and r is

the strand from which the minimizer originated. Such triplets are hashed by their minimizer

hash key for easier lookup. The process of mapping/overlapping then consists of computing the

minimizers for all input sequences, looking them up in the index, and clustering hits to identify

colinear matches. The Longest Increasing Subsequence (LIS) algorithm is then applied on each

cluster to generate the final mapping positions.

Layout graph

Myers introduced, formally, the notion of overlap graphs in his seminal paper from 1995 [76]

as a generalization of the layout phase, and the de novo assembly concept overall. The overlap

graphs have been used extensively since, and have had several re-definitions and updates in

the form of string graphs [80] and assembly graphs [81]. While the original overlap graphs are

seldom used today, both string and assembly graphs are still relying on some basic overlap graph

ideas, and hold onto the general concepts of graph simplifications presented in the original 1995

paper [76].

The definitions of the overlap and string graph have been presented in section 2.3.1. Here,

we will give a brief description of the assembly graph as the newest addition to the group.

Let v and w be two strings (reads) mapped to each other based on their sequence similarity.

We say that w contains v if v can be mapped to a substring of w. Otherwise, if a suffix of v and

a prefix of w can be mapped to each other, then v overlaps w. We denote this as v→ w. In this

aspect, reads v and w can be represented as vertices in the graph, and the overlap relationship

as a directed edge between them [81]. Similar to the definition of the overlap graph in [76], the

length of the edge v→ w equals the length of v’s prefix that is not contained in the prefix-suffix

match between the two sequences.

Let G = (V,E, l) be a graph without multi-edges (every pair of vertices can have only one

edge), where V is a set of vertices (reads), E a set of edges between them (overlaps) and ` :

E →ℜ+ is the length function. A graph G is said to be Watson-Crick complete if: a) for every

read (vertex) v in V it’s reverse-complement v is also present in V , or formally: ∀v ∈V , v ∈V ,

and b) for every edge in E between two reads (vertices) v and w there is an edge in E between

the reverse-complements of the two reads v and w, or formally: ∀(v→ w) ∈ E,∃(w→ v) ∈ E

31

Background

(a) Read f overlaps g, g overlaps h and f overlaps h.

(b) Overlap graph constructed from overlaps shown in a.

(c) Overlap graph with reduced transitive edge f → h.

Figure 2.10: Depiction of an overlap graph containing a transitive edge.

[81]. A graph G is said to be containment-free if any sequence v is not contained in any other

sequences in V (Figure 2.8a) [81]. If a graph G is both Watson-Crick complete and containment-

free, it is an assembly graph [81]. In this definition, the de Bruijn graph can also be viewed as

a special case of the assembly graph.

Aside from contained reads, the overlap graph, the string graph and the assembly graph all

define the notion of reducing the transitive edges. A transitive edge is defined as follows: let

f , g and h be read sequences (vertices). If f overlaps g (f → g), g overlaps h (g→ h) and f

overlaps h (f → h), then the string graph edge f → h is unnecessary, as the edges f → g→ h can

be used to spell the same sequence (Figure 2.10). A linear-time transitive reduction algorithm

was proposed by Myers in 2005 to remove such edges from the graph [80]. The algorithm

is based on graph coloring: for a vertex v of the graph find its longest outbound edge. Mark

v and all of the vertices reachable through the out-edges of v as inplay. For every vertex w

reachable through the out-edges of v, check if there are any vertices x reachable through the

out-bound edges of w which are already marked as inplay and their edge lengths are shorter

than the longest edge. If so, remove the longest edge from the graph.

Upon filtering contained reads and reducing transitive edges, string and assembly graphs of-

ten contain branches in the form of bubbles and spurs (also called tips) (Figure 2.11), which are

most likely caused by sequencing errors, lack of coverage in some regions or multiple haplo-

types present in the input sample. For a single haplotype genome reconstruction, these branches

can cause problems in extracting long unitigs/contigs from the graph. Assembly methods usu-

ally remove short dead-end branches (e.g. Miniasm removes all such branches which contain

4 or less reads) and pop the bubbles using a variant of Kahn’s topological sorting algorithm

[81][95].

The concepts of overlap, string and assembly graphs were implemented in a number of as-

sembly tools such as Celera, SGA, Falcon and Miniasm, however, to the best of our knowledge,

only Miniasm presents a modular, standalone implementation of the layout phase. Additionally,

32

Background

(a) A bubble in the string/assembly graph. Both branches have edges
pointing in the same direction, and finally merge at a node.

(b) A spur or a tip in the string/assembly graph. A short branch which
ends with a node that contains no out-bound edges (blue node in the
graph).

Figure 2.11: Additional complexities in the string/assembly graphs.

while overlap and string graphs were designed for more accurate read data, and assemblers im-

plementing them always incorporate an error-correction phase to ensure good assemblies, the

assembly graph and its implementation in Miniasm were designed with noisier, third generation

sequencing data in mind. The assembly graph is robust to higher levels of sequencing errors,

and allows assembly from raw read overlaps, generated by any of the previously mentioned

overlappers: Minimap, MHAP, DALIGNER and BLASR. In fact, Miniasm implements scripts

to convert between the overlap formats used by these tools and into it’s native PAF format [81].

The output of Miniasm is in the GFA format, which enables simple visualization and promotes

standardization of assembler outputs.

Consensus

Consensus, in the context of the classic OLC assembly, almost always refers to the process

of inferring the DNA sequence that is implied by the arrangement of reads along the chosen

path through the graph. However, consensus developed a much broader meaning in the past

several years: (I) error correction, (II) consensus phase of OLC and (III) fine polishing of post-

consensus sequences. All these rely on the similar principles to some extent. In continuation of

this section, we will focus on the general concepts of OLC contig consensus.

The reads along the layout path at this point may still contain sequencing errors which made

it through all the previous steps into the final contig sequences, even though there might have

been an error-correction step applied at a pre-processing phase. To resolve potential errors in

contigs, statistical methods are applied. In general terms - oversampling the genome at sufficient

coverage C will, on average, provide C reads covering each contig position. If the error model

is truly random, then each read would represent an independent observation of the originating

genomic region with sequencing error in the form of additive noise present in the data which

33

Background

can be simply overcome algorithmically [103]. However, every sequencing technology has a

certain error bias, making high quality reconstructions significantly harder.

For each position in the contig, a consensus algorithm needs to answer the question "which

nucleotide/gap is here?" with certain level of confidence. The confidence that an algorithm can

achieve is usually estimated from control samples (e.g. results of assembly of a model organism)

in terms of quality values (QV). QVs are calculated simply as: Q = −10log p, where p is the

probability that a particular base is wrong (i.e. the probability of error). The quality is usually

expressed in the form of "Q10" for the probability of p = 10−1 of an error occurring, "Q20"

for the probability of p = 10−2, "Q30" for the probability of p = 10−3, and so on. To express

the quality of assemblies of model organisms, the probability is calculated a posteriori and

represents the percentage of erroneous bases. Most often, an a priori per-base error probability

estimate of sequencing reads is provided by the sequencing devices / base calling software. In

this context, the quality values are often referred to as Phred scores for legacy reasons. The

quality estimate is expressed in the same way, and usually provided together with the sequences

(e.g. the FASTQ format). Unlike most sequencing devices which generate only one QV per

base, PacBio’s machines have the ability to estimate four different probabilities for which they

provide QV’s in their bas.h5 HDF5 format [116]: insertion, deletion, merge (probability of a

merged-pulse error at the current base) and substitution. For deletions and substitutions, PacBio

devices also provide the most likely alternative base at those positions. The a priori QV’s

provide extremely powerful information leveraged for best consensus calling [101], variant

calling [66], and other applications.

Upon the completion of the layout phase, each contig can be viewed as a tiling of reads

along the layout path, as depicted in Figure 2.12a. Commonly, an assembly method then applies

a Multiple Sequence Alignment (MSA) algorithm on such tilings [23], and infers a consensus

sequence using a simple majority vote or other, more complex probabilistic models which utilize

QVs [101] or raw signal data [16], to call each base of the final sequence (Figure 2.12b).

Regular pairwise alignment, although much faster than MSA, is not well suited to construct

a consensus sequence from a set of noisy reads with predominant insertion and deletion errors.

This is due to the reference bias, where the aligned bases have a tendency to agree with the

reference [117]. Even though the mapping of a read is accurate, its alignment will sometimes

e.g. prefer to "hide" a true mismatch (Single Nucleotide Polymorphism, SNP) inside an inser-

tion, and cause the aligned sequence to be biased toward the reference at some indel positions

[118]. MSA helps avoid the reference bias by aligning a set of three or more sequences of

similar length simultaneously (Figure 2.12c), allowing the inference of homology between all

sequences - which is in fact just what the consensus procedure is trying to achieve. Similar to

the pairwise alignment, the dynamic programming method can readily be extended to multiple

sequences, but requires the computation of an L-dimensional matrix to align L sequences [119].

34

Background

(a) Example showing the tiling of reads along a layout path constructed in the previous step of OLC
assembly.

(b) Simple example of inferring a consensus sequence through the Multiple Sequence Alignment (MSA)
process.

(c) An example of a short excerpt from a multiple sequence alignment of 21x real 2D nanopore se-
quencing reads. The level of sequencing errors is incomparable to the previous depiction in subfigure
b.

Figure 2.12: Depiction of sequence MSA and consensus.

This makes the optimal algorithm scale exponentially with the complexity of O(NL), where N

is the length of the input sequences, and therefore this method is NP-complete. Instead, heuris-

tics in the form of progressive sequential alignment are applied to create approximations of the

optimal solution, with a substantial reduction in computational complexity. Progressive align-

ment involves incorporating the input sequences one-by-one into the final model, following the

inclusion order specified by a pre-computed guide tree (a tree in which nodes represent pairwise

alignments between two sequences, a sequence and a profile, or two profiles) [120]. The com-

bination of a tree-based progressive strategy and a global pairwise alignment algorithm forms

the core of most available methods, such as: MAFFT, MUSCLE, ClustalW and T-Coffee [120].

35

Background

However, probably the most popular MSA algorithm for generating consensus sequences

from third generation sequencing data is the Partial Order Alignment (POA) graph approach

[121][122]. It is used in several state-of-the-art methods, including Quiver [101] and Nanocor-

rect [16]. POA defines the MSA through a directed acyclic graph (DAG), where nodes are

individual bases of input sequences, and weighted, directed edges represent whether two bases

are neighbouring in any of the sequences. Weights of the edges represent the multiplicity (cov-

erage) of each transition. The alignment is carried out directly by pairwise dynamic program-

ming, eliminating the need to reduce the MSA to a profile [121]. One of the biggest advantages

of POA is its speed (linear time complexity in terms of the number of sequences) when com-

pared to other MSA algorithms [121]. Consensus sequences can be constructed from a built

POA graph by repeatedly constructing a Viterbi (maximum likelihood) traversal, identifying se-

quences that match this path adequately, adjusting their contributions to the graph edge weights

and iterating this process until no more sequences are left [122].

POA has successfully been applied in some of the most sensitive consensus methods for

third generation sequencing data today: the Quiver consensus algorithm from PacBio [101], and

the Nanocorrect error-correction algorithm for correcting nanopore reads (the LQS assembly

pipeline) [16].

Quiver was originally developed for Pacific Biosciences’ Circular Consensus Sequencing

(CCS) analysis and later adapted to support the multimolecule consensus analyses [101]. Quiver

uses a greedy algorithm to maximize the likelihood Pr(R | T), where R is a vector of reads and

T is the unknown template sequence. For long references (contigs), the consensus is processed

with tiling windows across the reference to limit the amount of memory used. The Quiver algo-

rithm performs these steps for any window W : (I) An input set of alignments is used to identify

the set of reads R corresponding to the window W ; (II) A POA graph is constructed from R and

a candidate template sequence inferred through the consensus (T̂1← POAConsensus(R)); and

(III) Single base mutations are inserted into the candidate template iteratively (T̂s+1← T̂s + µ)

until the likelihood converges (Pr(R | T̂s + µ) > Pr(R | T̂s)). Quiver is designed to utilize all

types of quality values provided by the PacBio sequencing machines (insertion, deletion, merge

and substitution qualities), and uses a Viterbi algorithm to compute the template likelihood

function and determine the consensus for the next iteration. In [101], authors report achieving

a Q50 consensus accuracy on a de novo E. Coli K-12 assembly.

Nanocorrect is an error-correction method used by Loman et al. in [16] where the authors

showed the first nanopore-only de novo assembly. The algorithm of Nanocorrect is relatively

straightforward: (I) overlapping of input error-prone reads is conducted using DALIGNER; (II)

for each read, all other overlapping reads are trimmed to the overlapping regions and reverse-

complemented if needed; and (III) for each read the trimmed overlapping sequences are written

to a FASTA file and input to poaV 2 - the original POA implementation created by the authors

36

Background

of POA. The first consensus sequence reported by poaV 2 is then selected as the error-corrected

read. Once all reads are corrected, the dataset is used as the input for the Celera assembler.

Nanopolish is a method related to Nanocorrect by being part of the same assembly pipeline

published in [16]. Similar to Quiver for PacBio, Nanopolish is currently the state-of-the-art in

consensus polishing methods for nanopore sequencing data, and actually the only method for

this purpose. It takes as input a set of alignments (generated by BWA-MEM) and a set of raw

nanopore reads, containing signal level data (events). Nanopolish then splits the draft assembly

(contig) into 10kbp segments, overlapping by 200bp, which are then processed in parallel. An

anchor is selected every 50bp on the draft assembly’s sequence. At each anchor position on the

draft assembly sequence, 2D MinION reads and their template and complement current signal

events are extracted and input into a Profile HMM model. The consensus algorithm generates

the sequence of the draft assembly between anchors Ai and Ai+2. After the new consensus

sequence is computed, the sequence of the assembly and the event-to-assembly mappings for

Ai+1 are updated using a Viterbi algorithm. This is done in order to progressively improve the

quality of the event-to-assembly alignments recorded in the anchors.

Another graph alignment approach, inspired by POA, is DAGCon (with it’s implementation

pbdagcon) [101] developed to handle PacBio data. Similar to POA, DAGCon also constructs a

directed acyclic graph. Unlike POA, DAGCon does not take as input a set of reads, but a set of

alignments to a backbone sequence. First, DAGCon converts all mismatches in the alignments

into insertion-deletion pairs as this simplifies the construction of the graph. Alignments are then

normalized by left-aligning the indels (gaps are moved to the right-most equivalent positions).

The initial linear graph is then constructed from the backbone sequence. Then, alignments

are added to the graph. The dynamic programming alignment is not repeated, but the input

alignments are used to find the matching bases in the backbone graph, and to insert the indels

inbetween the matching bases as new branches in the graph. The multi-edges are merged to

convert the possible multigraph into a regular graph, and the nodes with the same label are

merged. A consensus is then inferred by traversing the weighted DAG and finding the path

with the maximum score. Since, from this description, the DAGCon is not a true MSA method,

it is typically biased toward the backbone sequence used in the alignment. The pbdagcon

implementation of DAGCon was designed for correction of error-prone PacBio reads in the

pre-processing step of de novo assembly: shorter input PacBio reads are aligned to a subset of

longer "seed" reads using BLASR, and DAGCon is then applied on individual seed reads to

correct the errors. pbdagcon module is used by the FALCON assembler, and as of recently by

Canu as well.

FalconSense is another consensus algorithm developed in the scope of the FALCON project,

which accelerates consensus generation by never explicitly building a multiple sequence align-

ment. Instead, similarly to DAGCon, it aligns reads to a template sequence which is the target

37

Background

of correction, and then tags individual matches and indels to determine a consensus sequence

with high support. FalconSense is faster than DAGCon, but less robust [103].

PBcR is, again, a pre-processing error-correction tool which uses a multiple sequence align-

ment approach to correct the input data [8]. In it’s original publication, PBcR was intended as

a hybrid error-correction tool which corrected PacBio reads using much more accurate second

generation sequencing data [8]. The short, accurate reads were aligned to the erroneous PacBio

ones, and a tiling path would be extracted for each read and fed into an MSA. Originally, PBcR

utilized AMOS’s make−consensus module, well suited for second generation data. PBcR later

moved away from the hybrid approach and make− consensus, and used pbdagcon instead.

PBcR is the predecessor to the Canu assembler.

However, to the best of our knowledge, currently no generic stand-alone consensus modules

exist which could be applied on raw, noisy contigs generated from third generation sequencing

data, such as the ones produced by Miniasm. Even though Quiver and Nanopolish are stand-

alone modules, they: (I) require sequencer specific input, namely, Quiver depends on 4 types

of quality values (insertion, deletion, merge and substitution), while Nanopolish requires raw

nanopore signal-level data, and (II) both Quiver and Nanopolish are intended to be applied after

the consensus phase of an assembler, to fine-polish the results. In our experiments with Na-

nopolish, polishing raw Miniasm contigs took much longer and the results were of significantly

lower quality compared to using the same dataset with Canu created contigs.

A consensus method for this purpose would have to be very fast to be on par with Miniasm’s

speed in order to leverage the omission of the error-correction step, but also to generate results

of comparable or better quality compared to the existing state-of-the-art assembly pipelines.

This presents an interesting research opportunity to create impactful contributions.

38

Chapter 3

Evaluation of hybrid and non-hybrid
methods for de novo assembly of nanopore
reads

Assessing the state-of-the-art is a crucial step in any research. This chapter attempts to summa-

rize and evaluate the current methods for de novo genome assembly from nanopore sequencing

data, and give a thorough interpretation of results. The valuable information obtained through

this evaluation enables better design choices during the development of a new and improved de

novo assembly method.

We benchmarked five non-hybrid (in terms of both error correction and scaffolding) assem-

bly pipelines as well as two hybrid assemblers which use third generation sequencing data to

scaffold Illumina assemblies. Tests were performed on several publicly available MinION and

Illumina datasets of Escherichia Coli K-12, using several sequencing coverages of nanopore

data (20×, 30×, 40× and 50×). We attempted to assess the assembly quality at each of these

coverages, in order to estimate the requirements for closed bacterial genome assembly. For the

purpose of the benchmark, an extensible genome assembly benchmarking framework was de-

veloped. Results show that hybrid methods are highly dependent on the quality of NGS data,

but much less on the quality and coverage of nanopore data and perform relatively well on lower

nanopore coverages. All non-hybrid methods correctly assemble the E. Coli genome when cov-

erage is above 40×, even Falcon, the non-hybrid method tailored for Pacific Biosciences reads.

While it requires higher coverage compared to a method designed particularly for nanopore

reads, its running time is significantly lower.

39

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

3.1 Methods

Since, to the best of our knowledge, no dedicated MinION read simulator exists, we focused

our benchmark on real nanopore sequencing datasets. Although there is a number of publicly

available datasets, many of them consist either of organisms/strains which do not yet have offi-

cially finished genome assemblies, or the coverage of the dataset is not high enough to provide

informative nanopore-only assembly results. Aside from the Lambda phage (which comes as

a burn-in sample for every MinION), sequencing data for the well-known clonal sample of E.

Coli K-12 MG1655 are the most abundant. In this study, we use several most recent E. Coli K-

12 datasets to reflect on the current state of the nanopore data as well as the quality of assembly

they provide. In addition to using entire datasets, we subsampled two of the datasets to provide

a larger span of coverages in order to inspect the scalability of assemblers as well as their ability

to cope with the abundance or the lack of data.

3.1.1 Datasets

Benchmarking datasets were extracted from several publicly available nanopore datasets and

one publicly available Illumina dataset. These are:

• ERX708228, ERX708229, ERX708230, ERX708231: 4 flowcells used in Loman et al.

nanopore assembly paper [16].

• E. coli K-12 MG1655 R7.3 dataset [123].

• MARC, WTCHG dataset [13]: A dataset recently published by the MinION Analysis and

Reference Consortium, consists of a compilation of data generated using several MinION

sequencers in laboratories distributed world-wide.

• E. coli K-12 MG1655 SQK-MAP006-1 dataset: This is the most recent publicly available

MinION dataset, obtained using the newest sequencing protocol. Link: http://lab.

loman.net/2015/09/24/first-sqk-map-006-experiment/

• Illumina frag and jump libraries [106]. Link:ftp://ftp.broadinstitute.org/pub/

papers/assembly/Ribeiro2012/data/ecoli_data_alt.tar.gz

The benchmarking datasets were designed with the idea to test the effect of varying cover-

age and data quality on the assembly process. The benchmarking datasets consist of either full

datasets described above or subsampled versions of these datasets. Datasets used for bench-

marking are presented in Table 3.1.

For each of the benchmarking datasets we analyzed the error rates present in the data

(Appendix A, Table A.1). For this, all reads were aligned to the E. coli K-12 reference

(NC_000913.3) using GraphMap [14] (parameters "-a anchorgotoh"). Analysis shows a clear

distinction between older (Dataset 1: 33% error rate) and newer (Dataset 2 and 3: 16%, Dataset

4: 11% and Dataset 5: 10% error rates) nanopore data, as well as Illumina data (3% error rate).

40

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
ftp://ftp.broadinstitute.org/pub/papers/assembly/Ribeiro2012/ data/ecoli_data_alt.tar.gz
ftp://ftp.broadinstitute.org/pub/papers/assembly/Ribeiro2012/ data/ecoli_data_alt.tar.gz

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

Table 3.1: Description of the benchmarking datasets used for evaluation.

Name Description

Dataset 0 Illumina reads used by hybrid assemblers, consists of three libraries: (I) 1 frag
library - paired-end reads (read length 101bp, insert size 180bp), coverage 55x,
11861912 reads, and (II) 2 jump libraries - mate-pair reads (read length 93bp,
insert size 3000bp), total coverage 85x, 19779032 reads.

Dataset 1 Complete E. coli R7.3 dataset, contains both 1d and 2d reads (both pass and
fail), total coverage 67x (70531 reads), of which 2d reads comprise 14x (11823
reads).

Dataset 2 Reads from Loman et al. [16] subsampled to coverage 19x, pass 2d reads only
(in total 16945 reads).

Dataset 3 Complete dataset used by Loman et al. [16] nanopore assembly paper, contains
pass 2d reads only, coverage 29x, 22270 reads.

Dataset 4 Reads from MARC WTCHG dataset, 2d reads extracted from pass (33x) and
fail (7x) folders, total coverage 40x, total number of 2d reads: 29635.

Dataset 5 2d reads extracted from the first run of the MAP006 dataset (MAP006-1), from
pass folder only, coverage 54x, 25483 reads in total.

3.1.2 Data preparation

For nanopore datasets, sequence data was extracted from basecalled FAST5 files using Poretools

[124]. For Datasets 1, 3, 4 and 5 the entire set of reads was extracted and used for analyses.

For Dataset 2, only flowcells ERX708228, ERX708229 and ERX708230 were used to obtain

coverage close to 20x. Datasets 1 was prepared for testing the assemblers’ robustness on 1d

reads. Additionally, Dataset 5 (≈ 50x coverage) was subsampled to four different coverages:

32x, 35x, 37x and 40x. This was done in order to enable a more fine-grained estimation of the

amount of sequencing data required for a complete genome assembly.

Hybrid assemblers were tested using the Illumina dataset together with each nanopore test

dataset. They were also run on the Illumina dataset alone, to get a reference for the assembly

quality and to be able to estimate the contribution to the assembly when nanopore reads are

added. All libraries in the Illumina dataset come with reads and quality values in separate files

(f asta and quala files). These were combined into f astq format using

convertFastaAndQualToFastq. jar tool downloaded from:

http://www.cbcb.umd.edu/software/PBcR/data/convertFastaAndQualToFastq.jar.

3.1.3 Assembly pipelines

LQS pipeline: Pipeline developed and published by Loman et al. in their pivotal nanopore as-

sembly paper (https://github.com/jts/nanopore-paper-analysis) [16]. The pipeline

41

http://www.cbcb.umd.edu/software/PBcR/data/convertFastaAndQualToFastq.jar
https://github.com/jts/nanopore-paper-analysis

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

consists of Nanocorrect, WGS and Nanopolish. The version of the pipeline tested in this study

uses Nanocorrect commit 47dcd7f147c and WGS version 8.2. For the base version of the

pipeline, we didn’t use Nanopolish.

PBcR: Implemented as a part of the WGS package (http://wgs-assembler.

sourceforge.net/wiki/index.php/PBcR) [8]. In this study version 8.3rc2 of WGS was

used. Spec file defining assembly parameters for nanopore data, was downloaded from the

PBcR web page.

FALCON: To evaluate Falcon we used the FALCON-integrate project (https://github.

com/PacificBiosciences/FALCON-integrate) (commit: 3e7dd7db190) [90]. Since no for-

mal parameter specification for nanopore data currently exists, we derived a suitable set of pa-

rameters through trial and error (Table 3.2).

SPAdes: SPAdes v3.6.1 was downloaded from http://bioinf.spbau.ru/en/content/

spades-download-0 [107].

ALLPATHS-LG: ALLPATHS-LG release 52488 was downloaded from https://www.

broadinstitute.org/software/allpaths-lg/blog/?page_id=12 [97].

Canu: Canu was obtained from https://github.com/marbl/canu (commit:

70e711a382f). Canu is currently not yet published.

Miniasm: Miniasm was obtained from https://github.com/lh3/miniasm (commit:

17d5bd12290). For calculating read overlaps we used Minimap (https://github.com/lh3/

minimap) (commit: 1cd6ae3bc7c) [89].

3.1.4 Evaluating the results

All assembly results were compared to the E. coli K-12 MG1655 NCBI reference,

NC_000913.3. Assembly quality was evaluated using Quast 3.1 [125] and Dnadiff [126]

tools. CPU and memory consumption were evaluated using a fork of the Cgmemtime tool

(https://github.com/isovic/cgmemtime.git). For assemblies that produced one "big

contig", over 4Mbp in length, that contig was extracted and solely compared to the reference

using the Dnadiff tool.

Of all tested assembly pipelines, only the LQS pipeline has a polishing phase (Nanopolish).

To make the benchmark fair and since other assemblers’ results could also be polished to further

improve them, all draft assemblies containing a "big contig" were polished using Nanopolish

(https://github.com/jts/nanopolish, commit b09e93772ab4), regardless of the assem-

bly pipeline they were generated with. At the time of testing, Nanopolish did not support 1d

reads and had trouble with very small contigs. Therefore, we applied Nanopolish only to the

largest contig in each assembly and skipped Dataset 1 which contains 1d reads. This does not

present a problem because Dataset 1 was not successfully assembled by any of the non-hybrid

assemblers.

42

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
https://github.com/PacificBiosciences/FALCON-integrate
https://github.com/PacificBiosciences/FALCON-integrate
http://bioinf.spbau.ru/en/content/spades-download-0
http://bioinf.spbau.ru/en/content/spades-download-0
https://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12
https://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12
https://github.com/marbl/canu
https://github.com/lh3/miniasm
https://github.com/lh3/minimap
https://github.com/lh3/minimap
https://github.com/isovic/cgmemtime.git
https://github.com/jts/nanopolish

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

Table 3.2: Since Falcon was not designed for Oxford Nanopore data, we experimented with its configu-
ration parameters to try to achieve the best assemblies. Through trial and error we derived the following
set of parameters which were used in our benchmarks.

j o b _ t y p e = l o c a l
i n p u t _ f o f n = i n p u t . f o f n
i n p u t _ t y p e = raw

l e n g t h _ c u t o f f = 1000
l e n g t h _ c u t o f f _ p r = 1000

j o b q u e u e = your_queue
s g e _ o p t i o n _ d a =
s g e _ o p t i o n _ l a =
s g e _ o p t i o n _ p d a =
s g e _ o p t i o n _ p l a =
s g e _ o p t i o n _ f c =
s g e _ o p t i o n _ c n s =

p a _ c o n c u r r e n t _ j o b s = 24
o v l p _ c o n c u r r e n t _ j o b s = 24

p a _ H P C d a l i g n e r _ o p t i o n = −v −d a l 4 −t 100 −e . 7 0 −l 100 −s100
o v l p _ H P C d a l i g n e r _ o p t i o n = −v −d a l 4 −t 100 −h60 −e . 9 2 −l 100 −s100

p a _ D B s p l i t _ o p t i o n = −x100 −s50
o v l p _ D B s p l i t _ o p t i o n = −x100 −s50
f a l c o n _ s e n s e _ o p t i o n = −−o u t p u t _ m u l t i −−m i n _ i d t 0 . 5 0 −−

l o c a l _ m a t c h _ c o u n t _ t h r e s h o l d 0 −−max_n_read 200 −−n _c o r e 8
o v e r l a p _ f i l t e r i n g _ s e t t i n g = −−m a x _ d i f f 100 −−max_cov 100 −−min_cov 5 −−

b e s t n 20 −−n _c o r e 8

3.2 Results

We developed a benchmarking framework called "NanoMark" to easily evaluate the perfor-

mance of assembly tools on nanopore (or other) data. The framework is available on GitHub at

https://github.com/kkrizanovic/NanoMark. NanoMark is implemented as a collection

of Python scripts which enable simpler downloading and installation of all required software

and dependencies, enable assembly of a given dataset using one or more assemblers and pro-

vide evaluation of the results. The framework currently implements wrappers for assembly

pipelines described in this paper, but can easily be expanded to others. The wrappers have a

standardized interface and internally handle conversion of input/output formats and data migra-

tion, as well as measure the time and memory consumption for a pipeline. Running NanoMark

on a dataset will simply loop through all available wrappers, and collect and format the results.

Detailed usage information can be found on the above mentioned link.

43

https://github.com/kkrizanovic/NanoMark

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

3.2.1 Non-hybrid assembly quality

Since Nanopolish currently does not support 1d reads, and none of the other assemblers include

a polishing phase, initially we focused on comparison of non-polished draft assemblies.

Table 3.3 displays assembly results on Datasets 2-5 assessed using Quast and Dnadiff.

Dataset 1 analysis is omitted because of its particular characteristics. It has a greater total

coverage but much lower data quality compared to other datasets (older version of the sequenc-

ing protocol, low percentage of 2d reads and the use of 1d reads). None of the non-hybrid

assemblers managed to produce a good assembly using Dataset 1 (Appendix A, Table A.2). It

can be concluded that low 2d coverage together with high coverage of low quality 1d reads is

not sufficient to complete an assembly of a bacterial genome using currently available methods.

Table 3.3: Assembly quality assessment using Quast and Dnadiff.

Dataset Assembler # ctg. N50 Genome
fraction

(%)

Avg. Identity
1-to-1

Total
SNPs

Total
Indels

2 LQS 8 1159703 99.895 98.08 8858 79746

Falcon 98 11083 6.994 94.58 3263 47211

PBcR 22 246681 0.593 93.7 14823 269053

Canu 26 332535 90.123 95.71 5691 183774

Miniasm 15 353994 0.002 84.21 248575 373190

3 LQS 3 4603990 99.998 98.49 4568 65283

Falcon 124 13838 17.316 94.97 3206 59638

PBcR 1 4329903 12.825 94.03 7209 262357

Canu 10 4465231 88.655 95.77 5213 185027

Miniasm 3 3362269 0.002 84.04 247849 367927

4 LQS 8 4622531 99.938 99.08 2256 40118

Falcon 13 4538244 99.938 97.66 3710 104165

PBcR 3 3615068 99.553 97.39 2394 117397

Canu 2 4576679 99.915 98.42 812 71878

Miniasm 1 4577227 0.002 88.31 185194 326066

5 LQS 5 4006324 99.991 99.43 1435 25106

Falcon 1 4580230 99.655 98.84 2589 50662

PBcR 1 4596475 99.914 98.99 1136 45542

Canu 1 4600945 99.746 99.29 415 32100

Miniasm 1 4774395 0.002 88.69 175279 328688

None of the non-hybrid assembly pipelines managed to complete the genome at 20x cover-

age. LQS pipeline produced the best assembly - it managed to cover almost the whole genome,

albeit using 8 separate contigs. 30x seems to be sufficient for LQS pipeline to get very good

44

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

results and for Canu and PBcR to cover most of the genome, however with the largest con-

tig notably shorter than the reference genome (especially for PBcR). At coverages over 40x,

all tested assemblers produce good contiguous assemblies, which surprisingly includes Falcon,

originally designed for PacBio data. To further estimate the coverage required by each assem-

bler for a contiguous assembly, we used Dataset 5 subsampled to coverages 32x, 35x, 37x and

40x. The results are shown in Appendix A, Table A.3.

Another surprising result that can be seen in Table 3.3 is a noticeable drop in assembly

quality for the LQS pipeline on Dataset 5. While it managed to cover a greater part of the

reference than any other pipeline on any dataset, its assembly consisted of 5 contigs, the largest

of which is just over 4Mbp. Overall, LQS assemblies demonstrate the highest average identity

compared to the reference sequence, even without applying the polishing phase.

Miniasm’s strengths are, on the other hand, oriented towards very fast and contiguous as-

sembly of the genome, without increasing the per-base quality of the resulting sequences. Since

it does not include an error correction step nor a consensus step, the contigs it produces contain

errors similar to the input read data. This makes Miniasm hard to numerically compare to other

assemblers without polishing the contigs. Table 3.3 shows that Miniasm manages to produce

assemblies which contain, on average, a smaller number of contigs compared to other methods,

cumulatively covering the entire genome. On coverages above 40x, Miniasm produces a sin-

gle contig assembly of the entire E. Coli genome. Since statistics in Table 3.3 make Miniasm

hard to compare to other assemblers, we generated dotplots of the largest contigs produced for

Datasets 3, 4 and 5 (Figure 3.1). This was performed in order to validate that the generated

contigs were not chimeric or misassembled.

Additionally, we performed a "big contig" analysis where only the largest contig of length

> 4Mbp (a representative of the E. coli chromosome) was selected and evaluated using Dnad-

iff. This analysis gave a good estimate on the quality of the assembly from the aspects of

chromosome completeness and breakage. Apart from Miniasm, all non-hybrid assemblies that

produced a "big contig" had a comparable number of breakpoints (10−50) with the exception

of PBcR on Dataset 3 (841) and LQS on Dataset 5 (88). It is interesting to note that in these

cases the "big contig" is considerably shorter than the reference (see Appendix A, Table A.4).

Since the results for non-hybrid assembly tools show variation in assembly quality across

datasets (Table 3.3), we further investigated the differences between them. As described in the

Background section, there are two major differences: (I) LQS and PBcR both employ WGS

(Celera) as their middle-layer assembler and Canu is a modified fork of Celera, while Falcon

and Miniasm implement their own string/assembly graph layout modules; and (II) each of these

pipelines, save for Miniasm, implements its own error-correction module. Taking into account

that both Celera and Falcon utilize an overlap-graph based layout step, we suspected that (II)

may have played a more significant role on the assembly contiguity. The error-correction pro-

45

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

(a) Miniasm on Dataset 3. (b) Miniasm on Dataset 4.

(c) Miniasm on Dataset 5.

Figure 3.1: Dotplots of largest contigs generated by Miniasm for: a) Dataset 3, b) Dataset 4 and c)
Dataset 5.

cess is performed very early in each pipeline, and the quality of corrected reads can directly

influence any downstream analysis. For this purpose, we analysed the error rates in raw reads

from Dataset 3 (Figure 3.2) as well as the error-corrected reads generated by Nanocorrect,

PBcR, Canu and Falcon error-correction modules (Figure 3.3). For analysis, all reads were

aligned to the E. coli K-12 reference (NC_000913.3) using GraphMap (parameters “-a anchor-

gotoh”). The results show that each error-correction module produces corrected reads with a

significantly different error profile. The raw dataset (coverage 28.78x) contained a mixture of

3% insertions, 4% deletions and 9% mismatches (median values). While the insertion er-

rors were mostly eliminated by all error-correctors, PBcR, Canu and Falcon exhibited higher

amounts of deletion errors in their output. Nanocorrect produced the best results, reducing both

46

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

Figure 3.2: Error rate analysis of raw nanopore reads from Dataset 3. Insertion, deletion and mismatch
rates in the table below are presented by the median values of the entire dataset. Coverage value refers
to the average coverage of the entire raw dataset.

deletion and mismatch rates to 1%, while still maintaining a large coverage of the output error-

corrected reads (25.85x). The error profile of Canu-corrected reads (Figure 3.3c) resembles the

one obtained with Falcon error correction (Figure 3.3d). This is expected considering that Canu

directly borrows components from the Falcon error-correction module.

To assess the influence of (I), we used error-corrected reads generated by Nanocorrect as the

input data for Falcon and Miniasm for every dataset. We noticed that this procedure increased

both the contiguity of Falcon’s assembly and the average identity on all datasets (Appendix A,

Table A.5). Increase in coverage of error-corrected reads provided a consistent increase of the

quality of assembly in terms of largest contig length, average identity and number of variants.

Although draft assemblies produced by the LQS pipeline exhibited a reduction in the size of

the largest contig on Dataset 5, these assemblies also resulted in lower number of variants

(SNPs and indels) compared to the Nanocorrect+Falcon combination. Miniasm benefitted from

error-corrected reads as well, however, the difference in results is not as dramatic as for Falcon

(Appendix A, Table A.6). Although the number of contigs for Datasets 1 and 2 increased when

error-corrected reads were used, the total length of the generated contigs increased as well.

Single contig full-genome assembly was achieved even on Dataset 3. The average identity of

Nanocorrect+Miniasm assemblies is much higher than for Miniasm alone (and comparable to

error-corrected datasets), which is expected as corrected reads are directly used to construct the

contigs.

3.2.2 Hybrid pipeline comparison

Hybrid and non-hybrid assembly pipelines are not directly comparable because hybrid pipelines

have an advantage in greater coverage supplied by Illumina reads. Table 3.4 gives a more de-

47

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

(a) Nanocorrect (twice corrected). (b) PBcR.

(c) Canu. (d) Falcon

Figure 3.3: Error rate analysis of error-corrected nanopore reads obtained with different error correction
methods. Insertion, deletion and mismatch rates are presented by the median values of the entire dataset.
Coverage value refers to the average coverage of the corresponding error-corrected dataset.

tailed comparison between two hybrid assemblers ALLPATHS-LG and SPAdes. Besides run-

ning both pipelines on Dataset 0 (paired-end and mate-pair reads) together with each nanopore

dataset, SPAdes was also tested using only Illumina paired-end reads (without mate-pair reads).

The table shows that ALLPATHS-LG produces better results than SPAdes on all datasets, from

Dataset 0 without nanopore data for which SPAdes is not able to produce one sufficiently large

contig, to Dataset 5 on which the difference is miniscule and apparent only in the number of

SNPs and indels.

It is interesting to note that while ALLPATHS-LG requires both a paired-end and a mate-pair

library to run, SPAdes seems not to be able to leverage mate-pair reads to a noticeable effect.

In the presence of nanopore reads, results using paired-end Illumina library without mate-pairs

seems to be equal to or even slightly better than with a mate-pair library, for all nanopore

datasets. This means that in a situation where mate-pair reads are unavailable, SPAdes might be

48

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

Table 3.4: Comparing ALLPATHS-LG and SPAdes results.

Dataset Assembler # ctg. N50 Genome
fraction

(%)

Avg. Identity
1-to-1

Total
SNPs

Total
Indels

0 ALLPATHS-LG 3 4626283 99.219 99.99 59 73

SPAdes PE+MP 106 1105151 99.089 99.98 231 78

2 ALLPATHS-LG 2 4639001 99.938 99.99 10 12

SPAdes PE only 20 4470699 99.908 99.99 430 93

SPAdes PE+MP 18 4488904 99.912 99.98 427 110

3 ALLPATHS-LG 3 4638937 99.938 99.99 6 38

SPAdes PE only 19 4474624 99.908 99.99 418 92

SPAdes PE+MP 19 4474608 99.88 99.99 425 108

4 ALLPATHS-LG 1 4638952 99.938 99.99 8 20

SPAdes PE only 20 4475777 99.908 99.99 401 66

SPAdes PE+MP 20 4475770 99.88 99.99 399 73

5 ALLPATHS-LG 1 4638958 99.938 99.99 3 5

SPAdes PE only 18 4648869 99.918 99.99 421 47

SPAdes PE+MP 16 4648863 99.918 99.99 420 43

a good choice for a de novo assembler.

