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Abstract 24 

Datasets that include only the PM elemental composition and no other important constituents such as 25 

ions and OC, should be treated carefully when used for source apportionment. This work is 26 

demonstrating how a source apportionment study utilizing PMF 5.0 enhanced diagnostic tools can 27 

achieve an improved solution with documented levels of uncertainty for such a dataset.The uncertainty 28 

of the solution is rarely reported in source apportionment studies or it is reported partially. Reporting 29 

the uncertainty of the solution is very important especially in the case of small datasets. PM2.5 samples 30 

collected in Patras during the year 2011 were used. The concentrations of 22 elements (Z=11-33) were 31 

determined using PIXE. Source apportionment analysis revealed that PM2.5 emission sources were 32 

biomass burning (11%), sea salt (8%), shipping emissions (10%), vehicle emissions (33%), mineral dust 33 

(2%) and secondary sulfates (33%) while unaccounted mass was 3%. Although Patras city center is 34 

located in a very close proximity to the city’s harbor, the contribution of shipping originating emissions 35 

was never before quantified. As rotational stability is hard to be achieved when a small dataset is used 36 

the rotational stability of the solution was thoroughly evaluated. A number of constraints were applied 37 

to the solution in order to reduce rotational ambiguity.  38 
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Introduction 52 

Particulate air pollution has been associated with adverse effects on human health. PM is a chemically 53 

non-specific pollutant, and may originate from various emission source types. Thus, its toxicity may well 54 

vary depending on its source and chemical composition. If PM toxicity is determined with respect to 55 

source types, the regulation of PM can be implemented more effectively (Ito et al. 2006). Several factor 56 

analysis and source apportionment methods have been developed to apportion sources of ambient 57 

PM2.5. Estimates of resulting source contributions have subsequently been used in epidemiological 58 

studies to investigate the association between source-specific PM2.5 and health (Kioumourtzoglou et al. 59 

2014). Given the impact of such  air quality standards, it is very important to lower and assess the 60 

uncertainty of the results (Hopke et al. 2006; Kioumourtzoglou et al. 2014).  61 

Greece is located at the Eastern Mediterranean basin which is characterized as air pollution hotspot, 62 

located at the crossroad of air masses coming from Asia, Europe and Africa (Karanasiou and 63 

Mihalopoulos 2013). Because of the particular characteristics of the location, PM in the area can 64 

originate from a variety of sources both local and regional. Biomass burning (Amiridis et al. 2012; Saraga 65 

et al. 2015) traffic related processes, dust resuspension (Athanasopoulou et al. 2010), industrial 66 

activities, transported Saharan dust are some of the most common sources in the area (Grigoropoulos et 67 

al. 2009; Karanasiou et al. 2009; Amato et al. 2016). In addition to those sources the climate conditions 68 

of the area (low precipitation, high solar activity) favor the accumulation of pollutants and the formation 69 

of secondary particles. For example model simulations indicate that SO2 is transported in the 70 

Mediterranean basin where sulfate is produced due to intense photochemical activity (Pikridas et al. 71 

2013). The aforementioned reasons coupled with the weather conditions lead to high PM background 72 

concentrations in the area, with high impact on human health in urban areas (Ostro et al. 2014).  73 

Although Greece is a coastal country with several harbors of various sizes and shipping emissions have 74 

been already identified (Karanasiou et al. 2009; Amato et al. 2016) as a source, it still remains to be 75 

adequately quantified . This source is active when the ships are in dock, as well as when they are at sea. 76 

In particular, 70% of ship emissions are estimated to occur within 400 km of the mainland (Endresen et 77 

al. 2003). Another complexity is that ships in many cases use old engine technology and that the fuel 78 

quality used is poor. Heavy oil usually contains high level of sulfur when compared with the diesel used 79 

for passenger cars and residential heating in most European countries (Fridell et al. 2008).  80 



Receptor modeling using aerosol chemical composition data is a reliable method that can provide 81 

information on aerosol sources (Belis et al. 2013). Positive Matrix Factorization (PMF) (Paatero and 82 

Tappert 1994), is a receptor model that has been successfully applied to many areas with different 83 

characteristics (Querol et al. 2001; Kim et al. 2003; Johnson et al. 2006a; Moon et al. 2008; Cohen et al. 84 

