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      Molecular determinants of human dipeptidyl 
peptidase III sensitivity to thiol modifying 
reagents  

     Abstract :  Human dipeptidyl peptidase III (DPP III) is a 

member of the metallopeptidase family M49, involved in 

protein metabolism and oxidative stress response. DPP 

III crystal structure shows the two lobe-like domains 

separated by a wide cleft. The human enzyme has a 

total of six cysteines, three in the lower (Cys19, Cys147, 

and Cys176) and three in the upper (Cys509, Cys519, 

and Cys654), catalytic, domain containing the active-

site zinc ion. To elucidate the molecular basis of this 

enzyme ’ s susceptibility to sulfhydryl reagents, bio-

chemical analysis of a set of Cys to Ala mutants was 

used, supported by mass spectrometry. Cys176, a residue 

44  Å  apart from the catalytic center of the ligand-free 

enzyme, was found responsible for the inactivation with 

the submicromolar concentration of an organomercu-

rial compound, and three additional cysteines contri-

buted to sensitivity to aromatic disulfides. Upon treat-

ment with oxidized glutathione [glutathione disulfide 

(GSSG)], cysteine residues at positions 147, 176, and 654 

were found glutathionylated. The mutational analy-

sis confirmed the involvement of Cys176 and Cys654 in 

human DPP III inactivation by GSSG. Observation that 

Cys176, a residue quite distant from the active center, 

contributes to enzyme inactivation, indicates that the 

substrate-binding site of human DPP III comprises both 

lower and upper protein domain.  
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   Introduction 
 Dipeptidyl peptidase III (DPP III, EC 3.4.14.4) is a mono-

zinc metalloexopeptidase, which  in vitro  hydrolyzes a 

number of biologically active peptides by cleaving dipep-

tides from their N-termini (Abrami  ć  et al., 1988 ; Chen and 

Barrett , 2004 ). This type of enzyme is broadly distributed 

in mammalian tissues and biochemically characterized 

from several eukaryotic sources (Fukasawa et al. , 1998 ; 

Chen and Barrett , 2004 ; Jaj  č anin-Jozi ć  et al., 2010 ). Based 

on the large proteomics datasets measured from seven 

human cell lines, DPP III is identified as a member of 

the human central proteome (Burkard et al. , 2011 ). It is 

thought that this peptidase participates in normal intra-

cellular protein catabolism, in the pain modulation, and 

in endogenous defense against oxidative stress (Chiba 

et al. , 2003 ; Bar  š un et al., 2007 ; Liu et al. , 2007 ). A path-

ological role is indicated for DPP III in cataractogenesis 

and in malignant growth (Zhang et al. , 2001 ;   Š imaga 

et al., 2003 ). Most recent clinical cancer research revealed 

the diagnostic and prognostic value of human DPP III as a 

constituent of the six-gene model (He et al. , 2010 ). 

 Human DPP III belongs to the M49 family of metal-

lopeptidases (DPP III family) (MEROPS database: http://

merops.sanger.ac.uk/) with five evolutionary conserved 

amino acid sequence regions (Abrami  ć  et al., 2004a ). 

Crystal structures of two members of this family have been 

solved, yeast and human ortholog, both ligand-free (PDB: 

3csk and 3fvy, respectively). These structures reveal that 

DPP III is a two-domain protein: upper domain (C-termi-

nal) with the catalytic zinc ion bound, is mostly helical, 

separated by a wide cleft from the lower domain (N-ter-

minal), comprising mixed  α - and  β -secondary structures 

(Baral et al. , 2008 ). The zinc-binding site of the human 

DPP III is built up by His450, His455, and Glu508. The two 

histidine ligands belong to the conserved HEXXGH motif, 

characteristic of the M49 family, which is part of an  α -helix. 

The third ligand, Glu508, is a constituent of the second 

conserved hexapeptide, E-E-(CAT)-(RK)-A-(ED), situated 

on the neighboring  α -helix. In all eukaryotic sequences 

of M49 peptidases, this linear motif is the hexapeptide 
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EECRAE (Abrami  ć  et al., 2004a ). Two other glutamic acid 

residues in EECRAE motif (Glu507 and Glu512 in human 

DPP III) are hydrogen bonded to the zinc-coordinating his-

tidine residues (His455 and His450). 

 Inhibition by thiol selective reagents is a general 

feature of all hitherto experimentally characterized M49 

peptidases, indicating the presence of a reactive cysteine 

residue in (or close to) the active site (Abrami  ć  et al., 

2004b ; Jaj  č anin-Jozi ć  et al., 2010 ). As all known DPPs 

III are multicysteine proteins, and there is no 100 %  con-

served Cys within the M49 family, the identity of reactive 

-SH groups important for activity seems to be species spe-

cific. Recently, we reported that modification of Cys639 

and Cys518 leads to catalytic inactivation of the yeast DPP 

III (Jaj  č anin-Jozi ć  et al., 2010 ). Human DPP III has a total 

of six cysteines, three in the lower (Cys19, Cys147, and 

Cys176) and three in the upper domain (Cys509, Cys519, 

and Cys654) (Figure  1  ). Our previous study on an enzyme 

purified from human erythrocytes has revealed its inhibi-

tion by several sulfhydryl-modifying reagents, including 

the oxidized glutathione, and especially high sensitiv-

ity toward organomercurial compounds (Abrami  ć  et al., 

2000, 2004b ). To elucidate the molecular determinants of 

human DPP III inactivation by thiol reagents, we prepared 

six mutated enzyme forms with single cysteine to alanine 

substitutions and examined their properties. In addition, 

we employed the mass spectrometry (MS) approach to 

identify the target sites for oxidized glutathione on human 

DPP III.  