While none of the non-hybrid assemblers managed to produce a good assembly using

Dataset 1 (Appendix A, Table A.2), both hybrid assemblers were able to use this dataset to

improve their assembly. From Tables 3.3 and 3.4, it can be concluded that hybrid assembly

pipelines achieve better results than non-hybrid ones. However, this is mostly because Illumina

reads provide additional coverage of the genome.

3.2.3 Resource usage

To estimate efficiency of each assembly pipeline, NanoMark measures and reports User time,

System time, CPU time, Real time (Wall clock time) and Maximum memory usage (Resident Set

Size, RSS) for each assembly tool and dataset.

Table 3.5 shows CPU time and memory measurements with respect to sequencing coverage

for each assembly pipeline. Miniasm proved to be by far the fastest of the tested assemblers,

while LQS was, also by a large margin, the most time consuming. We note that, in general,

error-correction of non-hybrid assemblers is the most time consuming step, which is especially

evident in the LQS pipeline. Miniasm completely skips error-correction and consensus steps

and is approximately three orders of magnitude faster than the second fastest non-hybrid tool

(Canu) and two orders of magnitude faster than the fastest tested hybrid tool (SPAdes). All

assembly pipelines consumed less than 20GB of memory, with Miniasm being the most conser-

49

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

vative one.

Table 3.5: CPU time (hours) / Maximum memory usage (GB).

Assembler Coverage

20 30 40 50

LQS 1086 / 4 2539 / 4 4438 / 4 8142 / 4

ALLPATHS-LG 13.2 / 18 26.0 / 18 44.9 / 17 144.5 / 20

PBcR 6.2 / 2 13.7 / 6 14.1 / 5 19.3 / 5

Falcon 3.1 / 6 6.4 / 10 19.7 / 10 13.8 / 13

SPAdes 0.9 / 5 1.0 / 5 1.1 / 5 1.2 / 5

Canu 5.33 / 3 11.2 / 4 28.7 / 4 9.39 / 4

Miniasm 0.009 / 2 0.015 / 2 0.026 / 3 0.044 / 4

3.2.4 Polishing the assembly

For every assembly result that contained a contig at least 4Mbp in length, we extracted that

contig, and polished it using Nanopolish. The results were then compared to the reference

using Quast and Dnadiff. The results of the analysis are shown in Table 3.6.

We can see that, without exception, Nanopolish will improve a non-hybrid assembly. Contig

length (N50) will come closer to the reference length, average identity will increase while total

number of SNPs and indels will decrease. On the other hand, the effect on hybrid assemblies

is opposite. Contig length (N50) will usually decrease, average identity will always decrease,

while total number of SNPs and indels will increase.

Although surprising at first, this result is expected if we consider that with hybrid assemblies

Nanopolish is trying to improve contigs obtained from data with lower error rate (Illumina

reads) using data with higher error rate (nanopore 2d reads).

3.2.5 Discussion

In this chapter we developed a benchmarking framework for de novo assembly tools focused on

third generation sequencing data and compared several hybrid and non-hybrid de novo assem-

blers as well as assessed their ability to work with nanopore sequencing data. Each examined

tool proved capable of assembling a whole bacterial genome under the right conditions. Need-

less to say, the choice of the best assembly tool will heavily depend upon the characteristics

of the dataset. Keeping in mind that hybrid and non-hybrid assemblers are not directly com-

parable, we can say that ALLPATHS-LG showed overall the best results. However, it requires

a rather specific set of Illumina paired-end and mate-pair short read libraries to perform the

assembly, which might not always be practical to obtain. In case only paired-end reads are

50

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

Table 3.6: Quality assessment of polished assemblies.

Dataset Assembler Polish N50 Genome
fraction

(%)

Avg. Identity Total
SNPs

Total
Indels

2 Allpaths YES 4638854 99.937 99.46 1012 24213

Allpaths NO 4639001 99.938 99.99 10 12

SPAdes YES 4489211 96.227 99.44 1011 23463

SPAdes NO 4488904 96.220 99.98 424 110

3 LQS YES 4648870 99.997 99.47 1357 22622

LQS NO 4603990 99.998 98.49 4568 65283

PBcR YES 4615494 99.458 99.22 4460 31520

PBcR NO 4329903 12.825 94.03 7209 262357

Canu YES 4638184 99.783 99.28 3180 29607

Canu NO 4465231 88.644 95.77 5318 186843

Allpaths YES 4636408 99.936 99.53 790 21010

Allpaths NO 4638937 99.938 99.99 6 38

SPAdes YES 4472428 96.226 99.52 769 20291

SPAdes NO 4474608 96.220 99.99 424 108

4 LQS YES 4664571 99.938 99.60 890 17712

LQS NO 4622531 99.938 99.08 2256 40118

Falcon YES 4643699 99.937 99.54 1829 19361

Falcon NO 4538244 99.938 97.66 3710 104165

Canu YES 4653892 99.934 99.58 1196 18012

Canu NO 4576679 99.915 98.42 812 71878

Miniasm YES 4667580 99.898 98.3 21331 58211

Miniasm NO 4577227 0.002 88.31 185194 326000

Allpaths YES 4647282 99.938 99.62 674 17168

Allpaths NO 4638952 99.938 99.99 8 20

SPAdes YES 4484185 96.223 99.61 655 16573

SPAdes NO 4475770 96.220 99.99 398 73

5 LQS YES 4018309 86.570 99.80 453 7671

LQS NO 4006324 86.570 99.43 1237 21852

Falcon YES 4624811 99.654 99.78 834 9318

Falcon NO 4580230 99.655 98.84 2589 50662

PBcR YES 4639491 99.973 99.79 627 9131

PBcR NO 4596475 99.914 98.99 1136 45542

Canu YES 4631443 99.918 99.8 556 8547

Canu NO 4600945 99.786 99.29 415 32100

Miniasm YES 4696482 99.712 98.06 20395 70406

Miniasm NO 4774395 0.002 88.69 175279 328688

Allpaths YES 4637979 99.938 99.82 312 7859

Allpaths NO 4638958 99.938 99.99 3 5

SPAdes YES 4648653 99.929 99.82 343 7904

SPAdes NO 4648863 99.918 99.99 420 53

51

Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads

available, SPAdes might be a good choice. Of the non-hybrid assembly tools, on some datasets

LQS pipeline came close to or even surpassed hybrid tools. However, extremely high CPU time

used by Nanocorrect might make it prohibitively slow on larger genomes and larger datasets, in

which case Canu, Falcon or PBcR could be used instead.

Miniasm must be considered apart from other assemblers. While the lack of error correc-

tion and consensus phases results in assemblies with a significant error rate, astonishing CPU

efficiency makes it a perfect candidate for time-critical applications, especially if it could be

enhanced with a suitably efficient consensus phase. Applying Nanopolish to Miniasm assem-

blies showed that they could be significantly improved, but at this point still fall behind other

assemblies.

Polishing draft assemblies with Nanopolish improved the results of non-hybrid assemblies,

but worsened the results of hybrid ones. Relative assembly quality remained the same, but after

polishing the difference between hybrid and non-hybrid assemblies reduced substantially.

52

Chapter 4

Overlap

Exploiting the power of nanopore sequencing requires the development of new bioinformatics

approaches to deal with its specific error characteristics. This includes the development of new

methods for sequence assembly and sequence mapping/alignment.

As discussed in Chapter 2 Background, the problem of overlapping can also be viewed as a

special case of mapping. In the general case of sequence mapping, mappers are presented two

sets of sequences: reference sequences (e.g. chromosomes, or a genomic database) and read

sequences. Overlapping of reads can be viewed as the process of mapping reads to themselves,

i.e. the reference sequences are also the read sequences. In this case, one would only need to

discard the self-hits - that is, perfect alignments of a sequence to itself. This definition of over-

lapping was the primary motivation to create a very sensitive and accurate mapper "GraphMap",

which could then be reworked and used for raw sequence overlapping.

In this chapter, we present the development of a novel mapper for third generation sequenc-

ing data called GraphMap and it’s modification for overlapping of raw third generation se-

quencing reads. The overlapping method is implemented as a submodule of GraphMap called

"Owler". Both GraphMap and Owler are described, analyzed, thoroughly tested and compared

to the state-of-the-art in the following sections.

4.1 GraphMap - Fast and sensitive mapping of nanopore se-

quencing reads

The GraphMap algorithm is structured to achieve high-sensitivity and speed using a five-stage

’read-funneling’ approach as depicted in Figure 4.1. The underlying design principle is to have

efficiently computable stages that conservatively reduce the set of candidate locations based

on progressively defined forms of the read-to-reference alignment. For example, in stage I,

GraphMap uses a novel adaptation of gapped spaced seeds [127] to efficiently reduce the search

space (Figure 4.2) and then clusters seed hits as a form of coarse alignment (Figure 4.3). These

53

Overlap

Figure 4.1: A schematic representation of stages in GraphMap. GraphMap refines candidate locations
through stages and reduces the number of candidate locations to one.

are then refined in stage II using graph-based vertex-centric processing of seeds to efficiently (al-

lowing seed-level parallelism) construct alignment anchors (Figure 4.4). GraphMap then chains

anchors using a k-mer version of longest common subsequence (LCS) construction (stage III;

Figure 4.5), refines alignments with a form of L1 linear regression (stage IV; Figure 4.5) and

finally evaluates the remaining candidates to select the best location to construct a final align-

ment (stage V). GraphMap computes a BLAST-like E-value as well as a mapping quality for

its alignments.

4.1.1 Methods

Algorithm description

The GraphMap algorithm is presented in detail in Algorithm 1. It consists of five stages, each

presented below.

Stage I: Region selection

GraphMap starts by roughly determining regions on the reference genome where a read

could be aligned. This step is performed in order to reduce the search space for the next step

of the algorithm, while still providing high sensitivity. As a first step, region selection relies

on finding seeds between the query sequence and the reference, before clustering them into

candidate regions. For seed finding, commonly used approaches such as maximal exact matches

(MEMs) (as used in BWA-MEM [11]) or Hamming distance based spaced seeds [56] (as used in

LAST [32]) were found to be either not sensitive enough or not specific enough in the presence

of error rates as high as is feasible in nanopore data (e.g. see "Fixed seed k=13" for ONT 1D

data in Appendix B, Table B.7). Instead, a form of gapped spaced seeds was employed, similar

54

Overlap

Algorithm 1: GraphMap algorithm
Input: Set of reference sequencesR, set of reads Q, graph mapping node k-mer size k, number of edges

per node l, error rate e, ambiguity factor F and a parameter P specifying the alignment type
(semiglobal or anchored)

Output: Set of alignments A
Function GRAPHMAP(R,Q,k, l,e,F,P) begin

1 I1←CreateGappedIndex(R,”1111110111111”)
2 I2←CreateGappedIndex(R,”11110111101111”)
3 I ← {(I1,”1111110111111”),(I2,”11110111101111”)} . A set of (index,shape) tuples
4 A← /0

5 lenR← 0
6 foreach r ∈R do . Calc. total reference len.
7 lenR← lenR+ |r|

8 foreach q ∈Q do . Process reads individually
9 M← empty array . Intermediate mapping locations

10 G ← RegionSelection(I,R, lenR,0.75,q) . An array of potential regions sorted by num. of hits
11 foreach g ∈ G do . Process each region individually
12 W ← GraphMapping(g,q,k, l)
13 Wlcsk← LCSk(W)
14 (cL1,dint)← FitL1Line(Wlcsk, |q|,e)
15 if P = semiglobal then
16 WL1← L1Filtering(W,cL1,dint , |q|,e)
17 Wa← LCSk(WL1) . Perform second LCSk to get anchors

18 else if P = anchored then
19 Wa← FilterByChaining(Wlcsk,e,200,2,50) . Get anchors by chaining

20 (f ,ncb)←CalcRegionQuality(Wa, lenR, |q|,e) . f is region quality, ncb is num. cov. bases
21 M← Append tuple (g,Wa,cL1,dint , f ,ncb) . Add an intermediate mapping

22 if |M|= 0 then
23 continue

24 SortM= [(g,Wa,cL1,dint , f ,ncb)] in descending order of f
25 (Wa,best ,cL1,best ,dint,best , fbest ,ncb,best)←M[0] . Best scoring region

26 foreach (g,Wa,cL1,dint , f ,ncb) ∈M do . Process each region individually
27 if ncb ≥ (1−F) ·ncb,best then
28 Aregion← Align(g,q,Wa,cL1,e,P)
29 A←A∪Aregion

30 return A

to gapped q-gram filters for Levenshtein distance [127]. Specifically, the approach proposed

in Burkhardt and Kärkkäinen [127] was extended to use both one- and two-gapped q-grams

(Figure 4.2; Algorithm 1, lines 1−3; Algorithm 2) as detailed below.

Gapped q-grams are a seeding strategy that allow for fast and very sensitive lookup of in-

exact matches, with variations allowed in predefined "don’t care" (DC) positions of the seed.

Consistent with existing terminology, the concrete layout of the inclusive and DC bases is re-

ferred to here as a shape and the number of used positions its weight. Gapped q-grams allow for

DC positions within a shape to also contain insertions and deletions (indels). The approach in

GraphMap for implementing Levenshtein gapped q-grams is based on constructing a hash index

55

Overlap

Figure 4.2: Structure of spaced seeds used for index construction and index lookup. For each position in
the reference one seed is inserted into the index and for each position in the query, three seeds are looked
up.

of the reference sequence, where the q-gram positions are hashed by the keys constructed from

the shape’s layout – only inclusive bases are taken for constructing the key, while the DC bases

are simply skipped (Figure 4.2; Algorithm 2, lines 1− 15). During the lookup step, multiple

keys are constructed for each shape and used for retrieval (Algorithm 2, lines 17−24). For each

DC base, three lookup keys are constructed:

1. A key constructed in the same manner as during the indexing process, which captures all

seed positions and with a DC base being a match or a mismatch (e.g. "1111110111111";

see "(Mis)match seed" in Figure 4.2),

2. A key where the DC base is not skipped. This key captures up to one deletion (as indels

are frequently 1bp long) at the specified position (e.g. "111111111111"; see "Deletion

seed" in Figure 4.2), and

3. A key where the DC base as well as the following base is skipped. This key allows for

at most one insertion and one match/mismatch (e.g. "11111100111111"; see "Insertion

seed" in Figure 4.2).

In total, for each shape d3 keys are constructed, where d is the number of DC bases.

GraphMap uses two complementary shapes for the region selection process: "1111110111111"

(or the 6-1-6 shape) and "11110111101111" (or the 4-1-4-1-4 shape), where 1 marks the in-

clusive bases and 0 the DC positions (Algorithm 1, lines 1− 2). This shape combination was

selected based on empirical evaluation of a range of combinations, due to the computational

56

Overlap

Algorithm 2: Gapped Spaced Index
Input: A set of sequencesR, and a shape s
Output: Index given as a hash table I where keys are seeds, and values are tuples of the seeds’ originating

sequence id and its position within that sequence (tsid , tpos)

Function CREATEGAPPEDINDEX(R,s) begin
1 I ← empty hash table
2 for i = 0 to (|R|−1) do
3 r← R[i]
4 for j = 0 to (|r|− |s|) do . Index the forward strand
5 h← empty string
6 for k = 0 to (|s|−1) do . Remove "don’t care" bases
7 if s[k] 6= 0 then
8 h← Append r[j+ k]

9 I[h]←I[h]∪ (i, j)

10 for j = 0 to (|r|− |s|) do . Index the reverse strand
11 h← empty string
12 for k = 0 to (|s|−1) do . Remove "don’t care" bases
13 if s[k] 6= 0 then
14 h← Append r[j+ k]

15 I[h]←I[h]∪ (i+ |R|, j)

16 return I

Input: Index given as a hash table I of hashed seeds, a lookup shape s and a raw seed hraw (still containing
"don’t care" (DC) bases)

Output: A set T containing hits in form of tuples (tid , tpos)

Function COLLECTHITS(I,s,hraw) begin
17 T ← empty set
18 S ← Set of shapes for all combinations of DC bases in s
19 for i = 0 to (|S|−1) do
20 h← empty string
21 for j = 0 to (|S[i]|−1) do . Remove "don’t care" bases
22 if S[i][j] 6= 0 then
23 h← Append hraw[j] . Lookup

24 T ← T ∪I[h]

25 return T

intractability of computing the optimal shape for the Levenshtein distance [56][128] For each

shape, a separate index is used in GraphMap. At every seed position, both shapes are looked

up, and all hits are used in the next step for binning (Algorithm 1, line 10).

To derive a general approach for binning seed hits (Algorithm 3), we draw on the concept

of a Hough Transform (HT), a method commonly used in image processing for detection of

shapes such as lines, circles and ellipses. The HT defines a mapping from image points into an

accumulator space, called the Hough space. In the case of line detection, if a given set of points

in Cartesian space are collinear, then their relation can be expressed with a linear equation with

57

Overlap

Figure 4.3: Region selection by clustering of candidate seeds on the reference. Diagonals with sufficient
number of seed hits are used to identify regions for further processing.

common slope m and intercept c:

y = mx+ c, (4.1)

where (x,y) are the coordinates of a point in 2D space. HT attempts to determine parameters

m and c of a line that describes the given set of points. Note that the system is generally over-

determined and thus the problem can be solved using linear regression techniques. However,

the HT uses an evidence-gathering approach, which can be used to detect an arbitrary number

of lines in the image instead of only one best (Figure 4.3). Equation 4.1 can be converted into

its dual in parameter space:

c =−mx+ y. (4.2)

The intuition is as follows: given a point (x,y) in Cartesian space, its parameter space

representation defines a line. If multiple Cartesian space points are given, each transforms

into a different line in the parameter space. Their intersections specify potential lines in the

original, Cartesian space. HT defines an accumulator space, in which m and c are rasterized

so as to take only a finite range of values. HT then simply counts all the potential solutions in

the accumulator space by tracing all the dual lines for each point in the Cartesian space, and

increasing the vote count for each (m,c) coordinate. All HT space coordinates with count above

a defined threshold can then be considered as candidate lines in the original Cartesian space.

A single seed hit can be represented with a "k-point" (q, t) in 2D space, where q is the seed’s

position on the read, and t is the position of the seed hit on the reference. In the case a read

is completely error-free and extracted from the exact reference, its set of k-points would be

perfectly collinear in such defined space. Moreover, under these ideal conditions, they would

58

Overlap

Algorithm 3: Select most likely regions of the genome to contain the correct mapping
Input: A set I of (gappedspacedindex,shape) tuples for different shapes, a set of reference sequencesR,

total length of all reference sequences lenR, bin size L, fraction pbmax from the maximum bin count
bmax to output regions, and a read sequence q

Output: A set of regions G
Function REGIONSELECTION(I,R, lenR,L, pbmax ,q) begin

1 nbins← lenR/L . Number of bins
2 B ← an array of size nbins with all values initialized to 0 . Bin counts
3 Bu← an array of size nbins with all values initialized to −1 . Keeps track of last bin updates

4 smax← empty string
5 foreach (I,s) ∈ I do . Find maximum length shape
6 if |s|> |smax| then
7 smax← s

8 for i = 0 to (|q|− |smax|) do . Process all k-mers for Hough Transform
9 foreach (I,s) ∈ I do

10 hraw← q[i · · ·(i+ s)]
11 T ←CollectHits(I,s,hraw)
12 foreach (tid , tpos) ∈ T do
13 c← tpos− i . Calculate the diagonal intercept
14 tbin← c/L . Rasterize the intercept
15 if Bu[tbin]< i then . Do not count same bin multiple times for same seed
16 B[tbin]←B[tbin]+1 . Increase the Hough Transform accumulator
17 Bu[tbin]← i

18 G ← /0
19 r← Concatenate all sequences inR
20 bmax←max(B)
21 for i = 0 to (|B|−1) do . Generate regions
22 if B[i]> pbmax ·bmax then
23 rstart ←max(i ·L−|q|,0)
24 rend ←min((i+1) ·L+ |q|, |r|)
25 g← r[rstart · · ·rend]
26 G ← G∪g

27 Sort G in descending order of corresponding number of bin hits in B
28 return G

all lie on a line tilted at a 45 angle (slope m = 1). This collinearity also corresponds to the main

diagonal in the dynamic programming alignment matrix. Since m is known, only the intercept

parameter c needs to be determined to find the accurate mapping position. As c corresponds to

the (already discrete) coordinates on the reference sequence, a simple integer array of the length

of the reference can be used for counting votes (Figure 4.3). For each k-point, its c parameter

value is determined with a simple expression (Equation 4.3; Algorithm 3, line 15):

c = t−q. (4.3)

The index of the accumulator array with the highest count is the exact mapping position

of the read on the reference. In this simple form, this approach mirrors the techniques used in

59

Overlap

other aligners (e.g. FASTA). However, the concept of the Hough Transform (HT) allows us to

extend and generalize this notion.

We account for substitution and indel errors in this framework as follows: substitution errors

cause only the reduction in the maximum vote count for the correct c value and induce noise

votes in other locations on the reference. Such type of errors can be addressed using appropriate

thresholding on the hit count (see below). On the other hand, indels are of special interest

because they shift the alignment diagonal and cause more substantial reduction of votes for the

correct location. Additionally, using an accumulator array that is of size equal to the size of the

reference sequence can cause high memory consumption, especially in the case of processing

large sequences in multithreaded environments.

To address both the error-rate and memory consumption issues, GraphMap rasterizes the

reference sequence into partitions of length L/3 (where L is the read length), so that at least

one partition is fully covered by the read (Algorithm 3, lines 1 and 14). For each seed hit to a

bin, it increments the value of the bin corresponding to its c parameter value determined using

Equation 4.3. Bins are then sorted in descending order of the number of hits (Algorithm 3,

line 27). To limit the search to the most likely bins, only bins with count greater than 75%

of the max count are selected for further processing (Algorithm 3, line 22). A region is then

defined as a portion of the reference that expands the corresponding bin’s start and end location

by an additional read length, to compensate for potential indel errors and ensure that the entire

alignment area enters the next step of mapping (Algorithm 3, lines 23− 26). In the case that

the reference genome is specified as being circular by the user, GraphMap allows the region

to be constructed by concatenating the beginning and the end of the reference. Regions are

then processed separately until the last step of the method, when the highest scoring region is

selected for alignment Algorithm 1, line 11).

Stage II: Graph-based vertex-centric construction of anchors

In this stage (Algorithm 4, line 12), candidate regions from stage I are refined by con-

structing alignment chains or anchors from short seed matches. To do this, GraphMap uses the

notion of a "k-mer mapping graph". Given a pair of sequences (target and query), it starts by

constructing a k-mer mapping graph from the target sequence (Algorithm 4, line 2). In the cur-

rent implementation, the read was chosen to be the target sequence in order to reduce memory

consumption. Also, the process of graph mapping is performed between a single read and mul-

tiple regions, and this organization reduces the overhead of graph construction. The vertices of

the k-mer mapping graph are the k-mers of the target sequence of length T (Figure 4.4). Unlike

in a de Bruijn graph, identical k-mers are not truncated into the same vertex of the graph but

are kept as separate individual vertices (Figure 4.4). For every vertex vi,(∀i ∈ (0...T − k)), l

directed outbound edges are added which connect vi to vertices vi+1,vi+2, ...,vi+l (Figure 4.4).

The rationale for such a design is as follows: in case l = 1 and if the query is a subset of the

60

Overlap

Figure 4.4: Generating alignment anchors through a fast graph based ordering of seeds (Graph Map-
ping). Seeds from the query (2-mers here; starting from the green seed) are looked up, and information
in the graph propagated, to construct a maximal walk that serves as an anchor.

target with no differences or errors, the target’s mapping graph would contain the same k-mers

in the exact same order as in the query sequence. Thus, an exact walk exists in both sequences.

However, in realistic conditions, variations and sequencing errors exist in reads. Although the

majority of k-mers might still be in the same order, a simple exact linear walk through the refer-

ence’s and read’s mapping graphs cannot be found due to the differing k-mers present. Instead,

the walk is fragmented into several smaller ones and this is particularly severe when the error

rate is high, as seen in nanopore sequencing. To address this issue, the additional (l−1) edges

act as a bridge between vertices in the mapping graph. Thus GraphMap allows a linear walk

to be found not only by following consecutive k-mers in the graph, but to jump-over those that

produce poorer solutions. Figure 4.4 depicts such an example. GraphMap uses l = 9 by default

as it was empirically found to enable anchor construction for most ONT reads.

For graph construction, GraphMap uses an index constructed from the target on the fly, using

a smaller continuous seed for sensitivity (default k = 6, similar to the k-mer used for MinION

base-calling) (Algorithm 4, lines 4− 6). In principle, any indexing method can be used and

for runtime efficiency GraphMap uses perfect k-mer hashing when k < 10 and suffix arrays

otherwise. To do graph traversal, for each consecutive k-mer in the query, a list of hits on the

target sequence is obtained from the index (Algorithm 4, line 9). The vertex-centric walk then

works as follows: for a chosen vertex, collect information from input edges (Algorithm 4, lines

12−16), choose the "best" edge (Algorithm 4, line 15) and update the information it contains

(Algorithm 4, lines 17−29), and transmit this information to all outbound edges simultaneously

(this is performed implicitly by modifying the vertex’s information). The "best" edge is defined

here to be the one belonging to the longest walk. The information that is transmitted through the

edges contains the walk length, the position of the starting k-mer in both the target and the read,

61

Overlap

Algorithm 4: Graph Mapping. Constructing a k-mer graph from sequence q and mapping
g in a fast vertex-centric manner. Graph is implemented as an array of size q since it is a
DAG and all in-edges for a node are its direct predecessors.

Input: Region sequence g, read sequence q, graph mapping k-mer size, the number of out edges l for each
node of the graph and the minimum number of covered bases per walk (anchor) m

Output: An array of walksW on the graph representing matching subsequences between q and g, where
each walk is a tuple containing start and end locations in both sequences (qs,qe,gs,ge)

Struct VERTEX . Vertex data structure with default values begin
ts←−1 . Timestamp of the last vertex update
gs← 0 . Start position of a walk on g
ge← 0 . End position of a walk on g
qs← 0 . Start position of a walk on q
qe← 0 . End position of a walk on q
nk← 0 . Number of k-mers covered by a walk to this vertex
ncb,g← 0 . Number of bases on g covered by k-mers to this vertex
ncb,q← 0 . Number of bases q covered by k-mers to this vertex
reg←−1 . Registry ID of the walk containing this vertex

Function GRAPHMAPPING(g,q,k, l,m) begin
1 W ← empty array . Graph walks (anchors)
2 graph← array of Vertex objects of length |q| initialized to default

3 H← /0 . Hash table of k-mers from q
4 for i = 0 to (|q|− k) do . Index all short k-mers in a hash
5 kmer← q[i...(i+ k)]
6 H[kmer]←H[kmer]∪ i . Add the position to the set

7 for i = 0 to (|g|− k) do . Process all k-mers from g
8 kmer← g[i...(i+ k)]
9 hits←H[kmer]

10 foreach p ∈ hits do . p is also the vertex ID of a hit
11 v← NULL . "Best" vertex (part of longest reachable walk), default "not found" value
12 for j = max(p− l,0) to (p−1) do . Check nodes on l inbound edges from p and find max
13 if graph[j].ts≤ i and

0 < (graph[p].ts−graph[j].ts)≤ l then . Check if walk on j was too long ago
14 if v = NULL or

graph[j].nkmers > v.nkmers) then . Find longest previous reachable walk
15 v← graph[j]
16 dq←min(p− j,k) . Distance of current to best vertex in q coords

17 if v = NULL then . No valid walks were found, start a new one on p
18 With graph[p]:
19 (ts,gs,ge,qs,qe,nk,ncb,g,ncb,q,reg)← (i, i, i+ k, p, p+ k,1,k,k,−1)

20 else . Take the longest reachable walk and expand it with current vertex
21 dg←min(i− v.gs,k) . Distance of current to best vertex in g coords
22 With graph[p]:
23 (ts,gs,ge,qs,qe,nk,ncb,g,ncb,q,reg)← (i,v.gs, i+ k,v.qs, p+ k,v.nk +1,dg,dq,v.ts)
24 if graph[p].ncb,g > m and graph[p].ncb,q > m then . Register the walk if long enough
25 if graph[p].reg =−1 then . If the walk has not yet been registered
26 graph[p].reg← |W|
27 W ← Append graph[p];

28 else
29 W[graph[p].reg]← graph[p];

30 returnW

62

Overlap

and the number of covered bases and k-mers in both sequences. Thus the runtime complexity

of the vertex-update operation is O(1).

After all k-mers from the query have been processed, a list of walks in the graph is collected

(Algorithm 4, lines 27−30). Walks that are too short (default < 12 bases i.e. smaller than the

seeds from stage I) are excluded to avoid a large search space (Algorithm 4, line 24). Vertex-

centric walks allow GraphMap to quickly construct longer alignments in the presence of higher

substitution error rates, as seen in nanopore sequencing data. In the presence of low substitution

error rates (< 2%, as is the case for Illumina as well as PacBio reads), a single walk can cover

most of, if not the entire read. For ONT reads we observed shorter walks that we refer to here

as anchors (Figure 4.4).

Stage III: Extending anchors into alignments using LCSk

Each anchor reported by GraphMap in stage II represents a shared segment (or subsequence)

between the target and the query sequence with known start and end positions in both sequences.

Due to the presence of repeats, the set of obtained anchors is not necessarily monotonically

increasing in both the target and query coordinates. For this reason, a subset of anchors that

satisfy the monotonicity condition needs to be selected. The problem of identifying such a

subset can be expressed as finding the Longest Common Subsequence in k Length Substrings

[129] (LCSk). Note that this is distinct from just finding the longest common subsequence

(LCS) as that ignores the information determined in the anchors and can favor alignments that

have many more indels. Recently, an efficient and simple algorithm for solving a variant of

the LCSk problem has been proposed [130]. In our implementation we follow this paradigm

(Algorithm 1, lines 13 and 17; Algorithm 5), but instead of using substrings of fixed size k, we

allow for variable length substrings. Concretely, the size of each substring is equal to the length

of the corresponding anchor (Algorithm 5, line 16).

The LCSk construction presented in Algorithm 5 takes in a list of anchors W defined by

their start and end positions in both sequences. Start and end points are observed as individual

events (Algorithm 5, lines 2− 8), sorted in ascending order of their coordinates. For a given

coordinate (x,y), LCSk finds the maximum of a previously solved LCSk for all events with co-

ordinates (i, j) such that 0≤ i < x and 0≤ j < y. Such a maximum can be found very efficiently

using a Fenwick tree (Algorithm 6), as proposed in [130]. Fenwick tree data structure encodes

partial solutions (such as sums or max/min values) in an array at locations predetermined by

bits of the currently analyzed array index position y, and implements two operations: get and

update. The non-zero bits encode predecessors in the tree, which are looked-up and compared

(in case finding a max/min value) or summed (in case of finding a running sum). Fenwick has

O(logn) complexity for the get operation (compared to a O(n) naive solution for calculating a

sum of numbers) (Algorithm 6, lines 3−8), but also has an O(logn) complexity for the update

operation (Algorithm 6, lines 9− 12). Initial Fenwick tree construction takes O(n logn) time.

63

Overlap

Using the Fenwick data structure, LCSk procedure in Algorithm 5 then processes each event in

sorted order of their coordinates (Algorithm 5, line 13), and finds a previous maximum result

using Fenwick get (Algorithm 5, line 15). If such a result does not exist, a new value is initial-

ized (Algorithm 5, lines 17−19), otherwise the retrieved result is extended (Algorithm 5, lines

21−22). For a particular anchor, Fenwick is updated and traceback recorded only when the end

point of the anchor is reached (Algorithm 5, lines 24−27). Finally, the LCSk is reconstructed

from the traceback (Algorithm 5, lines 28−33).

As a result, the reconstruction of LCSk is obtained in the form of a list of consecutive

anchors in the target and the query sequence. The LCSk stage was observed to be key to

GraphMap’s ability to construct approximate alignments that help identify the correct mapping

location. Removing this stage reduced GraphMap’s precision and recall by 10− 30% without

significantly affecting its runtime or memory usage.

Stage IV: Refinining alignments using L1 linear regression

The alignments obtained using LCSk tend to be largely accurate but since its definition lacks

constraints on the distance between substrings, the alignments obtained may include outlier

matches and incorrect estimation of overall alignment length (Figure 4.5). These outliers are

caused by repeats or sequencing errors, but they still satisfy the monotony condition. Similar

to the observation presented for region selection, the LCSk list of anchors should ideally be

collinear in the 2D query-target coordinate space, with a slope of 45. All deviations from this

line are caused by indel errors, and can be viewed as noise. The filtering of outlier anchors

begins by fitting a 2D line with a 45 slope in the query-target space under the least absolute

deviation criteria (LAD, L1) (Algorithm 1, line 14; Algorithm 7). Next, a subset of anchors

which are located within dL1 = eT
√

2/2 from either side of the L1 line is selected, where e

is the expected error rate (by default, conservatively set to 45%), T is the target (read) length,

and the factor
√

2/2 is used to convert the distance from target coordinate space to a distance

perpendicular to the L1 line. A confidence interval dint = 3∑
N
i=1 di/N is calculated, where di is

the distance from a selected anchor i to the L1 line (the constant 3 was chosen to mimic a 3σ

rule) (Algorithm 7, line 13). LCSk is then repeated once again but only on the anchors which

are located within the distance ±dint from the L1 line in order to compensate for possible gaps

caused by anchor filtering (Figure 4.5; Algorithm 1, lines 16−17; Algorithm 8). The use of L1

filtering was observed to improve the precision of alignment start and end coordinates for many

reads, though the overall impact on performance was less significant in comparison to the LCSk

stage.

After filtering, five empirically derived scores that describe the quality of the region are cal-

culated. They include: the number of exact k-mers covered by the anchors nkmers, the confidence

interval dint of anchors around the L1 line, the length of the query sequence which matched the

target (distance from the first to the last anchor) mlen, the number of bases covered by anchors

64

Overlap

Algorithm 5: Performing the Longest Common Subsequence in k-length Substrings to
filter a set of graph mapping walks. The original LCSk was modified to support variable
length substrings instead of fixed length k

Input: A setW of tuples (qs,qe,gs,ge), where qs and qe are start and end positions in sequence q, and gs
and ge are start and end positions in sequence g

Output: A set of tuplesWlcsk extracted fromW which produce the best LCSk score

Function LCSK(W) begin
1 n← 0
2 E ← empty array of tuples (x,y,wid ,m) . Events
3 for i = 0 to (|W|−1) do . Create events
4 (qs,qe,gs,ge)←W[i]
5 E ← Append (qs,gs, i,BEGINNING) . Separate start and end points
6 E ← Append (qe,ge, i,ENDING)
7 n←max(n,qe,ge) . Maximum coordinate value needed to init Fenwick

8 Sort E in ascending order of tuples, ENDING < BEGINNING

9 F ← Fenwick(n+1) . Data struct to keep max. previous value for every point
10 traceback← array of size |W| with values initialized to −1
11 best← 0
12 d pmax← 0
13 foreach (x,y,wid ,m) ∈ E do . p is also the vertex ID of a hit
14 if m = BEGINNING then
15 (prevd p,val , prevd p,id)← FenwickGet(F ,y) . Get the max. previous value and ID
16 k←W[wid].ge−W[wid].gs . Length of an anchor in y coordinates
17 if prevd p,val =−1 then . There are no predecessors, i.e. first anchor
18 d p[wid]← k
19 traceback[wid]←−1

20 else . Found a predecessor, link traceback
21 d p[wid]← prevd p,val + k
22 traceback[wid]← prevd p,id

23 else
24 FenwickU pdate(F ,y,(d p[wid], id)) . Store the new value and update the maximums
25 if d p[wid]> d pmax then
26 d pmax← d p[wid]
27 best← wid

28 Wlcsk← /0
29 p← best
30 while p! =−1 do . Create the reconstruction (traceback)
31 Wlcsk←Wlcsk ∪W[p]
32 p← traceback[p]

33 Wlcsk← Reverse order of elements inWlcsk

34 returnWlcsk

(includes only exact matching bases) ncb and the read length. The last four scores are normal-

ized to the range [0,1] with the following Equations 4.4-4.7 (Algorithm 1, line 20; Algorithm

9; Algorithm 10).

fdint = max(0,1− dint
eT√

2

), (4.4)

65

Overlap

Algorithm 6: Fenwick tree data structure for fast retrieval of maximum previous values,
used by the LCSk algorithm. Given an index i of a value ai in an array of n elements,
[a0,a1, ...,an−1], FenwickMax provides two operations: get(i) to find the index of the
maximum value of a j|0≤ j < i, and update(i,v) to change the value of ai← v and update
the maximum for all a j|i≤ j < n.

Input: Number of elements n to initialize the Fenwick tree
Output: An array F of Fenwick-ordered tuples (val, id)
Function FENWICK(n) begin

1 F ← array of tuples (val, id) of length (n+1) . Keeps predecessor info
2 return F

Input: An array F of Fenwick-ordered tuples (val, id) and a coordinate x in range of [0, |F|] for which to
find the maximum predecessor

Output: A tuple of (val, id) of the maximum predecessor
Function FENWICKGET(F ,x) begin

3 x← x+1
4 t← empty tuple of (0,0)
5 while x > 0 do . Get maximum value left of x
6 t←max(t,F [x])
7 x← x− (x&− x) . Remove the last non-zero bit, "&" is bitwise here

8 return t

Input: An array F of Fenwick-ordered tuples (val, id) and a coordinate x in range of [0, |F|] for which to
update the data structure, and a tuple t of (val, id) which will be placed at F [x]

Function FENWICKUPDATE(F ,x, t) begin
9 x← x+1

10 while x < |F| do . Update all values from x to the right
11 F [x]←max(F [x], t)
12 x← x+(x&− x)

Algorithm 7: Fitting a 45◦ line under the L1 criteria.
Input: A setW of graph mapping walks specified by query start and end, and region start and end

coordinates respectively; length of the read sequence |q| and error rate e
Output: Intercept of the 45◦ L1-fitted line cL1 and confidence interval dint of walk distances around the L1

line

Function FITL1LINE(W, |q|,e) begin
1 C ← empty array
2 foreach (qs,qe,gs,ge) ∈W do . Calculate all intercepts (diagonals)
3 C ← Append (gs−qs)

4 cL1← median(C) . Intercept (diagonal) of the L1 line
5 dL1← e · |q|

√
2/2 . Maximum dist from L1 line

6 Wd ← empty array
7 foreach (qs,qe,gs,ge) ∈W do . Process walks
8 c← (gs−qs)

9 d← |(c− cL1) ·
√

2/2| . Distance from the median line
10 if d ≤ dL1 then . Considering only hits within dL1 to ignore big outliers
11 Wd ← Append d

12 dint ← 3 ·∑|Wd |
i=1 |Wd [i]|/|Wd | . Calculate the confidence interval only on hits within dL1

13 return (cL1,dint)

66

Overlap

Figure 4.5: Filtering of seed matches using LCSk and L1 regression. Anchors are chained into a mono-
tonically increasing sequence, with outliers trimmed using L1 regression, to get an approximate align-
ment.

