
Supplementary Information for the Article: 3D Oxalate-Based Coordination Polymers: Relationship between Structure, Magnetism and Color, studied by High-Field ESR Spectroscopy

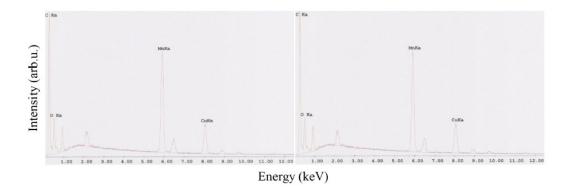
D. Žilić^{a,b,*}, K. Molčanov^b, M. Jurić^b, J. Habjanič^{b,c}, B. Rakvin^b, Y. Krupskaya^a, V. Kataev^a, S. Wurmehl^a, B. Büchner^{a,d}

 a Institute for Solid State Research, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany

^bRuđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb ^cUniversity of Zurich, Rämistrasse 71, CH-8006 Zürich, Switzerland ^dInstitute for Solid State Physics, Technical University Dresden, D-01062 Dresden, Germany

Suppl. Figure 1: SEM pictures of CuMn2-Green (left) and CuMn2-Red (right) single crystals. CuMn2-Red crystals have approximately 5 times smaller dimensions comparing to the CuMn2-Green crystals.

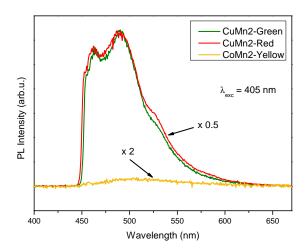
X-band ESR spectroscopy


X-band results on CuMn2-Green sample, performed on single crystal, as well as on powder, were presented in Ref. 11. Representative X-band ESR spectra

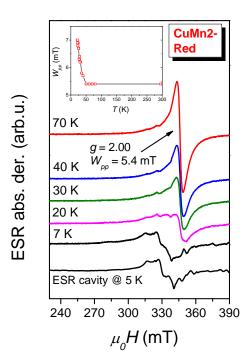
Email address: dzilic@irb.hr (D. Žilić)

^{*}Corresponding author

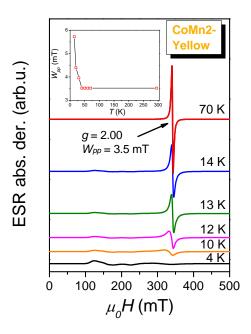
Suppl. Table 1: Crystallographic data and structure refinement for compound $\{ [{\rm Cu(bpy)_3}] [{\rm Mn_2(C_2O_4)_3}] \cdot {\rm H_2O} \}_n \ ({\rm CuMn2\text{-}Red})$


Compound	CuMn2-Red				
Empirical formula	$\mathrm{C}_{36}\mathrm{H}_{24}\mathrm{CuMn}_{2}\mathrm{N}_{6}\mathrm{O}_{13}$				
Formula wt/g $\mathrm{mol^{-1}}$	922.04				
$Crystal\ size/mm^{-3}$	$0.08 \ge 0.05 \ge 0.04$				
Crystal system	Cubic				
Space group	$P4_{1}32$				
$\mathrm{a/\mathring{A}}$	15.6547(2)				
Z	4				
$ m V/\AA^3$	3836.49(15)				
$\rho_c/{\rm g~cm^{-3}}$	1.596				
μ/mm^{-1}	6.559				
Θ range/ $^{\circ}$	2.82 - 76.04				
T/K	293(2)				
Diffractometer type	Xcalibur Nova				
Range of h, k, l	-18 < h < 11,				
	-18 < k < 19,				
	-19 < l < 10				
Reflections collected	6839				
Independent reflections	1334				
Observed reflections $(I \le 2\sigma)$	1058				
Absorption correction	Multi-scan				
\mathbf{R}_{int}	0.0296				
R(F)	0.0346				
$R_w(F^2)$	0.0869				
Goodness of fit	0.947				
H atom treatment	Constrained				
No. of parameters	90				
$\Delta \rho_{max},\Delta \rho_{min}\ /\mathrm{e}\mathrm{\mathring{A}^{-3}}$	0.336; -0.177				
Flack parameter	0.004(5)				