  Results 

  Expression, purifi cation, and biochemical 
characterization of wild-type and mutant 
DPP III proteins 

 Each of the cysteine residues (positions 19, 147, 176, 509, 

519, and 654 in the amino acid sequence) in human DPP III 

molecule was substituted by alanine independently. The 

wild-type and DPP III mutants were purified as His-tagged 

proteins of molecular mass  ~ 82 kDa. Figure  2   shows the 

purification profile for the wild-type DPP III. 

 The catalytic properties of the wild-type and all 

mutated forms were determined for the hydrolysis of 

characteristic synthetic substrate Arg-Arg-2-naphthyl-

amide (Arg 
2
 -2NA) (Table  1  ). The single mutants C19A, 

C147A, C509A, C519A, and C654A exhibited comparable 

kinetic parameters to the wild-type enzyme. However, 

replacement of Cys176 with Ala increased the K 
M

  value 

 Figure 1    Overview of the human DPP III crystal structure (Protein 

Data Bank code: 3fvy). 

 Cysteine residues are presented as red sticks, and the catalytic 

zinc ion is shown as a gray sphere. The drawing was performed by 

PyMOL ( www.pymol.org ).    

 Figure 2    SDS-PAGE profile of total cell lysate and the purification 

progress of human DPP III-His 
6
  protein on Ni-NTA agarose column. 

 Lanes: 1, molecular mass marker; 2, total  Escherichia coli  cell lysate 

of uninduced sample; 3, total cell lysate of induced sample; 

4, solubilized precipitate after cell lysate centrifugation; 5, cleared 

cell lysate (supernatant after centrifugation); 6, flow-through Ni-NTA 

column; 7, wash with 20 m m  imidazole; 8 – 9, human DPP III-His 
6
  

protein eluted with 150 m m  imidazole. Proteins were stained with 

Coomassie Blue.    
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for Arg 
2
 -2NA threefold, and decreased the k 

cat
  about four-

fold, thus lowering the catalytic efficiency by an order of 

magnitude. 

 We further investigated if decreased hydrolytic activ-

ity of C176A reflects the change in protein structure. Cir-

cular dichroism (CD) spectroscopy in the far ultraviolet 

spectral region (Supplementary Figure  1  ) revealed almost 

identical CD spectra for the wild-type and C176A mutant, 

suggesting that Cys176-to-Ala substitution did not change 

human DPP III secondary structure. In addition, CD spec-

troscopy was used to monitor thermal denaturation of 

the C176A protein variant and the wild-type. A two-step 

unfolding was indicated for both, and the T 
m

  values did 

not differ significantly (51.0  ±  0.4 ° C and 70.5  ±  0.2 ° C for the 

C176A; 49.9  ±  0.3 ° C and 69.1  ±  0.2 ° C for the wild-type). Iden-

tical thermal stability suggested that the Cys176-to-Ala 

substitution did not affect overall stability of human DPP 

III.  

  Effects of cysteine substitution on the 
response to thiol-sensitive reagents 

 We investigated the effect of four SH group-modifying 

reagents on the activity of wild-type human DPP III and 

its cysteinyl mutants: para-hydroxymercuribenzoate 

(pHMB), N-ethylmaleimide (NEM), 4,4 ′ -dithiodipyridine 

(DTDP), and 5,5 ′ -dithiobis(2-nitrobenzoic acid) (DTNB). 

 As shown in Figure  3  A, as low as 0.01  μ  m  pHMB 

caused 50 %  loss of catalytic activity of the wild-type and 

all mutants, except the C176A. When the reagent concen-

tration reached 0.1  μ  m , inactivation was almost 100 %  in 

the C19A, C147A, C654A, and the wild-type, 90 %  in the 

C509A and C519A, while the C176A was resistant, exerting 

only 15 %  lower activity. This enzyme variant was found 

resistant to up to 1  μ  m  pHMB (data not shown), which is 

A

B

 Figure 3    Inactivation of the wild-type human DPP III and of Cys-to-

Ala mutants by pHMB (A) and by DTDP (B). 

 The purified enzyme (2  ×  10 -10   m  wild-type or any of Cys-to-Ala 

mutants, except the C176A, which was 3  ×  10 -9   m ) was preincubated 

with pHMB or DTDP in 50 m m  Tris-HCl buffer, pH 8.6 at 25 ° C for 

10 min. Then, the residual activity was determined by a standard 

assay at 37 ° C with Arg 
2
 -2NA as a substrate. Presented are averages 

of at least two determinations.    