Algorithm 8: Filtering walks using L1 linear regression
Input: A complete set of graph mapping walksW , intercept of the L1 line cL1, confidence interval dint of

walk distances around the L1 line, length of the read sequence |q| and error rate e
Output: A set of walksWL1 fromW within L1

Function L1FILTERING(W,cL1,dint , |q|,e) begin
1 WL1← /0
2 foreach (qs,qe,gs,ge) ∈W do
3 c← (gs−qs)

4 d← |(c− cL1) ·
√

2/2| . Distance from the median line
5 if d ≤ dint then
6 WL1←WL1∪ (qs,qe,gs,ge)

7 returnWL1

fmlen =
mlen

T
, (4.5)

fcb = min(
ncb

mlen(1− e)
,1), (4.6)

fT = min(
lnT
lnQ

,1), (4.7)

67

Overlap

where Q is the length of the reference sequence (query in our previous definition). The overall

quality of the alignment in a region is then calculated as the product of the normalized scores

(Algorithm 10, line 10):

f = fdint fmlen fcb fT . (4.8)

Algorithm 9: Calculate the number of bases covered by anchors
Input: A set of anchorsW
Output: Number of bases covered by anchors ncb for the given region

Function CALCCOVEREDBASES(W) begin
1 ncb← 0
2 foreach (qs,qe,gs,ge) ∈W do
3 ncb← ncb +(qe−qs)

4 return ncb

Algorithm 10: Calculate quality measures for a region
Input: A set of anchorsWa, total length of the reference sequences lenR, length of the read |q|, confidence

interval dint of anchor distances around the L1 line and error rate e
Output: Quality factor f and the number of bases covered by anchors ncb for the given region

Function CALCREGIONQUALITY(Wa, lenR, |q|,dint ,e) begin
1 SortWa = [(qs,qe,gs,ge)] in ascending order of qs
2 (qs,min,qe,min,gs,min,ge,min)←Wa[0]
3 (qs,max,qe,max,gs,max,ge,max)←Wa[|Wa|−1]
4 mlen← (qe,max−qs,min) . Calc. maximum span of anchors

5 ncb←CalcCoveredBases(Wa)

6 fdint ←max(0,1−dint/(e · |q|/
√

2))
7 fmlen ← mlen/|q|
8 fncb ←min(ncb/(mlen · (1− e)),1)
9 f|q|←min(ln(|q|)/ ln(lenR),1)

10 f ← fdint · fmlen · fncb · f|q|

11 return (f ,ncb)

Stage V: Construction of final alignment

After all selected regions have been processed they are sorted by the f value. The region

with the highest value fmax is selected for the final alignment. The default settings for GraphMap

use an implementation of Myers’ bit-vector algorithm for fast alignment [38]. GraphMap also

allows users a choice of aligners, including an implementation of Gotoh’s semi-global align-

ment algorithm [25], as well as an option to construct anchored alignments (Algorithm 1, lines

19 and 28; Algorithm 11; Algorithm 12). Specifically, in the anchored approach, anchors from

the LCSk step are chained and clustered, and alignments within and between cluster endpoints

computed using Myers’ bit-vector alignment (extensions to read ends are done in a semiglobal

manner). Clustering is done by collecting neighbouring anchors where the distance between

two anchors is less than a user defined threshold pq,max (Algorithm 11, lines 10 and 13), and

68

Overlap

the maximum distance between the two anchor’s diagonals (indel gap) is less than pi,max = e ·d,

where e is the expected error rate in the data and d is the distance between the endpoints of the

two anchors (Algorithm 11, lines 11− 13). Clusters with very few bases (Algorithm 11, lines

20−26) were discarded for this purpose as they were found to reduce alignment accuracy.

GraphMap allows users to output all equally or similarly good secondary alignments by

specifying an ambiguity factor F in the range [0,1] and using that to select regions which have

ncb ≥ (1−F)ncb,best , where ncb,best is the number of bases covered by anchors in the region

with the maximum f value (Algorithm 1, lines 24− 29). We denote the count of regions with

ncb above the ambiguity threshold as Na.

Algorithm 11: Filtering walks by chaining
Input: A complete set of graph mapping walksW , maximum expected error rate e, maximum allowed

distance pq,max between walks to chain them, minimum number of walks cmin_walks and minimum
number of covered bases cmin_cb in a chain to retain the chain

Output: A set of walksWchained

Function FILTERBYCHAINING(W,e, pq,max,cmin_walks,cmin_cb) begin
1 SortW = [(qs,qe,gs,ge)] in ascending order of parameters
2 C ← empty array . Single chain
3 Call ← empty array . An array of all chains
4 for i = 0 to (|W|−1) do
5 if |C|= 0 then
6 C ← AppendW[i]
7 continue

8 (qs,i,qe,i,gs,i,ge,i)←W[i]
9 (qs,i+1,qe,i+1,gs,i+1,ge,i+1)←W[i+1]

10 pq← qs,i+1−qe,i . Distance between the walks in q coordinates
11 pi← |(qe,i−ge,i)− (qs,i+1−gs,i+1)| ·

√
2/2 . Distance between diagonals

12 pi,max← e ·
√

(qs,i+1−qe,i)2− (gs,i+1−ge,i)2 . Maximum allowed (indel) dist between diagonals
13 if pq < pq,max and pi < pi,max then
14 C ← AppendW[i]

15 else
16 Call ← Append C
17 C ← empty array . Single chain
18 C ← AppendW[i]

19 Wchained ← /0
20 foreach C ∈ Call do
21 ncb← 0
22 foreach (qs,qe,gs,ge) ∈ C do
23 ncb← ncb +(qe−qs)

24 if |C| ≤ cmin_walks and ncb < cmin_cb then
25 continue

26 Wchained ←Wchained ∪C

27 returnWchained

Mapping quality

Since the region filtering process in GraphMap maintains a large collection of possible map-

69

Overlap

Algorithm 12: Align a read to a processed region using semiglobal or anchored (global)
dynamic programming (DP) alignment

Input: Region sequence g, read sequence q, set of anchorsWa, intercept of the L1 line cL1, error rate e and
a parameter P specifying the alignment type (semiglobal or anchored)

Output: Alignment a of the read q to the region g

Function ALIGN(g,q,Wa,cL1,e,P) begin
1 SortWa = [(qs,qe,gs,ge)] in ascending order of qs

2 ifWa = /0 then
3 return /0

4 A← /0
5 if P = semiglobal then
6 (qs,min,qe,min,gs,min,ge,min)←Wa[0]
7 (qs,max,qe,max,gs,max,ge,max)←Wa[|Wa|−1]
8 gsg,start ← gs,min− e · |q| . Start position on region for semigl. alignment
9 gsg,end ← gs,max + e · |q| . End position on region for semigl. alignment

10 A← DP semiglobal alignment between g[gsg,start · · ·gsg,end] and q

11 else if P = anchored then
12 (qs,0,qe,0,gs,0,ge,0)←Wa[0]
13 A←A∪ DP semiglobal alignment between g[0 · · ·gs,0] and q[0 · · ·qs,0]

14 (qs,|Wa|−1,qe,|Wa|−1,gs,|Wa|−1,ge,|Wa|−1)←Wa[|Wa|−1]
15 A←A∪ DP semiglobal alignment between g[ge,|Wa|−1 · · · |g|] and q[qe,|Wa|−1 · · · |q|]

16 for i = 0 to (|Wa|−1) do
17 (qs,i,qe,i,gs,i,ge,i)←Wa[i]
18 A←A∪ DP global alignment between g[gs,i · · ·ge,i] and q[qs,i · · ·qe,i] . Align an anchor
19 if i < (|Wa|−1) then . Align in-between anchors
20 (qs,i+1,qe,i+1,gs,i+1,ge,i+1)←Wa[i+1]
21 A←A∪ DP global alignment between g[ge,i · · ·gs,i+1] and q[qe,i · · ·qs,i+1]

22 return A

ping positions on the given reference, it enables meaningful calculation of the mapping quality

directly from its definition:

Q =−10log p, (4.9)

where p is the probability of the read being mapped to the wrong position. We calculate p

simply as p = max(10−4,1− 1
Na
), i.e. "max" Q = 40, and report quality values according to the

SAM format specification.

E-value

For each reported alignment, GraphMap calculates the E-value which is given as a custom

"ZE" parameter in the output SAM file. Following the approach used in BLAST, we rescore

alignments and use pre-calculated Gumbel parameters to compute E-values in the same way as

in BLAST (default parameters from BLAST: match = 5, mismatch = −4, gapopen = −8 and

gapextend =−6).

70

Overlap

Datasets

Publicly available sequencing datasets

For evaluating GraphMap and other tools, we used nine publicly available MinION sequenc-

ing datasets and 49 synthetic datasets. The nine publicly available MinION sequencing datasets

include a lambda phage dataset, three E. coli datasets (each produced with a different version

of MinION chemistry), reads for S. enterica Typhi, A. bayalyi ADP1 and B. fragilis BE1, and a

dataset consisting of three amplicons from the human genome, as detailed below:

1. Lambda phage burn-in dataset [71]. The dataset consists of 40552 reads in total (211Mbp

of data), generated using an early R6 chemistry. The reference genome (NC_001416) is

49kbp long giving an expected coverage of > 4300.

2. E. coli K-12 MG1655 R7 dataset [123]. The dataset has 111128 reads (668Mbp) provid-

ing 144 coverage of a 4.6Mbp genome (U00096.2).

3. E. coli K-12 MG1655 R7.3 dataset [123]. The dataset has 70531 reads (311Mbp) provid-

ing 67 coverage of the genome (U00096.2).

4. E. coli K-12 MG1655 SQK-MAP006-1 dataset. The dataset consists of 116635 reads

(1.06Gbp) providing 228 coverage of the genome (U00096.2). Sequencing was per-

formed in four runs: two with natural DNA, and two with a low-input library that includes

a PCR step. The dataset used in this paper consists of the first natural DNA run (MAP006-

1; http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/).

5. E. coli UTI89 available on European Nucleotide Archive, accession code ERX987748.

The dataset consists of one run of 9048 reads (36Mbp of data), providing 7.4 coverage of

the genome (NC_007946.1. f a reference, 5.1Mbp genome). The dataset is composed of

pass 2D reads and their template and complement sequences.

6. S. enterica Typhi dataset [65]. The dataset is composed of two runs of strain H125160566

(16401 reads and 6178 reads respectively) and one run of strain 08-04776 (10235 reads).

When combined, this dataset consists of 32814 reads (169Mbp) which amounts to 35

coverage of a closely related reference sequence, S. enterica Typhi Ty2 (NC_004631.1;

4.8Mbp genome).

7. A. baylyi ADP1 dataset [69]. The dataset consists of 66492 reads (205Mbp) providing 57

coverage of a 3.6Mbp genome (NC_005966.1).

8. B. fragilis BE1 dataset [68]. The dataset consists of 21900 reads (141Mbp) providing 27

coverage of a 5.2Mbp genome (LN877293.1 assembly scaffold).

9. Amplicon sequencing of human HLA-A, HLA-B and CYP2D6 genes [131]. The dataset

contains 36779 reads in total. As a reference, chromosomes 6 and 22 from hg19 GRCh37

H. sapiens reference were used [131].

71

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

Overlap

Synthetic datasets

Synthetic Illumina reads were generated using the ART simulator [132] (150bp single-end)

and PacBio CLR reads using the PBSIM simulator [133] (with default settings). For synthetic

MinION data we adopted PBSIM (as no custom ONT simulators exist currently) and used pa-

rameters learnt from LAST alignments (to avoid bias towards GraphMap) with E. coli K-12

R7.3 data (Appendix B, Table B.8). Reads were simulated (n = 1000) for six reference se-

quences: N. meningitidis serogroup A strain Z2491 (1 chromosome, 2.2Mbp, NC_003116.1),

E. coli K-12 MG1655 (1 chromosome, 4.6Mbp, U00096.2), S. cerevisiae S288c (16 chromo-

somes, 12Mbp), C. elegans (6 chromosomes, 100Mbp), H. sapiens Chromosome 3 (198Mbp,

GRCh38, CM000665.2) and the entire H. sapiens genome (24 chromosomes and mitochondrial

DNA, 3.1Gbp, GRCh38).

To estimate GraphMap’s scalability with respect to error rate and read length,

25 additional datasets were simulated from the S. cerevisiae S288C reference, for

each pair (e,L) of error rate e ∈ {5%,10%,15%,20%,25%} and read lengths L ∈
{1”kbp”,2”kbp”,3”kbp”,4”kbp”,5”kbp”} (n = 10000).

Evaluation methods

Performance on synthetic data

Mappers were evaluated for precision and recall in meeting two goals:

1. Finding the correct mapping location - a read was considered correctly mapped if its map-

ping position was within ±50bp of the correct location. In case an alignment contained

soft- or hard-clipped bases, the number of clipped bases was subtracted from the reported

alignment position to compensate for the shift.

2. Reporting the correct alignment at a per-base-pair level - a base was considered correctly

aligned if it was placed in exactly the same position as it was simulated from. Unaligned

reads and soft- or hard-clipped portions of aligned reads were not taken into account for

precision calculation. Recall was calculated with respect to all simulated bases in reads.

Parameter settings for mappers.

BWA-MEM was evaluated with the nanopore setting ("-x ont2d") unless otherwise stated

(version:bwa-0.7.12-r1034, commit: 1e29bcc). BLASR was evaluated with the options

"-sam -bestn 1" (version: 1.3.1, commit: f 7b f 1e5) and in addition for the database search

we set more stringent parameters ("-minMatch 7 -nCandidates 1"). LAST was run with a

commonly used nanopore setting [123] ("-q 1 -r 1 -a 1 -b 1"; version: 475). BLAST (version:

ncbi-blast-2.2.30+-x64-linux) was run with default settings for Illumina data and a more

suitable nanopore setting [134] "-reward 5 -penalty -4 -gapopen 8 -gapextend 6 -dust no" for

ONT and PacBio data. GraphMap (version: v0.21, commit: 0bd0503) was run with default

settings. In addition, for circular genomes we used the "-C" option, anchored alignment for

72

Overlap

calling structural variations ("-a anchor") and E-value filtering ("-z 1e0") for database search

and variant calling. marginAlign [15] was run with the "–em" option on each dataset to

estimate the correct parameters since data quality varied across datasets (commit: 10a7a41).

In the case of simulations, the model parameters were first calculated for every simulated

data type using a sample dataset, and then marginAlign was run using corresponding models.

Furthermore, since marginAlign is a realigner and uses a mapper for seeding the alignment

position, we forked and expanded marginAlign to create a version that uses GraphMap instead

of LAST as its seed mapper. Our modified version of marginAlign is available on GitHub:

https://github.com/isovic/marginAlign (commit: d69264d). The modified version of

marginAlign was also used with the "–em" option, with the additional parameter "–graphmap"

to use GraphMap. We also compared against DALIGNER (commit: d4aa487). For synthetic

data, DALIGNER was tested using three combinations of parameters: default, "-e.7 -k10" and

"-e.7 -k9". As "-e.7 -k10" was found to have the best results for synthetic ONT data (Appendix

B, Tables B.1, B.2, B.3 and B.4), it was used for all tests on real nanopore data.

Consensus calling using MinION data

Consensus was called using a simple majority vote of aligned bases, insertion and deletion

events (insertion sequences were taken into account while counting events) and positions with

< 20 coverage were not called. Our consensus caller is implemented in a script "consensus.py"

that is freely available at https://github.com/isovic/samscripts. All reads were mapped

to just the corresponding reference and analyzed to determine consensus sequences. The E.

coli K-12 reference was mutated using Mutatrix (https://github.com/ekg/mutatrix) with

parameters "–snp-rate 0.0006 –population-size 1 –microsat-min-len 0 –mnp-ratio 0 –indel-rate

0.0067 –indel-max 10" to emulate the draft nanopore-only assembly reported by Loman et al.

[135] (≈ 3750 SNPs and ≈ 42500 indels). Real nanopore reads were mapped to the mutated

reference, and consensus variants (from "consensus.py") were used to construct a consensus

sequence with GATK’s FastaAlternateReferenceMaker tool (GATK version 3.4-46). Consensus

sequences were compared to the original reference using nucmer and dnadiff [126] (MUMmer

3.0). Positions ±2bp from the mutated position were also considered in calculating consen-

sus errors in mutated positions to account for alignment uncertainty in homopolymer sequences.

Benchmarking mappers for pathogen identification

Bacterial genomes related to a list of water-borne pathogens were selected from NCBI’s

bacterial database to construct a database of 259 genomes (550Mbp). MinION sequencing

datasets from cultured isolates were used as proxy for sequencing of pathogen-enriched clinical

samples (using data for E. coli K-12 R7.3, S. enterica Typhi and E. coli UTI89, as specified

earlier). This is a simple test case as real samples are likely to have contamination from other

73

https://github.com/isovic/marginAlign
https://github.com/isovic/samscripts
https://github.com/ekg/mutatrix

Overlap

sources as well (e.g. human DNA). We mapped these three read datasets to the database

of bacterial genomes using each of the mappers to find unique alignments and test if these

could help identify the correct species and strain. For BWA-MEM, LAST, marginAlign and

DALIGNER, we chose the best alignment based on alignment score (as long as alignment

score and mapping quality were greater than 0) and for GraphMap and BLASR we used the

unique reported alignment (mapping quality > 0). Since marginAlign and DALIGNER do not

report the alignment score in their output, we rescored their alignments (parameters match = 1,

mismatch =−1, gapopen =−1 and gapextend =−1) to make them comparable.

Single nucleotide variant calling

All 2D reads from Ammar et al. [131] were mapped to the human genome (GRCh37.p13;

chr 6 and 22) and for each read only the alignment with the highest alignment score (AS)

was kept. To avoid chimeric reads as reported in the original study only reads that fully

spanned the amplicon regions were used for this analysis. Variants were called using LoFreq

[66] (version: 2.1.2) with the parameters "-a 0.01 -q 0 -Q 0 –no-default-filter". A custom

caller for marginAlign (marginCaller) was also used to call SNVs. The detected SNVs were

then compared with known variants from dbSNP and a high-confidence set for NA12878

[136] (the sequenced sample; ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_

9606_b141_GRCh37p13/VCF/All.vcf.gz; ftp-trace.ncbi.nih.gov/giab/ftp/data/

NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_131103_allcall_

UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz) to identify true

positives and false positives.

Structural variation detection

We modified the E. coli K-12 MG1655 reference by induc-

ing 20 SV events (10 insertions and 10 deletions) of different sizes:

100bp,300bp,500bp,1000bp,1500bp,2000bp,2500bp,3000bp,3500bp,4000bp. All 2D

reads from both E. coli K-12 datasets (R7 and R7.3) were combined and mapped. SVs were

detected by simple consensus vote of indel events reported in spanning alignments (≥ 20 bases

to avoid sequencing errors). In the absence of a sophisticated SV caller for nanopore data we

used a simple rule that identifies windows where > 15% of the reads at each position report an

insertion (or deletion) event (at least 5 reads). To avoid fragmented events due to a local drop in

allele frequency, windows which were less than window-length apart (max of the two windows)

were merged. A detected event was considered a true positive if its size was within a 25%

margin of the true size and its start and end locations were less than 25% of event size away

from the true locations. LUMPY [137] (version: 0.2.11) was used for testing the use of split

read alignments. The script "extractSplitReads_BwaMem" provided with LUMPY was used to

74

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b141_GRCh37p13/VCF/All.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b141_GRCh37p13/VCF/All.vcf.gz
ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz)
ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz)
ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz)

Overlap

extract split reads from BWA-MEM alignments. As the default setting ("minNonOverlap=20")

did not report any results, the script was run with the setting "minNonOverlap=0" to allow split

alignments to be adjacent on the read.

4.1.2 Results

GraphMap maps reads accurately across error profiles

GraphMap was designed to be efficient while being largely agnostic of error profiles and

rates. To evaluate this feature a wide range of synthetic datasets were generated that capture the

diversity of sequencing technologies (Illumina, PacBio, ONT 2D, ONT 1D) and the complexity

of different genomes (Figure 4.6, Appendix B Figure B.1a). GraphMap’s precision and recall

were then measured in terms of identifying the correct read location and in reconstructing the

correct alignment to the reference (Section 4.1.1). These were evaluated separately as, in prin-

ciple, a mapper can identify the correct location but compute an incorrect alignment of the read

to the reference. To provide for a gold-standard to compare against, BLAST [30] was used as

a representative of a highly sensitive but slow aligner which is sequencing technology agnostic.

On synthetic Illumina and PacBio data, GraphMap’s results were found to be comparable to

BLAST (Appendix B, Section B.1) as well as other mappers (Appendix B, Tables B.1, B.2).

On synthetic ONT data, we noted slight differences (< 3%) between BLAST and GraphMap,

but notably, GraphMap improved over BLAST in finding the right mapping location in some

cases (e.g. for N. meningitidis ONT 1D data; Figure 4.6a). GraphMap’s precision and recall in

selecting the correct mapping location were consistently > 94%, even with high error rates in

the simulated data. Unlike other mappers, GraphMap’s results were obtained without tuning
parameters to the specifics of the sequencing technology.

Constructing the correct alignment was more challenging for synthetic ONT datasets and

correspondingly the percentage of correctly aligned bases with GraphMap (70%) is similar

to the number of correct bases in the input data. The use of alternate alignment algorithms

and parameters did not alter results significantly (Appendix B, Table B.9), though the use of

a maximum-likelihood based realigner (marginAlign [15]) improved both alignment precision

and recall (Appendix B, Table B.2). The use of marginAlign as a realigner did not improve on

GraphMap’s ability to identify the correct genomic location (Appendix B, Table B.1). These

results highlight GraphMap’s ability to identify precise genomic locations based on robust align-

ments without the need for customizing and tuning alignment parameters to the unknown error

characteristics of the data.

For read to reference alignment, programs such as BLAST provide high sensitivity and

can be feasible for small genomes, but can quickly become infeasible for larger genomes (e.g.

runtime for C. elegans or the human genome; Appendix B, Table B.3). Read mappers such as

BWA-MEM and BLASR provide a different tradeoff, scaling well to large genomes but with

75

Overlap

(a) Comparison of GraphMap and BLAST on simulated nanopore data.

(b) Comparison of state-of-the-art methods on simulated nanopore data.

Figure 4.6: Evaluating GraphMap’s precision and recall on synthetic ONT data. a) GraphMap (shaded
bars) performance in comparison to BLAST (solid bars) on ONT 2D and 1D reads. Genomes are ordered
horizontally by genome size from smallest to largest. For each dataset, the graph on the left shows
performance for determining the correct mapping location (within 50bp; y-axis on the left) and the one
on the right shows performance for the correct alignment of bases (y-axis on the right; see 4.1.1 Methods
section). b) Precision and recall for determining the correct mapping location (within 50bp) for various
mappers on synthetic ONT 1D reads.

low sensitivity and precision for high error rates (Figure 4.6b, Appendix B, Tables B.1, B.2

and B.3). This could partly be due to specific parameter settings as is the case for BLASR,

which was designed for PacBio data. Mappers such as BWA-MEM on the other hand, have

different settings optimized for different sequencing technologies (Appendix B, Figure B.1b).

Despite this, BWA-MEM’s performance degrades rapidly even in the ONT setting (Figure

4.6b), providing precision and recall < 25% for mapping to the human genome (Appendix

B, Table B.1). DALIGNER [105], a highly sensitive overlapper which additionally supports

read mapping, also provided precision and recall that degraded quickly with read error rate and

genome size (Figure 4.6b; Appendix B, Table B.1). LAST, originally designed for aligning

genomes, fared better in these settings, but still exhibits lower recall for large genomes (30%

reduction compared to GraphMap; Figure 4.6b) and precision < 54% for mapping to the human

76

Overlap

genome (Appendix B, Table B.1). The use of a realigner (marginAlign) generally improved

alignment precision and recall but results for finding the correct genomic location were similar

to that of the original mapper (marginAlign uses LAST by default). GraphMap was the only

program that uniformly provided high sensitivity and recall (Figure 4.6b), even for mapping

to the human genome, while scaling linearly with genome size (Appendix B, Figure B.1c;

Tables B.1, B.2, B.3 and B.4). Experiments with a range of read lengths and error rates also

demonstrate that GraphMap scales well across these dimensions (runtime and memory usage;

Appendix B, Table B.10), though mapping to large genomes currently requires the use of large

memory systems (≈ 100GB for human genome). Extrapolating this, mapping data from a

MinION run of 100000 reads to the human genome should take < 5 hours and < $7 on an

Amazon EC2 instance (r3.4xlarge) using GraphMap.

Sensitivity and mapping accuracy on nanopore sequencing data

GraphMap was further benchmarked on several published ONT datasets against mappers

and aligners that have previously been used for this task (LAST, BWA-MEM and BLASR; see

4.1.1 Methods section), as well as a highly sensitive overlapper for which we tuned settings

(DALIGNER; see 4.1.1 Methods section). In the absence of ground truth for these datasets,

mappers were compared on the total number of reads mapped (sensitivity), and their ability to

provide accurate (to measure precision of mapping and alignment) as well as complete con-

sensus sequences (as a measure of recall). Overall, as seen in the simulated datasets, LAST

was the closest in terms of mapping sensitivity compared to GraphMap, though GraphMap

showed notable improvements. The differences between GraphMap and LAST were appar-

ent even when comparing their results visually, with LAST alignments having low consensus

quality even in a high coverage setting (Figure 4.7a, plot generated using IGV [138]). Across

datasets, GraphMap mapped the most reads and aligned the most bases, improving sensitivity

by 10− 80% over LAST and even more compared to other tools (Figure 4.7b; Appendix B,

Figure B.2; Section B.2). This led to fewer uncalled bases compared to LAST, BWA-MEM,

BLASR, DALIGNER and marginAlign even in an otherwise high-coverage dataset (Figures

4.7c and 4.7d). In addition, GraphMap analysis resulted in > 10-fold reduction in errors on

the lambda phage and E. coli genome (Figure 4.7c) and reported less than 40 errors on the E.

coli genome compared to more than a 1000 errors for LAST and BWA-MEM (Figure 4.7d).

With ≈ 80 coverage of the E. coli genome, GraphMap mapped ≈ 90% of the reads and called

consensus bases for the whole genome with < 1 error in 100000 bases (Q50 quality). The next

best aligner i.e. LAST did not have sufficient coverage (20) on > 7000 bases and reported con-

sensus with a quality of ≈ Q36. BWA-MEM aligned less than 60% of the reads and resulted in

the calling of > 200 deletion errors in the consensus genome. Similar results were replicated in

other genomes and datasets as well (Appendix B, Figure B.2).

77

Overlap

(a) IGV comparison of LAST and GraphMap align-
ments on Lambda R6 data.

(b) Comparison of mapped coverage between dif-
ferent mappers and across two datasets.

(c) Consensus calling errors on the Lambda phage
dataset.

(d) Consensus calling errors on the E. Coli K-12
dataset.

Figure 4.7: Sensitivity and mapping accuracy on nanopore sequencing data. a) Visualization of
GraphMap and LAST alignments for a lambda phage MinION sequencing dataset (using IGV). Grey
columns represent confident consensus calls while colored columns indicate lower quality calls. b)
Mapped coverage of the lambda phage and the E. coli K-12 genome (R7.3 data) using MinION se-
quencing data and different mappers. c) Consensus calling errors and uncalled bases using a MinION
lambda phage dataset and different mappers. d) Consensus calling errors and uncalled bases using a
MinION E. coli K-12 dataset (R7.3) and different mappers.

As another assessment of mapping and alignment accuracy, error profiles of 1D and 2D ONT

reads were computed for GraphMap and compared to those for LAST and marginAlign. As ob-

served before [15], substantial variability in the shape and modes of error rate distributions were

seen across different mappers, though GraphMap’s alignments resulted in lower mismatch rate

estimates compared to LAST (Appendix B, Figure B.3). GraphMap’s distributions were also

more similar to those of marginAlign (used as a reference standard), indicating that GraphMap

mapping and alignments are at least as accurate as those from LAST. Overall, deletion and

mismatch rates for ONT data were observed to be higher than insertion rates, a pattern distinct

from the low mismatch rates seen in PacBio data [133] and explaining why mappers tailored

for PacBio data may not work well for ONT data (Appendix B, Figure B.3).

78

Overlap

Note that the consensus calling results reported here are not comparable to those for

programs such as Nanopolish [135] and PoreSeq [139], that solve the harder problem of

correcting the consensus in the presence of assembly and sequencing errors. To account for

a "reference bias", where an error-free reference may preferentially enable some programs to

report alignments that give an accurate consensus, consensus calling was repeated on a mutated

reference (see see 4.1.1 Methods section). Overall, GraphMap was observed to have similar

behavior as other mappers in terms of reference bias, with comparable number of errors (SNPs,

insertions and deletions) in mutated and non-mutated positions (Appendix B, Table B.11).

These results further confirm that GraphMap’s high sensitivity does not come at the expense of

mapping or alignment accuracy. In terms of runtime requirements, GraphMap was typically

more efficient than BWA-MEM and slower than LAST on these datasets (Appendix B, Table

B.12). Memory requirements were typically < 5GB, with GraphMap and BWA-MEM being

intermediate between LAST/BLASR (least usage) and marginAlign/DALIGNER (most usage;

Appendix B, Tables B.5 and B.6). Analysis of reads that were only mapped by GraphMap when

compared to those that were mapped by both GraphMap and LAST revealed characteristics of

reads that are more amenable to GraphMap analysis. In particular, these reads were found to be

slightly shorter on average (3.4kbp vs 5.7kbp), more likely to have windows with higher than

average error rate (27% vs 14%), and have a greater proportion of 1D reads (90% vs 76%; E.

coli R7.3 dataset). Overall, GraphMap provided improved sensitivity of mapping on all ONT

datasets (Appendix B, Section B.2), without sacrificing alignment accuracy.

SNV calling in the human genome with high precision

Diploid variant calling using ONT data has multiple potential hurdles including the lack of

a dedicated read mapper or diploid variant caller for it [139]. Not surprisingly, a recent report

for calling single nucleotide variants (SNVs) from high-coverage targeted sequencing of the

diploid human genome reported that existing variant callers were unable to call any variants and

a naive approach requiring 1/3 of the reads to support an allele could lead to many false positive

variants [131]. To evaluate if improved read mappings from GraphMap could increase sensi-

tivity and precision, data reported in Ammar et al. [131] was reanalyzed using a rare variant

caller (LoFreq [66]) that is robust to high error rates, and compared against a set of gold stan-

dard calls [140] for this sample (NA12878). Targeted nanopore sequencing reads were mapped

by GraphMap to the correct location on the human genome with high specificity, despite the

presence of very similar decoy locations (94% identity between CYP2D6 and CYP2D7 [131];

Appendix B, Figure B.4). GraphMap provided the most on-target reads, aligning 15− 20%

more reads than the next best mapper (BWA-MEM) for the three amplified genes (CYP2D6,

HLA-A, HLA-B; Appendix B, Figure B.4). These were then used to call heterozygous variants

in these challenging regions of the human genome with high precision (96% with GraphMap;

79

Overlap

Table 4.1). GraphMap alignments identified many more true positive SNVs than other mappers,

with comparable or higher precision (76% improvement compared to BWA-MEM and LAST)

and a 15% increase in sensitivity over DALIGNER, which has slightly lower precision (93%;

Table 4.1). While the use of a custom variant caller for marginAlign (marginCaller) improved

its results in terms of sensitivity, it came at the expense of low precision (36%; Table 4.1).

Subsampling GraphMap mappings to the same coverage as BWA-MEM provided comparable

results (42 vs 47 true positives and 2 vs 2 false positives) indicating that GraphMap’s improved

mapping sensitivity (2 compared to other mappers) played a role in these results. The ability to

sensitively and precisely call SNVs with GraphMap, provides the foundation for reconstructing

haplotypes with long reads, and opens up the investigation of complex and clinically important

regions of the human genome using nanopore sequencing.

Table 4.1: Comparison of various mappers for single nucleotide variant calling. Results are based on
amplicon sequencing data for a human cell line (NA12878) for the genes CYP2D6, HLA-A and HLA-
B. Precision values are likely to be an underestimate of what can be expected genome-wide due to the
repetitive nature of the regions studied and the incompleteness of the gold-standard set. Results for
marginAlign using marginCaller are shown in parentheses.

LAST marginAlign BWA-
MEM

BLASR DALIGNER GraphMap

Precision (%) 94 100 (36) 96 100 93 96

True Positives 49 1 (107) 47 43 75 86

GraphMap enables sensitive and accurate structural variant calling

Long reads from the MinION sequencer are, in principle, ideal for the identification of

large structural variants (SVs) in the genome [141], but existing mappers have not been

systematically evaluated for this application [65]. Read alignments produced by mappers

are a critical input for SV callers. To compare the utility of various mappers, their ability to

produce spanning alignments or split alignments indicative of a structural variation (insertions

or deletions) was evaluated using real E. coli data mapped to a mutated reference. As shown in

Table 4.2, mappers showed variable performance in their ability to detect SVs through spanning

alignments. In comparison, GraphMap’s spanning alignments readily detected insertions and

deletions over a range of event sizes (100bp− 4kbp), providing perfect precision and a 35%

improvement in recall over the next best mapper (BLASR; Table 4.2). LAST alignments

were unable to detect any events under a range of parameter settings but post-processing

with marginAlign improved recall slightly (5%; Table 4.2). BWA-MEM alignments natively

provided 10% recall at 67% precision. Post-processing BWA-MEM alignments with LUMPY

improved recall to 45%, using information from split reads to predict events. GraphMap

produced spanning alignments natively that accurately demarcated the alignment event and did

this without reporting any false positives (Figures 4.8a and 4.8b, Table 4.2).

80

Overlap

(a) GraphMap-detected 300bp deletion in the dataset.

(b) GraphMap-detected 4kbp deletion in the dataset.

Figure 4.8: Structural variant calling using nanopore sequencing data and GraphMap. An IGV view of
GraphMap alignments that enabled the direct detection of a 300bp deletion (delineated by red lines). b)
GraphMap alignments spanning a ≈ 4kbp deletion (delineated by red lines).

Sensitive and specific pathogen identification with ONT data

Due to its form factor and real time nature, an application of MinION sequencing that has

garnered interest in the community is in the identification of pathogens in clinical samples.

Sequencing errors (particularly in 1D data) and the choice of read mapper could significantly

influence results in such an application and lead to misdiagnosis. GraphMap’s high specificity

in read mapping as seen in the results for Ammar et al. (Appendix B, Figure B.4) suggested

that it could be useful in this setting. Clonal sequencing data on the MinION and a database of

microbial genomes was used to create several synthetic benchmarks to evaluate the performance

81

Overlap

Table 4.2: Comparison of various mappers for structural variant calling. Results are based on mapping
a MinION dataset for E. coli K-12 (R7.3) on a mutated reference containing insertions and deletions
in a range of sizes ([100bp,300bp,500bp,1kbp,1.5kbp,2kbp,2.5kbp,3kbp,3.5kbp,4kbp]; 20 events in
total). Bold values indicate the best results for each metric. The F1 score is given by a weighted average
of precision and recall. Values in parentheses for BWA-MEM show the results using LUMPY.

LAST marginAlign BWA-
MEM

BLASR DALIGNER GraphMap

Precision (%) 0 50 67 (90) 94 0 100

Recall (%) 0 5 10 (45) 75 0 100

F1 Score (%) 0 9 17 (60) 83 0 100

of various mappers for this application. For species level identification, all mappers reported

high precision (typically > 95%) but recall varied over a wide range from 20% to 90% (Table

4.3). GraphMap had the highest recall and F1 score in all datasets, providing an improvement

of 2−18% over other mappers. The improvement was more marked when a perfect reference

was not part of the database (e.g. S. enterica Typhi, Table 4.3) For this application, BWA-MEM

was the next best mapper while LAST and BLASR exhibited > 25% reduced recall compared to

GraphMap (Table 4.3). Not surprisingly, strain level identification using MinION data appears

to be much more difficult and in some cases a closely related strain can attract more reads

than the correct strain (Figure 4.9a). However, in the datasets tested, GraphMap assigned most

reads to a handful of strains that were very similar to the correct strain (Figures 4.9a and 4.9c;

99.99% identity for E. coli K-12 and BW2952). Moreover, the use of strain specific sequences

was able to unambiguously identify the correct strain from this subset (e.g. there were no reads

mapping to NC_012759.1 : 4.13Mbp−4.17Mbp, a region unique to BW2952), indicating that

this approach could be used to systematically identify pathogens at the strain level.

Table 4.3: Precision and Recall for species identification using MinION reads. Bold values indicate the
best results for each dataset and metric. Results for marginAlign were nearly identical to that of LAST
(within 1%) and have therefore been omitted.

E. coli K-12 (R7.3) S. enterica Typhi E. coli UTI89

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

BLASR 93 22 36 99 28 44 98 55 70

LAST 94 37 53 97 34 51 95 65 78

DALIGNER 80 10 17 99 28 43 98 55 71

BWA-MEM 94 47 63 98 45 61 98 85 91

GraphMap 95 51 67 97 56 72 99 88 93

82

Overlap

(a) E. Coli K-12 dataset. (b) S. Enterica Typhi dataset.

(c) E. Coli UTI89 dataset.

Figure 4.9: Species identification using nanopore sequencing data and GraphMap. Number of reads
mapping to various genomes in a database (sorted by GraphMap counts and showing top 10 genomes)
using different mappers (GraphMap, BWA-MEM, LAST, DALIGNER and BLASR) and three MinION
sequencing datasets for a) E. coli K-12 (R7.3) b) S. enterica Typhi and c) E. coli UTI89. Note that
GraphMap typically maps the most reads to the right reference genome (at the strain level) and the S.
enterica Typhi dataset is a mixture of sequencing data for two different strains for which we do not
have reference genomes in the database. Results for marginAlign were nearly identical to that of LAST
(within 1%) and have therefore been omitted.

83

Overlap

4.1.3 Discussion

The design choices in GraphMap, including the use of new algorithmic ideas such as gapped

spaced seeds, graph mapping and LCSk, provide a new tradeoff between mapping speed and

sensitivity that is well-suited to long nanopore reads. For mapping error-prone synthetic long

reads to the human genome, GraphMap was the only mapper that exhibited BLAST-like sen-

sitivity, while being orders of magnitude faster than BLAST. On nanopore sequencing data

from the MinION system, GraphMap was unmatched in terms of sensitivity, mapping more

than 90% of reads and 95% of bases on average. Compared to other mappers, this lead to

a 10− 80% increase in mapped bases (e.g. 18% increase on a recent MinION MkI dataset;

Appendix B, Section B.2). This is a significant improvement – typically mapping programs

are highly optimized and increase in sensitivity of even a few percentage points can be hard to

achieve. Additionally, sensitivity is a key requirement for mapping tools and mapping-based

analysis, as reads that cannot be mapped are unavailable for use in downstream applications.

A drawback of the current implementation of GraphMap is the requirement of large-memory

machines for mapping to large genomes (≈ 100GB for the human genome). The use of more

memory-efficient index structures (e.g. FM-index) can significantly reduce this requirement

(for a modest increase in runtime) and this option is currently under implementation.

