
Bacterial Diversity in the South Adriatic Sea during a Strong, Deep
Winter Convection Year
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The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep
eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it repre-
sents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton
before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining compara-
tive 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The pico-
plankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chloro-
phyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a
minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the
winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The
SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone
in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly de-
pended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic
zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gamma-
proteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades
were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the
abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter
convection.

The Adriatic Sea is a semienclosed basin in the northeastern
Mediterranean Sea. The South Adriatic Pit (SAP), the deepest

part of the Adriatic Sea (maximum depth, 1,200 m), represents a
key area for both the Adriatic Sea and the entire eastern Mediter-
ranean basin. The role of the Adriatic as a source of dense water
and the engine driving the eastern Mediterranean deep circulation
cell is well-known (1). Open-ocean winter convection is respon-
sible for the production of dense water, generating a mixture of
the less saline waters from the Adriatic Sea with the more saline
and warmer waters originating from the Ionian Sea (2). The cir-
culation in the South Adriatic is characterized by the cyclonic
South Adriatic Gyre (SAG) (Fig. 1). The East Adriatic Current
(EAC), which brings warmer and more saline waters from the
Ionian Sea and the Levantine Basin, and the West Adriatic Current
(WAC), which transports less saline waters out of the Adriatic
along the western border, characterize the cyclonic surface circu-
lation (3). The Levantine intermediate water (LIW) and Ionian
surface water (ISW) flow into the Adriatic along the South Adri-
atic eastern border, making this part of the Adriatic the entry point
for water masses. The impact of LIW inflow on the biogeochemi-
cal cycles in the Adriatic Sea is substantial, and the fluctuation of a
number of physical, chemical, and biological parameters in the
Adriatic Sea has been attributed to the LIW ingression (4, 5).
However, very little is known about if and how the inflow of LIW
impacts the diversity and structure of picoplankton communities
on a seasonal basis.

In oceanic oligotrophic waters, the temporal dynamics of pro-
karyotic communities were mainly described from sites used for
time-series studies, which often focused exclusively on the SAR11
clade (6–8). Only a few studies describing the temporal changes in

bacterial and archaeal communities in the Mediterranean Sea
have been conveyed to date (9, 10). Studies describing Adriatic
picoplankton diversity mainly focused on coastal waters (11, 12).
In addition, temporal studies were exclusively done in the north-
ern coastal waters (13–16). Deep winter convective mixing was
shown to shape the community structure via the transport of nu-
trients, i.e., phosphorus and nitrogen, to the euphotic zone, con-
sequently triggering blooms of photosynthetic microorganisms in
early spring (17). For the southern part of the Adriatic, total pro-
karyotic picoplankton abundances were determined during the
winter convection episode in 2008, but no diversity estimation
was provided (18, 19). Also, several studies have reported on sea-
sonal changes in picoplankton heterotrophic production and bac-
terial community metabolic capacity, suggesting the importance
and influence of the deep convection event intensity on the annual
cycle and productivity of this area (20, 21). In the 2011-2012 win-

Received 15 October 2014 Accepted 18 December 2014

Accepted manuscript posted online 29 December 2014
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ter season, a strong, deep winter convection event occurred in the
southern part of the Adriatic, resulting in the highest, record-
breaking densities ever observed for this region (22, 23). Deep
convective mixing reached down to a 600-m water depth, bringing
phosphorus and nitrogen nutrients into the euphotic zone and
thus triggering a bloom of photosynthetic microorganisms in
early spring (21). We investigated for the first time in South Adri-
atic offshore waters (i) the diversity and seasonal dynamics of
bacterial and archaeal communities and (ii) their response to a
strong, deep winter convection event over a period of 1 year using
a combination of 454 pyrosequencing of the 16S rRNA gene and
catalyzed reporter deposition-fluorescence in situ hybridization
(CARD-FISH) techniques.

MATERIALS AND METHODS
Sampling and environmental parameter estimation. Samples for bacte-
rial and archaeal community structure analysis were taken onboard the
R/V Naše more on 3 October 2011, 18 February 2012, 29 March 2012, and
10 September 2012 at two stations. The stations were P-300 (42°27=32!N,
17°56=02!W), outside the SAP, and P-1200 (42°13=01!N, 17°42=50!W),
inside the SAP (Fig. 1). Samples were taken with Niskin bottles at 10
depths (0 m, 10 m, 75 m, 100 m, 200 m, 400 m, 600 m, 800 m, 1,000 m,
1,200 m) at station P-1200 and 6 depths (0 m, 10 m, 75 m, 100 m, 200 m,
300 m) at station P-300. The chlorophyll a (Chl a) concentrations in
samples taken on the same dates and additionally on 12 January and 30
May 2012 were determined. Seawater (500 ml) was filtered on GF/F filters
(Whatman, United Kingdom). Filters were frozen at "18°C, and the Chl
a concentration was determined by a fluorometric procedure (24). The

temperature and salinity throughout the water column were continuously
recorded with an SBE25 conductivity, temperature, and depth probe
(SEA-Bird Electronics Inc., USA) on the same dates that the samples for
Chl a were taken.

454 pyrosequencing. Aliquots of 1 liter of seawater were filtered on
0.2-#m-pore-size Nuclepore polycarbonate membrane filters (What-
man, United Kingdom) with a peristaltic pump. Filters were stored in 1 ml
sucrose buffer (40 mM EDTA, 50 mM Tris-HCl, 0.75 M sucrose) in liquid
nitrogen and afterwards were stored at "80°C. The DNA was extracted as
described by Massana et al. (25). The bacterial V1-V2 16S rRNA region
was sequenced at MR DNA (Shallowater, TX, USA) using the bacterial 16S
rRNA-based tag-encoded FLX amplicon pyrosequencing (bTEFAP)
method (26) and Roche/454 FLX titanium instruments and reagents fol-
lowing the manufacturer’s guidelines. Primers used for the target 16S
rRNA sequence amplification were 27Fmod (5=-AGRGTTTGATCMTGG
CTCAG-3=) and 519Rmodbio (5=-GTNTTACNGCGGCKGCTG-3=).