DPP III form  K  m  ( μ  m )  k  cat  (/s)  k  cat / K  m  
(/ μ  m  s)

Wild-type 10.2  ±  0.6 50.8  ±  9.2 5.0  ±  1.2

C19A    5.8  ±  0.2 52.0  ±  0.5 8.9  ±  0.2

C147A    6.6  ±  0.4 58.6  ±  1.2 8.9  ±  0.7

C176A 35.3  ±  9.4 13.5  ±  1.6 0.39  ±  0.06

C509A    7.6  ±  1.8 34.4  ±  2.7 4.6  ±  0.7

C519A 12.2  ±  1.0 29.7  ±  9.9 2.4  ±  0.6

C654A    7.5  ±  1.8 55.7  ±  7.6 7.6  ±  0.8

 Table 1      Kinetic characterization of DPP III mutant proteins.  

   The kinetic parameters were determined from the initial reaction 

rates at 25 ° C and at pH 8.6 in the presence of 50  μ  m  CoCl 
2
 , with the 

substrate (Arg 
2
 -2NA) ranging from 2.5 to 60  μ  m , using a Hanes plot. 

Mean values  ±  SD are given.   

almost 2 orders of magnitude higher than the concentra-

tion that caused inactivation of other mutated forms. 

 All human DPP III variants were resistant to sulfhy-

dryl-alkylating agent NEM, which only in 20 m m  concen-

tration decreased the wild-type activity by 30 %  (data not 

shown). 

 The aromatic disulfide DTDP is an amphiphilic 

uncharged reagent known to access the thiols located in 

a hydrophobic environment (Hansen and Winther , 2009 ). 

 DTDP, in a concentration range of 3 – 100  μ  m , inacti-

vated the wild-type and C19A, C147A, C519A, and C654A to 

the similar extent (Figure 3B). However, the enzyme vari-

ants lacking Cys176 or Cys509 showed high, respectively, 

moderate resistance. 
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 DTNB (5 m m ) caused rapid inactivation of human DPP 

III at pH 7.4 and 23 ° C: after only 30 s preincubation, the 

loss of enzyme activity was 55 %  (the C176A variant) to 

75 %  (the wild-type) (Table  2  ). Further incubation up to 30 

min did not increase the inactivation extent significantly 

(Table 2). The C509A variant behaved as the wild-type. 

C19A and C654A seemed to be less inactivated than the 

wild-type, and the absence of Cys519 increased the inacti-

vation rate (Table 2). 

 Results indicate, beside Cys176, two other residues 

reactive with DTNB  –  Cys19 and Cys654. The modifi-

cation of Cys176 seems to contribute to the observed 

enzyme inactivation slightly more than those of Cys19 

and Cys654.  

  Influence of oxidized glutathione 
(glutathione disulfide, GSSG) on DPP 
III activity 

 At first, concentration dependence of GSSG on the wild-

type DPP III activity was investigated. After a 30-min 

incubation at 25 ° C at physiological pH, GSSG, in concen-

trations above 2 m m , decreased the enzyme ’ s activity to 

about 20 %  of the original value (data not shown). 

 To find out if any single cysteine residue is respon-

sible for the observed inactivation of human DPP III by 

GSSG, all prepared enzyme forms were incubated with 

3 m m  GSSG at pH 7.4. Under these conditions, the wild-

type and two mutants, C19A and C147A, lost about 90 %  

of activity, while C176A and C519A retained significantly 

more activity than the wild-type (Table  3  ). 

 Obtained results showed that the inactivation effect of 

GSSG cannot be ascribed to the modification of only one 

cysteine residue (Table 3).  

  Identification of glutathionylation sites 
of human DPP III 

 To identify human DPP III Cys residues which are the glu-

tathionylation sites, mass spectrometric analysis of GSSG-

modified enzyme was performed as described in the Mate-

rials and methods. 

 The wild-type enzyme was reacted with 3 m m  GSSG 

for 30 min at room temperature. Subsequently, GSSG-

treated DPP III was alkylated with 2-iodoacetamide (IAM), 

and the protease digestion was performed. Resulting 

peptide mixture was analyzed by on-line reverse-phase 

LC tandem MS (as described in the Materials and methods 

section). Obtained tandem MS spectra were matched 

against protein sequence of human DPP III (UniProtKB 

entry: Q9NY33). Additional crosscheck against common 

contaminants database returned no significant matches. 

 Tryptic digestion yielded a sequence coverage of 74 % , 

and five peptides containing cysteine residues (Cys 19, Cys 

147, Cys 176, Cys 509, Cys 654) were identified (Table  4  ). 

Despite our efforts (different digestion conditions and 

optimizing digestion protocol), the peptide containing 

Cys 519 residue was not observed, most likely due to the 

fact that it is relatively large (38 amino acids) and hydro-

phobic. In order to produce smaller proteolytic fragments, 

a chymotryptic digestion was performed. The chymo-

tryptic map resulted in a coverage of 76 %  and revealed a 

peptide containing Cys 519.            