GraphMap’s speed and sensitivity do not come at the expense of location and alignment

precision, as demonstrated by extensive experiments with synthetic and real datasets. For de-

termining the correct genomic location, GraphMap’s precision is typically greater than 98%

and it is able to distinguish between candidate locations that are more than 94% identical on

the human genome. For alignment precision, GraphMap’s performance scales according to se-

quencing error rate, is comparable to BLAST and other mappers (BWA-MEM, LAST, BLASR

and DALIGNER), and was observed to be robust to the choice of alignment algorithms and

parameters. GraphMap mappings provided a better starting point for the realigner marginAlign

[15] and should do so for consensus calling algorithms such as Nanopolish [135] and PoreSeq

[139] as well.

In general, GraphMap’s improved sensitivity should benefit a range of applications for

nanopore data and a few of these were explored in this study. In particular, variant calling

and species identification with error-prone data can be affected by errors in mapping and align-

ment. Despite the lack of custom variant callers, read mappings from GraphMap were shown

to provide sensitive and precise single-nucleotide variant calls on complex regions of the hu-

man genome. In addition, GraphMap alignments readily spanned insertions and deletions over

a wide range of sizes (100bp-4kbp) allowing for the direct detection of such events, without

assembly or split read analysis. With the development of new nanopore-specific variant calling

tools, GraphMap’s improved sensitivity should continue to provide a useful starting point for

these applications. Furthermore, GraphMap alignments were used to identify the species-level

84

Overlap

origin of reads with high precision and recall. The sensitivity of mapping with GraphMap can be

a key advantage in applications where MinION sequencing reads are used in real-time to iden-

tify pathogens [142], particularly in combination with rapid protocols for generating 1D reads

on the MinION. With further downstream processing, these read mappings could be used for

strain-level typing and characterization of antibiotic resistance profiles [142], meeting a critical

clinical need.

In principle, the approach used in GraphMap could be adapted for the problem of comput-
ing overlaps and alignments between reads. As was recently shown, nanopore sequencing

reads can be used to construct high-quality assemblies de novo [135] and sensitive hashing

techniques have been used for the assembly of large genomes [103]. GraphMap’s sensitivity

and specificity as a mapper could thus serve as the basis for fast computation of overlap
alignments and de novo assemblies in the future.

4.2 Owler - Overlap With Long Erroneous Reads

Encouraged by the results obtained with GraphMap, we took the initial design and modified

it to make it more suitable for sequence overlapping. Refactoring the GraphMap algorithm to

support sequence overlapping had two main goals set:

1. Sensitivity - Capturing as many true positive overlaps as possible even if this means that

precision is somewhat lower. False positive overlaps can arbitrarily be filtered in the

downstream analysis steps, while low sensitivity results are a permanent loss of informa-

tion which cannot be subsequently compensated [103].

2. Speed - To allow for fast de novo assemblies without error-correction, a raw read over-

lapper should take significantly less time than the typical (error-correction)+overlapping

approach.

Error-correction, although scales linearly with the genome size (Table 4.4), is a very time-

consuming process, and prohibitively slow for large-scale mammalian-sized genome analyses.

A fast and sensitive overlapper should have a dramatic impact on the entire de novo assembly

process by opening the possibility of avoiding the error-correction entirely.

In this section we develop two approaches to overlapping:

1. Based on the full GraphMap algorithm with slight modifications to allow overlapping and

skipping self-overlaps. This overlap procedure is slower, but allows full control over the

quality of the resulting overlaps through all parameters defined in GraphMap, including

the E-value and the mapping quality.

2. A trimmed GraphMap algorithm to allow for higher processing speeds, but offers less

control over the accuracy of the output.

85

Overlap

Table 4.4: Scalability of PBcR error-correction across three genomes of different sizes. The datasets
are composed of PacBio sequences of Lambda phage (http://www.cbcb.umd.edu/software/
PBcR/data/sampleData.tar.gz), E. Coli K-12 (https://github.com/PacificBiosciences/
DevNet/wiki/E.-coli-Bacterial-Assembly), and S. Cerevisiae W303 (https://github.com/
PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs),
subsampled to 40x coverage. Fraction of bases corrected reports the size of the dataset which was output
from the error-correction process compared to the initial, raw dataset.

Species Genome size CPU time [min] Fraction of bases
corrected

Lambda 48.5 kbp 11.29 71%

E. Coli K-12 4.6 Mbp 1337.51 82%

S. Cerevisiae W303 11.5 Mbp 3482.28 63%

4.2.1 Methods

Algorithm description

Overlapping based on the full GraphMap algorithm - "GraphMap overlap"

To allow for overlapping but still to employ the entire sensitivity of GraphMap, only two

slight modifications to the algorithm were made:

• In the region selection step, hits with qid >= tid would not be counted. Here, qid is the

ID of the read currently being analyzed (query), and tid ID of the target read, or, the read

where a seed from q has a hit. This slight change would disallow self-overlaps (when

qid = tid) and also reduce the redundant information (e.g. overlap between reads (2,3)

is the same as between reads (3,2); by skipping the second overlapping we increase the

execution speed by 2x).

• Implementing the MHAP output format for reporting overlaps

Other modifications were only in the form of tweaking parameters already present in

GraphMap:

• Enabling secondary alignments - a single read can be mapped multiple times (to all other

reads covering the region). By default, this option is turned off in GraphMap.

• Disable filtering by low mapping quality - large coverage datasets would always result in

mapq = 0, which is the default filter in GraphMap.

• Lowering the ambiguity threshold - by default allowed ambiguity is set low (2% from the

top result). Increasing this threshold will capture more divergent overlaps.

Overlap based on the trimmed pipeline - "Owler"

Owler mode (Overlap With Long Erroneous Reads) skips the graph-mapping and alignment

steps of GraphMap completely, and uses only one gapped spaced index. This mode of overlap-

ping is aimed at more accurate read sequences, such as Oxford Nanopore 2d and PacBio data.

86

http://www.cbcb.umd.edu/software/PBcR/data/sampleData.tar.gz
http://www.cbcb.umd.edu/software/PBcR/data/sampleData.tar.gz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs

Overlap

The full pipeline, shown in Algorithm 13, consists of the following steps:

1. Construct a gapped spaced index of the reads for only one shape (6-mers,

"1111110111111"), as described in Section 4.1.1 (Algorithm 13, line 1).

2. For a read, collect all gapped spaced seed hits (Algorithm 13, lines 5-11). Sort them

according to the ID of the target sequence (Algorithm 13, line 12).

3. For a single target sequence, perform the Longest Common Subsequence in k-length

substrings (LCSk) on the set of seeds (as described in Section 4.1.1) (Algorithm 13, lines

13-24).

4. Perform chaining of seeds which were left after LCSk to filter potential outliers (as de-

scribed in Section 4.1.1) (Algorithm 13, line 25).

5. If, for an overlap, certain lenient conditions are not met, filter the overlap (Algorithm 13,

lines 30-31; Algorithm 14). These conditions include: (I) checking whether the number

of bases covered by seeds is above a minimum threshold (Algorithm 14, lines 1-2), (II)

checking whether the overlap length is above some minimum threshold (Algorithm 14,

lines 7-8), (III) checking if the ratio of overlap lengths in both sequences is suspiciously

high (higher than expected error rate e) (Algorithm 14, lines 9-12), (IV) checking whether

the overlap has malformed start and end overhangs (e.g. there is a repeat in the middle

of two reads belonging to different genomic locations) (Algorithm 14, lines 13-14), (V)

checking whether there are large insertion/deletion events in-between seeds (structural

variants) (Algorithm 14, lines 15-21).

6. Form an overlap defined by: query ID, target ID, number of covered bases in the overlap,

number of seeds in overlap, query orientation, query start, query end, query sequence

length, target orientation, target start, target end, and target sequence length (Algorithm

13, line 32).

7. Output overlaps in MHAP or PAF formats.

4.2.2 Implementation and reproducibility

Owler was implemented in C++. Evaluation tools and scripts were developed in C++ and

Python. All tests were ran using Ubuntu based systems with two 8-core Intel(R) Xeon(R) E5-

2640 v2 CPUs @ 2.00GHz with Hyperthreading, using 16 threads where possible. Version of

methods used in comparison:

• Minimap - https://github.com/lh3/minimap.git, commit: 1cd6ae3bc7c7

• MHAP - https://github.com/marbl/MHAP, version 2.1, commit: 7d8b0c31a407

• DALIGNER - https://github.com/thegenemyers/DALIGNER, commit:

84133cbc0de4, DAZZ_DB commit: 70cb962a7 f 57

• BLASR - https://github.com/PacificBiosciences/blasr, commit:

f 7b f 1e56871d

87

https://github.com/lh3/minimap.git
https://github.com/marbl/MHAP
https://github.com/thegenemyers/DALIGNER
https://github.com/PacificBiosciences/blasr

Overlap

Algorithm 13: Owler algorithm
Input: Set of read sequences for indexingR, set of read sequences for querying Q, expected error rate e
Output: Set of overlaps O
Function OWLER(R,Q,e) begin

1 s← ”1111110111111”
2 I ←CreateGappedIndex(R,s)
3 O← /0 . Final set of overlaps

4 for qid = 0 to (|Q|−1) do . Process reads individually
5 q←Q[qid]
6 W ← /0 . A set of all hits
7 for i = 0 to (|q|− |s|) do . Process all k-mers of a read
8 hraw← q[i...(i+ s)]
9 T ←CollectHits(I,s,hraw)

10 foreach (tid , tpos) ∈ T do
11 W ←W∪ (i, i+ |s|, tpos, tpos + |s|, tid)

12 SortW = [(qs,qe, ts, te, tid)] in ascending order of tid
13 rid,prev← 0
14 for i = 0 to (|W|−1) do . Process all hits on the same target
15 (qs,qe, ts, te, tid)←W[i]
16 if i = 0 then
17 istart ← i
18 tid,prev← tid
19 continue

20 if tid 6= tid,prev then
21 Wt ← /0 . Set of hits for a particular target
22 foreach (qs,qe, ts, te, tid) ∈W[istart ...(i−1)] do
23 Wt ←Wt ∪ (qs,qe, ts, te) . Create a new set without tid
24 Wlcsk← LCSk(Wt)
25 Wa← FilterByChaining(Wlcsk,e,200,2,50) . Get anchors by chaining

26 revq← f alse
27 revr← tid,prev ≥ |R| . I indexed both fwd and rev.comp. ofR. For rev.comp. tid ≥ |R|
28 rid ← tid mod |R| . Actual index of the reference where the hit is
29 nk← |Wa| . Number of seeds
30 ncb←CalcCoveredBases(Wa) . Number of bases covered by seeds
31 if CheckOverlap(Wa, |q|, |R[rid]|,e,ncb,0.10,0.33,0.10) = OK then
32 O←O∪ (qid ,rid ,ncb,nk,revq,Wa[0].qs,Wa[|Wa|−

1].qe, |q|,revr,Wa[0].rs,Wa[|Wa|−1].re, |R[rid]|)

33 return O

• GraphMap overlap - Implemented in GraphMap, https://github.com/isovic/

graphmap, commit: 1d16 f 07888b6

• GraphMap owler - Implemented in GraphMap, https://github.com/isovic/

graphmap, commit: 1d16 f 07888b6

All tools were ran using their default parameters, except for Minimap and BLASR. Both

tools have default settings for mapping and not overlapping, and therefore required adjustment.

Minimap was run using "-Sw5 -L100 -m0 -t16" which are the suggested parameters for over-

lapping (https://github.com/lh3/minimap.git). For BLASR, we used "-m 4 -bestn 30

88

https://github.com/isovic/graphmap
https://github.com/isovic/graphmap
https://github.com/isovic/graphmap
https://github.com/isovic/graphmap
https://github.com/lh3/minimap.git

Overlap

Algorithm 14: Helper function to determine the validity of an overlap
Input: A set of seedsWa, query read length |q|, target read length |r|, expected error rate e, number of

bases covered by seeds ncb, minimum allowed overlap percent from any sequence mperc_ovl ,
maximum allowed percent overhang from any end of any sequence mperc_ovhng and minimum
percent of bases covered by seeds in any of the sequences mperc_cb

Output: Value OK is the overlap passed all tests, BAD otherwise.

Function CHECKOVERLAP(Wa, |q|, |r|,e,ncb,mperc_ovl ,mperc_ovhng,mperc_cb) begin
1 if ncb < mcb ·min(|q|, |r|) then . Min num covered bases
2 return BAD

3 Astart ←Wa[0].qs
4 Aend ←Wa[|Wa|−1].qe
5 Bstart ←Wa[0].rs
6 Bend ←Wa[|Wa|−1].re

7 if |Aend−Astart |< mperc_ovl · |q| or |Bend−Bstart |< mperc_ovl · |r| then . Min overlap len
8 return BAD

9 omin←min(|Aend−Astart |, |Bend−Bstart |) . Minimum overlap length
10 omax←max(|Aend−Astart |, |Bend−Bstart |) . Maximum overlap length
11 if (1−omin/omax)> e then . Max overlap indel error rate
12 return BAD

13 if (Astart > mperc_ovhng · |q| and Bstart > mperc_ovhng · |r|) or
((|q|−Aend)> mperc_ovhng · |q| and |r−Bend |> mperc_ovhng · |r|) then . Handle suspicious overhangs

14 return BAD

15 for i = 1 to (|W|−1) do
16 (qs,i−1,qe,i−1,rs,i−1,re,i−1)←Wa[i−1]
17 (qs,i,qe,i,rs,i,re,i)←Wa[i]
18 dmin←min(|qs,i−qe,i−1|, |rs,i− re,i−1|) . Minimum dist between seeds
19 dmax←max(|qs,i−qe,i−1|, |rs,i− re,i−1|) . Maximum dist between seeds
20 if (1−dmin/dmax)> e then . Maximum gap ratio
21 return BAD

22 return OK

-nCandidates 30 -nproc 16". HGAP assembler sets the "-bestn" parameter equal to the sequenc-

ing coverage [101]. To attempt to be more lenient, we allowed 1.5x the sequencing coverage

and specified "-bestn" and "-nCandidates" for each dataset accordingly.

Datasets

We tested Owler and other overlappers on five publicly available Oxford Nanopore datasets.

The datasets used here are the same as Datasets 1 - 5 used in Section 3.1.1 used to evaluate the

entire assembly pipelines. For consistency, we present them in Table 4.5 as well.

Evaluation methods

Should the source locations of two reads in a genomic sample be known, and the two reads

adjacent on a region of the genome with their start and end positions intersecting, we can say

that these reads overlap.

89

Overlap

Table 4.5: Description of the benchmarking datasets used for evaluation.

Name Description

Dataset 1 Complete E. coli R7.3 dataset, contains both 1d and 2d reads (both pass and
fail), total coverage 67x (70531 reads), of which 2d reads comprise 14x (11823
reads) [123].

Dataset 2 Reads from Loman et al. [16] subsampled to coverage 19x, pass 2d reads only
(in total 16945 reads).

Dataset 3 Complete dataset used by Loman et al. [16] nanopore assembly paper, contains
pass 2d reads only, coverage 29x, 22270 reads.

Dataset 4 Reads from MARC WTCHG dataset, 2d reads extracted from pass (33x) and
fail (7x) folders, total coverage 40x, total number of 2d reads: 29635 [13].

Dataset 5 2d reads extracted from the first run of the MAP006 dataset (MAP006-1), from
pass folder only, coverage 54x, 25483 reads in total. http://lab.loman.

net/2015/09/24/first-sqk-map-006-experiment/

Since the knowledge of the originating locations of fragments is, in most cases, not avail-

able in advance, one can only estimate the source positions of the reads by mapping them to

the reference genome. A list of estimated "truth" overlaps (see below) can then be determined

by analyzing the mapping positions. Similar approach was applied in [103] to estimate the

sensitivity (recall) and PPV (positive predictive value, also referred to as precision) of MHAP,

DALIGNER and BLASR, however, instead of explicitly testing each reported overlap, the au-

thors randomly subsampled the test set and generated approximate results.

We borrow the approach of reference-guided overlap testing as in [103], but we evaluate

the full test datasets for their precision (prec = T P/(T P+FP)), recall (rec = T P/Ttruth), and

a joint F1 measure (F1 = 2·prec·rec
prec+rec). Here, T P presents the true positives in the test dataset, FP

the false positives and Ttruth the total number of "truth" overlaps expected to be reported.

The list of "truth" overlaps for a dataset is compiled as follows. First, reads are mapped to

the reference genome using three mappers: GraphMap, BWA-MEM and LAST. Unlike [103]

which uses only one mapper, we use three to account for their intrinsic biases, such as possible

low mapping sensitivity in some regions, or mapping ambiguities. For each mapper: (I) start

and end positions of all mappings are determined; (II) If any pair of reads has an intersection

of start and end intervals, a "truth" overlap is marked. The process is repeated for all three

mappers. The three generated lists are merged by creating a union, meaning, if an overlap was

detected using any of the mappers, we consider it a "truth" overlap. Likewise, we compile a list

of all unmapped reads. When classifying overlaps from a test set, if an overlap is coincident

with an unmapped read, the overlap itself would not be present in the "truth" list and might be,

potentially wrongly, marked as a false positive. However, since none of the mappers managed

90

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

Overlap

to successfully map the read, it might still produce true overlaps which we cannot evaluate.

A test set is then evaluated by looking up every reported overlap in the "truth" list. If

the test set contains multiple overlaps between two reads (e.g. (A,B) and (B,A), where A

and B are reads), the overlap is counted only once. Self-overlaps (e.g. (A,A)) are also not

counted. If an overlap is not present in the "truth" list, but it is coincident with a read which

was marked as unmapped, the overlap is flagged as "Unknown" and not used for precision and

recall calculations.

In addition to these statistical measures, we also evaluated the required CPU time and mem-

ory to conduct overlapping on each dataset.

4.2.3 Results

A surprisingly large number of true overlaps (details on the method used to determine "true"

overlaps are given in Section Evaluation methods) between reads (> 107) obtained from Dataset

4 (which has only 40x coverage), led us to believe that there were short regions of extremely

high coverage in the dataset (e.g. because of amplicon sequencing, unfiltered control sequence

DNA (csDNA) or other contamination). Indeed, after mapping the reads to the reference

genome using GraphMap and inspecting the per-base coverage, we found that there was a region

"gi|545778205|gb|U00096.3| : 577259−580681" with average coverage above 4000x. Figure

4.10 (generated using Tablet [143]), shows the coverage of this region visually. Considering

that overlapping is a pairwise operation, this coverage is consistent with the expected number

of true overlaps on that dataset.

Figure 4.10: A Tablet plot of a region of extremely high coverage in Dataset 4.

MHAP, Minimap, DALIGNER, BLASR, GraphMap overlap and GraphMap owler were

successfully run on all five datasets. Table 4.6 summarizes the Precision, Recall, F1, time and

memory measures of all overlappers for each dataset. Values marked in bold show Owler’s

results compared to the best other scoring overlapper (not taking "GraphMap overlap" into ac-

count). It can be seen from the table that Owler has a consistently high precision and recall rates

across all datasets, whereas other overlappers, except Minimap, show high variance. Minimap’s

results deteriorated only on Dataset 4 which has a short region of large coverage (≈ 4000x) and

millions of overlaps stemming from that region. Our other overlapping method, "GraphMap

overlap" also has a reduced recall on this dataset. This is due to the "–max-regions 100" param-

eter used to limit the number of regions GraphMap needs to inspect to 100 (similar to BLASR’s

91

Overlap

"-nbest" parameter).

Results are by far the worst on Dataset 1 for any overlapper. However, Owler and Minimap

showed highest and similar precision and recall. The overall results on this dataset are not

surprising, as this is a very old dataset composed of a combination of 1d and 2d reads, of

average error rate of ≈ 33% (Appendix A, Table A.1).

Datasets 2 and 3 show better results for all overlappers compared to Dataset 1. Also, the

results are similar between Dataset 2 and Dataset 3 for all overlappers (error rate of the datasets

is ≈ 16%), which is reasonable considering that Dataset 2 is actually a subsampled version

of Dataset 3. Owler shows highest recall, while precision is high and similar to the one of

Minimap.

Dataset 4 (error rate ≈ 11%) shows significant improvement in precision for all overlappers

(especially DALIGNER) and in recall (especially MHAP). Owler still has the highest precision,

while the recall is only slightly lower than MHAP’s.

Dataset 5, although having the lowest error rate of ≈ 10%, results in an interesting twist in

precision for all overlappers except Minimap which scored highest, followed by Owler. This is

perhaps due to the different profile of errors in Dataset 5 (3% insertions, 2% deletions and 5%

mismatches) compared to Datset 4 (2% insertions, 3% deletions and 6% mismatches). Other

overlappers score better in terms of recall on this Dataset compared to any previous one, with

Minimap scoring the highest, and Owler following with a small difference.

Owler’s sensitivity and precision unfortunately come at the expense of time - although usu-

ally being 2− 3x faster than BLASR, other overlappers (Minimap, MHAP and DALIGNER)

were faster on these datasets.

4.2.4 Discussion

In this section we developed two new overlapping methods, both based on the GraphMap

mapper for third generation sequencing data. The initial overlapping mode in GraphMap

("GraphMap overlap" in Table 4.6) showed promising results in terms of precision and recall,

considering that, at the time of development only DALIGNER and BLASR were published.

Although GraphMap allows tuning of the precision vs. recall via the E-value parameter and

the parameter which controls the number of regions to inspect, the overall overlapping time is

relatively high. This is due to the laborious steps used in the entire GraphMap pipeline to ensure

high sensitivity in the mapping context. However, not all steps are necessary in the context of

overlapping.

For this reason, we developed an overlapper (Owler) which runs on the reduced pipeline,

aimed at achieving higher speeds, while at the same time providing optimizations for the over-

lapping context, which enable higher precision, recall and overall F1 scores when compared to

GraphMap overlap and other overlapping methods on most datasets.

92

Overlap

Table 4.6: Results of comparison between the newly developed Owler and GraphMap overlap methods
and the current state-of-the-art for overlapping raw third generation sequencing reads.

Precision
[%]

Recall
[%]

F1 [%] CPU time
[min]

Memory
[MB]

Dataset 1 Owler 98.45 3.88 7.47 113.79 16328.52

E. Coli GraphMap overlap 96.07 8.90 16.29 1253.46 12476.82

R7.3 Minimap 99.24 3.89 7.48 2.20 4600.59

MHAP 93.68 1.49 2.93 45.74 65375.40

DALIGNER 9.54 0.13 0.25 12.32 14817.90

BLASR 53.04 2.20 4.23 278.66 2985.11

Dataset 2 Owler 97.74 71.41 82.52 21.64 4916.00

20x subsampled GraphMap overlap 91.87 72.93 81.31 365.86 3936.54

Loman et al. Minimap 98.08 62.37 76.25 0.61 1143.58

MHAP 90.76 47.77 62.60 13.30 34964.13

DALIGNER 87.27 56.99 68.95 5.08 4291.71

BLASR 81.24 38.63 52.36 62.78 864.09

Dataset 3 Owler 98.00 71.59 82.74 43.98 7142.74

30x GraphMap overlap 93.52 72.49 81.68 501.80 5551.98

Loman et al. Minimap 98.58 65.26 78.53 1.01 2161.65

MHAP 91.19 47.12 62.14 19.25 45696.46

DALIGNER 87.57 59.94 71.17 10.53 6360.15

BLASR 81.88 36.47 50.46 119.78 1281.07

Dataset 4 Owler 99.58 85.74 92.15 168.81 9961.81

40x GraphMap overlap 95.40 8.29 15.26 709.64 7600.49

MARC Minimap 96.92 4.86 9.26 1.73 2488.88

MHAP 97.72 87.64 92.41 61.32 74427.35

DALIGNER 98.25 50.30 66.54 59.05 16717.54

BLASR 89.11 4.46 8.50 199.65 1791.64

Dataset 5 Owler 96.71 86.28 91.20 181.12 13021.03

50x GraphMap overlap 94.60 82.45 88.11 937.54 9894.71

MAP006 Minimap 98.47 90.64 94.39 3.09 3410.43

MHAP 77.73 83.42 80.47 35.77 69543.33

DALIGNER 79.18 84.67 81.83 29.30 30050.71

BLASR 85.17 44.91 58.81 323.19 2380.59

93

Chapter 5

Racon - Fast consensus module for raw de
novo genome assembly of long uncorrected
reads

Fast de novo assembly, recently published by Li [89], set in motion an avalanche of possible

applications which yet need to be explored in depth, such as: rapid assembly of mammalian and

plant genomes; fast structural variation detection; higher quality quick metagenomic identifica-

tion (by first assembling the dataset and then using the generated contigs for database search);

and "read until" sequencing of Oxford Nanopore’s MinION systems where a fast assembly

could help decide if enough data have been collected. Also, as noted by Li [89], the doors

to fast assembly are only open if a fast consensus tool, matching the speed of Minimap and

Miniasm, is developed as well.

In this chapter we discuss the development of Racon, our new standalone consensus module,

intended for correcting raw third generation data assemblies. We show that Racon, when paired

with Miniasm, provides an order of magnitude (see Results) faster assemblies while being of

comparable or better quality to the assemblers which employ both the error correction and the

consensus phases (Canu [83] (successor to Celera, unpublished), FALCON [90] and Loman et

al. pipeline [135]). In addition to contig consensus, the generality of Racon allows it to also be

used as a fast and accurate read error-correction tool.

5.1 Methods

Racon is based on the Partial Order Alignment (POA) graph approach [121][122], similar to

some of the most sensitive consensus methods for third generation sequencing data today:

Quiver [101] and Nanocorrect [135]. In this section, a detailed overview of the algorithm,

the aspects of implementation and the evaluation methods are given.

94

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

5.1.1 Algorithm description

An overview of Racon’s steps is given in Figure 5.1. The entire process is also shown in detail

in Algorithm 15, and is as follows. To perform consensus calling (or error-correction), Racon

depends on an input set of query-to-target overlaps (query is the set of reads, while a target is

either a set of contigs in the consensus context, or a set of reads in the error-correction context).

Overlaps can be generated with any overlapper which supports either MHAP or PAF output

formats, such as Minimap [89], MHAP [103] or GraphMap [14]. In all our tests we used

Minimap as it was the fastest. Racon then loads the overlaps and performs simple filtering

(Algorithm 15, lines 1−3; Algorithm 16): (I) at most one overlap per read is kept in consensus

context (in error-correction context this particular filtering is disabled), and (II) overlaps which

have |1−min(dq,dt)/max(dq,dt)| ≥ e are removed, where dq is the length of the overlap in the

query, dt length in the target, and e a user-specified error-rate threshold. For each overlap which

survived the filtering process, a fast edit-distance based alignment is performed [38] (Algorithm

15, lines 4− 11). Alignments are grouped by contigs, and each contig is processed separately

in the same manner.

Figure 5.1: Overview of the Racon consensusprocess.

Inspired by Quiver and Nanopolish, Racon divides a raw input sequence (contigs, reads,

etc.) into consecutive, non-overlapping windows of length w (Algorithm 15, line 16). In the

context of consensus calling, each window is processed separately in it’s own thread, while in

the context of read error-correction, an entire read (regardless of the number of windows) is

entirely assigned to a thread at a time for efficiency purposes.

95

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 15: Racon algorithm for fast and accurate consensus of noisy contigs
Input: Set of noisy target sequences (e.g. contigs) T to perform consensus on, set of read sequences Q

where each q ∈Q is a tuple consisting of (seq,qual) (sequence data and quality values), set of
overlaps O between Q and T , window size w, minimum allowed quality value qvmin, mode m to
run the Racon in (can be either ”consensus” or ”errorcorrection”), and maximum expected error
rate e. An overlap o ∈ O is a tuple of 12 values: (qid , tid , pcb,nk,qrev,qs,qe,qlen, trev, ts, te, tlen),
where qid and tid are the query and target sequence IDs, pcb percentage of query bases covered by
the overlap, nk number of seeds in the overlap, qrev and trev are 0 if query and target are forward
oriented and 1 otherwise, qs,qe, ts, te are the start and end coordinates of the overlap in the query
and target, and qlen, tlen total query and target sequence lengths.

Output: Set of corrected target sequences Tc

Function RACON(T ,Q,O,w,qvmin,m,e) begin
1 O f ← FilterErroneousOverlaps(O,e)
2 if m 6= ”errorcorrection” then
3 O f ← FilterUniqueOverlaps(O f)

4 A← empty hash table of sets . Aligned overlaps grouped by tid
5 foreach o ∈ O f do . Align filtered overlaps
6 (qid , tid , pcb,nk,qrev,qs,qe,qlen, trev, ts, te, tlen)← o
7 qseq←Q[qid].seq[qs...qe]
8 qqual ←Q[qid].qual[qs...qe]
9 tseq←T [tid][ts...te]

10 aln← bit-vector global alignment between qseq and tseq
11 A[tid]←A[tid]∪ (o,aln,qseq,qqual , tseq)

12 Tc← /0 . A set for consensus sequences
13 foreach tid ∈ A do . Process each target sequence individually
14 At ←A[tid]
15 tc← empty string
16 for wid = 0 to dT [tid]/we do . Process a target in non-overlapping windows
17 ws← wid ·w . Window start position on target seq
18 we← (wid +1) ·w−1 . Window end position on target seq

19 stseq←T [tid][ws...we] . Noisy target subsequence for SPOA
20 stqual ← an array of |stseq| elements initialized to 0 . Dummy QVs

21 S ← /0
22 foreach (o,aln,qseq,qqual , tseq) ∈ At do . Get subsequences of all reads
23 (sqseq,sqqual)← extract a substring of sqseq which aligns between ws and we on target

with corresponding quality values qqqual
24 if average(sqqual)≥ qvmin then
25 S ← S(sqseq,sqqual)

26 G ← BuildPoaGraph(stseq,stqual)
27 foreach (sqseq,sqqual) ∈ S do . Align all sequences to graph
28 G ← SPOAAlignSequence(G,sqseq,sqqual)

29 cons← GenerateConsensus(G)
30 tc← concatenate cons to tc

31 Tc←Tc∪ tc

32 return Tc

Given start (ws) and end (we) coordinates of a window on target, all alignments overlapping

this region are extracted, including the substring of the target sequence (Algorithm 15, lines

17− 25). An initial simple POA graph is first constructed from the substring of the target

96

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 16: Filter overlaps for alignment in Racon
Input: A set of overlaps O and expected maximum error rate e
Output: Set of filtered overlaps O f

Function FILTERERRONEOUSOVERLAPS(O,e) begin
1 O f ← /0
2 foreach o ∈ O do
3 (qid , tid , pcb,nk,qrev,qs,qe,qlen, trev, ts, te, tlen)← o

4 omin←min(|qe−qs|, |te− ts|) . Minimum overlap length
5 omax←max(|qe−qs|, |te− ts|) . Maximum overlap length

6 if (1−omin/omax)> e then . Max overlap indel error rate
7 continue

8 O f ←O f ∪o

9 return O f

Input: A set of overlaps O
Output: Set of filtered overlaps O f

Function FILTERUNIQUEOVERLAPS(O) begin
10 H← empty hash table
11 foreach o ∈ O do
12 (qid , tid , pcb,nk,qrev,qs,qe,qlen, trev, ts, te, tlen)← o
13 if tid ∈H then . Keep only one overlap per target
14 (qh,id , th,id , ph,cb,nh,k,qh,rev,qh,s,qh,e,qh,len, th,rev, th,s, th,e, th,len)←H[tid]
15 if nk > nh,k then
16 H[tid]← o

17 else
18 H[tid]← o

19 O f ← /0
20 foreach tid ∈H do
21 O f ←O f ∪H[tid]

22 return O f

sequence (Algorithm 15, lines 26). Based on the alignment of a query read overlapping the

region, coordinates ws and we can be mapped to actual bases qs and qe on the query. Query

is then trimmed to those coordinates and a tuple (sqseq,sqqual) compiled, where sqseq is the

sequence of the query in range [qs,qe], and sqqual are the qualities of the corresponding sequence.

A set of tuples is collected for all queries overlapping the region, and used as the input for

building a local POA graph using global alignment (Algorithm 15, lines 27− 28; Algorithm

18). The consensus sequence is then called by finding a heaviest traversal through the POA

graph, and output as the corrected sequence corresponding to the window (Algorithm 15, lines

29−30; Algorithm 20).

POA performs Multiple Sequence Alignment (MSA) through a directed acyclic graph

(DAG), where nodes are individual bases of input sequences, and weighted, directed edges

represent whether two bases are neighbouring in any of the sequences. Weights of the edges

represent the multiplicity (coverage) of each transition. Alternatively, weights can be set ac-

97

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

cording to the base qualities of sequenced data. The alignment is carried out directly through

dynamic programming (DP) between a new sequence and a pre-built graph. In comparison,

whereas the regular DP pairwise alignment has time complexity of O(3nm), where n and m are

the lengths of the sequences being aligned, the sequence to graph alignment has a complexity

of O((2np + 1)n|V|), where np is an average number of predecessors in the graph and |V| is

the number of nodes in the graph. Consensus sequences are obtained from a built POA graph

by performing a topological sort and processing the nodes from left to right. For each node

v, the highest-weighted in-edge e of weight ew is chosen, and a score is assigned to v such

that scores[v] = ew + scores[w], where w is the source node of the edge e [122]. The node w

is marked as a predecessor of v, and a final consensus is generated by performing a traceback

from the highest scoring node r. In case r is an internal node (r has out edges), Lee [122] pro-

posed an approach of branch completion, where all scores for all nodes except scores[r] would

be set to a negative value, and the traversal would continue from r the same as before, with the

only exception that nodes with negative score could not be added as predecessors to any other

node. Consensus generation procedure is shown in detail in Algorithm 20. One of the biggest

advantages of POA compared to other MSA algorithms is its speed - linear time complexity in

the number of sequences [121]. However, even though faster than other MSA, the implemen-

tations of POA in current error-correction modules, such as Nanocorrect, are prohibitively slow

for larger datasets.

In order to increase the speed of POA, we made two significant modifications to the algo-

rithm: (I) a Single Instruction Multiple Data (SIMD) modification of the base POA algorithm

and (II) subgraph alignment. To the best of our knowledge, this is the first SIMD POA modi-

fication in literature - we named our implementation SPOA accordingly. SPOA was developed

in close collaboration with Robert Vaser, who proposed the initial idea and implemented the

SIMD alignment algorithm.

Our SIMD modification (Figure 5.2; Algorithm 18) is based on the Rognes and Seeberg

Smith-Waterman intra-set parallelization approach [39]. As in the original Rognes-Seeberg pa-

per, SPOA places the SIMD vectors parallel to the query sequence (the read), while instead

of the reference sequence a graph is placed on the other dimension of the DP matrix (Figure

5.2). The SWAT-otimizations described by Rognes and Seeberg [39] are left out in order to

avoid branching in the inner loop and code duplication as three different alignment modes are

implemented in SPOA. In our implementation, matrices H and F, which are used for tracking

the maximum local-alignment scores ending in gaps [39], are stored entirely in memory which

increases the memory complexity from linear to quadratic (Algorithm 18, line 5). These matri-

ces are needed to access scores of predecessors of particular nodes during alignment. Unlike

regular Gotoh alignment, for each row in the POA DP matrix all its predecessors (via in-edges

of the corresponding node in graph) need to be processed as well (Algorithm 18, line 18). All

98

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 17: Constructs a POA graph from a given sequence (as described in [121])
Struct POANODE begin

id←−1 . ID of the node
base← ”− ” . Nucleotide base represented by the node
Ei← empty array . Array of in edges
Eo← empty array . Array of out edges
Nid ← empty array . Array of IDs of nodes aligned to this one

Struct POAEDGE begin
s←−1 . ID of the begin node
e←−1 . ID of the end node
w← 0 . Total weight of the edge

Input: A sequence s used to build the graph and corresponding quality values q for each base of s to be
used as edge weights

Output: Graph G = (V,E), where V is a set of vertices and E a set of edges

Function BUILDPOAGRAPH(s,q) begin
1 V ← /0
2 E ← /0

3 for i = 0 to (|s|−1) do
4 V ← Add a new PoaNode to the set, where id← i and base← s[i]
5 if i > 0 then
6 E ← Add a new PoaEdge to the set, beginning at node (i−1) with weight

w← (q[i−1]+q[i])

7 G = (V,E)
8 return G

columns are then processed using SIMD operations in a query-parallel manner described in

[39], and the values of Gotoh’s vertical matrix (Algorithm 18, line 22) and a partial update to

Gotoh’s main scoring matrix (Algorithm 18, lines 24 and 26) are calculated. SIMD operations

in Algorithm 18 process 8 cells of the DP matrix at a time (16-bit registers). A temporary vari-

able is used to keep the last cell of the previous vector for every predecessor (Algorithm 18,

lines 23− 25), which is needed to compare the upper-left diagonal of the current cell to the

cell one row up. Processing the matrix horizontally is not performed using SIMD operations

due to data dependencies (each cell depends on the result of the cell left to it), and are instead

processed linearly (Algorithm 18, lines 27−38). We use shifting and masking to calculate ev-

ery particular value of a SIMD vector individually (Algorithm 18, lines 32 and 35). After the

alignment is completed, the traceback is performed (Algorithm 18, line 39) and integrated into

the existing POA graph (Algorithm 18, line 40, Algorithm 19).

The resulting time complexity for all alignment modes is O((
2np

k + 1)NM), where k is the

number of variables that fit in a SIMD vector. Overall maximal speed-up can be computed as

(2np + 1)/(2np/k + 1). SPOA supports Intel SSE version 4.1 and higher, which embed 128

bit registers. Both short (16 bits) and long (32 bits) integer precisions are supported by SPOA

and therefore k equals 8 and 4 variables respectively (Algorithm 18, line 3)(8 bits precision is

insufficient for the intended application of SPOA and is therefore not used).

99

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 18: Align a sequence to a pre-constructed graph using SIMD instructions.
maxs, ors, adds, subs, lshi f ts and rshi f ts are SIMD operations.

