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Detection of patient-zero can give new insights to the epidemiologists about the nature of first
transmissions into a population. In this paper, we study the statistical inference problem of detecting
the source of epidemics from a snapshot of spreading on an arbitrary network structure. By using
exact analytic calculations and Monte Carlo estimators, we demonstrate the detectability limits
for the SIR model, which primarily depend on the spreading process characteristics. Finally, we
demonstrate the applicability of the approach in a case of a simulated sexually transmitted infection

spreading over an empirical temporal network of sexual interactions.

INTRODUCTION

One of the most prevalent types of dynamic processes
of public interest characteristic for the real-life complex
networks are contagion processes [1H7]. Epidemiologists
detect the epidemic source or the patient-zero either by
analysing the temporal genetic evolution of virus strains
[8-10], which can be time-demanding or try to do a con-
tact backtracking [11] from the available observed data.
However, in cases where the information on the times
of contact is unknown or incomplete or the infection is
asymptomatic or subclinical the backtracking method is
no longer adequate. Due to its practical aspects and the-
oretical importance, the epidemic source detection prob-
lem on contact networks has recently gained a lot of at-
tention in the complex network science community. This
has led to the development of many different source de-
tection estimators for static networks, which vary in their
assumptions on the network structure (locally tree-like)
or on the spreading process compartmental models (SI,
SIR) [12-21]] or both.

In the case of the SIR model (Susceptible-Infected-
Recovered) there are two different approaches. Zhu et.
al. proposed a sample path counting approach [15],

where they proved that the source node minimizes the
maximum distance (Jordan centrality) to the infected
nodes on infinite trees. Lokhov et. al. used a dynamic
message-passing algorithm (DMP) for the SIR model to
estimate the probability that a given node produces the
observed snapshot. They use a mean-field-like approx-
imation (node independence approximation) and an as-
sumption of a tree-like contact network to compute the
source likelihoods [17]. Altarelli. et. al. remove the
independence assumption and use the message passing
method with an assumption of a tree-like contact network
to estimate the source [18]. In our study, we drop all the
network structure and node independence assumptions
and analyse the source probability estimators for general
compartmental models. The main contributions of our
paper are the following:

(i) we developed the analytic combinatoric, as well as
the Monte-Carlo methods (Direct and Soft Margin) for
determining exact and approximate source probability
distribution, and have also produced the benchmark so-
lutions on the 4-connected regular lattice structure;

(ii) we measured the source detectability by using
the normalized Shannon entropy of the estimated source
probability distribution for each of the source detection
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problems, and have observed the existence of some highly
detectable, as well as some highly undetectable regimes
for the SIR and other spreading models. We notice that
the detectability primarily depends on the spreading pro-
cess characteristics;

(iii) using the simulations of the sexually transmitted
infection (STI) on a realistic time interval of 200 days
on an empirical temporal network of sexual contacts we
demonstrate the robustness of the Soft Margin source
estimator.

METHODS

In a general case, the contact-network during an epi-
demic process can be temporal and weighted, but we first
concentrate our analysis on a static undirected and non-
weighted network G = (V, E), where V denotes a set of
nodes and E denotes a set of edges. The random bi-
nary vector R indicates which nodes got infected up to
a certain time 7. For the contagion model, we use the
SIR model with the simultaneous updates in time de-
scribed by the probability p that an infected node infects
a susceptible neighbour node in one discrete step and the
probability ¢ that an infected node recovers in one dis-
crete step. We observe one epidemic realization 7 of R
at a time T of the SIR process (p,q,T) on a network G
and want to calculate the source posterior probabilities
P(© = 6;|R = 7,). We have developed two complemen-
tary approaches that can provide exact posterior proba-
bility distributions over nodes in the spreading realization
7, via the Bayesian approach: the direct Monte-Carlo ap-
proach and analytical combinatoric approach.

Using the direct Monte-Carlo approach, for each
potential source node ¢ (infected node in the realiza-
tion 7,), a large number n of epidemic spreading sim-
ulations with maximum duration 7T is performed with 4
as an epidemic source. The number of simulations n;
which coincides with the realization 7, is recorded. To
cut down on the extensive calculation required for the
Monte-Carlo simulations, we employ a pruning mecha-
nism (no errors introduced), stopping the simulations at
t < T if the current simulation realization has infected a
node which is not infected in 7. The probability of the
node i being the source of the epidemic is then calculated
as P(© = 6;|R = 7,) = ny/ >_;nj. The statistical sig-
nificance of the direct Monte-Carlo results are controlled
with the convergence conditions. For more information,
see SI section 2.