Sequence analysis. The standard flowgram format (SFF) files ob-
tained were extracted using an sff_extract script (available at http://bioinf
.comav.upv.es/sff_extract/index.html) by applying the sff_extract -c com-
mand, which allows sequence quality to be checked. Fasta files were split
according to the bar code sequence using mothur software (27). Se-
quences containing any differences in the bar code or primer sequence
were removed in the bar code splitting step. Multifasta files were pro-
cessed by use of the SILVAngs pipeline (https://www.arb-silva.de/ngs)
(28), as described by Ionescu et al. (29). Briefly, sequences were aligned
against the SILVA small-subunit (SSU) rRNA SEED using the SILVA
incremental aligner (SINA) (30). Sequences with low alignment quality
(alignment identity of 50 and alignment score of 40 reported by SINA)
were removed (as they were putative contaminations and artifacts). An

FIG 1 Study area and sampling stations in the South Adriatic Sea. EAC, east Adriatic current; WAC, west Adriatic current; LIW, Levantine intermediate
water.
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additional quality check was done by removing all sequences shorter than
200 nucleotides with more than 2% ambiguities or 2% homopolymers.
Identical sequences were identified (dereplication) and clustered (opera-
tional taxonomic units [OTUs]) at 97% sequence identity using the cd-
hit-est program (version 3.1.2; http://www.bioinformatics.org/cd-hit)
(31) running in accurate mode and ignoring overhangs. The representa-
tive OTU sequence was classified by comparison with the sequences in the
SILVA SSU Ref data set (release 115; http://www.arb-silva.de) using
BLASTn software (version 2.2.22$; http://blast.ncbi.nlm.nih.gov/Blast
.cgi) with standard settings (see Data Set S1 in the supplemental material)
(32).

454 pyrosequencing of 60 samples yielded a total of 837,192 pyrotags
(13,953 % 9,841 pyrotags, on average, per sample), with the range of the
number of pyrotags in individual samples being 2,895 to 41,363. The
average pyrotag length was 412 % 31 bp, and the minimum length was 200
bp. On average, 36 % 46 pyrotags were rejected in the process of quality
control. The vast majority of pyrotags were successfully taxonomically
assigned (13,634 % 9,676 pyrotags per sample). Each sample, on average,
contained 1,541 % 918 OTUs (97% sequence identity), of which 33%, on
average, were singletons (Table 1; see also Table S1 in the supplemental
material). The sequencing effort applied was insufficient to determine the
whole bacterial richness that could be observed in the rarefaction curves,

which did not level off even for the samples with the greatest number of
pyrotags (see Fig. S1 and S2 in the supplemental material).

CARD-FISH. Water samples were fixed onboard with formaldehyde
(final concentration, 2% [vol/vol]) for 24 h at 4°C. Upon arriving in the
laboratory, 120 ml of water sample was filtered on a 0.2-#m-pore-size
Isopore polycarbonate membrane filter (diameter, 47 mm; GTTP Milli-
pore, USA) and stored at "20°C. CARD-FISH using specific probes (Ta-
ble 2) was performed as described by Pernthaler et al. (33), with a slight
modification. Endogenous peroxidases were inactivated by incubating the
filters in methanol supplemented with 0.15% H2O2 for 30 min. Hybrid-
ization was done in 400 #l of hybridization buffer (0.9 M NaCl, 20 mM
Tris-HCl [pH 7.5], 10% [wt/vol] dextran sulfate [Sigma-Aldrich, USA],
0.01% sodium dodecyl sulfate [SDS], 1% blocking reagent [Roche, Swit-
zerland]) supplemented with a probe-specific percentage (vol/vol) of
formamide (Fluka, Germany) (Table 2) and 1.3 #l of horseradish perox-
idase (HRP)-labeled probe solution (8.4 pmol #l"1 HRP-labeled probe in
TE [Tris-EDTA] buffer; Biomers, Germany) for 2 h at 46°C. Unhybrid-
ized probes were washed by incubating the filter cuts in 50 ml of washing
buffer (NaCl [at a concentration, in millimolar, specific for each probe;
Table 2], 5 mM EDTA [pH 8.0], 20 mM Tris-HCl [pH 7.5], 0.01% [wt/
vol] SDS) for 15 min at 48°C. After a washing step in 1& phosphate-
buffered saline (PBS; pH 7.6, room temperature [RT], 15 min), tyramide
signal amplification was performed by incubating the filter cuts in a sub-
strate mix for 45 min at 46°C. The substrate mix was prepared by adding
1 part of Alexa 488 solution (Invitrogen, USA) to 1,000 parts of amplifi-
cation buffer (0.8& PBS [pH 7.6], 0.08% blocking reagent, 1.6 M NaCl,
8% dextran sulfate) supplemented with freshly prepared 0.0015% H2O2

in 1& PBS. Filter cuts were washed in prewarmed (46°C) 1& PBS (10 min,
RT). All filter cuts were counted manually (a minimum of 1,000 DAPI
[4=,6-diamidino-2-phenylindole] signals) on a Nikon Eclipse 50i micro-
scope (see Data Set S2 in the supplemental material).