Input: A POA graph G = (V,E), a sequence sseq to align to the graph and the quality values squal of the
sequence (edge weights)

Output: A POA graph Ga = (Va,Ea) with incorporated sseq and squal
Function SPOAALIGNSEQUENCE(G,sseq,squal ,match,mismatch,gapopen,gapextend ,mode) begin

1 b←−215 +1000 . Big negative value which fits in a SIMD register but will not overflow
2 x← |V|
3 y← |sseq|/8 . 8 variables per SIMD vector
4 Σ←{A,C,T,G} . Alphabet
5 H,F ← matrices of x× y SIMD vectors
6 opn,ext← two single SIMD vectors, elements initialized to gapopen and gapextend , respectively
7 f cv← is an integer array of x elements initialized to 0 . First column values
8 X ,score← two single SIMD vectors initialized to 0
9 M← 8 SIMD vectors, init’ed to [[b,0,0,0,0,0,0,0], [b,b,0,0,0,0,0,0], ..., [b,b,b,b,b,b,b,b]]. Masks

10 P ← Calculate query profile of |Σ|× y SIMD vector elements for sseq
11 Gs = (Vs,Es)← topologically sorted G = (V,E)
12 if mode = NW then
13 for i = 0 to (y−1) do
14 H[0][i]← gapopen +(i+1) ·gapextend
15 f cv[i]← gapopen +(i+1) ·gapextend

16 for i = 0 to (|Vs|−1) do
17 v←Vs[i]
18 for pid = 0 to (|v.Ei|−1) do . Process all predecessors of current node
19 p← v.Ei[pid].s
20 X ← rshi f ts(simd_vector(f cv[p]),7)
21 for j = 0 to (y−1) do . Solve the element of vertical Gotoh matrix
22 F [i][j]← . Analogous to Equation 2.5

maxs(F [i][j],adds(maxs(adds(H[p][j],Gopen),F [p][j]),Gext))

23 T1← rshi f ts(H[p][j],7)
24 H[i][j]← ors(lshi f ts(H[p][j],1),X)
25 X ← T1

26 H[i][j]← maxs(H[i][j],maxs(adds(H[p][j],P[v.base][j]),F [i][j]))

27 E← simd_vector(f cv[i])
28 for j = 0 to (y−1) do . Solve the element of horizontal Gotoh matrix
29 E← adds(adds(ors(lshi f ts(H[i][j],1),rshi f ts(E,7)),opn),ext)
30 T2← E
31 exttemp← ext
32 for k = 0 to 7 do . SIMD parallelization cannot be used due to dependencies
33 exttemp← lshi f ts(exttemp,1)
34 T2← adds(lshi f ts(T2,1),exttemp)
35 E← maxs(E,ors(M[k],T2))

36 H[i][j]← maxs(M[j],E)
37 E← maxs(M[i][j],subs(E,opn))
38 score← maxs(score,H[i][j])

39 A← traceback using standard Gotoh approach, taking in account that a cell can have multiple
predecessors. SIMD vectors are converted to normal ints when needed. Return is an array of tuples
(sseq,id ,vid) where sseq,id is the id of a base on sseq or −1 if a gap, and vid is the node id in graph
where sseq[sseq,id] was aligned to (or −1 if gap in graph)

40 AddAlignmentToGraph(Gs,alignment,sseq,squal)
41 return Gs

100

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 19: Adds an aligned sequence to an existing POA graph
Input: A POA graph G = (V,E), alignment aln in the form of an array of tuples (sseq,id ,vid) where sseq,id is

the id of a base on sseq or −1 if a gap, and vid is the node id in graph where sseq[sseq,id] was aligned
to (or −1 if gap in graph), a sequence sseq to align to the graph and the quality values squal of the
sequence (edge weights)

Function ADDALIGNMENTTOGRAPH(G = (V,E),aln,sseq,squal) begin
1 vid,s←−1 . Start node ID
2 vid,h←−1 . Head node ID
3 wprev← 0 . Previous weight
4 for i = 0 to |aln| do .
5 (sseq,id ,vid)← aln[i]
6 if sseq,id =−1 then
7 continue

8 if vid =−1 then . There is a gap in the graph, a new node needs to be added
9 v← new POANode, initialize v.id← |V|

10 V ← V ∪ v

11 else
12 v← NULL
13 foreach a ∈ V[vid].Nids do
14 if V[a].base = sseq[sseq,id] then
15 v←V[a]

16 if v = NULL then . Base is aligned to a mismatch node
17 v← new POANode, initialize v.id← |V| and set v.Nid to include all V[vid].Nid

foreach a ∈ V[vid].Nid do
18 V[a].Nid ← Append v.id

19 if vid,s =−1 then
20 vid,s← v.id

21 if vid,h 6=−1 then
22 e← new PoaEdge with e.s← vid,h,e.e← v.id,e.w← (wprev + squal [sseq,id])
23 E ← E ∪ e . Add edge

24 vid,h← v.id
25 wprev← squal [sseq,id]

Figure 5.2: Depiction of the SIMD vectorization used in our POA implementation.

101

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Algorithm 20: Generates a consensus sequence from a given POA graph
Input: A POA graph G = (V,E), where V is a set of vertices (nodes) and E a set of edges
Output: A consensus sequence cons

Function GENERATECONSENSUS(G) begin
1 Gs = (Vs,Es)← topologically sorted G = (V,E)
2 scores← an array of length |Vs| with all values initialized to 0
3 predecessor← an array of length |Vs| with all values initialized to −1
4 r←−1 . Index of the end node of the consensus (if 6=−1)
5 for i = 0 to (|Vs|−1) do . TRAVERSE_HB algorithm from [122]
6 emax← NULL
7 foreach e ∈ Vs[i].Ei do . Find an in-edge with maximum weight (local optimization)
8 if emax = NULL or e.w > emax.w or (e.w = emax.w and scores[e.s]>= scores[emax.s]) then
9 emax← e

10 if emax 6= NULL then
11 predecessor[i]← emax.s . Traceback, emax.s is the beginning node of the in-edge.
12 scores[i]← scores[emax.s]+ emax.w
13 if r =−1 or scores[i]> scores[r] then
14 r← i

15 while r 6= NULL and |Vs[r].Eo|> 0 do . If r is not an end node, do BRANCH_COMPLETION [122]
16 for i = 0 to (|Vs|−1) do . Set all scores except max to a neg. value
17 scores[i]←−1 if i 6= r

18 for i = (r+1) to (|Vs|−1) do . Process the rest of the top. sorted graph
19 emax← NULL
20 foreach e ∈ Vs[i].Ei do . Find an in-edge with maximum weight (local optimization)
21 if scores[e.s] =−1 then . The main difference from HeaviestBundle
22 continue

23 if emax = NULL or e.w > emax.w or
(e.w = emax.w and scores[e.s]>= scores[emax.s]) then

24 emax← e

25 if emax 6= NULL then
26 predecessor[i]← emax.s . Traceback, emax.s is the beginning node of the in-edge.
27 scores[i]← scores[emax.s]+ emax.w
28 if r =−1 or scores[i]> scores[r] then
29 r← i

30 cons←empty string
31 while r 6= NULL and predecessor[r] 6=−1 do . Traverse predecessors to generate consensus
32 cons← Add Vs[r].base to front of cons
33 r← predecessor[r]

34 cons← Add Vs[r].base to front of cons if r 6= NULL

35 return cons

The second modification implemented in SPOA, subgraph alignment, allows a much faster

read-to-graph alignment in case a rough mapping position of the read is known in advance. The

target start and end positions for alignment are then located on the graph (with the surrounding

neighbourhood), and the read is aligned only with such defined subgraph. Both vectoriza-

tion and subgraph extraction are provided in any of the three alignment modes implemented in

SPOA: global, local and semiglobal alignment.

102

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

5.1.2 Implementation and reproducibility

Racon and SPOA are both implemented in C++. All tests were ran using Ubuntu based systems

with two 6-core Intel(R) Xeon(R) E5645 CPUs @ 2.40GHz with Hyperthreading, using 12

threads where possible. Version of methods used in comparison:

• Minimap - https://github.com/lh3/minimap.git, commit: 1cd6ae3bc7c7

• Miniasm - https://github.com/lh3/miniasm.git, commit: 17d5bd12290e

• Canu - https://github.com/marbl/canu.git, version 1.2, commit: ab50ba3c0c f 0.

• FALCON-integrate project - https://github.com/PacificBiosciences/

FALCON-integrate.git, commit: 8bb2737 f d1d7.

• Nanocorrect - https://github.com/jts/nanocorrect.git, commit: b09e93772ab4.

• Nanopolish - https://github.com/jts/nanopolish.git, commit: 47dcd7 f 147c.

• MUMmer - DNAdiff version 1.3, NUCmer version 3.1.

5.1.3 Datasets

Four real, publicly available PacBio and Oxford Nanopore datasets were used for evaluation.

These are:

1. Lambda phage, Oxford Nanopore, ENA submission ERA476754, coverage 113x of the

NC_001416 reference genome (48502bp). Link: ftp://ftp.sra.ebi.ac.uk/vol1/

ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz. This dataset

was subsampled to coverages 30x and 81x for testing.

2. E. coli K-12 MG1655 SQK-MAP006-1 dataset, Oxford Nanopore, R7.3 chemistry, 54x

pass 2D coverage of the genome (U00096.3, 4.6Mbp). Link: http://lab.loman.net/

2015/09/24/first-sqk-map-006-experiment/

3. E. Coli K-12 PacBio P6C4 dataset, 160x coverage of the genome (U00096.3). The

dataset was generated using one SMRT Cell of data gathered with a PacBio RS II

System and P6-C4 chemistry on a size selected 20kbp library of E. coli K-12. Link:

https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/

e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz

4. C. Elegans, a Bristol mutant strain, 81x coverage of the genome (gi|449020133)

The dataset was generated using 11 SMRT cells P6-C4 chemistry on a size selected

20kbp library. Link: https://github.com/PacificBiosciences/DevNet/wiki/C.

-elegans-data-set

.

103

https://github.com/lh3/minimap.git
https://github.com/lh3/miniasm.git
https://github.com/marbl/canu.git
https://github.com/PacificBiosciences/FALCON-integrate.git
https://github.com/PacificBiosciences/FALCON-integrate.git
https://github.com/jts/nanocorrect.git
https://github.com/jts/nanopolish.git
ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz
ftp://ftp.sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

5.1.4 Evaluation methods

The quality of called consensus was evaluated using Dnadiff [126], a well established method

for assessment of assembly quality. The parameters we took into consideration for comparison

include: total number of bases in the query, aligned bases on the reference, aligned bases on the

query and average identity. In addition, we measured the time required to perform the entire

assembly process by each pipeline.

The quality of error-corrected reads was evaluated by aligning them to the reference genome

using GraphMap ([14]) with settings "-a anchorgotoh", and counting the match, mismatch,

insertion and deletion operations in the resulting alignments.

5.2 Results

We developed a fast consensus module called Racon (Rapid Consensus) which, when paired

with Miniasm, provides an order of magnitude (Table 5.1) faster assemblies while being of

comparable or better quality to the assemblers which employ both the error correction and

the consensus phases (Canu, FALCON and Loman et al. pipeline). Furthermore, applying

Nanopolish on Miniasm+Racon outputs achieves the same Avg. Identity as the full Loman et

al. pipeline (Table 5.2). Moreover, we show here that Miniasm+Racon assemblies in almost

all cases result in contigs of length more similar to the reference genome than any of the other

state-of-the-art methods (Table 5.1), with the only exception being Falcon on the C. Elegans

dataset with a marginally better result. However, on this dataset, Racon was 45x faster than

Falcon.

Further, Racon is not limited only to contig consensus applications - it’s general design

and extreme efficiency allow it to be used as an error-correction module as well. This allows

it’s applications as a substitute step for PacBio’s pbdagcon and FalconSense error-correction

(Table 5.3)[101][103] used in FALCON and Canu, or Nanocorrect module used in Loman et

al. [135] (which was recently deprecated). Comparison of error rate improvements achieved

by various error correction tools was also recently evaluated here [144]. Nanocorrect had by

far the best results on the older nanopore sequencing data. We show that Racon manages to

achieve the quality of corrected reads similar to that of Nanocorrect and other methods with

only one iteration of correction, while being two orders of magnitude faster than Nanocorrect

and pertaining highest reference coverage of all methods (Table 5.3).

Racon is intended as a standalone consensus module and is not explicitly tied to Miniasm. It

reads multiple input formats (GFA, FASTA, FASTQ, SAM, MHAP and PAF), allowing simple

interoperability and modular design of new pipelines.

We evaluated Racon in terms of generated consensus quality (Tables 5.1 and 5.2), speed

of a full assembly pipeline consisting of Minimap, Miniasm and Racon (Table 5.4), and

104

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Table 5.1: Assembly and consensus results across 4 datasets of varying length and type.

Miniasm+Racon
1 iteration

Miniasm+Racon
2 iterations

Canu Falcon

Lambda Genome size [bp] 48502 48502 48502 48502

ONT Total bases [bp] 47903 47891 25077 7212

Aligned bases ref.
[bp]

48438
(99.87%)

48434
(99.86%)

25833
(53.26%)

7483 (15.43%)

Aligned bases query
[bp]

47903
(100.00%)

47891
(100.00%)

25077
(100.00%)

7212
(100.00%)

Avg. Identity 97.56 97.93 96.87 95.77

CPU time [sec] 11.77 23.97 171.720 137.590

E. Coli Genome size [bp] 4641652 4641652 4641652 4641652

ONT Total bases [bp] 4637170 4631920 4601503 4580230

Aligned bases ref.
[bp]

4640867
(99.98%)

4641323
(99.99%)

4631173
(99.77%)

4627613
(99.70%)

Aligned bases query
[bp]

4636686
(99.99%)

4631917
(100.00%)

4601365
(100.00%)

4580230
(100.00%)

Avg. Identity 99.13 99.33 99.28 98.84

CPU time [sec] 2187.74 4136.06 79690.490 49732.542

E. Coli Genome size [bp] 4641652 4641652 4641652 4641652

PacBio Total bases [bp] 4653302 4645369 4664416 4666788

Aligned bases ref.
[bp]

4641501
(100.00%)

4641439
(100.00%)

4641652
(100.00%)

4641652
(100.00%)

Aligned bases query
[bp]

4653086
(100.00%)

4645369
(100.00%)

4664416
(100.00%)

4666788
(100.00%)

Avg. Identity 99.63 99.91 99.99 99.90

CPU time [sec] 6942.82 13976.22 46392.100 174468.470

C. Elegans Genome size [bp] 100272607 100272607 100272607 100272607

PacBio Total bases [bp] 106351448 106388732 106687886 105858394

Aligned bases ref.
[bp]

100017642
(99.75%)

99989791
(99.72%)

100166301
(99.89%)

99295695
(99.03%)

Aligned bases query
[bp]

101712974
(95.64%)

101749015
(95.64%)

102928910
(96.48%)

102008289
(96.36%)

Avg. Identity 99.43 99.73 99.89 99.74

CPU time [sec] 94951.25 159680.87 2271168.83 7185955.55

105

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Table 5.2: Polished assemblies for all methods (using Nanopolish).

Raw
Miniasm

Miniasm+Racon
2 iterations

Canu Falcon Loman et.
al pipeline

E. Coli K-12 Genome size [bp] 4641652 4641652 4641652 4641652 4641652

ONT MAP006 Total bases [bp] 4696482 4641756 4631443 4624811 4695512

54x Aligned bases ref.
[bp]

4635941
(99.88%)

4641312
(99.99%)

4633324
(99.82%)

4627571
(99.70%)

4641325
(99.99%)

Aligned bases
query [bp]

4687686
(99.81%)

4641756
(100.00%)

4631361
(100.00%)

4624811
(100.00%)

4695463
(100.00%)

Avg. Identity 98.06 99.80 99.80 99.78 99.80

Table 5.3: Comparison of error-correction modules on E. Coli K-12 MAP006 R7.3 54x dataset. Values
presented in the table are median values of the error and match rate estimates. Time measurements for
Falcon and Canu were not available, as their error correction modules are run as a wrapped part of the
pipeline, whereas Nanocorrect is a stand-alone module.

CPU time
[h]

Coverage Insertion
rate (%)

Deletion
rate (%)

Mismatch
rate (%)

Match
rate (%)

Error rate
(I+D+M) (%)

Raw - 53.55x 5.23 2.83 4.89 89.81 13.16

Racon 13 50.20x 0.58 0.60 0.15 99.26 1.31

Nanocorrect 8100 44.74x 0.14 0.43 0.03 99.83 0.62

Falcon - 46.95x 0.04 1.11 0.06 99.90 1.23

Canu - 35.53x 0.06 1.25 0.08 99.85 1.40

Table 5.4: Timings of various parts of the Miniasm+Racon assembly pipeline.

Lambda ONT E. Coli ONT E. Coli PacBio C. Elegans
PacBio

Miniasm CPU time 2.11 175.83 700.96 32910.79

Minimap 1st iter. CPU time 0.11 16.66 42.64 913.35

Racon 1st iter. CPU time 9.55 1995.25 6199.22 61127.11

Minimap 2nd iter. CPU time 0.13 19.14 47.68 999.66

Racon 2nd iter. CPU time 12.07 1929.18 6985.72 63729.96

Total CPU time 23.97 4136.06 13976.22 159680.87

scalability of Racon with respect to the genome size (Table 5.5), on several real PacBio and

nanopore datasets (see Methods). We compared against FALCON and Canu as being the

current state-of-the-art in de novo assembly. Detailed comparisons of both to the Loman et al.

pipeline are given elsewhere [144] and omitted here, because Falcon and Canu are both two

orders of magnitude faster than the Loman et al. pipeline.

106

Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads

Table 5.5: Scalability of Racon accross genome sizes for same coverage is linear. Table shows results
for one iteration of Racon.

Lambda ONT 81x E. Coli ONT 81x C. Elegans PacBio
81x

Genome size 48 kbp 4.64 Mbp 100.2 Mbp

Racon CPU time [s] 27.19 1572.22 39537.75

5.3 Discussion

The goal of Racon is to generate genomic consensus which is of similar or better quality com-

pared to the output generated by assembly methods which employ both error correction and

consensus steps, while providing a speed-up of several times compared to those methods. Racon

implements SIMD accelerated Partial Order Alignment graph consensus (SPOA) and can be run

iteratively to achieve better performance.

We evaluated our consensus method on real PacBio and nanopore datasets, and show that

the results are comparable to other state-of-the-art methods, while being an order of magnitude

faster. We also demonstrate that the execution of our consensus approach scales linearly with

genome size.

Here we stress out that the entire pipeline, consisting of Minimap + Miniasm + Racon could

have an immense impact on the current state of de novo assembly, and allow higher quality

analysis for higher throughput third generation sequencing data coming with the releases of

PacBio Sequel and Oxford Nanopore’s PromethION systems.

Racon and SPOA are available open source under the MIT license at: https://github.

com/isovic/racon.git and https://github.com/rvaser/spoa.git.

107

https://github.com/isovic/racon.git
https://github.com/isovic/racon.git
https://github.com/rvaser/spoa.git

Chapter 6

Integration and evaluation - Aracon
assembler

Building on the results from previous chapters, here we proceed in development of a novel de

novo genome assembly method. The main components of the method are GraphMap Owler, for

raw read overlapping, and Racon, for the correction of raw contigs. Since the development of

a layout phase was out-of-scope of this thesis, we borrow the layout component from Miniasm

[89] to test the proof-of-concept that high-quality de novo genome assemblies are possible,

even without error-correction in the pre-processing step of an assembly pipeline. We call the

new method Aracon (Assembly with Rapid Consensus).

Aracon is thoroughly evaluated in the following sections using the methods presented in

Chapter 3 in terms of assembly quality, memory usage and time consumption to obtain the

assemblies.

6.1 Methods

Aracon implements the Overlap-Layout-Consensus paradigm by integrating the two new devel-

oped components, GraphMap Owler and Racon, together with Miniasm’s layout module, into

a fully functional assembly pipeline. The workflow of our design is depicted in Figure 6.1 and

presented in Algorithm 21. All components developed in the scope of this thesis are designed

in a modular fashion, offering the option of being run as individual stand-alone programs. Both

GraphMap (Owler) and Racon can accept input and produce output in standard assembly for-

mats (FASTA, FASTQ, SAM, MHAP, PAF, GFA), allowing easy inter-modular connection of

components. Miniasm’s layout module is designed with similar goals in mind [89].

Aracon is implemented as a simple script, conducting the pipeline between the modules.

Aracon takes as input a FASTQ file of raw nanopore or PacBio reads. It then performs the

overlapping process directly from the raw reads using the GraphMap Owler module (Algorithm

108

Integration and evaluation - Aracon assembler

Figure 6.1: Depiction of the Aracon assembly workflow.

21, line 1). Overlaps are stored in a PAF overlap file, which can then be read by Miniasm layout

(Algorithm 21, line 2). Miniasm produces and stores the raw assembly in a GFA formatted

file on disk. The raw assembly is composed of tiled reads, with the error rate the same as in

the input data. Racon then takes the GFA file and the original reads FASTQ file, and performs

an iteration of consensus, to produce a corrected, much more accurate assembly and outputs

it in FASTA format (Algorithm 21, lines 3− 4). Racon is then run again, this time using the

corrected assembly FASTA and the original reads in the FASTQ file, and performs the second

Algorithm 21: Aracon assembly pipeline
Input: A set of readsR in FASTQ format
Output: Assembly contigs A in FASTA/FASTQ/GFA format

Function ARACON(R) begin
1 O← Owler(R,R,0.45) . Calculate overlaps
2 Ar←Miniasm(R,O) . Calculate layout (raw assembly)
3 Mi1←Minimap(Ar,R) . Fast approximate mapping of reads to ref
4 Ai1← Racon(Ar,R,Mi1,500,10,”consensus”,0.45) . First iteration of consensus
5 Mi2←Minimap(Ai1,R) . Fast approximate mapping of reads to ref
6 Ai2← Racon(Ai1,R,Mi2,500,10,”consensus”,0.45) . Second iteration of consensus
7 A←Ai2

8 return A

109

Integration and evaluation - Aracon assembler

iteration of consensus (Algorithm 21, lines 5− 6). The resulting consensus from this phase is

then deemed to be the final assembly (Algorithm 21, lines 7−8).

6.1.1 Implementation and reproducibility

Aracon assembly pipeline is implemented in Python. It integrates several components

(GraphMap, Miniasm and Racon) which were implemented in C/C++ and added as submod-

ules to Aracon. A wrapper for Aracon was implemented into our benchmarking framework

NanoMark, used to conduct assembly tests and evaluation. All tests were ran using Ubuntu

based systems with two 6-core Intel(R) Xeon(R) E5645 CPUs @ 2.40GHz with Hyperthread-

ing, using 12 threads where possible. Version of methods used in comparison:

• Aracon - https://github.com/isovic/aracon, commit: 0d f da4eeaa17

• NanoMark - https://github.com/kkrizanovic/NanoMark, commit: 77265aca8cbc

6.1.2 Datasets

For evaluation purposes, we used Datasets 1 - 5 defined in Section 3.1.1. For consistency, we

present them in Table 6.1 as well.

Table 6.1: Description of the datasets used for evaluation of Aracon.

Name Description

Dataset 1 Complete E. coli R7.3 dataset, contains both 1d and 2d reads (both pass and
fail), total coverage 67x (70531 reads), of which 2d reads comprise 14x (11823
reads) [123].

Dataset 2 Reads from Loman et al. [16] subsampled to coverage 19x, pass 2d reads only
(in total 16945 reads).

Dataset 3 Complete dataset used by Loman et al. [16] nanopore assembly paper, contains
pass 2d reads only, coverage 29x, 22270 reads.

Dataset 4 Reads from MARC WTCHG dataset, 2d reads extracted from pass (33x) and
fail (7x) folders, total coverage 40x, total number of 2d reads: 29635 [13].

Dataset 5 2d reads extracted from the first run of the MAP006 dataset (MAP006-1), from
pass folder only, coverage 54x, 25483 reads in total. http://lab.loman.

net/2015/09/24/first-sqk-map-006-experiment/

6.1.3 Assembly pipelines

The list of assembly pipelines we compared against in Chapter 3 was reduced to five state-of-

the-art methods: Loman et al. pipeline (in continuation, LQS), PBcR, FALCON, Canu and

110

https://github.com/isovic/aracon
https://github.com/kkrizanovic/NanoMark
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

Integration and evaluation - Aracon assembler

Miniasm. Since the newly developed Aracon assembler is non-hybrid, and is therefore not

comparable to the hybrid ones, SPAdes and ALLPATHS-LG were left out of comparison.

LQS pipeline: Pipeline developed and published by Loman et al. in their pivotal

nanopore assembly paper (https://github.com/jts/nanopore-paper-analysis) [16].

The pipeline consists of Nanocorrect, WGS and Nanopolish. The version of the pipeline tested

in this study uses Nanocorrect commit 47dcd7f147c and WGS version 8.2. For the base version

of the pipeline, we didn’t use Nanopolish.

PBcR: Implemented as a part of the WGS package (http://wgs-assembler.

sourceforge.net/wiki/index.php/PBcR) [8]. In this study version 8.3rc2 of WGS was

used. Spec file defining assembly parameters for nanopore data, was downloaded from the

PBcR web page.

FALCON: To evaluate Falcon we used the FALCON-integrate project (https://github.

com/PacificBiosciences/FALCON-integrate) (commit: 3e7dd7db190) [90]. Since no for-

mal parameter specification for nanopore data currently exists, we derived a suitable set of pa-

rameters through trial and error (Table 3.2).

Canu: Canu was obtained from https://github.com/marbl/canu (commit:

70e711a382f). Canu is currently not yet published.

Miniasm: Miniasm was obtained from https://github.com/lh3/miniasm (commit:

17d5bd12290). For calculating read overlaps we used Minimap (https://github.com/lh3/

minimap) (commit: 1cd6ae3bc7c) [89].

6.1.4 Evaluation methods

All assembly results were compared to the E. coli K-12 MG1655 NCBI reference,

NC_000913.3. Assembly quality was evaluated using Quast 3.1 [125] and Dnadiff [126]

tools. CPU and memory consumption was evaluated using a fork of the Cgmemtime tool

(https://github.com/isovic/cgmemtime.git). The LQS pipeline was run without ap-

plying the polishing phase to make it comparable to other methods.

6.2 Results

Tables 6.2 and 6.3 give detailed information about de novo genome assemblies of Datasets 1 -5

obtained using Aracon, and comparison of Aracon to the state-of-the-art methods.

Based on the results for Datasets 2 - 5, and reflecting on the Genome fraction, Avg. Identity,

Total SNPs and Total Indels, one can conclude that Aracon in all cases produces assemblies

which very closely resemble those of LQS (the most accurate method), while always producing

larger Avg. Identity than PBcR, Falcon, Canu or Miniasm (Table 6.2). Avg. Identity between

111

https://github.com/jts/nanopore-paper-analysis
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
https://github.com/PacificBiosciences/FALCON-integrate
https://github.com/PacificBiosciences/FALCON-integrate
https://github.com/marbl/canu
https://github.com/lh3/miniasm
https://github.com/lh3/minimap
https://github.com/lh3/minimap
https://github.com/isovic/cgmemtime.git

Integration and evaluation - Aracon assembler

Table 6.2: Detailed comparison of the newly developed Aracon assembler and the state-of-the-art meth-
ods. Genome fraction and Avg. Identity 1-to-1 are marked in bold for Aracon as well as for the best
other assembler.

Dataset Assembler # ctg. Largest
contig

Total
length

N50 Genome
fraction

(%)

Avg.
Identity
1-to-1

Total
SNPs

Total
Indels

1 Aracon 100 81199 2695009 27612 97.377 93.11 47069 143677

LQS 236 201101 5085719 41967 19.278 93.98 59887 186721

Falcon 1 1703 1703 1703 - 92.81 13 117

PBcR 78 41968 1224958 18161 0.004 86.8 30719 139617

Canu 61 24645 585225 10922 99.91 90.81 5736 46744

Miniasm 87 64239 1895814 22361 0.004 82.77 106720 155383

2 Aracon 14 880544 4466788 352504 97.377 97.5 15417 97968

LQS 8 1673524 4660747 1159703 99.895 98.08 8858 79746

Falcon 98 46831 1038959 11083 6.994 94.58 3263 47211

PBcR 22 983314 4311837 246681 0.593 93.7 14823 269053

Canu 26 966076 4407396 332535 90.123 95.71 5691 183774

Miniasm 15 1100378 4505577 353994 0.002 84.21 248575 373190

3 Aracon 1 4589826 4589826 4589826 99.889 97.94 10932 85133

LQS 3 4603990 4622649 4603990 99.998 98.49 4568 65283

Falcon 124 53984 1495565 13838 17.316 94.97 3206 59638

PBcR 1 4329903 4329903 4329903 12.825 94.03 7209 262357

Canu 10 4465231 4465231 4465231 88.655 95.77 5213 185027

Miniasm 3 3362269 4615469 3362269 0.002 84.04 247849 367927

4 Aracon 2 4480397 4621464 4480397 99.922 98.91 3455 46186

LQS 8 4622531 4659590 4622531 99.938 99.08 2256 40118

Falcon 13 4538244 4549221 4538244 99.938 97.66 3710 104165

PBcR 3 3615068 4549034 3615068 99.553 97.39 2394 117397

Canu 2 4576679 4580258 4576679 99.915 98.42 812 71878

Miniasm 1 4577227 4577227 4577227 0.002 88.31 185194 326066

5 Aracon 1 4574857 4574857 4574857 98.754 99.32 1625 29613

LQS 5 4006324 4681348 4006324 99.991 99.43 1435 25106

Falcon 1 4580230 4580230 4580230 99.655 98.84 2589 50662

PBcR 1 4596475 4596475 4596475 99.914 98.99 1136 45542

Canu 1 4600945 4600945 4600945 99.746 99.29 415 32100

Miniasm 1 4774395 4774395 4774395 0.002 88.69 175279 328688

112

Integration and evaluation - Aracon assembler

Table 6.3: CPU time (hours) / Maximum memory usage (GB). Bold values present the results for Aracon
and the best other method, except for Miniasm. Although most efficient, Miniasm was excluded because
it is not directly comparable to other methods since it does not employ neither an error-correction nor a
consensus step. Dataset 1 was also not marked in bold, as none of the assemblers managed to assemble
the dataset with quality, and the results may not be comparable.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Coverage 67x 20x 30 40 50

Assembler

Aracon 1.94 / 16 0.66 / 5 1.27 / 7 3.49 / 10 3.97 / 13

LQS 450.13 / 4 1086 / 4 2539 / 4 4438 / 4 8142 / 4

Falcon 1.34 / 4 3.1 / 6 6.4 / 10 19.7 / 10 13.8 / 13

PBcR 1.88 / 1 6.2 / 2 13.7 / 6 14.1 / 5 19.3 / 5

Canu 1.93 / 3 5.33 / 3 11.2 / 4 28.7 / 4 9.39 / 4

Miniasm 0.029 / 3 0.009 / 2 0.015 / 2 0.026 / 3 0.044 / 4

Aracon and LQS differs in as little as 0.11% on Dataset 5, to at most 0.58% on Dataset 2. Taking

this into account, for such minor difference in the obtained results, Aracon achieves more than

three orders of magnitude quicker assemblies (Table 6.3). Compared to other methods (not

including Miniasm as it does not perform an error-correction or a consensus step), Aracon is

at least three times as fast as the next best method. Memory consumption is always < 16GB,

enabling high quality bacterial genome assemblies on regular workstations or laptops.

Similar to other assembly pipelines, the poor quality of the data in Dataset 1 and the low

coverage of Dataset 2 were not overcome by Aracon either. Again, however, Aracon’s perfor-

mance on these datasets was comparable to that of LQS and better than other methods.

Aracon managed to achieve a single-contig bacterial genome assembly on Datasets 3 and

5, while on Dataset 4 the assembly consisted of only two contigs. We further inspected as-

semblies of Datasets 3, 4 and 5 visually using Gepard [145], to verify whether the assemblies

included potential structural errors (Figure 6.2). Figures 6.2a (Dataset 3) and 6.2b (Dataset 5)

show a perfect circular chromosome assembly of the E. Coli genome, while Figure 6.2c shows

a break in between the two contigs. One can notice the inversion of the smaller contig - this is

due to the arbitrary choice of a strand used to traverse the layout of the assembly. We reverse-

complemented the smaller contig to inspect whether it will fit nicely to the larger one. Figure

6.2d shows the dot plot of such orientation of contigs - although split in two, the assembly aligns

perfectly circular to the E. Coli reference genome.

113

Integration and evaluation - Aracon assembler

(a) Aracon on Dataset 3. (b) Aracon on Dataset 5.

(c) Aracon on Dataset 4. (d) Aracon on Dataset 4 with reversed small contig.

Figure 6.2: Inspecting the quality of Aracon assemblies visually using the dotplot representation.
Datasets 3 and 5 were assembled into single contigs which fully match the E. Coli reference genome,
as shown in a and b. Dataset 4 was assembled into two contigs: a large one covering almost the entire
genome, and a much shorter one. Together they provide a full assembly of the E. Coli. Figure c shows
the assembly as-is produced by Aracon. Since strands for each contig are arbitrary, the second (smaller)
contig was reversed and the dotplot re-generated (d). All figures show that there are no misassemblies of
the genome or structural variations.

6.3 Discussion

This chapter presented the integration of all components developed within the scope of this

thesis, into a novel de novo genome assembly method called Aracon. Aracon is able to produce

high-quality contiguous genome assemblies from raw third generation sequencing data without

114

Integration and evaluation - Aracon assembler

an error-correction preprocessing step. It is also at least three times faster than the fastest

alternative method which utilizes error-correction and consensus steps, while providing better

results.

With these results, we managed to construct a proof-of-concept that high-quality de
novo genome assemblies are possible without having an error-correction pre-processing
step.

Aracon is available open-source under the MIT license at: https://github.com/isovic/

aracon.

115

https://github.com/isovic/aracon
https://github.com/isovic/aracon

Chapter 7

Conclusion

Since the time I enrolled on a Ph.D. programme back in 2011, the times have changed dras-

tically for sequencing technologies and related algorithmic methods. The survey of the field I

conducted back then is now very much out-of-date, and many methods I have researched be-

came obsolete. At the time, Pacific Biosciences had just released their first commercial third

generation sequencing device with the promise of reads much longer than the NGS technologies

could have provided. They truly did deliver - current PacBio machines can produce reads of up

to≈ 60kbp in length with error rate of≈ 11%, which is a significant improvement compared to

some of their first public data (≈ 1000bp in length and ≈ 18% error rate). The long reads were

especially tempting for genome assembly as well as many other interesting applications, how-

ever, new and more sensitive algorithms had to be developed to cope with the characteristics of

the data.

A more recent challenge, which once again stirred things up in the realm of sequencing,

happened in 2014, when Oxford Nanopore Technologies released their nanopore-based Min-

ION third generation sequencing device - at first through an early-access programme, and later

in 2015 commercially. Unlike other technologies, MinION is very small and portable, and the

device itself costs two orders of magnitude less than any previous technology. MinIONs should

provide virtually unlimited read lengths, bound only by the shear laws of physics which cause

the breaking of the long DNA molecules during sample handling. Indeed, the longest basecalled

reads publicly released were > 300kbp long. Reads of this length could help to reconstruct truly

difficult and repetitive regions of complex eukaryotic organisms. However, the challenge lays

again in the error rates, which were at first significantly higher than PacBio’s (≈ 35%), which

required the development of even more sensitive methods for sequencing data analysis. The

error rates in ONT data have since come down to similar levels as those of PacBio (≈ 11%).

As mentioned above, one of the greatest applications of long reads, be it error-prone or not,

is in genome assembly. The approaches used to assemble such data so far were all based on

the idea of error-correcting the reads in a pre-processing step, and then using the rest of the

116

Conclusion

Overlap-Layout-Consensus (or the de Bruijn) paradigm to do the actual assembly.

It was the goal of this thesis to test the hypothesis whether it is possible to achieve high

quality de novo genome assembly from long error-prone reads without error-correcting them

first - instead, leaving the correction part only for the final, consensus phase. Error correction

of reads is generally a slow process, because either: (I) the full set of input reads needs to

be corrected by aligning reads mutually in a pairwise manner and then applying the multiple

sequence alignment to resolve the ambiguities, which would scale poorly with the increase

of the dataset size; or (II) only a subset of input reads will be error-corrected, e.g. only the

ones above certain length (seed reads in Falcon), which is very dependant on the distribution

of read lengths in the input dataset. Instead, developing a more sensitive overlapping method

could produce enough information to construct a layout of the genome, and then apply a fast

consensus method to reduce the errors in the assembly. This describes the general approach of

the research conducted in this thesis.

We have successfully managed to prove this hypothesis by developing novel algorithms and

implementing them into open-source tools. The importance of our research was also recognized

by high-impact journals, where we, so far, published the framework for automated evaluation of

de novo assembly methods and GraphMap, a method for fast and sensitive mapping of nanopore

sequencing reads.

Below are pre-defined contributions of the research conducted in this thesis, and the align-

ment of performed work in relation to those contributions. All contributions and requirements

have been met fully, while the conducted work also generated even more of the added value and

impact on the state-of-the-art. As an example, even before it was officially published (while in

the pre-print stage), GraphMap influenced the development of Minimap and Miniasm, which

we compare to here as the state-of-the-art. Minimap and Miniasm coincidentally and inde-

pendently developed de novo assembly without error-correction. This shows that research in

modern world, and especially genomics, is no longer linear, but instead, is becoming more of

a directed cyclic graph. Perhaps in the near future, the formats of dissertations and research

papers will be revised to accommodate such research practices.

7.1 Contributions of the dissertation

A framework for systematic benchmarking of de novo genome assembly tools

A systematic evaluation of the state-of-the-art in de novo genome assembly from third genera-

tion sequencing data was conducted in the scope of Chapter 3. The focus of the research was

put on assessing the existing methods for assembly of nanopore data, while also attempting to

utilize a non-nanopore assembly method for the same purpose (namely Falcon, designed for

117

Conclusion

PacBio data). This step provided key information about the existing methods, and potential av-

enues to take when developing novel algorithms. In the scope of research, a framework called

NanoMark was developed, which simplifies the benchmarking of different tools by automati-

cally setting up the data, installing the assembly tools and wrapping the execution of various

assemblers. NanoMark measures memory and time statistics, and performs quality assessments

on the results of the assembly. Wrapper scripts can easily be added to the framework, as was

later done to asses the performance of the Aracon assembler developed in the scope of this

thesis (Chapter 6). The results were published in:

• Sović, Ivan; Križanović, Krešimir; Skala, Karolj; Šikić, Mile. Evaluation of hybrid and

non-hybrid methods for de novo assembly of nanopore reads. Bioinformatics. 11 (2016)

Optimized algorithms and data structures for de novo genome assembly with emphasis
on third generation sequencing data

Chapters 4, 5 and 6 describe the development of the novel assembly method called Aracon.

Chapter 4 starts with the development of a novel, highly sensitive mapper for long, error-

prone reads called GraphMap, which is then subsequently modified and used for sequence

overlapping. GraphMap introduces several novel concepts in the context of sequence mapping:

use of gapped spaced seeds, Hough Transform, graph mapping and L1 linear regression all offer

a new combination of algorithmic improvements which enabled very sensitive mapping and

overlapping of error-prone reads. The final developed overlapper is called Owler (Overlap With

Long Erroneous Reads), and is used in the Aracon assembler developed in the scope of this

thesis. GraphMap was published in:

• Sović, Ivan; Šikić, Mile; Wilm, Andreas; Fenlon, Shannon Nicole; Chen, Swaine;

Nagarajan, Niranjan. Fast and sensitive mapping of nanopore sequencing reads with

GraphMap. Nature Communications. 7 (2016)

Chapter 5 describes the development of a very fast standalone consensus module called

Racon (Rapid Consensus), intended for correcting errors in raw assemblies, such as the ones

produced by the Miniasm’s layout step. We developed an optimized method which can utilize

Single Instruction Multiple Data (SIMD) instructions of a CPU to accelerate the building of a

Partial Order Alignment (POA) graph. POA is used to construct the final consensus sequence.

Racon is dependant on the base quality values provided by sequencing devices to construct

a more confident consensus sequence. Thoroughly testing Racon showed that it consistently

achieves results which are comparable or better than state-of-the-art methods, while being up to

an order of magnitude faster.

Chapter 6 describes the development of the new Aracon assembler (Assembly with Rapid

Consensus). Aracon is implemented as a script which combines the previously described com-

ponents into a single assembler: Owler is used for read overlapping, Miniasm’s layout step to

118

Conclusion

construct the raw contigs, and Racon is used twice to provide error-corrected output. Miniasm’s

layout module is used for the layout step, as the development of a layout module was outside

of the scope of this thesis. String graph and assembly graph theory is described elsewhere, and

efficient implementations of the algorithm already exist.

Evaluation of developed algorithms using the novel benchmarking framework

Chapter 6 provides a thorough evaluation of the novel Aracon assembly method, and its

comparison to the state-of-the-art. For evaluation purposes, NanoMark (developed in the scope

of Chapter 3) was used. Aracon proved to be as good as currently the best assembly method

(Loman et al. pipeline), while being three orders of magnitude faster. Compared to other

methods, Aracon consistently demonstrated similar high-quality results, where others’ results

would vary depending on the dataset. Compared to those methods, Aracon was about 3x faster.