An alternative approach, the analytical combina-
toric approach assigns to each node of degree n a gen-
erating function which is maximally (n+ 1)-dimensional,
which captures the events of node first infection and
infection spreading through its edges at specific times.
Then, by multiplication of the generating functions of
all the infected nodes from a realization, we are able to
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FIG. 1. Plots A, B and C: Box plots depicting distribution
of entropy values (H) of source probability distributions for a
number of randomly generated spreading realizations across
with different (p,q) parameters on the 4-connected lattice:
N = 30 x 30 nodes with T" = 5, calculated by the direct
Monte-Carlo method with 10° — 108 simulations per source.

merge all contributions together and get the source prob-
ability distribution. In the SI section 1, along with the
detailed description of analytical combinatoric method,
we demonstrate the correspondence between the direct
Monte-Carlo and analytical combinatorics. The detailed
description of analytical combinatoric method can be
found in SI section 1. A serious disadvantage of the
analytical method is that the calculations become pro-
hibitively intricate in the case of non tree-like configura-
tions.

We have generated a series of benchmark cases on a
4-connected lattice (N = 30 x 30), for which we have
calculated the probability distributions over the poten-
tial source candidates using the direct Monte-Carlo esti-
mator (see the SI section 4). The source detectability
D(7,) = 1 — H(7,), is characterized via the normalized
Shannon entropy H (normalization by entropy of uni-
form distribution) of the calculated probability distribu-
tion P(O© = 6;|R = 7,).

Results depicting distributions of H for different parts
of the SIR parameter space for the regular lattice are
given in Figure [ plots A, B and C. Figures show quali-
tatively the same detectability behaviour across p param-
eter, for different values of parameter ¢. It is important
to observe the existence of three different regions: low
detectability-high entropy region (p < 0.2), intermediate
detectability-intermediate entropy region (0.2 < p < 0.7)
and high detectability-low entropy region (p > 0.7). We
observe that the detectability transition is still present
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FIG. 2. Plots A, B and C: Box plots depicting distribution

of entropy values (H) of source probability distributions for a
number of realizations starting from the central node denoted
with red colour on the 4-connected lattice with different sizes
(3% 3,5x5 and 7x 7) with the SIR model for ¢ = 0.5, T =5
and different p values, calculated with the Soft Margin method
with the (10* - 10°) simulations per source and adaptive a
chosen from the convergence condition.

even for different spreading models (SI, ISS, IC) and we
observe the interplay of the network size and stopping
time T on the detectability (see SI section 10 and Fig-
ure2). In Figure 2 plot A, we observe that in a regime,
when the network size restricts the epidemic spreading
but not the epidemic itself via its natural evolution char-
acterized by the parameters (p, ¢) or stopping time T', the
entropy is high as the realizations from different sources
are almost identical.

As application of direct Monte-Carlo and analytical
combinatoric approaches becomes prohibitively expen-
sive for realistic network sizes, we formulate an estimator
which is much more efficient in approximating the true
underlying source probability distribution for the partic-
ular epidemic spread. We continue with the definition
of the Soft-Margin estimator, a generalization of the
Monte-Carlo inference method, in which direct Monte-
Carlo method represents a limiting case. In order to pro-
ceed we first need to introduce some useful definitions.
The random binary vector Ry describes the outcome of
epidemic process and sample vectors: {7 1,...,79,} de-
scribe n independent outcomes of that process. Each
sample vector 7y ; is obtained using the Monte Carlo sim-
ulation of the contagion process with the 6 as the source.
We measure the similarity between vectors 1 and 73 by
the Jaccard similarity function ¢ : (RN x RY) — [0,1]
calculated as the ratio of the size of the interaction of set
of infected nodes in 71, 5 and the size of their union.
The random variable (75, Ry) measures the similarity

between a fixed realization 7, and a random vector real-
ization that comes from STR process with the source 6.
The empirical cumulative distribution function of the n
samples from the random variable (17, Ry) is denoted
13'9(:10), where x is the value of the similarity variable. By
taking the derivative of Fy (x), we get the PDF estimate:

folw) = T Eale) =+ 36 g a)), ()

=1

where §(z) denotes the Dirac delta distribution. Having
defined the PDF for the observed similarities fg(x), we
can now define the main Soft-Margin inference expression
as:

- 1 A
P(R=r©6=0) = /0 we () fo(x)dx, (2)

where w, () is a weighting function. We use the following
Gaussian weighting form: w,(z) = exp(—(x—1)?/a?). In
the limit where the parameter a — 0, we obtain the direct
Monte-Carlo likelihood estimation. For cases when the
parameter a > 0, we obtain an estimator which estimates
the likelihood by using the weighting function wq(z) to
accept contributions from realizations whose similarity
to observed realization is less than 1. Using the property
of delta distribution, we simplify the expression for the
Soft Margin estimator to (for more details see SI section
5):

~ = n _ - 2
P(R=7.0=10)= % Zexp ( (s, 7o) = 1) ) .
=1

a2

3)
Note, that alternative view on the Soft margin estimator
is the non-parametric density estimation with the Gaus-
sian kernels [22]. Finally, we do not need to set the Soft
Margin width parameter a in advance. After we calcu-
late the estimated PDF for every potential source Fy(z),
we can choose the parameter a as the infimum of the
set of parameters for which the PDFs have converged.
The implementation details, time complexity analysis
and pruning mechanism for the Soft Margin estimator
can be found in the SI sections 5, 6 and 7.