Data analyses. Observed richness, richness estimators (Chao1 and the
abundance-based coverage estimator [ACE]), and Shannon’s diversity
index were calculated after normalization for the sampling effort across
samples. Pyrotags corresponding to the smallest sampling effort in the
data set (n ' 2,521) were randomly resampled through rarefaction. OTUs

TABLE 1 Sequencing information

Sequencing characteristic
Avg % SD per
sample Range

Pyrotag length (bp) 412 % 31 200–833
No. of pyrotags 13,953 % 9,841 2,895–41,363
No. of classified pyrotags 13,634 % 9,676 2,663–40,498
No. of pyrotags with no relatives 283 % 229 31–1,079
No. of rejected pyrotags 36 % 46 2–234
No. of OTUs (97% sequence identity) 1,541 % 918 234–4,209
No. of singletonsa 521 % 359 (33) 53–1,578 (15–48)
a Values in parentheses are the percentage of singletons among all OTUs.

TABLE 2 Probes and hybridization conditions applied for CARD-FISH

Probe Target organism Sequence (5=¡ 3 =)
FA concna

(%)
NaCl concnb

(mM) Reference

ARCH915 Archaea GTGCTCCCCCGCCAATTCCT 35 80 55
EUB338 Bacteria GCTGCCTCCCGTAGGAGT 35 80 56
EUB338-II Supplement to EUB338 GCAGCCACCCGTAGGTGT 35 80 57
EUB338-III Supplement to EUB338 GCTGCCACCCGTAGGTGT 35 80 57
NON338 Control ACTCCTACGGGAGGCAGC 35 80 58
CF319a Bacteroidetes TGGTCCGTGTCTCAGTAC 35 80 59
SAR202-312R SAR202 clade TGTCTCAGTCCCCCTCTG 40 56 60
CYA664 Cyanobacteria GGAATTCCCTCTGCCCC 61
SAR406-97 SAR406 clade CACCCGTTCGCCAGTTTA 40 56 62
ROS537 Roseobacter CAACGCTAACCCCCTCC 35 80 63
SAR11-152Rc SAR11 clade ATTAGCACAAGTTTCCYCGTGT 25 159 43
SAR11-441R(ori)c TACAGTCATTTTCTTCCCCGAC 43
SAR11-441R(mod)c TACCGTCATTTTCTTCCCCGAC 43
SAR11-487(mod)c CGGACCTTCTTATTCGGG 41
SAR11-542Rc TCCGAACTACGCTAGGTC 43
SAR11-732Rc GTCAGTAATGATCCAGAAAGYTG 43
SAR324-1412 SAR324 clade GCCCCTGTCAACTCCCAT 35 80 41
GAM42ad Gammaproteobacteria GCCTTCCCACATCGTTT 35 80 64
SAR86-1245 SAR86 clade TTAGCGTCCGTCTGTAT 35 80 65
a FA, formamide concentration (vol/vol) in CARD-FISH hybridization buffer.
b NaCl concentration in washing buffer.
c A mixture of 6 probes, including an unlabeled helper, SAR11-487-h3 (5=-CGGCTGCTGGCACGAAGTTAGC-3=), was used to detect the SAR11 clade.
d Including an unlabeled competitor probe, Bet42a (5=-GCCTTCCCACTTCGTTT-3=) (64).
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that were classified as chloroplasts were not taken into account. Commu-
nity turnover was estimated from the resampled data by a simple account-
ing of the proportion of shared OTUs or taxa in two consecutive seasons
or layers. Differences in richness or diversity among seasons were tested by
one-way analysis of variance (ANOVA; Systat 12; Systat Software Inc.,
USA). The normality and homogeneity of variances were tested by the
Lilliefors and Levene tests, respectively. Results found to be significant by
ANOVA (P ( 0.05) were then analyzed by post hoc Tukey’s honestly
significant difference (HSD) multiple-comparison tests to investigate
which of the means were different. Differences in the relative contribu-
tions of pyrotags and the abundance of cells of SAR11, Gammaproteobac-
teria, Bacteroidetes, and Cyanobacteria (CARD-FISH-derived data)
among seasons and stations were tested by two-way ANOVA (Systat 12).
For the pyrotag and CARD-FISH data, only samples from the euphotic
zone ((200 m) were considered, as they were retrieved from the same
depths at the two stations inside and outside the SAP.

To estimate the influence of singletons (OTUs that were present as
only one sequence in the whole data set), sequences with no relatives, and
pooling of sequences at different taxonomic levels on bacterial diversity
estimates, different data sets were constructed. Data sets containing no
singletons (OTU-singl.) and only taxonomically assigned sequences
(OTUannot., without the sequences with no relatives) were built. In ad-
dition, to compare the 454 pyrosequencing and CARD-FISH approaches,
the relative abundances of different taxa targeted by the set of probes used
in CARD-FISH (Table 2) were extracted from the 454 pyrosequencing
data set and compared with the relative abundances of the same taxa
detected by CARD-FISH (expressed as a percentage of the EUB338I-III
signals). OTUs that were classified as chloroplasts were not taken into
account. Pairwise distance matrices were calculated from the relative
abundance data using the Bray-Curtis dissimilarity index (34). Dissimi-
larity matrices were compared by use of Pearson’s product moment cor-
relation coefficient, and significance was determined using the Mantel test
followed by the Bonferroni correction. In addition, cluster analysis was
performed on data sets containing the relative cell abundances detected by
CARD-FISH (expressed as a percentage of the EUB338I-III signals) and
the relative contribution of pyrotags taxonomically assigned to the same
group. Samples were compared using the Bray-Curtis similarity coeffi-
cient, followed by a cluster analysis using the unweighted-pair group
method with arithmetic means (UPGMA). All analyses were done in the R
software environment (http://www.r-project.org/) using the package
vegan (http://cran.r-project.org/web/packages/vegan/index.html) and
custom scripts. Analyses testing the differences in richness among seasons
and stations were done in Systat 12 (Systat Software Inc., USA).