 Tandem MS data of both (tryptic and chymotryp-

tic) peptide maps yielded comparative results. Taken all 

together, tandem MS characterization showed glutath-

ionylation as well as carboxyamidomethylation on Cys 

residues 147, 176, and 654 (Table 4). By contrast, peptides 

Enzyme form Residual activity ( % )

   0.5 min 30 min

Wild-type 27.8  ±  2.9 24.8  ±  2.0

C19A 37.9  ±  2.3 32.5  ±  0.9

C147A 36.1  ±  4.5 32.3  ±  4.7

C176A 44.8  ±  5.6 45.1  ±  2.8

C509A 29.7  ±  0.0 24.3  ±  0.3

C519A 19.4  ±  0.1 15.1  ±  1.9

C654A 34.9  ±  0.8 29.9  ±  1.4

 Table 2      Influence of DTNB on the activity of human DPP III.  

   The enzyme (1.4  ×  10 -7   m ) was incubated with 5 m m  DTNB in 0.25  m  

Tris-HCl buff er, pH 7.4 at 25 ° C for 0.5 or 30 min. Aliquots (3 to 7  μ l) 

were taken at the indicated times and residual activity determined 

by standard assay. Mean values  ±  SD are given.   

Enzyme form Residual activity ( % )

15 min 30 min

Wild-type 11.6  ±  4.4    8.5  ±  2.6

C19A 11.4  ±  1.0    8.1  ±  2.9

C147A 10.7  ±  0.0    8.1  ±  3.4

C176A 38.6  ±  4.3 25.6  ±  3.6

C509A 17.1  ±  2.8 12.5  ±  2.1

C519A 30.9  ±  2.8 23.6  ±  2.7

C654A 15.7  ±  0.8 13.2  ±  0.4

 Table 3      Influence of oxidized glutathione on the activity of 

wild-type and cysteinyl mutants of human DPP III.  

   The enzyme (1.3  ×  10 -7   m ) was incubated for 15 or 30 min with 3 m m  

GSSG at 25 ° C and pH 7.4 (25 m m  Tris-HCl buff er). Aliquots (2 to 25 

 μ l) were taken at the indicated times and the residual activity 

determined by standard activity assay. Mean values  ±  SD are given.   

Authenticated | abramic@irb.hr author's copy
Download Date | 11/20/12 7:28 PM



 Z. Karačić et al.: The role of Cys 176 in human dipeptidyl peptidase III   1527

containing Cys 19, Cys 509, and Cys 519 were found only to 

be carboxyamidomethylated. 

 Combined results of mutational analysis and MS 

suggest that glutathionylation (formation of mixed 

disulfide) of Cys176 and Cys654 contributes to human DPP 

III inactivation by oxidized glutathione.   

  Discussion 
 Finding that only the C176A protein retained substantial 

enzymatic activity upon treatment with submicromo-

lar pHMB is consistent with this residue being essential 

for the inactivation of human DPP III mediated by this 

organomercurial compound. Li et al.  (2000)  investigated 

the properties of the recombinant rat DPP III using site-

directed mutagenesis approach and found that only 

Cys176-to-Ala mutant is resistant to both  p -chloromer-

curibenzoic acid (PCMB, in submicromolar concentration 

range) and NEM (up to 2 m m ). Human DPP III is highly 

homologous (93.5 %  identity of the amino acid sequence) 

to its rat counterpart. The results of our present study 

demonstrate significant differences in sensitivity of the 

wild-type human enzyme toward the organomercurial 

compound (it is much higher), and toward NEM (it is much 

lower), compared to the rat DPP III. Li et al. concluded 

that out of a total of seven cysteine residues in the rat DPP 

III (positions 19, 147, 176, 509, 519, 654, and 701), Cys176 is 

essential for the regulation of rat DPP III activity. However, 

our present findings of the influence of five different SH 

group modifiers on the human DPP III demonstrate that a 

variety of sulfhydryl reagents are able to inactivate human 

DPP III, but except for the organomercurial compound 

pHMB, inactivation cannot be explained by the modifica-

tion of only one cysteine residue. 

 The K 
M

  value of the rat C176A mutant was unchanged, 

and the k 
cat

  (and k 
cat

 /K 
M

 ) was lowered about twofold com-

pared to the wild-type (Li et al. , 2000 ). In contrast, the 

human variant lacking Cys176 was found to be significantly 

less active (12-fold decrease in k 
cat

 /K 
M

  value). Observed 

change in K 
M

  value indicates that Cys176 may contribute to 

the substrate binding of human DPP III. This is supported 

by our previous finding that the peptide substrate protects 

the human DPP III from inactivation by pHMB (Abrami  ć  

et al., 2004b ). The difference in thiol sensitivity and cata-

lytic properties of C176A mutants of the recombinant rat 

and human enzyme is not surprising, as earlier compara-

tive investigation of native enzymes (purified from human 

and rat erythrocytes) indicated non-identity in their active 

site topology (Abrami  ć  et al., 2000 ). So far, no 3-D struc-

ture of the rat enzyme is available, and detailed structural 

comparison is not possible. 

 Our results point to the Cys176 as the residue reactive 

with various SH reagents (pHMB, DTDP, DTNB) and GSSG. 