2009; Amato et al. 2016; Liang et al. 2016). PMF introduces a weighting scheme taking into account 85 

errors of the data points, which are used as point-by-point weights. Adjustment of the corresponding 86 

error estimates also allows it to handle missing and below detection limit data. Moreover, non-negative 87 

constraints are implemented in order to obtain more physically meaningful factors. The latest PMF 88 

version available by USEPA, is designed to overcome some of the weak points of the previous versions of 89 

the model, providing better tools to investigate the rotational ambiguity of the factors. PMF 5.0 for the 90 

first time offers three methods for estimating uncertainty in factor analytical models: bootstrap (BS, also 91 

available on the previous versions of the model), displacement of factor elements (DISP), and bootstrap 92 

enhanced by displacement of factor elements (BS-DISP) (Paatero et al. 2014). The uncertainty of PMF 93 

analysis due to random errors and rotational ambiguity can be reduced by applying these methods.  94 

In this study a small dataset was used to identify PM2.5 sources in a medium-sized coastal Greek city. 95 

The elements determined in the samples by PIXE were namely Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, 96 

Fe, Ni, Cu, Zn, As, Sc, P, Ga, Co, and Ge. The concentration of all the elements except from Sc, P, Ga, Co 97 

and Ge was used as a variable in the model. This dataset was used as an example of how small datasets 98 

of PM elemental composition, could be treated and more importantly how the uncertainty of the results 99 

could be evaluated and reported. The tools offered by PMF 5.0 were used in order to evaluate the 100 

rotational stability of the solution. As rotational stability is hard to be achieved when a very small 101 

dataset is used, a number of constraints were used in the solution, so that the stability is maintained as 102 

high as possible. The application of constraints reduces the rotational space (Hopke 2016). Small dataset 103 

lead to another implication. It is hard to obtain representative source profiles without an appropriate 104 

number of samples. For example, in the manual of PMF it is suggested that for atmospheric PM at least 105 

100 samples are necessary. The application of some constraints can again improve the rotational 106 

stability and assist towards obtaining a meaningful solution. 107 

 108 

Experimental 109 

 110 

Sampling 111 



Patras is a medium size city located in Peloponnese peninsula. Patras’ population according to the last 112 

census (2011) was 168.034 citizens. It is a residential area with low industrial activity, which is mainly 113 

located in the industrial zone at the southeastern outskirts of the city. Two commercial ports are located 114 

in the area, the north or old port and the south or new port. The new port started operating at 11-Jun-115 

2011, and it is used mainly by passenger and cargo ferries sailing to Italy. About 1.5 million passengers 116 

per year is estimated to travel using Patras’ ports. Traffic in the city is high especially during rush hours. 117 

Public transport fleet is composed mainly of buses of very old technology. Olive groves are located in the 118 

surrounding area of the city. Scrap wood originating from agricultural activities is commonly used by 119 

households in close proximity to the city.  120 

  121 

Figure 1. Right: Patras’ location, left: sampling and potentional PM2.5 sources’ location 122 

The sampler was installed in the city center, on the roof of a high public building (>20m) located in the 123 

central city square. The sampling site at this location allowed representative sampling of urban air from 124 

any direction. The site was selected because strong influence by nearby sources such as traffic was 125 

minimal, when compared to a kerbside station. Hence, the samples collected would be representative of 126 

the greater urban area and not be overwhelmed by the contribution of only one source. The sampler 127 

used was a low volume sampler model FRM 2000 by Rupprecht Pataschnick. This sampler is designed 128 

according to USEPA directive CFR 40. PM2.5 samples were collected onto Teflon membrane filters 129 

Whatman PTFE 47 mm diameter with 1 μm pore size. The filter is a PTFE membrane (4 mg/cm2) with 130 

polypropylene backing. The samples were collected over a 24h sampling interval (from 00:00 to 23:59). 131 

All filters were weighed before and after sampling to determine the collected PM2.5 mass using a 132 



Sartorius PB211D microbalance (readability of 0.1 μg) (Manousakas et al. 2014). Before weighing, the 133 

filters were equilibrated for 24h inside a custom designed chamber with automated controls designed to 134 

maintain environmental conditions at a constant air temperature of 20 °C and constant RH of 50%. To 135 

avoid static electricity interference the balance was equipped with a 210Po static eliminator. The filters 136 

were loaded into clean polystyrene Petri dishes and transferred to the sampling site. A number of 137 

samples were collected throughout 2011 and 55 of them were selected to be analyzed by PIXE. After the 138 

analysis the concentration of 22 elements were determined and 17 of them was used as input on the 139 

model (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and As). The samples analyzed by PIXE were 140 

selected to equally represent the warm and cold season of the sampling period. 141 