To estimate the correlations between community and environmental
parameters, Pearson’s correlation coefficients were calculated. Bacterial
relative abundance data derived from CARD-FISH and the relative con-
tribution of 454 pyrosequencing pyrotags to a specific group were trans-
formed using the Hellinger transformation, while the environmental pa-
rameters were logarithm transformed. False discovery rates (q values)
based on the observed P values were calculated to ensure more stringent
criteria. Correlations that matched the criteria of a P value of (0.007, a q
value of (0.1, and an r value of )0.45 were taken into account. All
correlations were performed in R using the vegan package, the Hmisc
package (http://cran.r-project.org/web/packages/Hmisc/index.html), and
Bioconductor software (http://www.bioconductor.org/packages/release/bioc
/html/qvalue.html). The Cytoscape platform was used to visualize the net-
work (35).

Nucleotide sequence accession numbers. The sequences obtained in
this study have been submitted to the European Nucleotide Archive
(ENA) under accession numbers ERS536204 to ERS536263.

RESULTS
Hydrography. Temperature stratification was observed through-
out the whole year inside and outside the pit, except in winter
2012, when a deep convection episode occurred (Fig. 2a) (22).

Due to heating, in spring 2012, stratification was reestablished in a
thin layer close to the surface (Fig. 2a). The intensity of the deep
convection inside the pit could be discerned from the uniform
temperature (13.75°C) recorded from the 10-m to the 500-m wa-
ter depth (Fig. 2a). Correspondingly, during this event the salinity
was uniform from the surface down to 500 to 600 m at this station,
while at the station outside the pit the uniform salinity reached
only to 200 m. In autumn, before the convection event, only the
station outside the pit was under the influence of a saltier LIW
(Fig. 2b). After the convection episode, in spring and summer, an
intensification of LIW introgression was observed in the whole
region and affected both stations investigated (Fig. 2b). The Chl a
concentration varied from (0.01 #g liter"1 to 4.87 #g liter"1.
Before and after the convection episode, Chl a could be detected
only in the euphotic zone, with the concentration maximums oc-
curring at the deep chlorophyll maximum (DCM) between 50 and
100 m; however, during the convection, Chl a could be detected
down to 600 m (Fig. 2c). The maximum value of Chl a was mea-
sured in spring 2012 at 35 m inside the pit (4.87 #g liter"1), while
a much lower Chl a concentration maximum was detected outside
the pit, at 75 m (0.88 #g liter"1), in the same month (Fig. 2c).

Water mass characteristics. Three types of water layers, i.e.,
the euphotic zone, a deep layer, and a mixed layer, which differed
in temperature (T), salinity (S), and Chl a concentration were
identified outside and inside the pit. In autumn, a euphotic zone
(depth, (100 m; T, 17.93 % 3.26°C; S, 38.71 % 0.11; Chl a con-
centration, )0.01 #g liter"1) and a deep layer (depth, )100 m; T,
13.86 % 0.63°C; S, 38.71 % 0.07; Chl a concentration, (0.01 #g
liter"1) were observed. The winter water column, characterized by
a deep winter convection that reached down to 600 m, could be
divided into a mixed layer (depth, (600 m; T, 13.68 % 0.19°C; S,
38.67 % 0.04; Chl a concentration, )0.01 #g liter"1) and a deep
layer (depth, )600 m; T, 13.48 % 0.17°C; S, 38.71 % 0.01; Chl a
concentration, (0.01 #g liter"1). The spring water column,
which was characterized when the stratification was established
again, could be divided into the euphotic zone (depth, (200 m; T,
14.30 % 0.56°C; S, 38.77 % 0.08; Chl a concentration, )0.01 #g
liter"1) and a deep layer (depth, )200 m; T, 13.61 % 0.24°C; S,
38.70 % 0.03; Chl a (0.01 #g liter"1). The summer water column,
characterized by a strong stratification, was also defined by a eu-
photic zone (depth, (200 m; T, 16.07 % 2.69°C; S, 38.85 % 0.07;
Chl a concentration, )0.01 #g liter"1) and a deep layer (depth,
)200 m; T, 13.63 % 0.44°C; S, 38.72 % 0.06; Chl a concentration,
(0.01 #g liter"1). A further detailed description of the water
masses, including nutrient concentrations, is given by Najdek et
al. (21). Briefly, nutrient concentrations were lower in the eu-
photic zone and higher in the deep layer, with the exception of
those in winter, when a homogeneous nutrient distribution was
observed in the mixed layer.

Seasonal bacterial variation in richness, diversity, and com-
munity turnover. Different data sets were compared using Pear-
son’s correlation coefficient in order to determine the similarity
between community structure at different taxonomic levels, as
well as the influence of the removal of singletons or sequences that
were not taxonomically assigned (the no-relative group). The
community structure showed almost no change upon removal of
singleton sequences or sequences with no relatives (see Fig. S3a in
the supplemental material). In contrast, when the OTU level was
compared with higher taxonomic levels (genus-phylum), a drop
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in the correlation was observed (see Fig. S3a in the supplemental
material).

Bacterial richness, Chao1, ACE, and Shannon diversity showed
significant differences according to season (P ( 0.05) (Fig. 3; see
also Table S3 in the supplemental material). In the euphotic zone
(including the mixed layer), diversity slightly increased from au-
tumn (Chao1 ' 1,121) to winter (Chao1 ' 1,228) and reached
the lowest numbers in spring (Chao1 ' 792). Maximum values
were detected in summer (Chao1 ' 2,108). The pattern in the
deep layer was similar, however, with the values in autumn being
as high as those in summer and substantially lower than those in
winter and spring.