However, modification of Cys176 is critical for the inactiva-

tion of human DPP III only with the organomercurial com-

pound. In addition to Cys176, at least three other cysteine 

residues (Cys147, Cys509, and Cys654) are able to react 

with different thiol-selective compounds, including the 

biologically active GSSG, and may contribute to (revers-

ible) inactivation of the enzyme. 

 The reactivity of protein cysteinyl thiols is regulated 

by a number of factors: exposure to a solvent, dissociation 

to the thiolate anion, reactivity of the SH reagent, nature 

of the leaving group of the reagent, charge compatibility 

Fragment Cys 
residue

Amino acid sequence [M + H]  +   m [M + H]  +   c  Δ 

   1 – 20    19 MADTQYILPNDIGVSSLD C R 2426.28 2426.133 0.147

142 – 157 147 GLWQT C GELMFSLEPR  1924 .068 1923.909 0.159

145 – 152 147 QT C   *  GELMF 1233.472 1233.458 0.014

166 – 182 176 EGTTTYFSGN C TMEDAK 1911.858 1911.774 0.084

166 – 182 176 EGTTTYFSGN C   *  TMEDAK 2159.838 2159.82 0.018

499 – 510 509 FSTIASSYEE C R 1449.652 1449.631 0.021

518 – 528 519 L C LHPQVLEIF 1368.724 1368.734 0.01

639 – 659 654 ALYEGYATVTDAPPE C FLTLR 2387.1 2387.159 0.059

639 – 659 654 ALYEGYATVTDAPPE C   *  FLTLR 2635.29 2635.205 0.085

 Table 4      Characterized Cys-containing peptides resulting from the human DPP III protease digests.  

    
c
 , calculated;  

m
 , measured and deconvoluted.   Glutathionylated Cys are shown in bold, with asterisk, while carboxyamidomethylated 

Cys are underlined. Accompanying tandem MS spectra are given as supporting data (Supplementary Figures 2 – 10 and corresponding Sup-

plementry Tables 2–10). The wild-type human DPP III was glutathionylated, digested by trypsin or chymotrypsin, and analyzed by LC-MS/MS 

as described in the Materials and methods section.   
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Residue Atom Distance
( Å )

Lys202 Nitrogen of  ɛ -amino 5.26

Arg325 Nitrogen of guanidino 8.14

Asp180 Oxygen of carboxylate 4.36

Ser173 Hydroxyl oxygen 3.54

 Table 5      Distances from Cys176 to neighboring residues.  

   Distances were measured with PyMOL ( www.pymol.org ) from the 

sulfur of Cys176 to the listed atom, using the crystal structure of the 

human DPP III (code 3fvy in Protein Data Bank).   

between the reagent and cysteine environment, and sta-

bility of the bonds formed (Britto et al. , 2002 ). Consider-

ing the local surrounding, ionization of the SH groups is 

enhanced by the neighboring basic amino acids and sup-

pressed by acidic groups. To explain the observed differ-

ences in the reactivity of human DPP III cysteinyl residues, 

we analyzed their location and microenvironment in the 

protein crystal structure (Supplementary Table  1           ). Only 

Cys654 was found to be highly surface exposed, while 

Cys19, Cys147, and Cys176 are located near the external 

surface, but are not directly exposed to the solvent. The 

surface- or near-surface location correlates well with the 

reactivity toward GSSG for all residues (Cys654, Cys147, 

and Cys176) except the Cys19 whose modification was not 

detected by MS. The lack of reactivity of Cys19 could be 

explained by the absence of any neighboring positively 

charged group, and the presence of Asp377 in the prox-

imity (5.2  Å  apart) of the sulfur, which may suppress the 

formation of thiolate anion, but also produce the charge 

repulsion due to the incompatibility with the negatively 

charged reagent (GSSG). 

 Our results indicate Cys176 as probably the most reac-

tive cysteine residue in human DPP III. Inspection of the 

location and environment of this residue in the X-ray 

crystal structure supports this conclusion (Table  5  ). The 

 ɛ -amino group of Lys202, 5.3  Å  apart, faces the sulfur of 

Cys176 and could promote ionization of the thiol group. 

Arg325 is the other basic residue near Cys176 (Table 5), 

but the distance to its guanidino group is 8.1  Å . There is 

also one acidic residue on the 4.4- Å  distance (Asp180). 

However, additional influence on the lowering of the pKa 

of Cys176 could be exerted through a potential hydrogen 

bond between its SH group and the Ser173 which are only 

3.5  Å  apart (Table 5). 

 In addition to Cys176, whose reactivity is governed by 

its microenvironment and near-surface location, the hydro-

phobic pocket-buried Cys509 from the conserved EECRAE 

motif seemed to contribute to human DPP III inactivation 

by the aromatic disulfide DTDP (Figure 3B). Interestingly, 

the structurally equivalent Cys518 contributed signifi-

cantly to the inactivation of the yeast DPP III with the same 

compound (Jaj č anin-Jozi ć  et al., 2010). These findings are 

in agreement with DTDP being an amphiphilic reagent 

able to access even buried sulfhydryl groups in proteins. 