The concentration of black carbon (BC) in the collected filters was determined by optical analysis using a 142 

Smoke Reflectrometer (Model 43 Smoke Stain Reflectometer, Diffusion Systems LTD). The method 143 

followed is described in detail elsewhere (Manousakas et al. 2013). 144 

 145 

Elemental analysis, PIXE 146 

Particle Induced X-ray Emission (PIXE) was used for elemental analysis of the samples. PIXE has many 147 

advantages for elemental analysis of Particulate Matter: it provides rapid multielemental analysis 148 

capable to detect a large number of elements from Z=11 (Na) and heavier, including all the crustal and 149 

important anthropogenic elements. The advantage of a single analytical technique is the lower 150 

possibility for a random error. If a random error does occur in a PIXE measurement it is highly likely to 151 

affect all elements in a given sample, which makes it much easier to locate and treat accordingly. Of 152 

course there are drawbacks as well. It is not possible to determine all the useful PM components need in 153 

source apportionment analysis such as ions, organic carbon or some specific tracers such as 154 

levoglucosan (Kostenidou et al. 2015) and carbonate (Karanasiou et al. 2011) with a single analytical 155 

technique. The lack of those very important PM components in the analysis is very possible to lead to a 156 

solution not easily interpretable and with high levels of uncertainty. Thus, it is very important to 157 

evaluate and reduce the uncertainty.   158 

PIXE measurements were performed at the Laboratory for Ion Beam Interactions, Rudjer Boskovic 159 

Institute, Zagreb Croatia. A mass calibration of the PIXE set-up has been performed utilizing Micromatter 160 

thin standards evaporated on thin Nucleopore (polycarbonate) filters. Micromatter standards are known 161 



to have ±5% uncertainty on areal mass concentrations (Calzolai et al. 2008). One multielemental 162 

standard (Vienna Dust Standard V98, Air particulate matter on filter media) has also been measured. 163 

PIXE set up and the calibration technique is described in detail in (Manousakas et al. 2015).  164 

 165 

Positive Matrix Factorization (PMF) 166 

The basic equation that refers to the solution of the mass balance problem is common for all the utilized 167 

multivariate receptor models including PMF: 168 

Xij= ∑       
 
    + eij    (1) 169 

 170 

Where Xij is the concentration of species j measured on sample i, p is the number of factors contributing 171 

to the samples, fkj is the concentration of species j in factor profile k, gik is the relative contribution of 172 

factor k to sample i, and eij is error of the PMF model for the j species measured on sample i. The values 173 

of gik and fkj are adjusted until a minimum value of Q for a given p is found. Q is defined as: 174 

 175 

Q= ∑ ∑
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 177 

Where sij is the uncertainty of the jth species concentration in sample i, n is the number of samples, and 178 

m is the number of species. In some cases other auxiliary equations can be added in order to include a 179 

priori information such as well-known chemical profiles for certain sources (Paatero and Hopke 2008; 180 

Liao et al. 2015). The auxiliary equations define the auxiliary part Qa of object function Q: 181 

 182 

Q= ∑   
  ∑
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 184 

ν enumerates the auxiliary equations. The residuals of auxiliary equations are denoted by rv while sv 185 

denotes the ‘softness’ of vth auxiliary equation, which is usually provided by the user (Paatero 1999). 186 

Those auxiliary equations can be applied to the solution in the form of constraints. Constraints can allow 187 

us identify a free rotation of the solution with better physical meaning than the original solution. In 188 

addition to that a number of rotations blocking zero values can be introduced to the matrix increasing 189 

thus the rotational stability of the solution.  190 



In the current study Sc, P, Ga, Co and Ge were set as “bad” and thus were excluded from the analysis 191 

and Cr and As as “weak”. PM2.5 concentration was set as total variable.  192 

A range of solutions were examined with different number of factors (4-8), but 6 factors were the 193 

maximum number of factors corresponding to meaningful sources. If the factors were increased some 194 

profiles were split creating profiles with no physical meaning, while the rotational instability of the 195 

solution increased significantly.  196 

The data uncertainty was calculated by taking into account three individual errors: analytical error, PIXE 197 

calibration error and sampling error. The final uncertainty used in the model was the total uncertainty 198 

plus 1/3 LOD (Polissar et al. 1998; Lee et al. 2002; Kim and Hopke 2004; Li et al. 2004; Johnson et al. 199 