Community turnover at different taxonomic levels was calcu-
lated to determine how much of the bacterial community is sea-
sonally changing in the euphotic zone/mixed layer and the deep
layer (see Fig. S4 in the supplemental material). The highest turn-
over was detected in winter and summer in the euphotic zone. The

proportion of shared OTUs in any two subsequent seasons in both
the euphotic zone/mixed layer and deep layer was very low
((1.5%), while at higher taxonomic levels, as expected, the pro-
portion of shared taxa was much higher (11 to 100%). A similar
pattern was observed in the euphotic zone/mixed layer and deep
layer. The only difference observed between the two layers was a
lower proportion of shared higher taxonomic levels (genus-phy-
lum) between autumn and winter in the deep layer than in the
euphotic zone. In addition, the number of shared OTUs between
two water layers in each season was calculated (data not shown)
and also resulted in a very low number of shared OTUs ((2%),
reflecting the high degree of variability of microbial communities
at the OTU level. A slightly higher number of shared OTUs be-
tween the euphotic zone and the deep layer was observed in spring
(4.14%), reflecting the consequence of the mixing event.

Seasonal bacterial and archaeal variation. Seasonal changes
in picoplankton communities were analyzed by classifying each

FIG 2 Vertical and seasonal distribution of temperature (a), salinity (b), and Chl a (c) inside and outside the SAP. Dots, sampling depths; *, Chl a extreme value
(4.87 #g liter"1) in spring 2012 at 35 m inside the pit.
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reference OTU sequence (using the SILVAngs pipeline; see Table
S5 in the supplemental material) and by performing the quantita-
tive CARD-FISH analysis of major taxonomic groups (see Table
S6 in the supplemental material). We used 454 pyrosequencing to
get an in-depth analysis of diversity and CARD-FISH to quantify
the cell numbers (absolute and relative). Two-way ANOVA of
the tested phylogenetic groups (SAR11, Gammaproteobacteria,
SAR86, Bacteroidetes, and Cyanobacteria; see Table S4 in the sup-
plemental material) showed significant (P ( 0.05) seasonal differ-
ences but no spatial (inside versus outside the SAP) differences
(see the Results section in the supplemental material) for the
CARD-FISH and 454 pyrosequencing data.

Total picoplankton cell numbers ranged from 0.94 & 105 to
8.6 & 105 cells ml"1 (Fig. 4a). In autumn, the cell number de-
creased from the euphotic zone (3.6 & 105 ml"1) to the deep layer
(1.5 & 105 ml"1). Cell numbers were at the minimum in winter,
during the deep convection (Fig. 4a). The mixed layer (2.7 & 105

ml"1) contained higher cell numbers than the deep layer (1.1 &
105 ml"1). In spring, characterized by a high Chl a concentration
in the euphotic zone, the cell number reached a maximum, with a
higher number being found in the euphotic zone (4.5 & 105 ml"1)
than in the deep layer (2.0 & 105 ml"1). Summer was also charac-
terized by a higher cell number in the euphotic zone (3.1 & 105

ml"1) than in the deep layer (1.8 & 105 ml"1) (Fig. 4a).
Bacteria rather than Archaea dominated the communities

throughout the whole water column during all seasons, with

higher abundances being found in the euphotic zone/mixed layer
than in the deep layer (see Fig. S9a in the supplemental material).
On average, Bacteria comprised more than 60% of the communi-
ties, with the highest abundances being found in the euphotic zone
in spring and summer (74%). The abundances of Bacteria in the
two layers, i.e., the mixed and deep layers, were relatively more
similar in winter. Archaea were less abundant than Bacteria, with
higher abundances being found in the deep layer, especially in
autumn (15%) and summer (13%) (Fig. 4b).

Members of the alphaproteobacterial clade SAR11 dominated
the communities during the entire study period (Fig. 4c and 5). In
the euphotic zone and mixed layer, they accounted for half of the
picoplankton cells in autumn (50%), winter (50%), spring (48%),
and summer (50%). In the deep layer, the SAR11 clade was slightly
less abundant (Fig. 4c). The strong dominance of SAR11 was also
reflected in the high proportion of SAR11-related pyrotags (see
Fig. S6 in the supplemental material).

Cyanobacteria were characteristic of the euphotic zone (Fig. 5
and 6a). In autumn, spring, and summer, they accounted for 18%,
5.5%, and 9.1% of the communities, respectively, while in the
deep layer they comprised (1% of the communities. In winter,
Cyanobacteria accounted for (1% of the communities in the
mixed layer, while in the deep layer no signal for Cyanobacteria
was detected (Fig. 6a). We tried to derive the seasonal dynamics of
the two dominant cyanobacterial genera Synechococcus and Pro-
chlorococcus from the pyrotag frequencies. In autumn, Synechoc-

FIG 3 Total number of bacterial OTUs (a), richness predicted by the Chao1 (b) and ACE (c) estimators, and Shannon’s diversity index (d) in the euphotic
zone/mixed layer and deep layer of the South Adriatic Sea. The seasonal differences were tested by ANOVA. Different letters represent significant differences (P (
0.05, Tukey’s HSD test) between seasons. *, nonhomogeneous variance.
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occus-related pyrotags were present at a higher proportion above
75 m, while Prochlorococcus-related pyrotags proportionally in-
creased with depth (see Fig. S5 in the supplemental material). In
winter, almost only Prochlorococcus-related pyrotags were found.
Spring was characterized by an approximately equal relative abun-
dance of Prochlorococcus- and Synechococcus-related pyrotags in
the euphotic zone, while in summer Prochlorococcus-related pyro-
tags were highly dominant in the deep chlorophyll maximum
(DCM) layer (75 m; see Fig. S5 in the supplemental material).

CARD-FISH indicated that Gammaproteobacteria were preva-
lent in the euphotic zone in autumn, spring, and summer, ac-
counting for 12%, 9.5%, and 7.4% of the communities, respec-
tively, while in the deep layer they accounted for (3% of the
communities, on average (Fig. 5 and 6b). During the deep convec-
tion they accounted for (3% of the communities in the mixed
layer, while no signal was observed in the deep layer (Fig. 6b). The
main gammaproteobacterial clade detected throughout this study
was SAR86 (see Fig. S7 in the supplemental material). Members of
the SAR86 clade were characteristic of the euphotic zone/mixed
layer, with the highest abundance being detected in autumn and
summer (4.0%), while in the deep layer they accounted for, on
average, (1% of the communities (see Fig. S9c in the supplemen-
tal material).