 Prokaryotic M49 peptidases were discovered only 

recently, when their deduced amino acid sequences 

became available in public data bases (Abrami  ć  et al., 

2004b ). Majority of bacterial M49 peptidases comprise 

the conserved HECLGH motif. Unlike the eukaryotic 

members of the family, they contain a cysteine residue in 

close pro ximity to the catalytically essential Glu and to the 

two zinc-coordinating histidines. Most recently, we have 

reported that the Cys residue, from the active-site motif 

of the  Bacteroides thetaiotaomicron  DPP III, is wholly 

responsible for the inactivation by sulfhydryl reagents 

(Vukeli  ć  et al., 2012 ). The activity of yeast  Saccharomyces 
cerevisiae  DPP III was sensitive to the modification of two 

cysteine residues (Cys518 and Cys639). Based on those 

previous findings and our present study indicating at least 

three Cys in human DPP III whose chemical modification 

can influence the enzyme activity, it is clear that differ-

ent mechanisms of the M49 peptidase thiol sensitivity are 

involved in different organisms. It seems that the number 

of  “ responsible ”  cysteines in DPP III family members 

increases with the complexity of the species (organism) 

from which they originate. 

 The results presented here provide experimental 

verification for prediction that highly reactive cysteine 

residue(s) is a part of the substrate-binding site of the 

mammalian DPPs III (Abrami  ć  et al., 2004b ). Now, we 

have identified the highly reactive Cys176, which seems 

to contribute to the substrate binding to human DPP III. 

Surprisingly, this residue is located in the amino-terminal 

protein domain, which is considered to be noncatalytic. 

It is not clear how the Cys176, which is near the protein 

surface and at a 43.7- Å  distance from the zinc ion in the 

crystal structure of ligand-free human DPP III, could 

influence the substrate binding and how the modifica-

tion of this residue by pHMB could cause complete inac-

tivation of the enzyme. A possible explanation would be 

that human DPP III adapts also a more flexible confor-

mation in solution, allowing the two domains ( “ upper ”  

and  “ lower, ”   “ catalytic ”  and  “ noncatalytic ” ) to operate in 

close proxi mity and thereby enabling Cys176 to participate 

in substrate binding. Whether the two conformations are 

present in equilibrium in solution, or the ligand binding 

triggers the conformational change (interdomain mobil-

ity), which is accompanying the catalytic cycle, is yet 

unknown and worthy of further investigations. 
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 It has been reported that human insulin-degrading 

enzyme (IDE), which belongs to the evolutionary dis-

tinct family of zinc metallopeptidases (M16), undergoes 

a switch between the closed and opened conformations 

for catalysis (Im et al. , 2007 ). The conformational changes 

accompanying the catalytic cycle of the carbamoyl phos-

phate synthetase have also been documented (Hart and 

Powers -Lee, 2009 ). 

 Our present study shows that human DPP III can be 

glutathionylated under the oxidative stress conditions 

when m m  concentrations of GSSG can be observed. 

 The data of the MS analysis suggest that the glutath-

ionylation of the three cysteine residues (Cys176, Cys654, 

and Cys147) might be involved in the inactivation of 

human DPP III wild-type by oxidized glutathione. Inter-

estingly, the residual activity assay pointed to Cys176 and 

Cys519. As the glutathionylation of Cys519 was not con-

firmed by MS, and the variant lacking Cys176 was highly 

sensitive to GSSG, modification of another cysteine(s) is 

involved in observed DPP III inactivation. 

 Glutathionylation of proteins is reversible, as those 

proteins can be reduced by glutaredoxins, and the process 

serves to regulate protein functions by the redox state of 

the cell (i.e., by the GSSG/GSH ratio) (Casagrande et al. , 

2002 ). Glutathionylation of human DPP III, as reversible 

modification, may provide protection against oxidative 

inactivation. In addition, as various biological events, 

including redox signaling, utilize proteins containing 

reactive sulfhydryls, DPP III cysteine residues may be 

important for (intracellular) protein interactions and 

yet with an unknown biological function different from 

proteolysis. 

 Although the potential role in protection against oxi-

dative stress has been ascribed to human DPP III (Liu et 

al. , 2007 ), a corresponding molecular mechanism remains 

unknown. 

 Taken together, the results of this investigation 

provide new information about the reactivity of individual 

cysteine residues within the human DPP III, which could 

be useful for further functional studies of the enzyme. 

The finding that Cys176, a residue from the lower domain, 

quite distant from the catalytic zinc ion, is responsible for 

the fast inactivation of the enzyme by the organomercu-

rial compound and contributing to enzyme inactivation 

by DTDP, DTNB, and GSSG, provides the evidence that the 

active site (the substrate-binding site) of human DPP III 

comprises both protein domains, which in the active form 

of the enzyme need to be in close contact. 

 We conclude that Cys176 is not directly involved in 

catalysis, but that is, in the active (closed) form of the 

enzyme located in (or close to) the substrate-binding site 

and contributes to the ligand binding, so that the modi-

fication of this cysteine residue hinders the function of 

human DPP III.  