2006b). The modeling uncertainty was adjusted to 5%. Values that were much lower than LOD were 200 

substituted by ½ LOD and the uncertainty was set as 5/6 of the LOD value.   201 

Small datasets (number of cases close to 50) pose an extra challenge when used for PMF because the 202 

solution is strongly affected by rotational ambiguity and the overall uncertainty is increased. Previous 203 

versions of PMF offered only “bootstrapping” as a tool to estimate the effect of random errors and to 204 

some extent the rotational ambiguity in the dataset. Fpeak was a function for estimating the lower limit 205 

of rotational uncertainty (Reff et al. 2007). The latest version gives the user more advanced tools to 206 

evaluate rotational ambiguity, namely the displacement (DISP) and the bootstrap-displacement (BS-207 

DISP) methods. BS estimates the random errors on the matrix, while  DISP explicitly explores the 208 

rotational ambiguity (Paatero et al. 2014). BS-DISP being a combination of the two methods estimates 209 

both random errors and rotational ambiguity. When the rotational ambiguity of the solution is high the 210 

identity of the resolved factors may be exchanged or swapped during DISP and BS-DISP runs. This is 211 

expressed in the diagnostic result as a number of factor swaps. In addition, the number of cases used in 212 

BS-DISP is reported, which expresses the number of accepted resamples. If all cases were accepted this 213 

number is equal to 1 (base run) plus the number of bootstraps. 214 

As the base run revealed that the solution had high rotational ambiguity indicating no well-defined 215 

solutions, some physical and chemical constraints were applied in order to arrive at a more stable 216 

solution. Rotational ambiguity can be reduced among other ways by constraining individual factor 217 

elements, either scores and/or loadings, toward zero values, prescribing values for ratios of certain key 218 

factor elements (Paatero et al. 2002). It must be emphasized that application of these techniques must 219 

be based on some external information about acceptable or evidence based factor profiles. The base 220 



run can be modified (constrained) by the following methods: by setting some factor elements to a fixed 221 

value, by specifying lower and/or upper limits, by pulling a factor element towards a certain value and 222 

by setting an equation such as a ratio, a mass balance equation or a custom equation. Some constraints 223 

are considered strong such as setting a variable on a fixed value because they can perturb the model 224 

results significantly. Pulling towards a value has the advantage that if the equation is incompatible with 225 

the result (Q changes too much), then the pulling will fall sort of the target value (Paatero and Hopke 226 

2008). In other words if a free rotation is not available then the pulled factor will never reach the user 227 

defined outcome. Setting constraints in the form of equations such as a ratio is regarded as a rather 228 

strong constraint but a lesser one than setting a particular value. For all other constraints apart from 229 

setting a certain value the model offers the option to set the maximum allowed dQ % change. Giving low 230 

maximum dQ% change ensures that significant perturbation of the model results are less probable. 231 

After constraints were applied, BS results indicated very good reproducibility with the factors being 232 

reproduced 96-100 % of the times (88-100% before the application of the constraints). The number of 233 

bootstrap runs was set to 100 and the minimum correlation remained to the default value of 0.6. For 234 

the base run (initial unconstrained run)  BS-DISP and DISP results showed 6 factor swaps for the lowest 235 

dQ change, while the cases accepted were 79%, indicating the presence of rotational ambiguity. Factor 236 

swaps are observed at the extreme case that factors change identity with no significant change in Q. The 237 

species selected to be displaced in BS-DISP, namely Na, S, Cl, K, V and PM2.5, were the key species for 238 

factor identification. It is suggested that in order to speed up computation only a small number of 239 

variables is selected for BS-DIS (Norris and Brown 2014). After the application of the constraints no 240 

factor swaps were observed for %dQ 0.5, 1 and 2 and the number of accepted cases rose to 99. The BS-241 

DISP analysis results indicate that the solution (factor profiles) is stable. The maximum decrease in Q for 242 

the constrained run was 1%. 243 

In our case not all constraints were introduced at once. The strongest were introduced first and when it 244 

was clear that the factor identity did not change, the weaker ones were applied as well. The dQ% was 245 

kept in almost all cases at the lowest value of 0.5%. The ratios applied were not significantly different 246 

from the initial run as they were not set to alter the factors but rather to keep them more rotationally 247 

stable. 248 

Two of the constraints added to the analysis were in the form of elemental ratios and were derived in 249 

particular from the following equations: i) for shipping emissions: V - 3×Ni=0, and ii) for biomass burning 250 