The distribution of Bacteroidetes was similar to that of Gam-
maproteobacteria, with higher abundances being detected in the
euphotic zone/mixed layer and with abundance peaks being de-
tected in autumn (6%) and spring (7.5%) (Fig. 5 and 6c). Pyrotags
related to the order Flavobacteriales were abundant, with high fre-
quencies of clades NS2b, NS4, and NS5 being detected (see Fig. S8
in the supplemental material).

Members of the deltaproteobacterial SAR324 clade were abun-
dant in the deep layer, with an abundance peak occurring in the
summer deep-layer samples (8.0%). During the phase of stratifi-
cation, they always comprised (2% of total prokaryotes in the
photic layer (see Fig. S10a in the supplemental material). SAR202
clade members were characteristic of the deep layer and the winter
mixed layer, while in the euphotic zone they comprised (2% of
the total prokaryotes (see Fig. S10b in the supplemental material).
The maximum abundance was observed in the autumn (8.7%)
and winter (9.3%) deep layers. The SAR406 clade, similar to
SAR324 and SAR202, was more abundant in the deep layer, espe-
cially in summer, when it accounted for 12% of the total pro-
karyotes (see Fig. S10c in the supplemental material).

A comparison of the CARD-FISH and 454 pyrosequencing
data sets using Pearson’s correlation coefficient was performed to
estimate if the CARD-FISH and 454 pyrosequencing approaches

FIG 4 Vertical and seasonal distributions of total picoplankton cell (DAPI) counts (a), Archaea (b), and SAR11 (c) inside and outside the SAP. Dots represent
sampling depths. The relative abundances of Archaea and SAR11 cells are represented as percentages of the DAPI counts.
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show the same community structure (see Fig. S3b in the supple-
mental material). The relative abundances of different taxonomic
groups detected by CARD-FISH were compared with the relative
abundances of the same taxonomic groups found in the 454 py-
rosequencing data set and with the different taxonomic levels of
the 454 pyrosequencing data set. A weak positive correlation be-
tween the CARD-FISH and 454 pyrosequencing data set (R '
0.21, P ( 0.05) was observed, indicating that the two methods
show the same direction of the underlying patterns but that the
bacterial structure revealed by the two methods is not the same
(see Fig. S3b in the supplemental material). In addition, a cluster
analysis was performed to reveal the differences in the clustering
of the samples using the CARD-FISH and 454 pyrosequencing
data (see Fig. S12 in the supplemental material). The dendrogram

based on the CARD-FISH data showed two clusters, one mainly
containing samples from the euphotic zone and one containing
samples from the deep/mixed layer. On the other hand, 454 pyro-
sequencing data showed the clustering of winter and summer
samples in one cluster and of autumn and spring samples in the
other, with an additional cluster containing samples with a high
contribution of Sphingomonadales-related pyrotags.

DISCUSSION
In this study, we present findings on the seasonal dynamics of
picoplankton communities in the South Adriatic through the
whole water column over a period of 1 year in which a strong, deep
convection occurred. Our results are based on a combination of
two molecular techniques, the high-resolution 454 pyrosequenc-

FIG 5 Taxonomic classifications and relative contribution of the most common bacterial pyrotags ()2%) inside and outside the SAP. NA, data not available.
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ing and the quantitative CARD-FISH techniques. Only a weakly
positive correlation between the CARD-FISH and 454 pyrose-
quencing data was found. In addition, the CARD-FISH and 454
pyrosequencing data were used to build a cluster dendrogram that
showed a different clustering of a part of the samples. The discrep-
ancies in the compositional information obtained by 454 pyrose-
quencing and CARD-FISH data likely result from the distortion of
454 pyrosequencing read frequencies by PCR bias, problems with
library construction, clade-specific differences in the rRNA
operon number, and DNA extraction efficiency. In addition, the
inactive physiological status of the cells can lead to discrepancies.
Half of the picoplankton community is composed of SAR11,
which has a low rRNA content, especially at greater depths, which
can lead to an underestimation of SAR11 counts by CARD-FISH
(36).

A deep-water convection event, typical for midlatitude ecosys-
tems, is one of the most important factors influencing seasonal
picoplankton dynamics (e.g., cell numbers, metabolic activities)
in the South Adriatic (6, 7, 17). The observed convection is pecu-
liar and stronger than that in other midlatitude systems because of
the local meteorological conditions (strong winds) and hydro-
graphic conditions needed for dense water formation (22, 23).

This strong convection event greatly influenced the distribution of
different picoplankton clades not only by transporting typical
deep-water clades, such as SAR324, SAR202, and SAR406, to the
surface but also indirectly by supplying nutrients for phytoplank-
ton blooms. In addition, the convection event influenced the bac-
terial diversity and composition in both the euphotic zone and the
deep layer.

The alpha diversity of euphotic bacterial communities in the
South Adriatic varied strongly according to season, with the high-
est abundances being detected in summer and the lowest abun-
dances being detected in the postconvection period, i.e., spring. In
the euphotic zone, the increase in richness to the summer maxi-
mum observed was different from that in western English Channel
surface waters, where a winter maximum and a summer mini-
mum were observed (37, 38), and from that in the Bermuda At-
lantic Time-Series Study (BATS), where an opposite pattern was
detected, with higher richness values being found in winter, dur-
ing the mixing, and lower richness values being found in summer,
under stratified conditions (17). The diversity minimum in
spring, during the maximum productivity, could be explained by
the availability of a series of new ecological niches due to the pro-
duction of phytoplankton-derived organic matter, in which spe-

FIG 6 Vertical and seasonal distribution of Cyanobacteria (a), Gammaproteobacteria (b), and Bacteroidetes (c) inside and outside the SAP. Relative cell
abundances are represented as percentages of the DAPI counts.
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cialists could bloom (39). In addition, the maximum richness ob-
served in summer could be explained by the intensification of the
gyre (in summer, both stations were under the influence of LIW)
that caused a stronger introgression of LIW, a possible source of
new LIW-specific subclades (21, 40).