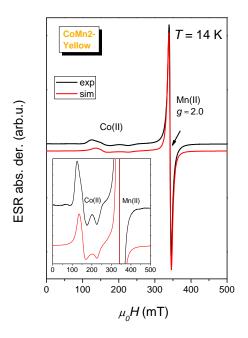
 $Suppl.\ Figure\ 2:\ EDX\ spectra\ of\ a\ CuMn2-Green\ (left)\ and\ CuMn2-Red\ (right)\ single\ crystals.$

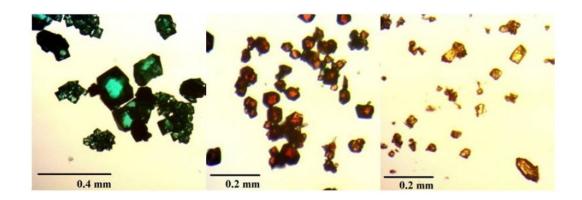

Suppl. Table 2: Manganese vs. copper atomic ratio obtained by EDX analysis.

	CuMn2-Green			CuMn2-Red				
${ m Mn}$	4.39	4.34	5.39	5.38	5.19	3.26	4.83	7.79
Cu	2.16	2.11	2.64	2.74	2.67	1.64	2.43	3.95
Mn:Cu ratio	2.03	2.06	2.04	1.96	1.94	1.99	1.99	1.97
Average Mn:Cu ratio	2.02±0.04			1.97±0.02				



Suppl. Figure 3: The photoluminescence spectra of CuMn2-Green, CuMn2-Red and CoMn2-Yellow recorded at room temperature under laser radiation ($\lambda_{exc} = 405$ nm). Intensity of CuMn2-Red and CoMn2-Yellow are shown multiplied by 0.5 and 2, respectively.


of CuMn2-Red and CoMn2-Yellow polycrystals are presented in Suppl. Figs. 4 and 5, respectively. At higher temperature T>70 K, one Lorentzian line at g=2.00 due to Mn(II) ions with S=5/2 was detected. Hyperfine lines, due to nuclear spin I=5/2, were not observed. In the temperature range 50–297 K manganese linewidth stays approximately constant, as could be seen in the inset in Suppl. Figs. 4 and 5. With decreasing temperature below 50 K, the width of the ESR line increases followed by the decrease of the peak-to-peak intensity and around $T_N\approx 12$ K, for CoMn2-Yellow, this line disappears. This effect showed that oxalate-bridged Mn(II) ions are AFM coupled at low temperatures, in agreement with magnetization measurements. This temperature was not precisely determined for CuMn2-Red, due to the very small amount of the CuMn2-Red sample ($m\approx 0.1$ mg) and parasitic signal from the ESR cavity. ESR spectra of CoMn2-Yellow at low temperatures show additional lines in the field range 100–250 mT that could be assigned to Co(II) ions.


Suppl. Figure 4: X-band ESR spectra of CuMn2-Red polycrystals for different selected temperatures. Intensities of the lines are presented in real ratios. Due to the very small amount of the CuMn2-Red sample, the spectra at low temperatures ($T=7~{\rm K}$) are covered by the spectrum of the ESR cavity (the spectrum of ESR cavity at $T=5~{\rm K}$ is also presented). Inset: temperature dependence of the peak-to-peak linewidth (W_{pp}) above 20 K.

Suppl. Figure 5: X-band ESR spectra of CoMn2-Yellow polycrystals for different selected temperatures. Intensities of the lines are presented in real ratios. Phase transition into the AFM state occurs at $T_N \approx 12$ K. Inset: temperature dependence of the peak-to-peak linewidth (W_{pp}) above T_N .

Suppl. Figure 6: Experimental and simulated X-band ESR spectrum of CoMn2-Yellow, at $T=14~\rm K.$ Inset: Enlarged Co(II) lines.

Suppl. Figure 7: From the left to the right: polycrystals of CuMn2-Green, CuMn2-Red and CoMn2-Yellow compounds.