7.2 Future research avenues

The high contiguity of nanopore-only assemblies provides a number of other important oppor-

tunities. For example, even small bioinformatics laboratories can now study genomic structural

variations and rearrangements, or identify large antibiotic resistance islands in genomes, for

which exact base variations are not of such high importance; all in-house.

What might be more interesting from an algorithmic perspective is the development of very

fast and accurate algorithms for assembly of very large genomes, such as plants. Plant genomes

can be even 10x larger than the human genome, resulting in enormous amounts of data which

need to be stored and processed. Setting aside storage issues for now, aligning or assembling

of such large amounts of data would require the development of extremely efficient indexing

structures. The problem of computer memory organization arises in this aspect, as lookups will

almost always wind up outside the cached regions of the memory, causing ≈ 100x reductions

in speed only because of the shear size of the input data. Low-level optimizations will have to

be explored to enable such analyses.

Another important and very related avenue is the development of methods which could han-

dle ploidy in the input sample (number of sets of chromosomes). For example, the reference hu-

man genome (≈ 3Gbp) is only a haploid representation of the full diploid human genome. Plant

genomes can have an even larger ploidy number, such as Coffea arabica which is tetraploid,

or Triticum aestivum (bread wheat) which is hexaploid. Currently only one diploid-aware as-

sembler exists (Falcon), while the polyploidy still needs to be explored from the assembly

perspective.

We can expect that with further development of nanopore technology (and other long read

sequencing technologies) read quality will increase and the technology will become more ac-

119

Conclusion

cessible and more affordable. This will make de novo assembly using nanopore reads faster,

more precise and applicable to larger genomes.

120

Appendix A

Additional benchmarking results

Table A.1: Error rate analysis of raw read datasets. Numbers in the table represent median values.

Dataset Insertion
rate

Deletion
rate

Mismatch
rate

Error rate Match rate

Dataset 0 0% 0% 3% 3% 97%

Dataset 1 4% 8% 21% 33% 74%

Dataset 2 3% 4% 9% 16% 85%

Dataset 3 3% 4% 9% 16% 85%

Dataset 4 2% 3% 6% 11% 91%

Dataset 5 3% 2% 5% 10% 90%

121

Additional benchmarking results

Table A.2: Detailed Quast results for all assembly pipelines and all datasets.

Dataset Assembler # ctg. Largest contig Total length N50 #
mismatches
per 100kbp

indels per
100kbp

Genome
fraction (%)

Dataset 1 LQS 236 201101 5085719 41967 895.83 2533.71 19.278

Dataset 1 Falcon 1 1703 1703 1703 - - -

Dataset 1 PBcR 78 41968 1224958 18161 613.5 3067.48 0.004

Dataset 1 Allpaths 4 4639965 4648288 4639965 2.14 4.81 99.887

Dataset 1 SPAdes 19 4465980 4640184 4465980 11.08 2.61 99.91

Dataset 1 Canu 61 24645 585225 10922 526.32 526.32 0.004

Dataset 1 Miniasm 87 64239 1895814 22361 - - -

Dataset 2 LQS 8 1673524 4660747 1159703 134.58 1110.98 99.895

Dataset 2 Falcon 98 46831 1038959 11083 271.38 2647.58 6.994

Dataset 2 PBcR 22 983314 4311837 246681 170.67 2777.88 0.593

Dataset 2 Allpaths 2 4639001 4641330 4639001 0.24 0.19 99.938

Dataset 2 SPAdes 18 4488904 4662975 4488904 10.78 1.77 99.912

Dataset 2 Canu 25 966076 4407396 332535 112.12 2472.68 90.123

Dataset 2 Miniasm 15 1100378 4505577 353994 - 1265.82 0.002

Dataset 3 LQS 3 4603990 4622649 4603990 74.31 878.72 99.998

Dataset 3 Falcon 124 53984 1495565 13838 212.01 2615.14 17.316

Dataset 3 PBcR 1 4329903 4329903 4329903 85 2861.25 12.825

Dataset 3 Allpaths 3 4638937 4643557 4638937 0.17 0.8 99.938

Dataset 3 SPAdes 19 4474608 4647328 4474608 10.74 1.55 99.88

Dataset 3 Canu 10 4465231 4465231 4465231 68.7 2171.55 88.655

Dataset 3 Miniasm 3 3362269 4615469 3362269 1149.43 1149.43 0.002

Dataset 4 LQS 8 4622531 4659590 4622531 47.64 642.47 99.938

Dataset 4 Falcon 13 4538244 4549221 4538244 44.19 1188.82 99.938

Dataset 4 PBcR 3 3615068 4549034 3615068 48.15 1576.45 99.553

Datase t4 Allpaths 1 4638952 4638952 4638952 0.19 0.26 99.938

Dataset 4 SPAdes 20 4475770 4648587 4475770 10.09 1.21 99.88

Dataset 4 Canu 2 4576679 4580258 4576679 12.76 966.67 99.915

Dataset 4 Miniasm 1 4577227 4577227 4577227 - - 0.002

Dataset 5 LQS 5 4006324 4681348 4006324 29.07 390.31 99.991

Dataset 5 Falcon 1 4580230 4580230 4580230 48.3 703.58 99.655

Dataset 5 PBcR 1 4596475 4596475 4596475 24.11 628.85 99.914

Dataset 5 Allpaths 1 4638958 4638958 4638958 0.19 0.22 99.938

Dataset 5 SPAdes 16 4648863 4651405 4648863 10.2 0.93 99.918

Dataset 5 Canu 1 4600945 4600945 4600945 8.38 487.18 99.746

Dataset 5 Miniasm 1 4774395 4774395 4774395 1219.51 1219.51 0.002

122

Additional benchmarking results

Table A.3: Determining the lowest coverage for which each assembly pipeline produces a sufficiently
good assembly. At 29x coverage only LQS produces a good assembly, while at 40x coverage all non-
hybrid assemblers produce a good assembly. To investigate this further, we prepared several datasets
with coverages between 30x and 40x. These datasets were subsampled from Dataset 5 in a way that a
larger dataset is a superset of a smaller one. Falcon, PBcR, Canu and Miniasm were then run on these
Datasets, while LQS was left out because it already produced a good assembly at 29x coverage.

Dataset Coverage Assembler # ctg. Largest
contig

Total
length

N50 Genome
frac-
tion
(%)

Avg.
Iden-
tity

Dataset 3 29x LQS 3 4603990 4622649 4603990 99.998 98.49

Dataset 3 29x Falcon 124 53984 1495565 13838 17.316 94.97

Dataset 3 29x PBcR 1 4329903 4329903 4329903 12.825 94.03

Dataset 3 29x Canu 10 4465231 4576345 4465231 88.655 95.77

Dataset 3 29x Miniasm 3 3362269 4615469 3362269 0.002 84.04

Dataset 5 32x Falcon 2 3622965 4565105 3622965 99.432 98.67

Dataset 5 32x PBcR 3 3065306 4603459 3065306 99.738 98.87

Dataset 5 32x Canu 1 4606239 4606239 4606239 99.927 99.22

Dataset 5 32x Miniasm 1 4764930 4764930 4764930 0.015 88.52

Dataset 5 35x Falcon 2 4581657 4601328 4581657 99.777 98.7

Dataset 5 35x PBcR 1 4589654 4589654 4589654 99.861 98.85

Dataset 5 35x Canu 1 4606461 4606461 4606461 99.895 99.23

Dataset 5 35x Miniasm 1 4766818 4766818 4766818 0.018 88.55

Dataset 5 37x Falcon 2 3173910 4599063 3173910 99.736 98.73

Dataset 5 37x PBcR 1 4589878 4589878 4589878 99.795 98.85

Dataset 5 37x Canu 1 4606506 4606506 4606506 99.887 99.23

Dataset 5 37x Miniasm 1 4766897 4766897 4766897 0.022 88.55

Dataset 5 40x Falcon 1 4581577 4581577 4581577 99.736 98.76

Dataset 5 40x PBcR 1 4588205 4588205 4588205 99.807 98.89

Dataset 5 40x Canu 1 4593671 4593671 4593671 99.624 99.24

Dataset 5 40x Miniasm 1 4773983 4773983 4773983 0.027 88.53

123

Additional benchmarking results

Table A.4: Detailed Dnadiff results for all “Big Contigs”. For each assembly which contained a contig
of at least 4Mbp in length, that contig was extracted and compared to the reference using Dnadiff. The
table does not contain entries for assemblers which did not produce contigs of 4Mbp for a certain dataset.

Dataset Assembler Total
bases,
query

Aligned
bases,

ref.

Aligned
bases,
query

Unaligned
bases,

ref.

Unaligned
bases,
query

Avg.
Ident.
1-to-1

Bkp. ref. Bkp.
query

Total
SNPs
query

Total
Indels
query

Dataset 0 Allpaths 4626283 99.94% 99.51% 0.06% 0.49% 99.99 140 139 59 73

Dataset 1 Allpaths 4639965 100.00% 99.92% 0.00% 0.08% 99.98 42 42 65 261

Dataset 1 SPAdes 4465980 96.36% 100.00% 3.64% 0.00% 99.98 48 48 451 173

Dataset 2 Allpaths 4639001 100.00% 100.00% 0.00% 0.00% 99.99 20 20 10 12

Dataset 2 SPAdes 4488904 96.36% 99.99% 3.64% 0.01% 99.98 48 48 424 110

Dataset 3 LQS 4603990 100.00% 100.00% 0.00% 0.00% 98.49 11 10 4568 65283

Dataset 3 PBcR 4329903 98.20% 99.40% 1.80% 0.60% 94.03 841 841 7209 262357

Dataset 3 Allpaths 4638937 100.00% 100.00% 0.00% 0.00% 99.99 20 20 6 38

Dataset 3 SPAdes 4474608 96.36% 100.00% 3.64% 0.00% 99.99 46 46 424 108

Dataset 3 Canu 4465231 99.54% 99.92% 0.46% 0.08% 95.77 471 471 5318 186843

Dataset 4 LQS 4622531 100.00% 100.00% 0.00% 0.00% 99.08 23 22 2256 40118

Dataset 4 Falcon 4538244 100.00% 100.00% 0.00% 0.00% 97.66 27 27 3710 104165

Dataset 4 Allpaths 4638952 100.00% 100.00% 0.00% 0.00% 99.99 22 22 8 20

Dataset 4 SPAdes 4475770 96.36% 100.00% 3.64% 0.00% 99.99 46 46 398 73

Dataset 4 Canu 4576679 99.98% 100.00% 0.02% 0.00% 98.42 33 32 812 71878

Dataset 4 Miniasm 4577227 91.51% 91.47% 8.49% 8.53% 88.31 1364 1362 185194 326066

Dataset 5 LQS 4006324 86.93% 100.00% 13.07% 0.00% 99.43 88 88 1237 21852

Dataset 5 Falcon 4580230 99.70% 100.00% 0.30% 0.00% 98.84 22 22 2589 50662

Dataset 5 PBcR 4596475 99.93% 99.97% 0.07% 0.03% 98.99 47 47 1136 45542

Dataset 5 Allpaths 4638958 100.00% 100.00% 0.00% 0.00% 99.99 20 20 3 5

Dataset 5 SPAdes 4651405 100.00% 100.00% 0.00% 0.00% 99.99 36 36 420 53

Dataset 5 Canu 4600945 99.79% 100.00% 0.21% 0.00% 99.29 49 48 415 32100

Dataset 5 Miniasm 4774395 91.74% 90.82% 8.26% 9.18% 88.69 1316 1317 175279 328688

Table A.5: Falcon assembly using Nanocorrect processed reads as the input datasets.

Dataset #ctg Largest
contig

Total
length
(>= 0
bp)

N50 Genome
fraction

(%)

Avg.
identity

Total
SNPs

Total
Indels

Dataset 1 159 83912 2847962 27859 28.645 94.83 31162 118900

Dataset 2 32 477908 4270077 182215 92.741 98.1 8428 72872

Dataset 3 1 4585235 4585235 4585235 99.798 98.43 6201 66064

Dataset 4 3 4593235 4604056 4593235 99.631 99.04 3310 41189

Dataset 5 2 4610069 4619739 4610069 99.56 99.37 3222 26019

124

Additional benchmarking results

Table A.6: Miniasm assembly using Nanocorrect processed reads as the input datasets.

Dataset #ctg Largest
contig

Total
length
(>= 0
bp)

N50 Genome
fraction

(%)

Avg.
identity

Total
SNPs

Total
Indels

Dataset 1 97 129643 3532190 41369 14.445 93.94 50938 159504

Dataset 2 23 1102663 4585084 252947 96.285 97.94 10808 81751

Dataset 3 1 4613692 4613692 4613692 96.637 98.27 7539 70819

Dataset 4 1 4604261 4604261 4604261 98.98 99.04 2986 40965

Dataset 5 1 4650865 4650865 4650865 98.424 99.14 4229 35342

125

Appendix B

Supplementary information for
GraphMap

B.1 Evaluating GraphMap on synthetic datasets

On synthetic datasets emulating error profiles from Illumina and PacBio sequencing, we noted

that GraphMap and BLAST have high precision and recall (≈ 98%) for both location and align-

ment measures and are almost indistinguishable in these metrics (Figure B.1a). The slight vari-

ations in performance that were observed were not defined by the size of the genomes that were

studied. In addition, despite the marked differences in error profiles for Illumina and PacBio, the

observed performance metrics were comparable, highlighting the robustness of GraphMap and

its similarity to the gold-standard BLAST. Other mappers (BWA-MEM, LAST, DALIGNER

and BLASR) exhibit similarly consistent results on Illumina data and PacBio data, with the ex-

ception of BLASR being slightly worse on PacBio data (by up to 10% for the human genome).

BLASR’s results could be a result of it being tuned to specific features of PacBio data that are

not adequately captured in our simulation.

B.2 GraphMap’s sensitivity on ONT datasets

GraphMap and other mappers (BWA-MEM, LAST, DALIGNER and BLASR) were evaluated

on a range of publicly available ONT datasets for their performance (runtime, memory usage)

and sensitivity for read mapping. Across all datasets, GraphMap was able to map the most

reads and bases, typically mapping more than 95% of the bases and 85% of the reads in a dataset

(Figures 4.7b, B.2, Tables B.5 and B.6). This was despite the exclusion of secondary alignments

in GraphMap results and their presence in results for LAST, BWA-MEM and DALIGNER (also

used for genome coverage calculations). Overall, LAST was the next best mapper, typically

mapping more than 60% of bases (accounting for all secondary alignments; Tables B.5 and

126

Supplementary information for GraphMap

Ta
bl

e
B

.1
:P

re
ci

si
on

/R
ec

al
li

n
m

ap
pi

ng
of

sy
nt

he
tic

re
ad

s
to

th
e

co
rr

ec
tg

en
om

ic
lo

ca
tio

n
(±

50
bp

).

D
at

at
yp

e
G

en
om

e
B

L
A

SR
B

L
A

ST
B

W
A

-M
E

M
G

ra
ph

M
ap

L
A

ST
D

A
L

IG
N

E
R

-d
ef

au
lt

D
A

L
IG

N
E

R
-k

10
D

A
L

IG
N

E
R

-k
9

m
ar

gi
nA

lig
n

m
ar

gi
nA

lig
n

w
/G

ra
ph

M
ap

Il
lu

m
in

a
N

.m
en

in
gi

tid
is

98
.0

/9
8.

0
97

.6
/9

7.
6

98
.2

/9
8.

2
97

.7
/9

7.
6

97
.4

/9
7.

4
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
94

.8
/9

4.
8

97
.7

/9
7.

6

Il
lu

m
in

a
E

.c
ol

i
98

.7
/9

8.
7

99
.0

/9
9.

0
98

.8
/9

8.
8

98
.5

/9
8.

2
98

.9
/9

8.
9

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

98
.6

/9
8.

6
98

.5
/9

8.
2

Il
lu

m
in

a
S.

ce
re

vi
si

ae
96

.5
/9

6.
5

96
.5

/9
6.

3
96

.0
/9

6.
0

96
.0

/9
5.

8
96

.3
/9

6.
1

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

96
.0

/9
5.

8
96

.0
/9

5.
8

Il
lu

m
in

a
C

.e
le

ga
ns

98
.0

/9
8.

0
98

.1
/9

7.
6

98
.0

/9
8.

0
97

.2
/9

6.
4

98
.3

/9
8.

2
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
92

.5
/9

2.
4

97
.2

/9
6.

4

Il
lu

m
in

a
H

.s
ap

ie
ns

(c
hr

3)
99

.0
/9

9.
0

99
.0

/9
9.

0
99

.0
/9

9.
0

98
.4

/9
8.

1
98

.9
/9

8.
9

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

84
.9

/8
4.

9
98

.4
/9

8.
1

Il
lu

m
in

a
H

.s
ap

ie
ns

98
.1

/9
8.

1
-

98
.3

/9
8.

3
97

.7
/9

7.
4

98
.7

/9
8.

5
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
92

.3
/9

2.
1

97
.7

/9
7.

4

Pa
cB

io
N

.m
en

in
gi

tid
is

93
.3

/9
3.

2
99

.6
/9

9.
6

99
.0

/9
7.

7
99

.1
/9

9.
1

99
.4

/9
9.

4
69

.7
/2

6.
5

99
.8

/4
5.

0
99

.8
/4

4.
7

99
.4

/9
9.

4
99

.1
/9

9.
1

Pa
cB

io
E

.c
ol

i
94

.8
/9

4.
7

10
0.

0
/1

00
.0

10
0.

0
/9

8.
8

99
.7

/9
9.

7
10

0.
0

/1
00

.0
66

.1
/2

0.
9

10
0.

0
/4

2.
6

10
0.

0
/4

2.
6

99
.9

/9
9.

9
99

.7
/9

9.
7

Pa
cB

io
S.

ce
re

vi
si

ae
93

.9
/9

3.
9

98
.9

/9
8.

9
98

.9
/9

7.
6

98
.2

/9
8.

2
98

.8
/9

8.
7

69
.3

/2
4.

6
99

.6
/4

4.
5

99
.3

/4
4.

4
98

.1
/9

8.
0

98
.2

/9
8.

2

Pa
cB

io
C

.e
le

ga
ns

91
.0

/9
0.

9
99

.8
/9

9.
8

98
.9

/9
7.

5
99

.2
/9

9.
2

99
.3

/9
9.

2
74

.6
/2

3.
2

99
.8

/4
4.

8
99

.8
/4

5.
4

98
.4

/9
8.

3
99

.2
/9

9.
2

Pa
cB

io
H

.s
ap

ie
ns

(c
hr

3)
86

.8
/8

6.
8

99
.7

/9
9.

7
98

.5
/9

6.
4

98
.7

/9
8.

7
98

.8
/9

8.
4

71
.3

/2
4.

8
10

0.
0

/4
4.

6
10

0.
0

/4
4.

5
94

.5
/9

4.
1

98
.7

/9
8.

7

Pa
cB

io
H

.s
ap

ie
ns

87
.4

/8
7.

2
-

98
.2

/9
5.

5
98

.4
/9

8.
4

96
.2

/9
5.

2
70

.4
/2

7.
4

10
0.

0
/4

3.
3

10
0.

0
/4

4.
4

94
.6

/9
3.

7
98

.3
/9

8.
3

O
N

T
2D

N
.m

en
in

gi
tid

is
69

.3
/3

5.
4

99
.9

/9
9.

7
99

.8
/9

6.
3

99
.6

/9
9.

6
99

.9
/9

9.
9

60
.7

/3
.7

99
.2

/4
9.

0
99

.6
/4

9.
0

99
.9

/9
9.

9
99

.6
/9

9.
6

O
N

T
2D

E
.c

ol
i

82
.8

/3
6.

2
10

0.
0

/1
00

.0
10

0.
0

/9
6.

2
99

.8
/9

9.
8

10
0.

0
/9

9.
8

54
.1

/3
.3

99
.0

/4
8.

0
99

.0
/4

8.
3

10
0.

0
/9

9.
8

99
.8

/9
9.

8

O
N

T
2D

S.
ce

re
vi

si
ae

74
.7

/3
3.

7
99

.5
/9

9.
5

99
.5

/9
5.

2
98

.2
/9

8.
1

99
.7

/9
9.

5
52

.8
/3

.8
96

.4
/4

5.
2

96
.6

/4
5.

4
99

.2
/9

9.
0

98
.2

/9
8.

1

O
N

T
2D

C
.e

le
ga

ns
66

.5
/3

3.
9

99
.7

/9
9.

7
97

.7
/9

3.
0

99
.0

/9
9.

0
99

.3
/9

8.
3

43
.2

/1
.9

96
.1

/4
6.

7
96

.4
/4

6.
0

99
.3

/9
8.

3
99

.0
/9

9.
0

O
N

T
2D

H
.s

ap
ie

ns
(c

hr
3)

60
.1

/2
8.

0
99

.6
/9

9.
6

96
.2

/9
0.

1
98

.9
/9

8.
9

96
.0

/9
4.

4
46

.3
/3

.1
96

.5
/4

7.
4

96
.2

/4
0.

6
95

.7
/9

4.
1

98
.9

/9
8.

9

O
N

T
2D

H
.s

ap
ie

ns
58

.5
/2

9.
6

-
82

.9
/8

0.
2

97
.8

/9
7.

8
91

.4
/8

9.
1

20
.0

/0
.1

96
.3

/4
6.

8
95

.9
/4

2.
3

91
.0

/8
8.

7
97

.8
/9

7.
8

O
N

T
1D

N
.m

en
in

gi
tid

is
14

.4
/4

.2
96

.9
/9

4.
3

74
.8

/5
1.

1
98

.6
/9

7.
7

99
.5

/9
6.

5
0.

0
/0

.0
73

.6
/3

2.
4

75
.2

/3
3.

9
99

.3
/9

6.
2

98
.6

/9
7.

6

O
N

T
1D

E
.c

ol
i

17
.5

/4
.5

97
.9

/9
5.

5
75

.0
/5

3.
1

99
.2

/9
8.

7
10

0.
0

/9
5.

4
0.

0
/0

.0
71

.6
/3

1.
0

73
.1

/3
2.

3
10

0.
0

/9
5.

4
99

.2
/9

8.
7

O
N

T
1D

S.
ce

re
vi

si
ae

10
.9

/3
.0

95
.4

/9
4.

4
69

.9
/4

7.
4

95
.5

/9
5.

2
98

.8
/8

9.
6

0.
0

/0
.0

60
.8

/2
3.

1
60

.2
/2

3.
7

98
.6

/8
9.

3
95

.6
/9

5.
2

O
N

T
1D

C
.e

le
ga

ns
13

.0
/3

.3
97

.2
/9

7.
1

57
.1

/3
7.

7
95

.1
/9

4.
9

94
.5

/7
6.

2
0.

0
/0

.0
60

.8
/2

3.
4

58
.7

/2
1.

3
94

.4
/7

6.
1

95
.1

/9
4.

9

O
N

T
1D

H
.s

ap
ie

ns
(c

hr
3)

7.
7

/1
.6

96
.4

/9
5.

7
47

.3
/3

2.
5

96
.0

/9
5.

5
81

.9
/6

6.
5

0.
0

/0
.0

57
.3

/2
2.

4
51

.0
/7

.7
81

.8
/6

6.
4

96
.0

/9
5.

5

O
N

T
1D

H
.s

ap
ie

ns
8.

6
/1

.3
-

23
.1

/1
9.

1
94

.1
/9

4.
0

53
.5

/3
9.

7
0.

0
/0

.0
59

.6
/2

3.
0

44
.8

/1
.3

53
.1

/3
9.

4
94

.1
/9

4.
0

127

Supplementary information for GraphMap

Ta
bl

e
B

.2
:P

re
ci

si
on

/R
ec

al
li

n
re

co
ns

tr
uc

tin
g

th
e

co
rr

ec
ta

lig
nm

en
to

fs
yn

th
et

ic
re

ad
s.

D
at

at
yp

e
G

en
om

e
B

L
A

SR
B

L
A

ST
B

W
A

-M
E

M
G

ra
ph

M
ap

L
A

ST
D

A
L

IG
N

E
R

-d
ef

au
lt

D
A

L
IG

N
E

R
-k

10
D

A
L

IG
N

E
R

-k
9

m
ar

gi
nA

lig
n

m
ar

gi
nA

lig
n

w
/G

ra
ph

M
ap

Il
lu

m
in

a
N

.m
en

in
gi

tid
is

95
.4

/9
5.

3
97

.6
/9

7.
6

98
.2

/9
8.

2
97

.7
/9

7.
6

97
.4

/9
7.

4
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
94

.8
/9

4.
8

97
.7

/9
7.

6

Il
lu

m
in

a
E

.c
ol

i
95

.7
/9

5.
6

99
.0

/9
9.

0
98

.8
/9

8.
8

98
.5

/9
8.

2
98

.9
/9

8.
9

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

98
.6

/9
8.

6
98

.5
/9

8.
2

Il
lu

m
in

a
S.

ce
re

vi
si

ae
93

.7
/9

3.
6

96
.5

/9
6.

3
96

.0
/9

6.
0

96
.0

/9
5.

8
96

.3
/9

6.
1

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

96
.0

/9
5.

8
96

.0
/9

5.
8

Il
lu

m
in

a
C

.e
le

ga
ns

94
.3

/9
4.

2
98

.1
/9

7.
6

98
.0

/9
8.

0
97

.2
/9

6.
4

98
.2

/9
8.

1
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
92

.5
/9

2.
4

97
.2

/9
6.

4

Il
lu

m
in

a
H

.s
ap

ie
ns

(c
hr

3)
96

.8
/9

6.
8

99
.0

/9
9.

0
99

.0
/9

9.
0

98
.4

/9
8.

1
98

.9
/9

8.
9

0.
0

/0
.0

0.
0

/0
.0

0.
0

/0
.0

84
.8

/8
4.

8
98

.4
/9

8.
1

Il
lu

m
in

a
H

.s
ap

ie
ns

95
.5

/9
5.

4
-

98
.3

/9
8.

3
97

.7
/9

7.
4

98
.7

/9
8.

5
0.

0
/0

.0
0.

0
/0

.0
0.

0
/0

.0
92

.3
/9

2.
1

97
.7

/9
7.

4

Pa
cB

io
N

.m
en

in
gi

tid
is

10
.1

/1
0.

0
78

.8
/7

8.
8

80
.7

/8
0.

1
78

.3
/7

8.
3

80
.7

/8
0.

7
81

.9
/2

3.
6

81
.3

/3
9.

8
81

.2
/3

9.
6

85
.1

/8
5.

0
84

.8
/8

4.
8

Pa
cB

io
E

.c
ol

i
8.

0
/7

.9
79

.9
/7

9.
8

81
.8

/8
1.

4
79

.4
/7

9.
3

81
.8

/8
1.

7
83

.1
/2

0.
5

82
.1

/3
9.

7
82

.0
/3

9.
7

85
.9

/8
5.

8
85

.7
/8

5.
7

Pa
cB

io
S.

ce
re

vi
si

ae
11

.5
/1

1.
4

78
.5

/7
8.

4
80

.3
/8

0.
0

77
.5

/7
7.

5
80

.2
/8

0.
1

81
.6

/2
2.

2
80

.9
/3

9.
7

80
.9

/3
9.

7
84

.1
/8

4.
0

84
.0

/8
4.

0

Pa
cB

io
C

.e
le

ga
ns

8.
0

/7
.9

77
.3

/7
7.

2
79

.1
/7

8.
5

77
.1

/7
7.

1
79

.0
/7

8.
9

80
.3

/1
9.

5
79

.3
/3

8.
8

79
.3

/3
9.

4
83

.5
/8

3.
4

84
.0

/8
4.

0

Pa
cB

io
H

.s
ap

ie
ns

(c
hr

3)
7.

3
/7

.2
78

.2
/7

8.
2

79
.1

/7
8.

5
77

.3
/7

7.
3

80
.0

/7
9.

8
81

.1
/2

1.
5

80
.4

/3
9.

2
80

.4
/3

9.
2

81
.5

/8
1.

3
83

.9
/8

3.
9

Pa
cB

io
H

.s
ap

ie
ns

6.
5

/6
.3

-
79

.5
/7

8.
5

76
.9

/7
6.

9
78

.9
/7

8.
3

81
.3

/2
5.

0
80

.3
/3

8.
6

80
.5

/3
9.

7
82

.3
/8

1.
7

83
.4

/8
3.

4

O
N

T
2D

N
.m

en
in

gi
tid

is
4.

8
/2

.0
80

.7
/8

0.
6

81
.9

/8
0.

1
79

.4
/7

9.
4

81
.7

/8
1.

6
90

.5
/2

.9
81

.0
/3

8.
6

81
.0

/3
8.

6
84

.4
/8

4.
4

84
.3

/8
4.

3

O
N

T
2D

E
.c

ol
i

7.
1

/2
.9

81
.4

/8
1.

4
82

.7
/8

0.
4

80
.0

/8
0.

0
82

.5
/8

2.
2

91
.2

/2
.5

81
.9

/3
8.

5
81

.9
/3

8.
5

85
.0

/8
4.

7
84

.7
/8

4.
7

O
N

T
2D

S.
ce

re
vi

si
ae

5.
8

/2
.4

79
.9

/7
9.

8
81

.2
/7

8.
9

77
.1

/7
7.

0
81

.0
/8

0.
9

90
.7

/3
.2

81
.5

/3
4.

2
81

.4
/3

4.
4

83
.5

/8
3.

4
82

.0
/8

1.
9

O
N

T
2D

C
.e

le
ga

ns
5.

8
/2

.6
79

.1
/7

9.
0

80
.4

/7
7.

2
77

.7
/7

7.
7

80
.1

/7
9.

4
88

.9
/2

.1
80

.2
/3

5.
9

80
.3

/3
5.

4
83

.2
/8

2.
5

82
.8

/8
2.

8

O
N

T
2D

H
.s

ap
ie

ns
(c

hr
3)

7.
8

/3
.1

79
.7

/7
9.

4
80

.5
/7

6.
1

77
.9

/7
7.

9
80

.0
/7

8.
3

89
.8

/2
.9

81
.1

/3
5.

1
81

.1
/3

2.
4

82
.6

/8
0.

8
82

.9
/8

2.
9

O
N

T
2D

H
.s

ap
ie

ns
4.

9
/2

.1
-

79
.3

/6
9.

9
77

.4
/7

7.
4

79
.6

/7
5.

0
75

.1
/0

.1
80

.9
/3

5.
0

81
.3

/3
4.

1
81

.9
/7

7.
3

82
.4

/8
2.

3

O
N

T
1D

N
.m

en
in

gi
tid

is
0.

0
/0

.0
73

.3
/7

2.
0

74
.8

/4
8.

8
72

.7
/7

2.
5

74
.4

/7
3.

7
0.

0
/0

.0
74

.6
/2

6.
4

74
.5

/2
7.

0
79

.2
/7

7.
1

78
.7

/7
7.

3

O
N

T
1D

E
.c

ol
i

0.
0

/0
.0

74
.5

/7
3.

3
76

.4
/4

7.
7

74
.0

/7
4.

0
75

.6
/7

4.
5

0.
0

/0
.0

75
.8

/2
5.

5
75

.7
/2

6.
1

80
.2

/7
9.

0
79

.9
/7

9.
8

O
N

T
1D

S.
ce

re
vi

si
ae

0.
0

/0
.0

72
.7

/7
1.

5
73

.9
/4

6.
8

70
.2

/7
0.

1
73

.8
/7

0.
8

0.
0

/0
.0

75
.0

/1
7.

8
74

.9
/1

8.
6

78
.6

/7
4.

5
77

.0
/7

6.
1

O
N

T
1D

C
.e

le
ga

ns
0.

0
/0

.0
71

.1
/7

0.
6

71
.5

/3
7.

2
67

.8
/6

7.
8

72
.2

/6
3.

6
0.

0
/0

.0
73

.3
/1

9.
0

73
.2

/1
8.

5
77

.5
/6

8.
4

74
.1

/7
4.

1

O
N

T
1D

H
.s

ap
ie

ns
(c

hr
3)

0.
0

/0
.0

72
.1

/7
1.

1
70

.0
/3

1.
8

71
.0

/7
0.

8
71

.4
/5

8.
7

0.
0

/0
.0

74
.4

/1
8.

7
75

.4
/9

.1
76

.0
/6

2.
7

77
.2

/7
7.

0

O
N

T
1D

H
.s

ap
ie

ns
0.

0
/0

.0
-

62
.3

/1
9.

4
70

.8
/7

0.
8

68
.6

/4
1.

9
0.

0
/0

.0
74

.3
/1

9.
2

69
.6

/1
.8

72
.4

/4
4.

5
76

.9
/7

6.
9

128

Supplementary information for GraphMap

Ta
bl

e
B

.3
:C

PU
tim

e
(i

n
se

co
nd

s)
ta

ke
n

to
ex

ec
ut

e
ea

ch
te

st
on

sy
nt

he
tic

re
ad

s.

D
at

at
yp

e
G

en
om

e
B

L
A

SR
B

L
A

ST
B

W
A

-M
E

M
G

ra
ph

M
ap

L
A

ST
D

A
L

IG
N

E
R

-d
ef

au
lt

D
A

L
IG

N
E

R
-k

10
D

A
L

IG
N

E
R

-k
9

m
ar

gi
nA

lig
n

m
ar

gi
nA

lig
n

w
/G

ra
ph

M
ap

Il
lu

m
in

a
N

.m
en

in
gi

tid
is

2.
6

22
.4

0.
1

4
0.

9
1

1.
8

2.
7

48
.8

51
.8

Il
lu

m
in

a
E

.c
ol

i
2.

6
5.

1
0.

1
6.

4
0.

5
1.

5
1.

5
2.

6
92

.6
10

1.
8

Il
lu

m
in

a
S.

ce
re

vi
si

ae
4.

1
16

.2
0.

1
15

.4
0.

7
4.

9
4.

6
8.

2
62

.5
60

.9

Il
lu

m
in

a
C

.e
le

ga
ns

8.
4

11
2.

2
0.

3
14

8.
8

2.
1

39
.3

51
.4

68
.1

74
2.

5
58

7.
1

Il
lu

m
in

a
H

.s
ap

ie
ns

(c
hr

3)
11

.5
16

26
.4

0.
5

21
5.

3
5.

1
75

.7
85

.7
13

9.
9

36
39

.2
38

61
.1

Il
lu

m
in

a
H

.s
ap

ie
ns

11
1.

6
-

5.
2

57
67

.6
9.

7
11

12
.5

11
99

.9
18

81
.5

31
20

7.
5

11
64

4.
1

Pa
cB

io
N

.m
en

in
gi

tid
is

26
.9

46
4.

1
45

.6
25

.8
43

.8
2.

5
26

7.
9

45
64

.9
15

4.
3

13
1.

8

Pa
cB

io
E

.c
ol

i
31

66
.5

44
.7

29
.2

19
.6

3
17

1
48

50
.3

17
3.

9
18

3.
3

Pa
cB

io
S.

ce
re

vi
si

ae
44

.1
38

0.
7

50
.9

45
.3

36
.9

6.
6

11
93

.4
12

12
9.

3
21

2.
4

15
3.

2

Pa
cB

io
C

.e
le

ga
ns

70
.2

27
36

6.
7

49
.7

33
4.

5
15

2.
4

42
.4

25
06

.1
18

31
.7

16
82

.1
83

2.
1

Pa
cB

io
H

.s
ap

ie
ns

(c
hr

3)
82

.5
10

42
42

.1
97

.8
58

3
15

6.
9

83
.7

52
89

.7
55

2.
4

41
19

.3
44

71

Pa
cB

io
H

.s
ap

ie
ns

20
5.

4
-

55
.1

14
24

2.
4

17
6.

6
11

46
.5

59
16

5
16

35
3.

4
49

51
0

20
62

3.
4

O
N

T
2D

N
.m

en
in

gi
tid

is
55

.9
53

4.
2

78
.6

61
.2

62
.3

3.
1

60
2.

1
11

21
1.

9
25

4.
8

25
1

O
N

T
2D

E
.c

ol
i

57
.6

77
.9

68
.4

64
.3

32
.4

3.
8

40
9.

2
13

06
0.

8
26

5.
7

29
8.

9

O
N

T
2D

S.
ce

re
vi

si
ae

11
7.

2
37

7.
6

88
.9

95
.2

50
.1

7.
3

38
57

.7
35

50
9.

3
35

4.
6

29
2.

3

O
N

T
2D

C
.e

le
ga

ns
11

9
15

24
3.

8
10

9.
7

32
7

13
6.

9
42

.4
89

87
.7

38
47

.6
15

60
.4

93
9.

7

O
N

T
2D

H
.s

ap
ie

ns
(c

hr
3)

12
9.

5
11

06
70

.2
16

7.
9

53
4.

5
17

5.
3

94
.3

12
81

7.
1

26
0.

5
46

02
.7

48
50

O
N

T
2D

H
.s

ap
ie

ns
28

9.
9

-
17

3.
5

12
22

4.
3

20
5.

8
11

25
.3

15
82

45
.8

28
18

5.
1

52
65

9.
5

20
28

9.
9

O
N

T
1D

N
.m

en
in

gi
tid

is
50

.4
10

5.
7

10
8

58
.2

34
2.

4
38

5.
1

65
81

.2
20

1.
6

22
5.

1

O
N

T
1D

E
.c

ol
i

46
.1

35
.9

88
.7

61
24

.4
3.

3
37

6.
4

92
40

.9
23

8.
6

28
3.

6

O
N

T
1D

S.
ce

re
vi

si
ae

96
.8

17
7.

8
12

0.
7

88
.9

33
.5

6.
7

25
25

.5
28

76
3.

4
24

1.
2

26
4

O
N

T
1D

C
.e

le
ga

ns
81

.9
37

27
.2

77
.8

26
2.

6
56

.9
39

.1
62

38
.1

50
86

.8
89

1.
3

85
2.

4

O
N

T
1D

H
.s

ap
ie

ns
(c

hr
3)

94
.9

20
59

1.
8

82
.8

41
3.

4
44

.6
75

.9
14

84
2.

4
46

9.
6

35
30

.9
45

93
.4

O
N

T
1D

H
.s

ap
ie

ns
24

4.
9

-
10

2.
6

89
95

.6
62

.5
11

01
.3

22
85

89
40

05
2.

9
87

17
.3

17
96

1.
8

129

Supplementary information for GraphMap

Ta
bl

e
B

.4
:M

ax
im

um
m

em
or

y
co

ns
um

pt
io

n
(R

SS
;i

n
M

B
)r

eq
ui

re
d

to
ex

ec
ut

e
ea

ch
te

st
on

sy
nt

he
tic

re
ad

s.