During the entire year, the euphotic zone and the mixed layer
were dominated by Bacteria, while Archaea were only a minor
constituent, as was found elsewhere (41, 42). SAR11 was the most
abundant phylogenetic group and regularly accounted for more
than 40% of the communities. A similar seasonal pattern of a
postconvection SAR11 maximum was found in the northwestern
Sargasso Sea (7), while in a coastal oligotrophic Mediterranean
system, a higher relative abundance of SAR11 was detected in
spring and summer (9). However, in both studies the relative con-
tribution of SAR11 to the whole community was lower than that
in our study. This could, however, also be attributed to the lower
number of SAR11-specific probes used in these studies, as here a
highly sensitive combination of six FISH probes, one helper oli-
gonucleotide, and signal amplification via CARD-FISH was ap-
plied for the quantification of SAR11. The worldwide distribution
and high annual abundance of this clade (43), supported by
genomic data (44, 45), suggest that the SAR11 clade plays a major
role in the oxidation of low-molecular-weight dissolved organic
matter in oligotrophic systems.

The seasonality of Cyanobacteria, which was the second most
abundant group, strongly depended on the convection event
when a strong decrease in their relative abundance was observed.
A similar strong decrease in Prochlorococcus abundances due to a
seasonal deep convection, which was attributed to the selective
elimination of low-light (LL)-adapted Prochlorococcus ecotypes
incapable of coping with turbulent deep winter mixing, was ob-
served at BATS (46). In autumn, Synechococcus-specific pyrotags
were dominant above 75-m water depths, while below 75 m, Pro-
chlorococcus-specific pyrotags were more abundant. In other sea-
sons, only Prochlorococcus-specific pyrotags or the same abun-
dance of pyrotags specific to both genera could be found at all
depths (47). The increase of Bacteroidetes and Gammaproteobac-
teria in spring detected here is atypical of the findings for oligo-
trophic offshore waters (41). However, in coastal and eutrophic
systems, the increase in the abundance of these two groups in
spring has been linked to phytoplankton blooms and was related
to the breakdown of the biomass of phytoplankton blooms (39,
48). Furthermore, it was suggested that Bacteroidetes are increas-
ingly being replaced by Gammaproteobacteria in the postbloom
period (39, 48). A similar pattern could be observed in our data in
autumn and spring. The response of these groups to a phytoplank-
ton bloom could be observed, especially in spring, when, in a
postconvection period, the highest Chl a concentration, which
was mainly attributed to Chaetoceros spp. and Guinardia striata
diatom blooms, was observed (S. Ljubimir, personal communica-
tion). In coastal waters, Ulvibacter, Formosa-related, and Polarib-
acter species from the order Flavobacteriales, phylum Bacte-
roidetes, were found to increase in number during or shortly after
a diatom bloom (39). Although Bacteroidetes-specific pyrotags
from the South Adriatic were mainly assigned to the Flavobacte-
riales, none of the groups mentioned above were found in high
numbers. Instead, the NS2b, NS4, and NS5 clades were the main
Flavobacteriales groups, indicating that they could be better
adapted to oligotrophic conditions. In the same study, Reinekea
and SAR92 gammaproteobacterial groups were found to increase

in number after the diatom bloom and as a response to algal decay
(39). Similar to the findings for the Bacteroidetes groups, no
Reinekea species- or SAR92-specific pyrotags were observed in
high proportions, but instead, SAR86 dominated the Gammapro-
teobacteria, indicating that SAR86 is an analog of Reinekea spp.
and SAR92 in oligotrophic offshore waters.

The deep-layer samples showed a higher relative abundance of
Archaea, especially in autumn and summer, than the euphotic and
mixed layers. A similar abundance of Archaea was observed in the
Atlantic mesopelagic waters (41, 49) and eastern Mediterranean
deep waters (50). The greater abundance of Archaea in the deep
layer in autumn and summer points to a response of Archaea to
processes in the euphotic zone (51). In winter at 800 m and 1,000
m and in spring at 600 m, an unexpected dominance of Sphin-
gomonadales-related pyrotags almost completely belonging to a
single genus (Sphingobium) was observed. Blooms of a single spe-
cies from the order Sphingomonadales have previously been re-
ported in a coastal lagoon and co-occurred with a bloom of fila-
mentous cyanobacteria (52). The SAR202 clade exhibits an
abundance pattern similar to that of Archaea, being more abun-
dant in the deep layer in autumn and summer but not in winter,
when it is uniformly distributed through the water column (41,
53). The SAR406 clade comprised *6% of the deep-layer commu-
nities throughout the year, with the exception of summer, when its
abundance increased to more than 10%. The deltaproteobacterial
SAR324 clade, like the SAR406 clade, peaked in the deep layer in
summer, with a secondary peak occurring in the winter mixed
layer (41). In the same study, patchy distributions of SAR406
along the Atlantic transect that were explained by a possible nat-
ural variation due to seasonality were observed (41). The same
explanation could be applied to explain the summer seasonal peak
of SAR406 in our study.