S - 0.5×K=0.  Al, Si, Ca and Ti were pulled up maximally in the mineral dust source, BC was pulled up in 251 



biomass burning and finally BC was set to zero in mineral dust. For shipping emissions V/Ni ratio the 252 

maximum allowed change in dQ was set to 5%. For all other constraints dQ was set to 0.5% making thus 253 

sure that no significant changes with respect to the unconstrained results would occur. V and Ni are well 254 

known tracers of crude oil (Viana et al. 2008, 2009; Karanasiou et al. 2009; Argyropoulos et al. 2013; 255 

Chuang et al. 2016), which is used mainly in shipping and industry. In Patras the most probable source of 256 

V and Ni is shipping, since industrial activity is low. For that reason V/Ni was set to 3 because that is the 257 

generally used ratio characteristic of shipping emissions in the Mediterranean region (Viana et al. 2009, 258 

2014). As fresh biomass burning is known to take place in Patras mainly for domestic heating and scrap 259 

wood burning from farming (Kostenidou et al. 2013; Pikridas et al. 2013), the S/K ratio in the factor was 260 

set to 0.5 which is indicative of fresh biomass burning processes (Niemi et al. 2004; Viana et al. 2013). 261 

Potassium chloride (KCl) is known to occur in fresh smoke, whereas increased amounts of potassium 262 

sulfate (K2SO4) and nitrate (KNO3) are present in aged smoke. The S/K ratio depends on a number of 263 

factors such as the wood type and the season of the year. It must be noted that the S/K ratio in the base 264 

run had a value close to 0.5, so even though the application of this constraint comes from a rather 265 

strong assumption is considered quite safe.  Another constraint that could be used was in the Na/Cl ratio 266 

for sea salt; nevertheless, the ratio obtained in the initial run was much lower than 1.8, which is that of 267 

fresh sea salt, meaning that even though the sampling station is very close to sea, extensive Cl depletion 268 

has already taken place. Trying to set such a ratio is a good example of bad use of constraints. BC was 269 

pulled up in biomass burning factor from a value of zero in the initial run, which is not considered 270 

acceptable for any combustion source profile.  BC was determined using a reflectometer with analog 271 

output (Manousakas et al. 2013). Such an instrument gives an estimate of the BC concentration but it is 272 

not capable of capturing with high precision small variations in BC concentrations. This fact can lead to a 273 

more “rough around the edges” distribution of BC in the PMF factors. The presence of other key 274 

compounds for the identification of this source like OC (Organic Carbon), would have helped in getting a 275 

clearer profile. The very low dQ change allowed ensures that no big changes were imposed on the 276 

factors. The strongest constrained applied was BC set to zero in the Mineral dust factor. That was 277 

considered necessary in order to introduce to the matrix more rotation blocking zero values. Mineral 278 

dust as a source is not expected to produce any BC so setting its concentration to zero is regarded as a 279 

rather safe option. Of course the possibility that some BC is transferred along with mineral dust cannot 280 

be excluded. This constraint might add a small subjectivity to the analysis. After all the constraints were 281 

applied, the factors prior and after their application were examined and compared to investigate the 282 



changes that have occurred. No significant changes to either the profiles or the contributions were 283 

observed meaning that the identity of the factors remained the same in all cases.  284 

 285 

Results and Discussion 286 

Source apportionment Results 287 

Six factors were found to be the maximum number of physically meaningful factors for the city of 288 

Patras. This number of fine aerosol sources is identified in a number of studies conducted in other Greek 289 

Urban environments (Mantas et al. 2014; Manousakas et al. 2015). Good correlation was observed 290 

between the model predicted and the real PM2.5 mass (R2=0.80, y = 1,00x – 0.30). Theoretical Q and 291 

Qrobust displayed a 25% difference. As stated before the extra modeling uncertainty was set to 5%.  292 

  

 

  

 



  

 

Figure 2. PMF factors profiles for the identified sources 293 

The first factor (Figure 2) was identified as secondary sulfates because of the high abundance of S in the 294 

source profile (Figure 3). The profile also contains a substantial proportion of elements related to 295 

vehicular traffic, and in particular tire/break wear (such as Cu and Zn), indicating possible influence by 296 

non-exhaust traffic emissions as well. Secondary inorganic aerosols are formed from the reaction of 297 