D
at

at
yp

e
G

en
om

e
B

L
A

SR
B

L
A

ST
B

W
A

-M
E

M
G

ra
ph

M
ap

L
A

ST
D

A
L

IG
N

E
R

-d
ef

au
lt

D
A

L
IG

N
E

R
-k

10
D

A
L

IG
N

E
R

-k
9

m
ar

gi
nA

lig
n

m
ar

gi
nA

lig
n

w
/G

ra
ph

M
ap

Il
lu

m
in

a
N

.m
en

in
gi

tid
is

21
16

6
7

60
1

13
10

5
12

0
18

5
43

72
4

Il
lu

m
in

a
E

.c
ol

i
31

62
13

70
0

27
22

2
22

2
29

6
68

81
7

Il
lu

m
in

a
S.

ce
re

vi
si

ae
71

87
25

99
8

66
57

6
57

7
79

8
89

10
70

Il
lu

m
in

a
C

.e
le

ga
ns

49
3

36
7

17
3

46
13

53
5

47
82

47
82

56
42

60
3

46
67

Il
lu

m
in

a
H

.s
ap

ie
ns

(c
hr

3)
98

1
18

48
33

6
85

02
11

30
94

47
94

47
11

36
4

19
09

85
10

Il
lu

m
in

a
H

.s
ap

ie
ns

14
78

9
-

51
72

11
75

13
15

33
3

13
64

52
13

64
52

15
98

43
18

58
7

11
76

68

Pa
cB

io
N

.m
en

in
gi

tid
is

75
11

7
12

4
76

6
23

18
2

54
0

15
22

32
1

76
1

Pa
cB

io
E

.c
ol

i
10

3
67

12
9

90
4

44
26

3
79

3
24

65
32

8
89

3

Pa
cB

io
S.

ce
re

vi
si

ae
14

7
11

7
13

8
10

69
85

59
5

25
70

60
89

52
1

11
00

Pa
cB

io
C

.e
le

ga
ns

60
7

10
62

26
1

41
86

55
4

48
01

14
82

0
16

20
9

77
5

42
29

Pa
cB

io
H

.s
ap

ie
ns

(c
hr

3)
11

12
25

09
43

7
76

81
11

58
94

67
28

30
7

18
88

5
19

10
77

44

Pa
cB

io
H

.s
ap

ie
ns

14
88

1
-

53
47

10
35

39
15

35
2

13
66

87
39

86
27

26
48

32
18

58
9

10
34

03

O
N

T
2D

N
.m

en
in

gi
tid

is
96

82
13

6
98

1
34

26
2

71
9

22
24

44
3

10
06

O
N

T
2D

E
.c

ol
i

10
8

58
14

6
96

9
47

33
8

11
33

38
23

43
7

10
26

O
N

T
2D

S.
ce

re
vi

si
ae

18
7

10
8

15
9

14
26

98
59

8
38

28
95

53
68

6
13

97

O
N

T
2D

C
.e

le
ga

ns
65

7
53

1
40

1
43

38
56

6
48

01
21

17
8

20
56

4
61

6
43

56

O
N

T
2D

H
.s

ap
ie

ns
(c

hr
3)

11
45

22
59

57
4

81
09

11
66

94
68

40
29

6
15

44
9

19
10

81
50

O
N

T
2D

H
.s

ap
ie

ns
14

94
8

-
53

37
10

17
64

15
35

7
13

66
68

56
83

61
23

10
13

18
58

6
10

27
13

O
N

T
1D

N
.m

en
in

gi
tid

is
52

64
42

2
23

93
69

21
1

52
2

16
66

50
3

98
2

O
N

T
1D

E
.c

ol
i

69
61

28
6

13
24

63
29

1
90

6
30

01
50

9
12

85

O
N

T
1D

S.
ce

re
vi

si
ae

13
9

10
6

57
4

16
80

10
5

58
1

30
37

82
54

60
8

13
60

O
N

T
1D

C
.e

le
ga

ns
57

5
33

4
39

5
42

41
56

5
47

86
18

32
4

20
04

4
60

4
42

65

O
N

T
1D

H
.s

ap
ie

ns
(c

hr
3)

10
84

12
72

51
2

80
38

11
61

94
51

35
12

7
17

51
1

19
11

79
94

O
N

T
1D

H
.s

ap
ie

ns
14

94
9

-
53

74
10

25
47

15
36

7
13

65
10

49
99

23
24

93
43

18
58

7
10

27
23

130

Supplementary information for GraphMap

Table B.5: Results of mapping on various real datasets, part 1 / 2.

Lambda R6

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 2552.8 68.1 73.3 2210.9 1725.0 17.4 65093.2 83428.6

LAST 1855.4 30.2 52.2 897.4 40.0 15.4 71039.4 1593819.7

marginAlign 1627.0 30.5 52.2 147653.4 9640.0 0.1 436.3 6682.1

BWA-MEM 792.3 13.0 33.5 974.6 1304.0 36.8 28252.3 21114.7

BLASR 31.4 0.7 9.2 591.4 436.0 6.3 2405.9 3263.3

DALIGNER 29.4 1.4 4.5 152.6 6659.0 6.8 19678.4 450.9

E. Coli K-12 R7.3

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 63.8 96.6 88.9 6116.9 3533.0 11.5 49225.9 85227.8

LAST 53.2 61.3 53.3 1673.9 83.0 17.0 114046.4 2300095.6

marginAlign 45.2 61.5 53.3 173759.9 22174.0 0.2 1102.3 8638.0

BWA-MEM 41.6 55.2 50.9 5390.0 1289.0 12.5 31900.0 133391.3

BLASR 13.3 18.9 21.9 2895.8 807.0 5.3 20347.9 73014.5

DALIGNER 32.0 24.0 33.2 11975.8 44103.0 0.8 6255.8 1698.7

E. Coli K-12 R7.0

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 134.5 96.7 94.6 14,762.2 5,724.0 7.5 43,777.3 112,902.0

LAST 116.5 61.4 66.0 3,672.5 69.0 14.3 111,847.6 5,953,084.7

marginAlign 97.2 61.8 66.0 236,950.2 48,751.0 0.3 1,742.2 8,467.9

BWA-MEM 90.4 54.1 63.8 12,335.8 1,703.0 8.0 29,294.7 212,198.5

BLASR 26.4 17.9 26.5 8,534.1 1,609.0 3.5 14,003.9 74,276.8

DALIGNER 56.2 19.4 36.5 14,213.8 65,662.0 1.1 9,121.4 1,974.5

S. Enterica Typhi

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 32.3 96.6 90.9 3,734.6 2,884.0 8.7 43,777.9 56,689.5

LAST 26.0 57.8 60.3 892.3 58.0 16.0 109,586.1 1,685,996.6

marginAlign 22.1 58.1 60.3 153,852.0 11,295.0 0.1 639.1 8,705.5

BWA-MEM 20.7 50.9 58.5 2,328.2 1,025.0 12.5 37,039.2 84,130.4

BLASR 6.9 18.6 25.9 1,723.8 510.0 4.9 18,258.4 61,714.5

DALIGNER 14.4 20.4 32.9 10,319.6 27,068.0 0.4 3,346.7 1,275.9

E. Coli UTI89

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 8.2 99.5 98.7 467.7 1,196.0 19.3 80,161.6 31,348.4

LAST 8.8 85.5 88.1 240.2 57.0 24.3 134,098.7 565,134.1

marginAlign 7.6 85.6 88.1 88,798.5 3,684.0 0.1 363.5 8,761.1

BWA-MEM 7.0 75.9 86.7 725.9 432.0 11.0 39,390.4 66,186.9

BLASR 3.0 35.6 50.6 329.0 205.0 13.9 40,757.5 65,409.6

DALIGNER 5.2 38.6 53.4 1,748.7 7,354.0 1.5 8,317.8 1,977.8

131

Supplementary information for GraphMap

Table B.6: Results of mapping on various real datasets, part 2 / 2.

A. baylyi ADP1

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 53.8 96.5 60.3 4,970.2 4,781.0 13.3 39,802.3 41,377.6

LAST 48.0 60.1 25.2 1,254.4 97.0 8.7 98,277.1 1,270,904.8

marginAlign 37.4 60.0 25.1 156,477.2 13,066.0 0.1 785.7 9,409.3

BWA-MEM 36.8 55.1 24.2 7,235.2 4,238.0 8.8 15,602.5 26,636.7

BLASR 19.0 32.1 14.3 4,722.6 650.0 2.0 13,930.3 101,211.4

DALIGNER 26.6 21.8 13.4 39,480.4 26,417.0 0.1 1,132.6 1,692.7

B. fragilis BE1

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 27.8 99.5 99.1 1,877.7 1,528.0 11.6 74,701.3 91,799.5

LAST 32.0 90.7 87.9 944.0 62.0 12.9 135,524.7 2,063,424.1

marginAlign 25.8 90.8 87.9 153,445.5 12,068.0 0.1 834.8 10,615.2

BWA-MEM 26.1 90.9 87.9 2,774.2 1,019.0 7.7 46,221.3 125,834.7

BLASR 15.0 53.5 54.0 1,617.2 470.0 7.3 46,621.8 160,418.7

DALIGNER 28.9 58.7 84.3 10,137.9 26,990.0 0.7 8,160.5 3,065.2

E. coli MAP006-1

Mapper Avg. coverage % bases mapped % reads mapped CPU time [s] Memory [MB] Mapped reads/sec Mapped bases/sec Mapped bases/MB

GraphMap 220.8 98.7 98.1 18,413.6 38,412.0 6.3 56,694.9 27,177.8

LAST 259.4 83.2 90.2 7,327.5 69.0 6.7 120,180.3 12,762,660.8

marginAlign 192.6 83.8 90.2 331,801.0 77,552.0 0.3 2,671.1 11,428.3

BWA-MEM 198.4 83.4 89.1 18,084.6 1,363.0 5.9 48,790.0 647,358.6

BLASR 153.3 67.0 69.4 17,523.0 3,305.0 4.6 40,469.7 214,569.5

DALIGNER 209.2 49.8 79.1 8,683.8 73,848.0 3.4 60,720.2 7,140.1

Table B.7: Impact of various stages of GraphMap on its precision and recall.

Datatype Genome All Stages Fixed seed k=13 w/o L1 filtering w/o LCSk w/ L1 w/o LCSk w/o L1 4-1-4-1-4 seed only 6-1-6 seed only

Illumina N. meningitidis 97.7 / 97.6 97.9 / 97.9 97.6 / 97.6 88.6 / 86.9 94.4 / 93.8 97.3 / 97.2 97.8 / 97.8

Illumina E. coli 98.5 / 98.2 98.2 / 98.2 98.6 / 98.6 95.6 / 95.1 97.8 / 97.3 98.3 / 98.0 97.8 / 97.8

Illumina S. cerevisiae 96.0 / 95.8 95.9 / 95.9 96.3 / 96.3 91.2 / 90.6 94.9 / 94.6 96.2 / 96.0 96.1 / 96.0

Illumina C. elegans 97.2 / 96.4 97.1 / 97.1 97.8 / 97.8 82.2 / 78.5 88.2 / 86.1 97.1 / 96.6 97.2 / 97.0

Illumina H. sapiens (chr3) 98.4 / 98.1 98.1 / 98.1 99.0 / 99.0 88.3 / 86.6 93.7 / 93.3 98.5 / 98.3 98.2 / 98.1

PacBio N. meningitidis 99.1 / 99.1 99.0 / 99.0 99.1 / 99.1 76.6 / 61.2 64.4 / 52.0 99.2 / 99.2 99.0 / 99.0

PacBio E. coli 99.7 / 99.7 99.7 / 99.7 99.9 / 99.9 82.8 / 67.4 71.9 / 59.5 99.7 / 99.7 99.7 / 99.7

PacBio S. cerevisiae 98.2 / 98.2 97.9 / 97.9 98.8 / 98.8 72.1 / 57.1 61.6 / 49.8 98.1 / 98.1 98.0 / 98.0

PacBio C. elegans 99.2 / 99.2 99.3 / 99.3 99.4 / 99.4 66.9 / 48.5 55.3 / 41.5 99.4 / 99.4 99.2 / 99.2

PacBio H. sapiens (chr3) 98.7 / 98.7 98.5 / 98.5 98.8 / 98.8 66.7 / 51.1 57.1 / 44.5 98.8 / 98.8 98.5 / 98.5

ONT 2D N. meningitidis 99.6 / 99.6 98.6 / 98.2 99.5 / 99.5 67.7 / 50.1 51.6 / 39.7 99.7 / 99.7 99.7 / 99.6

ONT 2D E. coli 99.8 / 99.8 98.5 / 97.7 99.7 / 99.7 72.4 / 55.4 57.0 / 44.5 99.7 / 99.7 99.5 / 99.5

ONT 2D S. cerevisiae 98.2 / 98.1 95.9 / 95.5 98.1 / 98.1 65.9 / 51.5 51.9 / 41.3 98.0 / 97.9 98.3 / 98.1

ONT 2D C. elegans 99.0 / 99.0 95.6 / 95.5 98.8 / 98.8 59.2 / 41.9 43.6 / 32.9 98.7 / 98.7 98.6 / 98.6

ONT 2D H. sapiens (chr3) 98.9 / 98.9 94.6 / 93.2 98.4 / 98.4 60.9 / 44.0 46.1 / 34.7 98.2 / 98.2 97.9 / 97.6

ONT 1D N. meningitidis 98.6 / 97.7 88.2 / 82.5 97.4 / 97.2 76.2 / 60.5 61.8 / 50.4 98.1 / 97.0 96.5 / 95.4

ONT 1D E. coli 99.2 / 98.7 90.4 / 84.5 98.3 / 98.1 77.0 / 61.1 64.4 / 52.5 98.5 / 97.5 96.8 / 95.9

ONT 1D S. cerevisiae 95.5 / 95.2 80.5 / 77.4 95.3 / 95.3 66.0 / 50.9 55.5 / 44.2 94.8 / 94.2 92.5 / 91.5

ONT 1D C. elegans 95.1 / 94.9 71.4 / 70.2 94.0 / 93.9 55.3 / 42.1 44.2 / 35.0 92.4 / 91.8 89.7 / 89.5

ONT 1D H. sapiens (chr3) 96.0 / 95.5 72.7 / 68.4 95.4 / 95.1 63.2 / 50.1 50.4 / 41.6 94.2 / 93.4 90.7 / 89.6

132

Supplementary information for GraphMap

Table B.8: Parameters used for generating simulated ONT reads

2D reads 1D reads

Accuracy mean 0.69 0.59

Accuracy std 0.09 0.05

Accuracy min 0.40 0.40

Length mean 5600 4400

Length std 3500 3900

Length min 100 50

Length max 100000 100000

Error types ratio
(mismatch:insertion:deletion)

55:17:28 51:11:38

Table B.9: Precision and recall of alignment for GraphMap using various read alignment settings

Myers bit vector
(default)

Gotoh Anchored Alignment

N. meningitidis 79/79; 73/73 82/82; 75/73 80/79; 73/72

E. coli 80/80; 74/74 83/83; 76/76 80/80; 74/73

S. cerevisiae 77/77; 70/70 80/80; 72/72 79/77; 72/70

C. elegans 78/78; 68/68 81/81; 70/70 78/77; 71/67

H. sapiens chr 3 78/78; 71/71 81/81; 73/73 78/77; 71/70

Table B.10: Scalability as a function of read length and error rate. Data is in the format: CPU time [s] /
Memory [MB].

Average read length

Error rate 1000bp 2000bp 3000bp 4000bp 5000bp

0.05 130.7 / 952 210.7 / 960 278.5 / 972 349.5 / 992 457.9 / 1006

0.10 125.1 / 951 196.5 / 960 273.6 / 972 358.3 / 990 454 / 1006

0.15 119.9 / 951 195.9 / 959 257 / 972 365.1 / 989 461.4 / 1011

0.20 114.8 / 951 199.3 / 960 270.5 / 972 348.8 / 991 460.1 / 1008

0.25 108.7 / 951 196.7 / 960 271.9 / 972 358.1 / 991 485.2 / 1012

Table B.11: Testing for reference bias in GraphMap alignments

SNP Errors (per Mbp) Insertion Errors (per Mbp) Deletion Errors (per Mbp)

BLASR 0.1 (0.02/0.1) 3.1 (0.04/3.1) 4.0 (0.3/3.7)

BWA-MEM 0.2 (0.1/0.1) 2.5 (0.04/2.5) 5.3 (1.7/3.6)

DALIGNER 0.4 (0.3/0.1) 1.2 (0.04/1.1) 6.9 (4.1/2.7)

GraphMap 0.2 (0.03/0.1) 3.3 (0.05/3.2) 4.1 (0.3/3.8)

LAST 1.7 (1.5/0.2) 3.9 (0.05/3.8) 4.6 (0.2/4.4)

marginAlign 0.1 (0.03/0.1) 2.0 (0.02/2.0) 4.4 (1.4/3.0)

133

Supplementary information for GraphMap

Table B.12: Speed comparison across mappers on real datasets

Lambda
phage

E. coli R7.3 E. coli R7.0 E. coli UTI89 S. enterica
Typhi

GraphMap 65 49 44 80 44

LAST 71 114 112 134 110

BWA-MEM 28 32 29 39 37

BLASR 2 20 14 41 18

marginAlign 0.4 1 2 0.4 0.7

DALIGNER 20 6 9 8 3

(a)

(b)

(c)

Figure B.1: Performance evaluation on synthetic datasets. a) GraphMap compared to BLAST on
synthetic Illumina and PacBio reads b) BWA-MEM location results with different settings (S. cerevisiae
genome; 1D reads) c) Runtime scalability for GraphMap (1D reads).

134

Supplementary information for GraphMap

Figure B.2: Consensus calling errors and uncalled bases using MinION datasets and different
mappers. Note that in the case of the S. enterica Typhi dataset, some of the observed variants (typically
a few hundred SNPs and a handful of indels) could be true variants from the S. enterica Typhi Ty2 strain
that was used as reference. Percentage of bases mapped (B%) and average coverage (C) of the genome
is reported in the table below (in the format: B%, C; maximum values in each column are bolded).

Figure B.3: Error rate distributions estimated using different aligners for ONT data.

135

Supplementary information for GraphMap

Figure B.4: Mapping of targeted sequencing reads from Ammar et al. Figures show a IGV browser
view of GraphMap mappings to the targeted regions. Note that CYP2D6 has an orthologous gene
CYP2D7 that is adjacent to it with 94% identity and yet has very few reads mapped to it.

B.6). The use of marginAlign with LAST did not improve its sensitivity significantly for these

datasets. BWA-MEM results were frequently comparable to that of LAST while DALIGNER

and BLASR had lower sensitivity in several datasets (Tables B.5 and B.6). Two of the datasets

(E. coli UTI89 and B. fragilis BE1) contain only high quality 2D reads and associated 1D reads,

and thus they only test mappers on a small, high-quality subset of the data. GraphMap was seen

to provide a 10− 15% increase in sensitivity for such reads. On the full datasets, GraphMap

typically provided a 50% improvement in mapped bases compared to LAST. The datasets A.

baylyi ADP1 and B. fragilis BE1 were recently published and provide a more current perspective

on GraphMap’s utility for all data and high-quality 2D data, respectively. On a recent MinION

MkI dataset (E. coli MAP006-1), GraphMap provided an 18% improvement in mapped bases

compared to other mappers (Tables B.5 and B.6).

136

Bibliography

[1] Byrd, A. L., Perez-Rogers, J. F., Manimaran, S., Castro-Nallar, E., Toma, I., McCaffrey,

T., Siegel, M., Benson, G., Crandall, K. a., Johnson, W. E., “Clinical PathoScope: rapid

alignment and filtration for accurate pathogen identification in clinical samples using

unassembled sequencing data”, BMC Bioinformatics, Vol. 15, No. 1, 2014, str. 262,

available at: http://www.biomedcentral.com/1471-2105/15/262

[2] Greninger, A. L., Naccache, S. N., Federman, S., Yu, G., Mbala, P., Bres, V.,

Stryke, D., Bouquet, J., Somasekar, S., Linnen, J. M., Dodd, R., Mulembakani,

P., Schneider, B. S., Muyembe-Tamfum, J.-J., Stramer, S. L., Chiu, C. Y., “Rapid

metagenomic identification of viral pathogens in clinical samples by real-time nanopore

sequencing analysis.”, Genome medicine, Vol. 7, No. 1, 2015, str. 99, available at:

http://www.ncbi.nlm.nih.gov/pubmed/26416663

[3] Nagarajan, N., Pop, M., “Sequence assembly demystified.”, Nature reviews. Genetics,

Vol. 14, No. 3, 2013, str. 157–67, available at: http://www.ncbi.nlm.nih.gov/pubmed/

23358380

[4] Miller, J. M., Malenfant, R. M., Moore, S. S., Coltman, D. W., “Short reads, circu-

lar genome: Skimming solid sequence to construct the bighorn sheep mitochondrial

genome”, Journal of Heredity, Vol. 103, No. 1, 2012, str. 140–146.

[5] Loman, N., Misra, R., Dallman, T., Constantinidou, C., Gharbia, S., Wain, J.,

Pallen, M., “Performance Comparison of Benchtop High-Throughout Sequencing

Platforms”, Nature Biotechnology, Vol. 30, No. 5, 2012, str. 434–9, available at:

http://www.ncbi.nlm.nih.gov/pubmed/22522955

[6] Pettersson, E., Lundeberg, J., Ahmadian, A., “Generations of sequencing technologies”,

Genomics, Vol. 93, No. 2, 2009, str. 105–111, available at: http://dx.doi.org/10.1016/j.

ygeno.2008.10.003

[7] Schirmer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T., Quince, C., “Insight

into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq plat-

form”, Nucleic Acids Research, Vol. 43, No. 6, 2015.

137

http://www.biomedcentral.com/1471-2105/15/262
http://www.ncbi.nlm.nih.gov/pubmed/26416663
http://www.ncbi.nlm.nih.gov/pubmed/23358380
http://www.ncbi.nlm.nih.gov/pubmed/23358380
http://www.ncbi.nlm.nih.gov/pubmed/22522955
http://dx.doi.org/10.1016/j.ygeno.2008.10.003
http://dx.doi.org/10.1016/j.ygeno.2008.10.003

Bibliography

[8] Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy,

G., Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E. D., Adam M Phillippy,

“Hybrid error correction and de novo assembly of single-molecule sequencing

reads.”, Nature biotechnology, Vol. 30, No. 7, 2012, str. 693–700, available at:

http://dx.doi.org/10.1038/nbt.2280

[9] Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner,

C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W.,

Korlach, J., “Nonhybrid, finished microbial genome assemblies from long-read SMRT

sequencing data”, Nature Methods, Vol. 10, No. 6, 2013, str. 563–569, available at:

http://www.nature.com/doifinder/10.1038/nmeth.2474

[10] Chaisson, M. J., Tesler, G., “Mapping single molecule sequencing reads using basic

local alignment with successive refinement (BLASR): application and theory.”, BMC

bioinformatics, Vol. 13, 2012, str. 238, available at: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3572422{&}tool=pmcentrez{&}rendertype=abstract

[11] Li, H., “Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM”, arXiv preprint arXiv, Vol. 00, No. 00, 2013, str. 3, available at:

http://arxiv.org/abs/1303.3997

[12] Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K.,

Studholme, D. J., “Assessing the performance of the Oxford Nanopore Technologies

MinION”, Biomolecular Detection and Quantification, Vol. 3, 2015, str. 1–8, available

at: http://linkinghub.elsevier.com/retrieve/pii/S2214753515000224

[13] Ip, C. L., Loose, M., Tyson, J. R., de Cesare, M., Brown, B. L., Jain, M., Leggett,

R. M., Eccles, D. A., Zalunin, V., Urban, J. M., Piazza, P., Bowden, R. J., Paten, B.,

Mwaigwisya, S., Batty, E. M., Simpson, J. T., Snutch, T. P., Birney, E., Buck, D.,

Goodwin, S., Jansen, H. J., O’Grady, J., Olsen, H. E., “MinION Analysis and Reference

Consortium: Phase 1 data release and analysis”, F1000Research, Vol. 4, No. 1075,

2015, str. 1–35, available at: http://f1000research.com/articles/4-1075/v1

[14] Sovic, I., Sikic, M., Wilm, A., Fenlon, S. N., Chen, S., Nagarajan, N., “Fast and sensitive

mapping of error-prone nanopore sequencing reads with GraphMap”, bioRxiv, Vol. 7,

apr 2015, str. 020719, available at: http://biorxiv.org/content/early/2015/06/10/020719.

abstract

[15] Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., Akeson, M., “Improved data

analysis for the MinION nanopore sequencer”, Nature Methods, Vol. 12, No. 4, 2015,

str. 351–356, available at: http://www.nature.com/doifinder/10.1038/nmeth.3290

138

http://dx.doi.org/10.1038/nbt.2280
http://www.nature.com/doifinder/10.1038/nmeth.2474
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572422{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572422{&}tool=pmcentrez{&}rendertype=abstract
http://arxiv.org/abs/1303.3997
http://linkinghub.elsevier.com/retrieve/pii/S2214753515000224
http://f1000research.com/articles/4-1075/v1
http://biorxiv.org/content/early/2015/06/10/020719.abstract
http://biorxiv.org/content/early/2015/06/10/020719.abstract
http://www.nature.com/doifinder/10.1038/nmeth.3290

Bibliography

[16] Loman, N. J., Quick, J., Simpson, J. T., “A complete bacterial genome assembled de

novo using only nanopore sequencing data”, Nature Methods, Vol. 12, No. 8, 2015, str.

733–735, available at: http://www.nature.com/doifinder/10.1038/nmeth.3444

[17] Taudien, S., Ebersberger, I., Glöckner, G., Platzer, M., “Should the draft chimpanzee

sequence be finished?”, str. 122–125, 2006.

[18] Pop, M., “Genome assembly reborn: Recent computational challenges”, Briefings

in Bioinformatics, Vol. 10, No. 4, 2009, str. 354–366, available at: http:

//bib.oxfordjournals.org/cgi/doi/10.1093/bib/bbp026

[19] Arner, E., Solving Repeat Problems in Shotgun Sequencing, 2006, available

at: http://diss.kib.ki.se/2006/91-7140-996-3/thesis.pdf$\delimiter"026E30F$npapers2:

//publication/uuid/57797D1C-2D32-4C2F-A37B-7BCCC3D86C50

[20] Koren, S., Harhay, G. P., Smith, T. P. L., Bono, J. L., Harhay, D. M., Mcvey,

S. D., Radune, D., Bergman, N. H., Phillippy, A. M., “Reducing assembly complexity

of microbial genomes with single-molecule sequencing.”, Genome biology, Vol. 14,

No. 9, 2013, str. R101, available at: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=4053942{&}tool=pmcentrez{&}rendertype=abstract

[21] Biosciences, P., “PacBio read lengths”, available at: http://www.pacb.com/smrt-science/

smrt-sequencing/read-lengths/ 2016.

[22] Loose, M., Malla, S., Stout, M., “Real time selective sequencing using nanopore

technology.”, bioRxiv, 2016, str. 038760, available at: http://biorxiv.org/content/early/

2016/02/03/038760.abstract

[23] Bao, S., Jiang, R., Kwan, W., Wang, B., Ma, X., Song, Y.-Q., “Evaluation of

next-generation sequencing software in mapping and assembly.”, Journal of human

genetics, Vol. 56, No. May, 2011, str. 1–9, available at: http://www.ncbi.nlm.nih.gov/

pubmed/21677664

[24] Pevsner, J., Bioinformatics and Functional Genomics,

2nd Ed., 2009, available at: http://www.amazon.com/

Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?

SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=

xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\

delimiter"026E30F$npapers2://publication/uuid/7BBC0F38-C8AF-4355-A

139

http://www.nature.com/doifinder/10.1038/nmeth.3444
http://bib.oxfordjournals.org/cgi/doi/10.1093/bib/bbp026
http://bib.oxfordjournals.org/cgi/doi/10.1093/bib/bbp026
http://diss.kib.ki.se/2006/91-7140-996-3/thesis.pdf$\delimiter "026E30F $npapers2://publication/uuid/57797D1C-2D32-4C2F-A37B-7BCCC3D86C50
http://diss.kib.ki.se/2006/91-7140-996-3/thesis.pdf$\delimiter "026E30F $npapers2://publication/uuid/57797D1C-2D32-4C2F-A37B-7BCCC3D86C50
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4053942{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4053942{&}tool=pmcentrez{&}rendertype=abstract
http://www.pacb.com/smrt-science/smrt-sequencing/read-lengths/
http://www.pacb.com/smrt-science/smrt-sequencing/read-lengths/
http://biorxiv.org/content/early/2016/02/03/038760.abstract
http://biorxiv.org/content/early/2016/02/03/038760.abstract
http://www.ncbi.nlm.nih.gov/pubmed/21677664
http://www.ncbi.nlm.nih.gov/pubmed/21677664
http://www.amazon.com/Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\delimiter "026E30F $npapers2://publication/uuid/7BBC0F38-C8AF-4355-A
http://www.amazon.com/Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\delimiter "026E30F $npapers2://publication/uuid/7BBC0F38-C8AF-4355-A
http://www.amazon.com/Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\delimiter "026E30F $npapers2://publication/uuid/7BBC0F38-C8AF-4355-A
http://www.amazon.com/Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\delimiter "026E30F $npapers2://publication/uuid/7BBC0F38-C8AF-4355-A
http://www.amazon.com/Bioinformatics-Functional-Genomics-Edition-Jonathan/dp/B004KPVA46?SubscriptionId=1V7VTJ4HA4MFT9XBJ1R2{&}tag=mekentosjcom-20{&}linkCode=xm2{&}camp=2025{&}creative=165953{&}creativeASIN=B004KPVA46$\delimiter "026E30F $npapers2://publication/uuid/7BBC0F38-C8AF-4355-A

Bibliography

[25] Gotoh, O., “Journal of Molecular Biology_1982_Gotoh_An improved algorithm for

matching biological sequences.pdf”, Journal of Molecular Biology, Vol. 162, No. 3,

1982, str. 705–708.

[26] Needleman, S. B., Wunsch, C. D., “A general method applicable to the search for si-

miliarities in the amino acid sequence of two proteins”, Journal of molecular biology,

Vol. 48, No. 3, 1970, str. 443–453.

[27] Smith, T. F., Waterman, M. S., “Identification of Common Molecular Subsequences”, J.

Mol. Biol., Vol. 147, 1981, str. 195–197.

[28] Lipman, D., Pearson, W., “Rapid and sensitive protein similarity searches”, Science,

Vol. 227, 1985, str. 1435–1441, available at: http://www.sciencemag.org/content/227/

4693/1435.short

[29] Pearson, W. R., Lipman, D. J., “Improved tools for biological sequence comparison.”,

Proceedings of the National Academy of Sciences of the United States of America,

Vol. 85, No. 8, 1988, str. 2444–8, available at: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=280013{&}tool=pmcentrez{&}rendertype=abstract

[30] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., “Basic local alignment

search tool.”, Journal of molecular biology, Vol. 215, No. 3, 1990, str. 403–10, available

at: http://www.sciencedirect.com/science/article/pii/S0022283605803602

[31] Kent, W. J., “BLAT—The BLAST-Like Alignment Tool”, Genome Research, Vol. 12,

No. 4, mar 2002, str. 656–664, available at: http://www.genome.org/cgi/doi/10.1101/gr.

229202

[32] Kielbasa, S. M., Wan, R., Sato, K., Horton, P., Frith, M. C., “Adaptive seeds tame ge-

nomic sequence comparison”, Genome Research, Vol. 21, No. 3, 2011, str. 487–493.

[33] Sankoff, D., “Matching sequences under deletion-insertion constraints.”, Proceedings of

the National Academy of Sciences of the United States of America, Vol. 69, No. 1, 1972,

str. 4–6.

[34] Sellers, P. H., “The theory and computation of evolutionary distances: Pattern recogni-

tion”, Journal of Algorithms, Vol. 1, No. 4, 1980, str. 359–373.

[35] Hirschberg, D. S., “A linear space algorithm for computing maximal common subse-

quences”, Communications of the ACM, Vol. 18, No. 6, 1975, str. 341–343.

[36] Fickett, J. W., “Fast optimal alignment.”, Nucleic acids research, Vol. 12, No. 1 Pt 1,

1984, str. 175–179.

140

http://www.sciencemag.org/content/227/4693/1435.short
http://www.sciencemag.org/content/227/4693/1435.short
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=280013{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=280013{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0022283605803602
http://www.genome.org/cgi/doi/10.1101/gr.229202
http://www.genome.org/cgi/doi/10.1101/gr.229202

Bibliography

[37] Ukkonen, E., “Algorithms for approximate string matching”, Information and Control,

Vol. 64, No. 1-3, 1985, str. 100–118.

[38] Myers, G., “A Fast Bit-Vector Algorithm for Approximate String Matching Based on

Dynamic Programming”, Journal of the ACM, Vol. 46, No. 3, 1999, str. 395–415.

[39] Rognes, T., Seeberg, E., “Six-fold speed-up of Smith-Waterman sequence database

searches using parallel processing on common microprocessors.”, Bioinformatics

(Oxford, England), Vol. 16, No. 8, aug 2000, str. 699–706, available at:

http://www.ncbi.nlm.nih.gov/pubmed/11099256

[40] Rognes, T., “Faster Smith-Waterman database searches with inter-sequence SIMD

parallelisation.”, BMC bioinformatics, Vol. 12, No. 1, 2011, str. 221, available at:

http://www.biomedcentral.com/1471-2105/12/221

[41] Farrar, M., “Striped Smith-Waterman speeds database searches six times over other

SIMD implementations”, Bioinformatics, Vol. 23, No. 2, 2007, str. 156–161.

[42] Zhao, M., Lee, W. P., Garrison, E. P., Marth, G. T., “SSW library: An SIMD Smith-

Waterman C/C++ library for use in genomic applications”, PLoS ONE, Vol. 8, No. 12,

2013, str. 1–7.

[43] Korpar, M., ??iki??, M., “SW#-GPU-enabled exact alignments on genome scale”, Bioin-

formatics, Vol. 29, No. 19, 2013, str. 2494–2495.

[44] Korpar, M., Šošić, M., Blažeka, D., Šikić, M., “SW#db: GPU-accelerated exact sequence

similarity database search”, PLoS ONE, Vol. 10, No. 12, 2015.

[45] Liu, Y., Wirawan, A., Schmidt, B., “CUDASW++ 3.0: accelerating Smith-Waterman

protein database search by coupling CPU and GPU SIMD instructions.”, BMC

bioinformatics, Vol. 14, 2013, str. 117, available at: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3637623{&}tool=pmcentrez{&}rendertype=abstract

[46] Klus, P., Lam, S., Lyberg, D., Cheung, M. S., Pullan, G., McFarlane, I., Yeo, G. S.,

Lam, B. Y., “BarraCUDA - a fast short read sequence aligner using graphics processing

units.”, BMC research notes, Vol. 5, 2012, str. 27, available at: http://www.scopus.com/

inward/record.url?eid=2-s2.0-84855722896{&}partnerID=tZOtx3y1

[47] Hasan, L., Kentie, M., Al-Ars, Z., “DOPA: GPU-based protein alignment using

database and memory access optimizations.”, BMC research notes, Vol. 4, No. 1,

2011, str. 261, available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3166271{&}tool=pmcentrez{&}rendertype=abstract

141

http://www.ncbi.nlm.nih.gov/pubmed/11099256
http://www.biomedcentral.com/1471-2105/12/221
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3637623{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3637623{&}tool=pmcentrez{&}rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855722896{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855722896{&}partnerID=tZOtx3y1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3166271{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3166271{&}tool=pmcentrez{&}rendertype=abstract

Bibliography

[48] li Shah, H. A., Hasan, L., Ahmad, N., “An optimized and low-cost FPGA-based DNA

sequence alignment–a step towards personal genomics”, Conference proceedings : ...

Annual International Conference of the IEEE Engineering in Medicine and Biology Soci-

ety. IEEE Engineering in Medicine and Biology Society. Annual Conference, Vol. 2013,

2013, str. 2696–2699.

[49] Hall, A., “Short-Read DNA Sequence Alignment with Custom Designed FPGA-based

Hardware by A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF”, No.

November, 2010.

[50] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman,

D. J., “Gapped BLAST and PSI-BLAST: A new generation of protein database search

programs”, str. 3389–3402, 1997.

[51] Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T. L.,

“NCBI BLAST: a better web interface.”, Nucleic acids research, Vol. 36, No. Web Server

issue, 2008.

[52] Pearson, W. R., BLAST and FASTA Similarity Searching for Multiple Sequence

Alignment. Totowa, NJ: Humana Press, 2014, str. 75–101, available at: http:

//dx.doi.org/10.1007/978-1-62703-646-7{_}5

[53] Gumbel, E. J., “Statistics of extremes”, Columbia University Press, New York, 1958.

[54] Karlin, S., Altschul, S. F., “Methods for assessing the statistical significance of molec-

ular sequence features by using general scoring schemes.”, Proceedings of the National

Academy of Sciences of the United States of America, Vol. 87, No. 6, 1990, str. 2264–

2268.

[55] Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C.,

Haussler, D., Miller, W., “Human-mouse alignments with BLASTZ.”, Genome research,

Vol. 13, No. 1, jan 2003, str. 103–107, available at: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=430961{&}tool=pmcentrez{&}rendertype=abstract

[56] Ma, B., Tromp, J., Li, M., “PatternHunter: faster and more sensitive homology search.”,

Bioinformatics (Oxford, England), Vol. 18, No. 3, 2002, str. 440–445.

[57] Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., Salzberg, S. L.,

“Alignment of whole genomes”, Nucleic Acids Research, Vol. 27, No. 11, 1999, str.

2369–2376.

142

http://dx.doi.org/10.1007/978-1-62703-646-7{_}5
http://dx.doi.org/10.1007/978-1-62703-646-7{_}5
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=430961{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=430961{&}tool=pmcentrez{&}rendertype=abstract

Bibliography

[58] Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M.,

Antonescu, C., Salzberg, S. L., “Versatile and open software for com-

paring large genomes.”, Genome biology, Vol. 5, No. 2, 2004, str. R12,

available at: http://genomebiology.com/2004/5/2/R12$\delimiter"026E30F$nhttp:

//www.ncbi.nlm.nih.gov/pubmed/14759262$\delimiter"026E30F$nhttp://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC395750

[59] “Novocraft.com: Novoalign short read mapper

(http://www.novocraft.com/main/downloadpage.php)”, available at: http:

//www.novocraft.com/main/downloadpage.php

[60] Langmead, B., Salzberg, S. L., “Fast gapped-read alignment with Bowtie 2”, Nat

Methods, Vol. 9, No. 4, 2012, str. 357–359, available at: http://dx.doi.org/10.1038/

nmeth.1923

[61] Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., Wang, J., “SOAP2: An

improved ultrafast tool for short read alignment”, Bioinformatics, Vol. 25, No. 15, 2009,

str. 1966–1967.

[62] Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., Brudno, M., “SHRiMP:

Accurate mapping of short color-space reads”, PLoS Computational Biology, Vol. 5,

No. 5, 2009.

[63] Harris, R., “Improved pairwise alignment of genomic DNA”, Doktorski rad, The Penn-

sylvania State University, 2007.

[64] Li, H., Durbin, R., “Fast and accurate short read alignment with Burrows-Wheeler trans-

form”, Bioinformatics, Vol. 25, No. 14, 2009, str. 1754–1760.

[65] Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., Wain,

J., O’Grady, J., “MinION nanopore sequencing identifies the position and structure of a

bacterial antibiotic resistance island”, Nature Biotechnology, Vol. 33, No. 3, 2014, str.

296–300, available at: http://www.nature.com/doifinder/10.1038/nbt.3103

[66] Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., Wong, C. H.,

Khor, C. C., Petric, R., Hibberd, M. L., Nagarajan, N., “LoFreq: A sequence-quality

aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from

high-throughput sequencing datasets”, Nucleic Acids Research, Vol. 40, No. 22, 2012,

str. 11 189–11 201, available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3526318{&}tool=pmcentrez{&}rendertype=abstract

[67] Wang, Y., Yang, Q., Wang, Z., “The evolution of nanopore sequencing”, str. 449, 2015.