RESULTS

We now demonstrate the applicability of our inference
framework to detect the source of the simulated STT epi-
demic spreading in an empirical temporal network of sex-
ual contacts in Brazil (see Figure [ plot A). This pub-
licly available dataset [23] was obtained from Brazilian
Internet community and is used as an approximation of
temporal sexual contacts. The dataset (see SI section 8)
consists out of the triplets (v;, v;,t), which represents the
event that the nodes v; and v; had a sexual interaction at
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FIG. 3. Plot A: Visualization of a part of the aggregated em-
pirical temporal network of sexual contacts in Brazil [23]. In
plots B,C and D the performance is measured as the fraction
of 500 experiments with specific graph distance of the max-
imum likelihood candidate to the true source. The average
execution time of a single experiment to calculate source prob-
ability distribution over all potential candidates was around
12 seconds (on 50 cpu cores) with 20000 STI simulations per
node. Plot B: The baseline performance of a random esti-
mator, which uniformly assigns likelihood to potential nodes.
Plot C: The influence of prior knowledge about initial out-
break moment [to — €, to + €] of the outbreak on performance.
Plot D: The influence of randomized temporal ordering of in-
teractions within A days, with ¢ = 0 (we know the starting
time to) on performance.

a time ¢. First 1000 days in original dataset are discarded
due to the transient period with sparse encounters [23]
and therefore all temporal moments are measured rela-
tive to day 1000, as have done the authors in the original
study [23]. For our temporal network, we use the SIR
model (p = 0.3,¢ = 0.01) for STI. The upper limit of the
transmission probability for the STI that was previously
used on this contact network is p = 0.3 [23]. The recovery
parameter ¢ = 0.01 represents a disease with the mean
recovery of 100 days.

Note that here the calculation of exact source proba-
bility distributions is computationally too demanding for
both the direct Monte-Carlo and the analytical combina-
toric method. Therefore, we use the Soft Margin esti-
mator with the smallest width a for which the ML node
probability estimate converged. Our experiments consist
of two parts: (i) simulation of STI spreading through a
temporal network of sexual contacts and (ii) detection of
the patient zero from the observed process.

In order to demonstrate applicability of the approach
in realistic conditions, we introduce uncertainty in the
epidemic starting time tg, and later on also with respect
to node states in observed epidemic realization. Note,
that uncertainties in (p, ¢) parameters can also be relaxed

by marginalization procedure (see SI section 5). The re-
laxation of knowing the starting point of the epidemic tq
is done by using the marginalization over time, sampling
over all possible starting points ¢g from a uniform prob-
ability distribution over [ty — €,to + €], 2¢ = {0,50,100}
days. In Figure 3 plot C, we show the summary results
from 500 independent experiments, when the starting
time to was chosen from the interval of [100 — 200] days,
the end of the epidemic was set to the day ¢t = 300 and
using different uniform priors (¢) for the moment ¢y. Us-
ing the uniform uncertainty of ¢ = 50 days, we can still
detect the source within its first neighbourhood (distance
0 and 1 from the source) in approximately 60% of exper-
iments. These results are of great practical importance,
since in reality we do not know the exact starting times,
but rather only an upper and a lower bound on starting
point.

Next, we demonstrate how the uncertainty in the tem-
poral orderings of interactions within a time window of
the length A affects the performance of source detection.
We use a randomization algorithm which permutes time
stamps inside of a bin of A days from the start to the end
of the contact interaction network in a non-overlapping
way. From Figure [3 plot D, we observe that higher un-
certainty in orderings (higher A) reduces the detectabil-
ity of the source of infection. However, the estimation
framework is robust to small-scale interaction noise.

We have also shown that our Soft Margin algorithm es-
timates source probabilities with much higher precision
than other estimators (Jordan and DMP estimator) on
benchmark cases by comparing the results against the di-
rect Monte-Carlo source probability estimations on regu-
lar lattice (see SI section 3). Results for source detection
for different values of (p,q) parameters and for the case
when only a random subset of the node states is observed
can be found in SI section 9.

DISCUSSION

The assumption about missing dynamic information
about times of infection or recovery in our case study
seems rather plausible for two realistic cases: STI infec-
tions and computer viruses. Many STIs generate silent
epidemics since many of them are unrecognized, asymp-
tomatic or subclinical as the pathogens are being trans-
mitted from patients with mild or totally absent symp-
toms. A large number of people with STIs: chlamydia
[24], gonorrhea [24], Human papillomavirus and other
show mild or no symptoms at all. The second motivation
comes from silent spreading of a certain class of computer
viruses and worms through computer networks which be-
come active simultaneously on a specific date. Unlike
other approaches [12-21], we identified different source
detectability regimes and our methodology is applicable
to arbitrary network structures, and is limited solely by



the ability to computationally produce realizations of the
particular contagion process.
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