The environmental parameters measured did not reveal any
clear insight into the factors that shape the bacterial distribution in
the South Adriatic (see the Results section in the supplemental
material). Of all abundant taxa, only the Deferribacteres signifi-
cantly correlated with nitrate concentrations, as was previously
found in the western English Channel, but apart from that, the
presence of bacterial groups mainly correlated with the presence
of other bacterial groups, indicating the difficulties in explaining
bacterial distributions and dynamics using correlation methods,
especially in cases of seasonal sampling campaigns (38, 54).

Overall, we showed in this study that the strong winter convec-
tion of 2012 had profound consequences for the bacterial and
archaeal picoplankton communities of the South Adriatic Sea
with respect to species richness, species diversity, and the abun-
dances of different phylogenetic groups. The convection episodes
are obviously changing the biogeochemistry and microbiology of
the whole Adriatic. In the future, high-frequency sampling might
reveal further details on the surprisingly dynamic succession of
picoplankton clades in oligotrophic offshore waters.
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16. Tinta T, Vojvoda J, Mozetič P, Talaber I, Vodopivec M, Malfatti F,
Turk V. 5 June 2014. Bacterial community shift is induced by dynamic
environmental parameters in a changing coastal ecosystem (northern
Adriatic, northeastern Mediterranean Sea)—a 2-year time-series study.
Environ Microbiol. http://dx.doi.org/10.1111/1462-2920.12519.

17. Vergin K, Done B, Carlson C, Giovannoni S. 2013. Spatiotemporal

distributions of rare bacterioplankton populations indicate adaptive strat-
egies in the oligotrophic ocean. Aquat Microb Ecol 71:1–13. http://dx.doi
.org/10.3354/ame01661.
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J, Mikuš J, Bobanović-Ćolić S. 2012. Biological evidence of a winter
convection event in the South Adriatic: a phytoplankton maximum in the
aphotic zone. Cont Shelf Res 44:57–71. http://dx.doi.org/10.1016/j.csr
.2011.01.004.

19. Cerino F, Bernardi Aubry F, Coppola J, La Ferla R, Maimone G, Socal
G, Totti C. 2012. Spatial and temporal variability of pico-, nano- and
microphytoplankton in the offshore waters of the southern Adriatic Sea
(Mediterranean Sea). Cont Shelf Res 44:94 –105. http://dx.doi.org/10
.1016/j.csr.2011.06.006.

20. Azzaro M, La Ferla R, Maimone G, Monticelli LS, Zaccone R, Civitarese
G. 2012. Prokaryotic dynamics and heterotrophic metabolism in a deep
convection site of eastern Mediterranean Sea (the Southern Adriatic Pit).
Cont Shelf Res 44:106 –118. http://dx.doi.org/10.1016/j.csr.2011.07.011.
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Korlević et al.

1726 aem.asm.org March 2015 Volume 81 Number 5Applied and Environmental Microbiology

http://dx.doi.org/10.2307/1942268
http://dx.doi.org/10.2307/1942268
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1111/1758-2229.12013
http://dx.doi.org/10.1111/1758-2229.12013
http://dx.doi.org/10.1111/j.1462-2920.2009.02017.x
http://dx.doi.org/10.1038/ismej.2011.107
http://dx.doi.org/10.1126/science.1218344
http://dx.doi.org/10.1038/ismej.2009.134
http://dx.doi.org/10.1111/j.1462-2920.2009.01929.x
http://dx.doi.org/10.1371/journal.pone.0055148
http://dx.doi.org/10.1038/nature01240
http://dx.doi.org/10.1038/nature01240
http://dx.doi.org/10.1038/nature00917
http://dx.doi.org/10.1126/science.1114057
http://dx.doi.org/10.1126/science.1114057
http://dx.doi.org/10.1016/j.dsr2.2013.02.002
http://dx.doi.org/10.1016/j.dsr2.2013.02.002
http://dx.doi.org/10.5194/bg-8-2785-2011
http://dx.doi.org/10.5194/bg-8-2785-2011
http://dx.doi.org/10.1111/1574-6941.12003
http://dx.doi.org/10.1111/1574-6941.12003
http://dx.doi.org/10.1111/j.1462-2920.2007.01437.x
http://dx.doi.org/10.1111/j.1462-2920.2007.01437.x
http://dx.doi.org/10.1038/ismej.2008.94
http://dx.doi.org/10.3354/ame01666
http://dx.doi.org/10.1128/AEM.01089-06
http://dx.doi.org/10.1128/AEM.01089-06
http://dx.doi.org/10.1111/j.1462-2920.2008.01627.x
http://dx.doi.org/10.1038/ismej.2013.32
http://dx.doi.org/10.1038/ismej.2013.32
http://dx.doi.org/10.1016/S0723-2020(99)80053-8
http://dx.doi.org/10.1016/S0723-2020(99)80053-8
http://dx.doi.org/10.1002/cyto.990140205
http://dx.doi.org/10.1002/cyto.990140205
http://dx.doi.org/10.1099/13500872-142-5-1097
http://dx.doi.org/10.1128/AEM.70.5.2836-2842.2004
http://dx.doi.org/10.1128/AEM.70.5.2836-2842.2004
http://dx.doi.org/10.3354/ame039145
http://dx.doi.org/10.3354/ame039145
http://dx.doi.org/10.1128/AEM.67.11.5134-5142.2001
http://dx.doi.org/10.1016/S0723-2020(11)80121-9
http://dx.doi.org/10.1016/S0723-2020(11)80121-9
http://dx.doi.org/10.1128/AEM.67.11.5210-5218.2001
http://aem.asm.org

	Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year
	MATERIALS AND METHODS
	Sampling and environmental parameter estimation.
	454 pyrosequencing.
	Sequence analysis.
	CARD-FISH.
	Data analyses.
	Nucleotide sequence accession numbers.

	RESULTS
	Hydrography.
	Water mass characteristics.
	Seasonal bacterial variation in richness, diversity, and community turnover.
	Seasonal bacterial and archaeal variation.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