  Materials and methods 

  Chemicals 
 NEM, IAM, DTDP, pHMB, DTNB, formic acid, HPLC-grade water, 

and acetonitrile, as well as proteomics-grade trypsin were obtained 

from Sigma-Aldrich (St. Louis, MO, USA). Sequencing-grade chymo-

trypsin was purchased from Roche Applied Science (Mannheim, 

Germany) and nickel-nitrilotriacetic acid (Ni-NTA) agarose from Qia-

gen (Hilden, Germany). GSSG was a product of Serva (Heidelberg, 

Germany), and L-Arg-L-Arg-2-naphthylamide (Arg 
2
 -2NA) trihydrochlo-

ride, from Bachem (Bubendorf, Switzerland).  

  Cloning and site-directed mutagenesis 
 To obtain the DPP III protein with affi  nity C-terminal six-histidine 

tag, full cDNA for DPP III (2.214 kb, contained originally in the clone 

IRALp962E0242Q2) (Salopek -Sondi et al., 2008 ) was cloned into pET-

21b vector between the  NheI  and  XhoI  restriction sites as described 

earlier (  Š poljari ć  et al., 2011 ). Thus, the obtained wild-type expression 

vector was used for further mutagenesis and protein expressions. 

Construct Oligonucleotide (5′   → 3 ′ )

Forward Reverse

pET21b-DPPIII6His C19A GTG TCT AGC CTG GAC   GCC   CGT GAG GCC TTC C G GAA GGC CTC ACG GGC GTC CAG GCT AGA CAC

pET21b-DPPIII6His C147A GGC CTC TGG CAG ACC   GCC   GGG GAG CTT ATG CAT AAG CTC CCC GGC GGT CTG CCA GAG GCC

pET21b-DPPIII6His C176A CC TAT TTC TCT GGG AAT   GCT   ACC ATG GAA GAT GCC GGC ATC TTC CAT GGT AGC ATT CCC AGA GAA ATA GG

pET21b-DPPIII6His C509A CC AGC TAC GAA GAG   GCC   CGG GCT GAG AGC GTG GG CC CAC GCT CTC AGC CCG GGC CTC TTC GTA GCT GG

pET21b-DPPIII6His C519A GTG GGT CTC TAC CTC   GCT   CTC CAC CCG CAA GTG CAC TTG CGG GTG GAG AGC GAG GTA GAG ACC CAC

pET21b-DPPIII6His C654A GAT GCG CCC CCC GAG   GCC   TTC CTC ACC CTC AGG CCT GAG GGT GAG GAA GGC CTC GGG GGG CGC ATC

 Table 6      Oligonucleotides used for PCR-based site-directed mutagenesis.  

   The codons changed are underlined and appear in bold.   
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 The production of cysteine-to-alanine point mutations was per-

formed by means of the QuikChange II XL Site-Directed Mutagenesis 

kit (Stratagene, La Jolla, CA, USA) and the primers listed in Table  6  . 

The sequencing of the complete DPP III gene, as well as confi rmati-

on of each mutant, was obtained with automated sequence analy-

zer "ABI PRISM  ®   3100-Avant Genetic Analyzer" (Applied Biosystems, 

Concord, MA, USA).  

  Expression and purification of the enzymes 
 Heterologous expression of recombinant DPP III with C-terminal six-

histidine tag, and purifi cation on Ni-NTA agarose was performed as 

described by   Š poljari ć  et al. (2011) . 

 Protein purity was confi rmed by polyacrylamide gel electropho-

resis (PAGE) under native and denaturing conditions (SDS-PAGE) 

carried out according to the method of Laemmli  (1970) . All fractions 

of high purity (according to the SDS-PAGE analysis) were pooled 

and desalted on PD-10 columns (Amersham Biosciences, Vienna, 

Austria) equilibrated with 20 m m  Tris-HCl buff er (pH 7.4) containing 

1 m m  NaCl. To the purifi ed protein preparations, glycerol was added 

to 22 % , and they were stored at -10 ° C. 

 Protein concentrations were determined using the protein-dye 

binding assay, with bovine serum albumin as a standard (Bradford , 

1976 ).  

  Enzyme activity assay and determination 
of kinetic parameters 
 The enzymatic activities of the wild-type DPP III and enzyme variants 

were determined by a standard assay at 37 ° C with Arg 
2
 -2NA as a sub-

strate (Abrami  ć  et al., 2004b ). Kinetic parameters were determined 

at 25 ° C and at pH 8.6, in the presence of 50  μ  m  CoCl 
2
  by initial rate 

measurements (  Š poljari ć  et al., 2009 ).  

  Circular dichroism (CD) measurements 
 CD spectra were recorded on Jasco J-815 spectropolarimetar with 

automatic temperature control using a quartz cuvette of 0.1 mm 

path length. Enzyme samples were prepared for CD measurements 

by exchange into 10 m m  Tris-HCl buff er, pH 7.4. The protein concen-

trations used were from 0.31 to 0.39 mg/ml. Recording of the far-

UV spectra, acquisition of thermal denaturation data, and analysis 

of protein secondary structure from CD spectra were performed as 

described (Jaj  č anin-Jozi ć  et al., 2010 ).  