143

http://genomebiology.com/2004/5/2/R12$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/14759262$\delimiter "026E30F $nhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC395750
http://genomebiology.com/2004/5/2/R12$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/14759262$\delimiter "026E30F $nhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC395750
http://genomebiology.com/2004/5/2/R12$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/14759262$\delimiter "026E30F $nhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC395750
http://www.novocraft.com/main/downloadpage.php
http://www.novocraft.com/main/downloadpage.php
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923
http://www.nature.com/doifinder/10.1038/nbt.3103
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3526318{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3526318{&}tool=pmcentrez{&}rendertype=abstract

Bibliography

[68] Risse, J., Thomson, M., Patrick, S., Blakely, G., Koutsovoulos, G., Blaxter, M., Watson,

M., “A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina

and MinION nanopore sequencing data.”, GigaScience, Vol. 4, No. 1, 2015, str. 60,

available at: http://gigascience.biomedcentral.com/articles/10.1186/s13742-015-0101-6

[69] Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A.,

Lemainque, A., Wincker, P., Aury, J.-M., “Genome assembly using Nanopore-guided

long and error-free DNA reads”, BMC Genomics, Vol. 16, No. 1, 2015, str. 327,

available at: http://www.biomedcentral.com/1471-2164/16/327

[70] Langmead, B., Salzberg, S. L., “Fast gapped-read alignment with Bowtie 2”, Nat

Methods, Vol. 9, No. 4, 2012, str. 357–359, available at: http://dx.doi.org/10.1038/

nmeth.1923

[71] Mikheyev, A. S., Tin, M. M. Y., “A first look at the Oxford Nanopore MinION

sequencer”, Molecular Ecology Resources, Vol. 14, No. 6, 2014, str. 1097–1102,

available at: http://www.ncbi.nlm.nih.gov/pubmed/25187008

[72] Miller, J. R., Koren, S., Sutton, G., “Assembly algorithm for next-generation sequencing

data.”, Genomics, Vol. 95, No. 6, 2010, str. 315–327.

[73] Warren, R. L., Sutton, G. G., Jones, S. J. M., Holt, R. A., “Assembling millions

of short DNA sequences using SSAKE”, Bioinformatics, Vol. 23, No. 4, 2007,

str. 500–501, available at: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/

bioinformatics/btl629

[74] Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis,

E. R., Dangl, J. L., Jones, C. D., “Extending assembly of short DNA sequences to handle

error”, Bioinformatics, Vol. 23, No. 21, 2007, str. 2942–2944.

[75] Dohm, J. C., Lottaz, C., Borodina, T., Himmelbauer, H., “SHARCGS, a fast and highly

accurate short-read assembly algorithm for de novo genomic sequencing”, Genome Re-

search, Vol. 17, No. 11, 2007, str. 1697–1706.

[76] Myers, E. W., “Toward Simplifying and Accurately Formulating Fragment Assembly”,

Journal of Computational Biology, Vol. 2, No. 2, 1995, str. 275–290, available at:

http://www.liebertonline.com/doi/abs/10.1089/cmb.1995.2.275

[77] Medvedev, P., Georgiou, K., Myers, G., Brudno, M., “Computability of Models

for Sequence Assembly”, Gene, Vol. 4645, 2007, str. 289–301, available at:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=

144

http://gigascience.biomedcentral.com/articles/10.1186/s13742-015-0101-6
http://www.biomedcentral.com/1471-2164/16/327
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/25187008
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btl629
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btl629
http://www.liebertonline.com/doi/abs/10.1089/cmb.1995.2.275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\delimiter "026E30F $nhttp://www.springerlink.com/index/H711368771048H21.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\delimiter "026E30F $nhttp://www.springerlink.com/index/H711368771048H21.pdf

Bibliography

AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\

delimiter"026E30F$nhttp://www.springerlink.com/index/H711368771048H21.pdf

[78] Lin, Y., Li, J., Shen, H., Zhang, L., Papasian, C. J., Deng, H. W., “Comparative studies

of de novo assembly tools for next-generation sequencing technologies”, Bioinformatics,

Vol. 27, No. 15, 2011, str. 2031–2037.

[79] Davendra, D., Traveling Salesman Problem, Theory and Applications, 2010, available at:

http://www.intechopen.com/books/traveling-salesman-problem-theory-and-applications

[80] Myers, E. W., “The fragment assembly string graph”, Bioinformatics, Vol. 21, No.

SUPPL. 2, 2005, str. ii79–ii85, available at: http://bioinformatics.oxfordjournals.org/

cgi/doi/10.1093/bioinformatics/bti1114

[81] Li, H., “Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences”, arXiv, No. March, 2015, str. 1–7, available at: http:

//arxiv.org/abs/1512.01801

[82] Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan,

M. J., Kravitz, S. A., Mobarry, C. M., Reinert, K. H., Remington, K. A., Anson, E. L.,

Bolanos, R. A., Chou, H. H., Jordan, C. M., Halpern, A. L., Lonardi, S., Beasley, E. M.,

Brandon, R. C., Chen, L., Dunn, P. J., Lai, Z., Liang, Y., Nusskern, D. R., Zhan, M.,

Zhang, Q., Zheng, X., Rubin, G. M., Adams, M. D., Venter, J. C., “A whole-genome

assembly of Drosophila”, Science, Vol. 287, No. 5461, 2000, str. 2196–2204, available

at: http://www.ncbi.nlm.nih.gov/pubmed/10731133

[83] Canu, “Canu assembler”, available at: https://github.com/marbl/canu 2016.

[84] Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. a.,

Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M.,

Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Ho, C. H., Irzyk, G. P.,

Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J.-B., Knight, J. R.,

Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H.,

Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile,

J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F.,

Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. a., Volkmer, G. a.,

Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., Rothberg, J. M., “Genome

sequencing in microfabricated high-density picolitre reactors.”, Nature, Vol. 437, No.

7057, 2005, str. 376–80, available at: http://www.ncbi.nlm.nih.gov/pubmed/16056220

145

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\delimiter "026E30F $nhttp://www.springerlink.com/index/H711368771048H21.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\delimiter "026E30F $nhttp://www.springerlink.com/index/H711368771048H21.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed{&}cmd=Retrieve{&}dopt=AbstractPlus{&}list{_}uids=7496691639575447408related:cAeJt1OZCWgJ$\delimiter "026E30F $nhttp://www.springerlink.com/index/H711368771048H21.pdf
http://www.intechopen.com/books/traveling-salesman-problem-theory-and-applications
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bti1114
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bti1114
http://arxiv.org/abs/1512.01801
http://arxiv.org/abs/1512.01801
http://www.ncbi.nlm.nih.gov/pubmed/10731133
https://github.com/marbl/canu
http://www.ncbi.nlm.nih.gov/pubmed/16056220

Bibliography

[85] Hernandez, D., François, P., Farinelli, L., Østerås, M., Schrenzel, J., “De novo bacterial

genome sequencing: Millions of very short reads assembled on a desktop computer”,

Genome Research, Vol. 18, No. 5, 2008, str. 802–809.

[86] Hossain, M. S., Azimi, N., Skiena, S., “Crystallizing short-read assemblies around

seeds.”, BMC bioinformatics, Vol. 10 Suppl 1, 2009, str. S16.

[87] Sommer, D. D., Delcher, A. L., Salzberg, S. L., Pop, M., “Minimus: a fast, lightweight

genome assembler.”, BMC bioinformatics, Vol. 8, No. 1, 2007, str. 64, available at:

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-64

[88] Simpson, J. T., Durbin, R., “Efficient de novo assembly of large genomes using

compressed data structures”, Genome Research, Vol. 22, No. 3, 2012, str. 549–556,

available at: http://genome.cshlp.org/cgi/doi/10.1101/gr.126953.111

[89] Li, H., “Minimap and miniasm: fast mapping and de novo assembly for noisy

long sequences”, Bioinformatics, mar 2016, available at: http://bioinformatics.

oxfordjournals.org/content/early/2016/03/18/bioinformatics.btw152.abstract

[90] Chin, C.-s., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Dunn, C.,

Malley, R. O., Figueroa-balderas, R., Morales-cruz, A., Grant, R., Delledonne, M., Luo,

C., Ecker, J. R., Cantu, D., Rank, D. R., “Phased Diploid Genome Assembly with Single

Molecule Real-Time Sequencing”, 2016.

[91] Lőve, K., “Otto-von-Guericke-Universit at Magdeburg”, Doktorski rad, Otto-von-

Guericke-Universit¨ at Magdeburg, 2010.

[92] Idury, R. M., Waterman, M. S., “A New Algorithm for DNA Sequence Assembly”,

Journal of Computational Biology, Vol. 2, No. 2, 1995, str. 291–306, available at:

http://online.liebertpub.com/doi/abs/10.1089/cmb.1995.2.291

[93] Pevzner, P. A., Tang, H., Waterman, M. S., “An Eulerian path approach to

DNA fragment assembly.”, Proceedings of the National Academy of Sciences of

the United States of America, Vol. 98, No. 17, 2001, str. 9748–53, available at:

http://www.pnas.org/content/98/17/9748.abstract

[94] Bankevich, A., Pevzner, P. A., “TruSPAdes: barcode assembly of TruSeq synthetic

long reads.”, Nature methods, Vol. 13, No. 3, 2016, str. 248–50, available

at: http://www.nature.com/doifinder/10.1038/nmeth.3737$\delimiter"026E30F$nhttp:

//www.ncbi.nlm.nih.gov/pubmed/26828418

146

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-64
http://genome.cshlp.org/cgi/doi/10.1101/gr.126953.111
http://bioinformatics.oxfordjournals.org/content/early/2016/03/18/bioinformatics.btw152.abstract
http://bioinformatics.oxfordjournals.org/content/early/2016/03/18/bioinformatics.btw152.abstract
http://online.liebertpub.com/doi/abs/10.1089/cmb.1995.2.291
http://www.pnas.org/content/98/17/9748.abstract
http://www.nature.com/doifinder/10.1038/nmeth.3737$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/26828418
http://www.nature.com/doifinder/10.1038/nmeth.3737$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/26828418

Bibliography

[95] Zerbino, D. R., Birney, E., “Velvet: Algorithms for de novo short read assembly using

de Bruijn graphs”, Genome Research, Vol. 18, No. 5, 2008, str. 821–829, available at:

http://www.ncbi.nlm.nih.gov/pubmed/18349386

[96] Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S.,

Nusbaum, C., Jaffe, D. B., “ALLPATHS: De novo assembly of whole-genome shotgun

microreads”, Genome Research, Vol. 18, No. 5, 2008, str. 810–820.

[97] Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker,

B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., Berlin, A. M., Aird, D.,

Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A., Nusbaum, C., Lander,

E. S., Jaffe, D. B., “High-quality draft assemblies of mammalian genomes from

massively parallel sequence data.”, Proceedings of the National Academy of Sciences

of the United States of America, Vol. 108, No. 4, 2011, str. 1513–8, available at:

http://www.pnas.org/content/108/4/1513.abstract

[98] Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M., Birol, I.,

“ABySS: A parallel assembler for short read sequence data”, Genome Research, Vol. 19,

No. 6, 2009, str. 1117–1123.

[99] Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q.,

Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y.,

Han, C., Cheung, D. W., Yiu, S.-M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X.,

Li, Y., Yang, H., Wang, J., Lam, T.-W., Wang, J., “SOAPdenovo2: an empirically

improved memory-efficient short-read de novo assembler.”, GigaScience, Vol. 1, No. 1,

2012, str. 18, available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3626529{&}tool=pmcentrez{&}rendertype=abstract

[100] Boisvert, S., Laviolette, F., Corbeil, J., “Ray: simultaneous assembly of reads from a

mix of high-throughput sequencing technologies.”, Journal of computational biology : a

journal of computational molecular cell biology, Vol. 17, No. 11, 2010, str. 1519–1533,

available at: http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0238

[101] Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner,

C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W.,

Korlach, J., “Nonhybrid, finished microbial genome assemblies from long-read SMRT

sequencing data”, Nature Methods, Vol. 10, No. 6, 2013, str. 563–569, available at:

http://www.nature.com/doifinder/10.1038/nmeth.2474

[102] Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A.,

Johnson, J., Li, K., Mobarry, C., Sutton, G., “Aggressive assembly of pyrosequencing

147

http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://www.pnas.org/content/108/4/1513.abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3626529{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3626529{&}tool=pmcentrez{&}rendertype=abstract
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0238
http://www.nature.com/doifinder/10.1038/nmeth.2474

Bibliography

reads with mates”, Bioinformatics, Vol. 24, No. 24, 2008, str. 2818–2824, available at:

http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn548

[103] Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., Phillippy, A. M.,

“Assembling large genomes with single-molecule sequencing and locality-sensitive

hashing.”, Nature biotechnology, Vol. 33, No. 6, 2015, str. 623–630, available at:

http://dx.doi.org/10.1038/nbt.3238

[104] Goldberg, S. M. D., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman,

R., Halpern, A., Khouri, H., Kravitz, S. a., Lauro, F. M., Li, K., Rogers, Y.-H.,

Strausberg, R., Sutton, G., Tallon, L., Thomas, T., Venter, E., Frazier, M., Venter,

J. C., “A Sanger/pyrosequencing hybrid approach for the generation of high-quality

draft assemblies of marine microbial genomes.”, Proceedings of the National Academy

of Sciences of the United States of America, Vol. 103, No. 30, 2006, str. 11 240–5,

available at: http://www.ncbi.nlm.nih.gov/pubmed/16840556

[105] Myers, G., “Efficient local alignment discovery amongst noisy long reads”, in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), Vol. 8701 LNBI, 2014, str. 52–67.

[106] Liao, Y.-C., Lin, S.-H., Lin, H.-H., “Completing bacterial genome assemblies: strategy

and performance comparisons”, Scientific Reports, Vol. 5, 2015, str. 8747, avail-

able at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4348652{&}tool=

pmcentrez{&}rendertype=abstract

[107] Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. a., Dvorkin, M., Kulikov, A. S.,

Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin,

A. V., Vyahhi, N., Tesler, G., Alekseyev, M. a., Pevzner, P. a., “SPAdes: A New Genome

Assembly Algorithm and Its Applications to Single-Cell Sequencing”, Journal of Com-

putational Biology, Vol. 19, No. 5, 2012, str. 455–477.

[108] AMOS, “AMOS message format”, available at: http://amos.sourceforge.net/wiki/index.

php/Programmer’s{_}guide{#}AMOS{_}messages{_}and{_}the{_}Perl{_}API

[109] Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S., Pop, M., Next generation se-

quence assembly with AMOS, 2011, No. SUPP.33.

[110] Melsted, P., “GFA format”, available at: https://github.com/pmelsted/GFA-spec/blob/

master/GFA-spec.md

[111] Wick, R. R., Schultz, M. B., Zobel, J., Holt, K. E., “Bandage: Interactive visualization

of de novo genome assemblies”, Bioinformatics, Vol. 31, No. 20, 2015, str. 3350–3352.

148

http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn548
http://dx.doi.org/10.1038/nbt.3238
http://www.ncbi.nlm.nih.gov/pubmed/16840556
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4348652{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4348652{&}tool=pmcentrez{&}rendertype=abstract
http://amos.sourceforge.net/wiki/index.php/Programmer's{_}guide{#}AMOS{_}messages{_}and{_}the{_}Perl{_}API
http://amos.sourceforge.net/wiki/index.php/Programmer's{_}guide{#}AMOS{_}messages{_}and{_}the{_}Perl{_}API
https://github.com/pmelsted/GFA-spec/blob/master/GFA-spec.md
https://github.com/pmelsted/GFA-spec/blob/master/GFA-spec.md

Bibliography

[112] WGS, “Overlap types”, available at: http://wgs-assembler.sourceforge.net/wiki/index.

php/Overlaps

[113] Chaisson, M. J. P., Wilson, R. K., Eichler, E. E., “Genetic variation and the de novo

assembly of human genomes”, Nature Reviews Genetics, Vol. 16, No. 11, 2015, str.

627–640, available at: http://dx.doi.org/10.1038/nrg3933

[114] Broder, a., “Identifying and filtering near-duplicate documents”, Combinatorial

Pattern Matching, 2000, str. 1–10, available at: http://www.springerlink.com/index/

KTN21YJUL3R379XY.pdf

[115] Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., Yorke, J. A., “Reducing storage re-

quirements for biological sequence comparison”, Bioinformatics, Vol. 20, No. 18, 2004,

str. 3363–3369.

[116] PacBio, “bas.h5 Reference Guide”, str. 1–7, available at: https://s3.amazonaws.com/

files.pacb.com/software/instrument/2.0.0/bas.h5+Reference+Guide.pdf

[117] CHIN, C. S., Marks, P., Alexander, D., Klammer, A., Turner, S. W., Lengsfeld,

C. S., Shoureshi, R. A., “Hierarchical genome assembly method using single long

insert library”, Vol. 1, No. 19, 2014, available at: http://www.google.com/patents/

US20140025312

[118] Carneiro, M. O., Russ, C., Ross, M. G., Gabriel, S. B., Nusbaum, C., Depristo, M. a.,

“Pacific biosciences sequencing technology for genotyping and variation discovery

in human data”, BMC Genomics, Vol. 13, No. 1, 2012, str. 375, available at:

BMCGenomics

[119] Modzelewski, M., Dojer, N., “MSARC: Multiple sequence alignment by residue cluster-

ing”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Vol. 8126 LNBI, 2013, str. 259–272.

[120] Chatzou, M., Magis, C., Chang, J.-M., Kemena, C., Bussotti, G., Erb, I.,

Notredame, C., “Multiple sequence alignment modeling: methods and applications”,

Briefings in Bioinformatics, No. October, 2015, str. 1–15, available at: http:

//bib.oxfordjournals.org/content/early/2015/11/27/bib.bbv099.abstract

[121] Lee, C., Grasso, C., Sharlow, M. F., “Multiple sequence alignment using partial

order graphs”, Bioinformatics, Vol. 18, No. 3, 2002, str. 452–464, available at:

http://bioinformatics.oxfordjournals.org/content/18/3/452

[122] Lee, C., “Generating consensus sequences from partial order multiple sequence align-

ment graphs”, Bioinformatics, Vol. 19, No. 8, 2003, str. 999–1008.

149

http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps
http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps
http://dx.doi.org/10.1038/nrg3933
http://www.springerlink.com/index/KTN21YJUL3R379XY.pdf
http://www.springerlink.com/index/KTN21YJUL3R379XY.pdf
https://s3.amazonaws.com/files.pacb.com/software/instrument/2.0.0/bas.h5+Reference+Guide.pdf
https://s3.amazonaws.com/files.pacb.com/software/instrument/2.0.0/bas.h5+Reference+Guide.pdf
http://www.google.com/patents/US20140025312
http://www.google.com/patents/US20140025312
BMC Genomics
http://bib.oxfordjournals.org/content/early/2015/11/27/bib.bbv099.abstract
http://bib.oxfordjournals.org/content/early/2015/11/27/bib.bbv099.abstract
http://bioinformatics.oxfordjournals.org/content/18/3/452

Bibliography

[123] Quick, J., Quinlan, A. R., Loman, N. J., “Erratum: A reference bacterial

genome dataset generated on the MinIONTM portable single-molecule nanopore

sequencer”, GigaScience, Vol. 4, No. 1, 2015, str. 6, available at: http:

//www.gigasciencejournal.com/content/4/1/6

[124] Loman, N. J., Quinlan, A. R., “Poretools: A toolkit for analyzing nanopore

sequence data”, Bioinformatics, Vol. 30, No. 23, 2014, str. 3399–3401, available at:

http://biorxiv.org/content/early/2014/07/23/007401.abstract

[125] Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., “QUAST: Quality assessment tool for

genome assemblies”, Bioinformatics, Vol. 29, No. 8, 2013, str. 1072–1075.

[126] Delcher, A. L., Salzberg, S. L., Phillippy, A. M., “Using MUMmer to identify similar

regions in large sequence sets.”, Current protocols in bioinformatics / editoral board,

Andreas D. Baxevanis ... [et al.], Vol. Chapter 10, 2003, str. Unit 10.3, available at:

http://www.ncbi.nlm.nih.gov/pubmed/18428693

[127] Burkhardt, S., Kärkkäinen, J., “One-gapped q-gram filters for Levenshtein distance”,

Combinatorial pattern matching, Vol. 14186, 2002, str. 225–234, available at:

http://link.springer.com/chapter/10.1007/3-540-45452-7{_}19

[128] Li, M., Ma, B., Kisman, D., Tromp, J., “PatternHunter II: highly sensitive and

fast homology search.”, Genome informatics. International Conference on Genome

Informatics, Vol. 14, No. 03, 2003, str. 164–75, available at: papers3://publication/uuid/

B9084C91-D38A-4297-863C-B1C29E604D18$\delimiter"026E30F$nhttp://www.

worldscientific.com/doi/abs/10.1142/S0219720004000661$\delimiter"026E30F$nhttp:

//www.ncbi.nlm.nih.gov/pubmed/15706531

[129] Benson, G., Levy, A., Shalom, R., “Longest Common Subsequence in k-length

substrings”, 2014, available at: http://arxiv.org/abs/1402.2097

[130] Pavetic, F., Zuzic, G., Sikic, M., “$LCSk$++: Practical similarity metric for long

strings.”, CoRR, Vol. abs/1407.2, 2014, available at: http://arxiv.org/abs/1407.2407

[131] Ammar, R., Paton, T. A., Torti, D., Shlien, A., Bader, G. D., “Long read

nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes.”,

F1000Research, Vol. 4, No. 0, 2015, str. 17, available at: http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=4392832{&}tool=pmcentrez{&}rendertype=abstract

[132] Huang, W., Li, L., Myers, J. R., Marth, G. T., “ART: A next-generation sequencing read

simulator”, Bioinformatics, Vol. 28, No. 4, 2012, str. 593–594.

150

http://www.gigasciencejournal.com/content/4/1/6
http://www.gigasciencejournal.com/content/4/1/6
http://biorxiv.org/content/early/2014/07/23/007401.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18428693
http://link.springer.com/chapter/10.1007/3-540-45452-7{_}19
papers3://publication/uuid/B9084C91-D38A-4297-863C-B1C29E604D18$\delimiter "026E30F $nhttp://www.worldscientific.com/doi/abs/10.1142/S0219720004000661$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/15706531
papers3://publication/uuid/B9084C91-D38A-4297-863C-B1C29E604D18$\delimiter "026E30F $nhttp://www.worldscientific.com/doi/abs/10.1142/S0219720004000661$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/15706531
papers3://publication/uuid/B9084C91-D38A-4297-863C-B1C29E604D18$\delimiter "026E30F $nhttp://www.worldscientific.com/doi/abs/10.1142/S0219720004000661$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/15706531
papers3://publication/uuid/B9084C91-D38A-4297-863C-B1C29E604D18$\delimiter "026E30F $nhttp://www.worldscientific.com/doi/abs/10.1142/S0219720004000661$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/15706531
http://arxiv.org/abs/1402.2097
http://arxiv.org/abs/1407.2407
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4392832{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4392832{&}tool=pmcentrez{&}rendertype=abstract

Bibliography

[133] Ono, Y., Asai, K., Hamada, M., “PBSIM: PacBio reads simulator - Toward accurate

genome assembly”, Bioinformatics, Vol. 29, No. 1, 2013, str. 119–121.

[134] Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M.,

McCombie, W. R., “Oxford Nanopore Sequencing and de novo Assembly

of a Eukaryotic Genome”, bioRxiv, 2015, str. 13490, available at: http:

//biorxiv.org/content/early/2015/01/06/013490.abstract

[135] Loman, N. J., Quick, J., Simpson, J. T., “A complete bacterial genome assembled de

novo using only nanopore sequencing data”, Nature Methods, Vol. 12, No. 8, 2015, str.

733–735, available at: http://www.nature.com/doifinder/10.1038/nmeth.3444

[136] Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W.,

Salit, M., “Integrating human sequence data sets provides a resource of benchmark

SNP and indel genotype calls”, Nature Biotechnology, Vol. 32, No. 3, 2014, str.

246–251, available at: http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\

delimiter"026E30F$nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf

[137] Layer, R. M., Chiang, C., Quinlan, A. R., Hall, I. M., “LUMPY: a probabilistic

framework for structural variant discovery.”, Genome biology, Vol. 15, No. 6, 2014, str.

R84, available at: http://genomebiology.com/2014/15/6/R84

[138] Thorvaldsdóttir, H., Robinson, J. T., Mesirov, J. P., “Integrative Genomics Viewer (IGV):

High-performance genomics data visualization and exploration”, Briefings in Bioinfor-

matics, Vol. 14, No. 2, 2013, str. 178–192.

[139] Szalay, T., Golovchenko, J. A., “De novo sequencing and variant calling with

nanopores using PoreSeq”, Nature Biotechnology, Vol. 33, No. September, 2015,

str. 1–7, available at: http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3360.

html{#}ref1$\delimiter"026E30F$nhttp://www.nature.com/doifinder/10.1038/nbt.3360

[140] Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W.,

Salit, M., “Integrating human sequence data sets provides a resource of benchmark

SNP and indel genotype calls”, Nature Biotechnology, Vol. 32, No. 3, 2014, str.

246–251, available at: http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\

delimiter"026E30F$nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf

[141] Patel, A., Schwab, R., Liu, Y. T., Bafna, V., “Amplification and thrifty single-molecule

sequencing of recurrent somatic structural variations”, Genome Research, Vol. 24, No. 2,

2014, str. 318–328.

151

http://biorxiv.org/content/early/2015/01/06/013490.abstract
http://biorxiv.org/content/early/2015/01/06/013490.abstract
http://www.nature.com/doifinder/10.1038/nmeth.3444
http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\delimiter "026E30F $nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf
http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\delimiter "026E30F $nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf
http://genomebiology.com/2014/15/6/R84
http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3360.html{#}ref1$\delimiter "026E30F $nhttp://www.nature.com/doifinder/10.1038/nbt.3360
http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3360.html{#}ref1$\delimiter "026E30F $nhttp://www.nature.com/doifinder/10.1038/nbt.3360
http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\delimiter "026E30F $nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf
http://www.nature.com/nbt/journal/v32/n3/full/nbt.2835.html$\delimiter "026E30F $nhttp://www.nature.com/nbt/journal/v32/n3/pdf/nbt.2835.pdf

Bibliography

[142] Cao, M. D., Ganesamoorthy, D., Elliott, A., Zhang, H., Cooper, M., Coin,

L., “Real-time strain typing and analysis of antibiotic resistance potential using

Nanopore MinION sequencing”, bioRxiv, 2015, str. 019356, available at: http:

//biorxiv.org/content/early/2015/05/15/019356

[143] Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., Shawand,

P. D., Marshall, D., “Using tablet for visual exploration of second-generation sequencing

data”, Briefings in Bioinformatics, Vol. 14, No. 2, 2013, str. 193–202.

[144] Sović, I., Križanović, K., Skala, K., Šikić, M., “Evaluation of hybrid and non-hybrid

methods for de novo assembly of nanopore reads.”, Bioinformatics (Oxford, England),

2016, str. 030437, available at: http://biorxiv.org/content/early/2015/11/13/030437.

abstract$\delimiter"026E30F$nhttp://www.ncbi.nlm.nih.gov/pubmed/27162186

[145] Krumsiek, J., Arnold, R., Rattei, T., “Gepard: A rapid and sensitive tool for creating

dotplots on genome scale”, Bioinformatics, Vol. 23, No. 8, 2007, str. 1026–1028.

152

http://biorxiv.org/content/early/2015/05/15/019356
http://biorxiv.org/content/early/2015/05/15/019356
http://biorxiv.org/content/early/2015/11/13/030437.abstract$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/27162186
http://biorxiv.org/content/early/2015/11/13/030437.abstract$\delimiter "026E30F $nhttp://www.ncbi.nlm.nih.gov/pubmed/27162186

Biography

Ivan Sović was born on 4th of October 1986 in Zagreb. In 2005 he enrolled the Faculty of Elec-

trical Engineering and Computing of University of Zagreb. In 2008 he obtained his bachelor

degree in Electrical engineering, module Electronic and Computer Engineering. The topic of

his thesis was "Visualization of macromolecules". He enrolled in the masters degree programme

in 2008 on the same faculty and module. In academic year of 2009/2010, Ivan received a Rec-

tor’s award for his work titled "New robust method for QSAR analysis based on multivariate

linear regression and the L1 norm". In 2010, Ivan graduated and obtained the title of Master

of Science in Electrical Engineering and Information Technology. The topic of his thesis was:

"Protein Docking Tool: Visualization module".

Since December of 2010, Ivan is employed as a research assistant in Centre for Informatics

and Computing of the Rud̄er Bošković Institute (RBI) in Zagreb. In 2011 he enrolled in the

Ph.D. programme at the Faculty of Electrical Engineering and Computing of University of

Zagreb. During his work at the RBI, he participated and worked on national and international

projects: "Methods for scientific visualization" (Ministry of science, education and sport of

Republic of Croatia, project number: 098-098 2562-2567) and "E2LP: Embedded engineering

learning platform" (EU FP7, project number: 317882). During the work on his thesis, Ivan

was awarded a scholarship by the Agency for Science, Technology and Research (A*STAR) of

Singapore, allowing him to spend one year abroad on the Genome Institute of Singapore in the

period of May 2014 to May 2015.

Ivan published over 20 works, including 10 research papers in journals, 5 book chapters and

8 conference papers.

Publications

Journal papers

1. Sović, I., Križanović, K., Skala, K., Šikić, M., "Evaluation of hybrid and non-hybrid

methods for de novo assembly of nanopore reads", Bioinformatics, 11 (2016).

2. Sović, I., Šikić, M., Wilm, A., Fenlon, S.N., Chen, S., Nagarajan, N., "Fast and sensitive

mapping of nanopore sequencing reads with GraphMap", Nature Communications, 7

153

biography

(2016).

3. Skala, K., Davidović, D., Afgan, E., Sović, I., Šojat, Z., "Scalable Distributed Computing

Hierarchy: Cloud, Fog and Dew Computing", Open Journal of Cloud Computing (OJCC),

2 (2015), 1; pp. 16-24.

4. Skala, K., Davidović, D., Lipić, T., Sović, I., "G-Phenomena as a Base of Scalable Dis-

tributed Computing —G-Phenomena in Moore’s Law", International Journal of Internet

and Distributed Systems, 2 (2014) , 1; pp. 1-4.

5. Lučić, B., Sović, I., Batista, J., Skala, K., Plavšić, D., Vikić-Topić, D., Bešlo, D., Nikolić,

S., Trinajstić, N., "The Sum-Connectivity Index - An Additive Variant of the Randić Con-

nectivity Index", Current computer-aided drug design, 9 (2013), pp. 184-194.

6. Lučić, B., Sović, I., Bešlo, D., Plavšić, D., Vikić-Topić, D., Trinajstić, N., "On the Novel

Balaban-like and Balaban-Detour-like Molecular Descriptors", International Journal of

Chemical Modeling, 5 (2013), 2/3; pp. 277-294.

7. Skala, K., Lipić, T., Sović, I., Grubišić, I., Grbeša, I., "Towards 3D thermal models stan-

dardisation for human body in motion", Quantitative InfraRed Thermography Journal,

Vol. 10, No. 2, pp. 207-221, 2013.

8. Skala, K., Lipić, T., Sović, I., Gjenero, L., Grubišić, I., "4D Thermal Imaging System for

Medical Applications", Periodicum biologorum, 113 (2011) , 4; pp. 407-416.

9. Skala Kavanagh, H., Dubravić, A., Grazio, S., Lipić, T., Sović, I., "Computer supported

thermography monitoring of hand strength evaluation by electronic dynamometer", Peri-

odicum biologorum, 113 (2011), 4; pp. 433-437.

10. Sović, I., Lipić, T., Gjenero, L., Grubišić, I., Skala, K., "Experimental verification of

heat source parameter estimation from 3D thermograms", Periodicum biologorum, 113

(2011), 4; pp. 417-423.

Book chapters

1. Medved Rogina, B., Skala, K., Škoda, P., Sović, I., Michieli, I., "Exercises for Embedded

Engineering Learning Platform", Book title: "Embedded Engineering Education", Edi-

tors: Szewczyk, R., Kaštelan, I., Temerinac, M., Barak, M., Sruk, V., Cham: Springer

International Publishing, 2016. pp. 45-59.

2. Šojat, Z., Skala, K., Medved Rogina, B., Škoda, P., Sović, I., "Implementation of Ad-

vanced Historical Computer Architectures", Book title: "Embedded Engineering Educa-

tion", Editors: Szewczyk, R., Kaštelan, I., Temerinac, M., Barak, M., Sruk, V., Publisher

Cham: Springer International Publishing, 2016. pp. 61-79.

3. Lučić, B., Sović, I., Trinajstić, N., "On coding and ordering benzenoids and their Kekulé

structures by using Kekulé index and some related codes", Book title: "Ante Graovac –

Life and Works", Editors: Gutman, I., Pokrić, B., Vukičević., Kragujevac, University of

154

biography

Kragujevac and Faculty of Science Kragujevac, 2014. pp. 163-178.

4. Lučić, B., Sović, I., Trinajstić, N., "The four connectivity matrices, their indices, polyno-

mials and spectra", Book title: "Advances in mathematical chemistry and applications",

Editors: Basak, S.C., Restrepo, G., Villaveces, J.L., Sharjah, UAE: Bentham Science

Publishers, 2014. pp. 76-91.

5. Lučić, B. Sović, I., Plavšić, D., Trinajstić, N., "Harary Matrices: Definitions, Properties

and Applications", Book title: "Distance in Molecular Graphs – Applications", Editors:

Gutman, I., Furtula, B., Kragujevac: University of Kragujevac and Faculty of Science

Kragujevac, 2012. pp. 3-26.

Conference papers

1. Sović, I., Skala, K., Šikić, M., "Approaches to DNA de novo Assembly", Proceedings of

the 36th International Convention Mipro 2013.

2. Sović, I., Šikić, M., Skala, K., "Aspects of DNA Assembly Acceleration on Reconfigurable

Platforms", PROCEEDINGS IT SYSTEMS 2013, Editors: Žagar, M., Knezović, J., Mli-

narić, H., Hofman, D, Kovač, M., Bol, Brač, Hrvatska: University of Zagreb, Faculty of

Electrical Engineering and Computing, 2013. pp. 289-292.

3. Afgan, E., Skala, K., Davidović, D., Lipić, T., Sović, I., "CloudMan as a tool execu-

tion framework for the cloud", Proceedings of the 35th International Convention MIPRO,

2012, Editors: Biljanović, P., Skala, K., Zagreb, 2012. pp. 437-441.

4. Bojović, V., Sović, I., Bačić, A., Lučić, B., Skala, K., "A novel tool/method for visual-

ization of orientations of side chains relative to the protein’s main chain", Proceedings

Vol. I. MEET&GVS 34rd International Convention MIPRO 2011, Editors: Biljanović,

P., Skala, K., Zagreb: Croatian Society for Information and Communication Technology,

Electronics and Microelectronics - MIPRO, 2011. pp. 273-276.

5. Grubišić, I., Gjenero, L., Lipić, T., Sović, I., Skala, T., "Active 3D scanning based 3D

thermography system and medical applications", Proceedings Vol. I. MEET&GVS 34rd

International Convention MIPRO 2011, Editors: Biljanović, P., Skala, K., Zagreb: Croat-

ian Society for Information and Communication Technology, Electronics and Microelec-

tronics - MIPRO, 2011. pp. 300-304.

6. Sović, I., Lipić, T., Gjenero, L., Grubišić, I., Skala, K., "Heat source parameter estima-

tion from scanned 3D thermal models", Proceedings Vol. I. MEET&GVS 34rd Inter-

national Convention MIPRO 2011, Editors: Biljanović, P., Skala, K., Zagreb: Croatian

Society for Information and Communication Technology, Electronics and Microelectron-

ics - MIPRO, 2011. pp. 283-287.

7. Pale, P., Sović, A., Sović, I., Jeren, B., "Some aspects of student teamwork on practical

assignments for complex control and measurement systems", Proceedings of the 33th In-

155

biography

ternational Convention MIPRO, 2010, Computers in education, Editors: Čičin-Šain, M.,

Uroda, I., Turčić Prstačić, I., Sluganović, I., Opatija: Mipro, 2010. pp. 815-820.

8. Sović, I., Antulov-Fantulin, N., Čanadi, I., Šikić, M., "Parallel Protein Docking Tool",

Proceedings of the 33th International Convention MIPRO, 2010, Opatija, pp. 1333-1338.

156

Životopis

Ivan Sović rod̄en je 4. listopada 1986. godine u Zagrebu. 2005. godine upisao je Fakultet elek-

trotehnike i računarstva Sveučilišta u Zagrebu. Godine 2008. završava preddiplomski studij s

odličnim uspjehom na smjeru Elektrotehnika, modul Elektroničko i računalno inženjerstvo, sa

završnim radom na temu "Vizualizacija makromolekula", te odmah potom upisuje diplomski

studij na istom fakultetu, s istim usmjerenjem. Za akademsku godinu 2009./2010. nagrad̄en

je Rektorovom nagradom za rad "Nova robusna metoda za QSAR analizu temeljena na mul-

tivarijatnoj linearnoj regresiji i normi L1". Godine 2010. završava diplomski studij, takod̄er

s odličnim uspjehom, s diplomskim radom na temu "Alat za prianjanje proteina: modul za

vizualizaciju".

Od prosinca 2010. zaposlen je kao znanstveni novak na Institutu Rud̄er Bošković (IRB),

u Centru za informatiku i računarstvo. 2011. godine upisuje doktorski studij na Fakultetu

elektrotehnike i računarstva Sveučilišta u Zagrebu. Tijekom rada na IRB-u, sudjelovao je kao

suradnik na projektima: "Metode znanstvene vizualizacije" (Ministarstvo znanosti, obrazovanja

i sporta Republike Hrvatske, broj projekta: 098-098 2562-2567) i "E2LP: Embedded engineer-

ing learning platform" (EU FP7, broj projekta: 317882). Tijekom izrade doktorskog rada,

proveo je studijsku godinu u inozemstvu, u razdoblju svibanj 2014. - svibanj 2015., na Genome

Institute of Singapore.

Objavio je preko 20 radova, od čega je 10 u časopisima s med̄unarodnom recenzijom, 5

poglavlja u knjigama i 8 članaka na konferencijama s med̄unarodnom recenzijom.

157

	Introduction
	Objectives
	Organization of the Dissertation

	Background
	Terminology
	Approaches to sequence alignment/mapping
	Sequence alignment
	Sequence mapping
	Mapping nanopore reads

	Approaches to de novo DNA assembly
	Overlap-Layout-Consensus approach (OLC)
	The de Bruijn graph approach
	Assembly of nanopore reads

	Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads
	Methods
	Datasets
	Data preparation
	Assembly pipelines
	Evaluating the results

	Results
	Non-hybrid assembly quality
	Hybrid pipeline comparison
	Resource usage
	Polishing the assembly
	Discussion

	Overlap
	GraphMap - Fast and sensitive mapping of nanopore sequencing reads
	Methods
	Results
	Discussion

	Owler - Overlap With Long Erroneous Reads
	Methods
	Implementation and reproducibility
	Results
	Discussion

	Racon - Fast consensus module for raw de novo genome assembly of long uncorrected reads
	Methods
	Algorithm description
	Implementation and reproducibility
	Datasets
	Evaluation methods

	Results
	Discussion

	Integration and evaluation - Aracon assembler
	Methods
	Implementation and reproducibility
	Datasets
	Assembly pipelines
	Evaluation methods

	Results
	Discussion

	Conclusion
	Contributions of the dissertation
	Future research avenues

	Additional benchmarking results
	Supplementary information for GraphMap
	Evaluating GraphMap on synthetic datasets
	GraphMap’s sensitivity on ONT datasets

	References
	Biography
	Životopis