  Inactivation by sulfhydryl reagents and 
glutathione disulfide 
 The purifi ed enzyme (2  ×  10 -10   m  wild-type or any of the Cys-to-Ala 

mutants, except the C176A, which was 3  ×  10 -9   m ) was preincubated 

with pHMB (0.003 to 0.1  μ  m ) or DTDP (3 to 100  μ  m ) in 50 m m  Tris-HCl 

buff er, pH 8.6 at 25 ° C for 10 min. Then, the substrate Arg 
2
 -2NA was 

added and residual activity determined under the standard assay 

conditions. 

 NEM, in a concentration range of 1 – 20 m m , was preincubated 

with an enzyme (2.0  ×  10 -7   m ) in 100 m m  sodium phosphate buff er, pH 

7.0 at 25 ° C. Ten  μ l aliquots were taken aft er 10 min for the determina-

tion of residual activity at pH 8.6. 

 DTNB, 5 m m , and 1.4  ×  10 -7   m  enzyme were preincubated in 

0.25  m  Tris-HCl buff er, pH 7.4 at 25 ° C for 0.5 min or 30 min. Three- 

to seven-microliter aliquots were taken for the remaining activity 

determination. 

 When modifi cation with oxidized glutathione (GSSG) was inves-

tigated, typically, the enzyme (1.3  ×  10 -7   m ) was incubated for 15 or 30 

min at 25 ° C in a total volume of 150  μ l of reaction mixture pH 7.4 (25 

m m  Tris-HCl buff er) with 3 m m  GSSG, added from a stock solution of 

50 m m  GSSG dissolved in 25 m m  Tris-HCl buff er, pH 7.4. Residual 

DPP III activity was determined at the end of incubation, with 2 to 

25  μ l aliquots taken for a standard activity assay. 

 For MS analysis, the reaction with GSSG (glutathionylation) 

was terminated by the addition of IAM to 0.05  m , followed by 20 min 

incubation at 25 ° C, and 5 min incubation at 95 ° C. Aft er 40 min at 

25 ° C, the sample was digested by trypsin, during a 1-h incubation 

at 37 ° C in 80 %  acetonitrile, 20 %  50 m m  Tris-HCl, 10 m m  CaCl 
2
  pH 

7.6 (v/v) (Strader et al. , 2006 ), with 1:20 w/w ratio of trypsin and 

DPP III, or chymotrypsin (incubation for 2 h at 25 ° C in 15 m m  Tris-HCl 

pH 8.6 with 10 m m  CaCl 
2
 , 1:20 w/w ratio of chymotrypsin and DPP III, 

as suggested in the Roche Protocols).  

  Liquid chromatography (LC) separation and 
tandem mass spectrometry (MS/MS) 
 Online LC-MS/MS analysis was performed on a Bruker amaZon ETD 

ion trap system (Bruker Daltonik GmbH, Bremen, Germany) cou-

pled with an Ultimate 3000 RSLCnano system (Dionex, Amsterdam, 

Netherlands). The sample injection, enrichment, separation, and 

MS acquisition was carried out automatically. The peptide mixture 

was loaded (1  μ l injection volume) onto the trapping column (Nano 

Trap Column, 75  μ m I.D.  ×  2 cm, Acclaim PepMap100 C18, 3  μ m, 

100  Å , Dionex, Amsterdam, Netherlands) with a solvent mixture of 

0.1 %  formic acid in CH 
3
 CN/H 

2
 O (2:98, w/w) at a fl ow rate of 20  μ l/min. 

For peptide separation Nano Trap Column, 75  μ m I.D.  ×  2 cm, packed 

with Acclaim PepMap100 C18, 3  μ m, 100  Å  (Dionex) was used. Pep-

tides were separated with a 80 min linear gradient from 2 %  to 40 %  

acetonitrile in 0.1 %  formic acid at the fl ow rate of 300 nl/min. 

 The nano-spray capillary voltage was set as -1500 V, while high-

voltage end plate off set was -500 V. The temperature and fl ow rate of the 

drying gas were set at 140 ° C and 5 l/min, respectively. Helium was used 

as the collision gas. The fragmentation amplitude was set at 1 V and 

ramped between 30 %  and 200 %  of this value. Product ion spectra were 

sequentially recorded for each selected precursor. The acquisition soft -

ware was set up in autoMSMS mode using three to four precursor ions 

with active exclusion on (precursor exclusion aft er two MSMS spectrum 

for 0.3 min). MS spectra were acquired within a scan range from 300 

to 3000 m/z and a scan speed of 8100 (m/z)/s using averages from fi ve 

spectra. MSMS spectra were acquired within a scan range from 100 to 

2400 m/z and a scan rate of 8100 (m/z)/s using averages from 2 spectra. 

 DataAnalysis soft ware 4.0 (Bruker Daltonik GmbH, Bremen, 

Germany) was used to extract MS and MS/MS data. Protein sequence 

assignment was attempted using BioTools 3.2 (Bruker Daltonik 
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GmbH, Bremen, Germany). The maximum number of miscleavages 

for trypsin was set as one per peptide, while for chymotrypsin, it was 

set as up to six per peptide.    
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