H2SO4(g) and HΝΟ3(g) with NH3, giving (NH4)2SO4 and NH4NO3 accordingly (Stockwell et al. 2003; 298 

Squizzato et al. 2013). The main tracers of this source are SO4
2- and NH4

+ but NO3
- may also be present in 299 

the source profile, when the factor represents inorganic aerosols in general rather than secondary 300 

sulfates exclusively (Yin et al. 2005; Viana et al. 2008). Since the formation of (NH4)2SO4 and NH4NO3 is 301 

usually favored in different seasons, the concentrations of these two secondary species do not have high 302 

correlation and they tend to be apportioned in separate factors. Because the concentration of major 303 

ions was not available in the current dataset, S was used as the main tracer to identify this source, a 304 

practice that has been previously applied in other studies (Marcazzan et al. 2003). The absence of the 305 

major ions and especially NO3
- can add some implications to the results because the mass of the 306 

secondary nitrates can be apportioned to others sources such as traffic or biomass burning. Secondary 307 

sulfates represent a high percentage in the mass of PM2.5 in Greek urban environments with regional 308 

origin. This result is in agreement with those reported for the Greater Athens Area (Pateraki et al. 2012; 309 

Mantas et al. 2014; Dimitriou et al. 2015). Secondary sulfates are in many cases attributed to long range 310 

transport events (Viana et al. 2008). Previous studies have stated that sulfates are ingredients of the 311 

“aged” air masses, because the oxidation of SO2 to SO4
2- is slow (Querol et al. 1998), and thus this 312 

aerosol component is more related to transported than local pollution (Eleftheriadis et al. 1998; Ricard 313 

and Jaffrezo 2002; Schaap et al. 2004; Saffari et al. 2013). High sulfate concentrations due to transport 314 

have been known to influence Greece, as documented by the high levels observed in background areas 315 



in the Aegean (Gerasopoulos et al. 2006; Lazaridis et al. 2006).  This source has the highest contribution 316 

along with vehicle emissions (7.21 μg/m3, accounting for 33% of total PM2.5 mass on average, Figure 4).  317 

 318 

Figure 3. Source fingerprints 319 

The factor representing sea salt has been identified by the high contribution of Na and Mg. Sea spray is 320 

commonly identified as a source of PM and especially PM10 in southern European Countries (Viana et 321 

al. 2008; Bove et al. 2016).  Cl is present in the factor but in much lower concentration than expected for 322 

sea salt by stoichiometry. The Cl depletion in the factor indicates that the sea salt cannot be 323 

characterized as fresh but rather as aged. Fresh sea salt is almost exclusively found at the coarse particle 324 

fraction (Eleftheriadis et al. 2014), and that is probably the reason why fresh sea salt is not identified as 325 

a source despite that sampling in this study took place in very close proximity to the sea. Sea salt has a 326 

contribution of 8% which remains very stable throughout the seasons.  327 

Shipping emissions are identified by the high presence of Ni and V in the factor along with the presence 328 

of Fe. All of them are common tracers of crude oil burning (Karanasiou et al. 2009; Argyropoulos et al. 329 

2013). This source is common in the Mediterranean region (Waked et al. 2014; Amato et al. 2016). As 330 

mentioned before the ratio of V/Ni was constrained to 3 for this factor (was 2.6 in the initial base run), 331 

which is an indicative value for shipping emissions in the Mediterranean region. BC is present in the 332 

factor as expected in all combustion processes. Since there are no refineries or oil powered plants in the 333 

area it is safe to say that the contribution of this source can be attributed to shipping alone. The 334 
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contribution of this source is 10% of PM2.5 on annual basis and is higher during the warm season 335 

probably because of the higher vessel related activity that peaks during that period.  336 

Biomass burning is resolved mainly by the presence of high K concentrations and to a lesser extent by 337 

presence of Cl in the factor (Diapouli et al. 2014). As mentioned biomass burning in the area of Patras is 338 

related mainly to farming processes, and specifically to scrap wood burning at olive groves and 339 

agricultural fires in the region. In addition to that, due to the economic crisis and the increased prices of 340 

diesel (diesel based central heating was the most common means of domestic heating in Greece), 341 

biomass burning use for domestic heating has dramatically increased in the last years (Saffari et al. 342 

2013). K in fresh smoke is in the form of KCl which explains the high abundance of this element in the 343 

factor (Viana et al. 2013). Additionally it is quite common that plastic waste is burned in fires along with 344 

the biomass, leading to fresh particle formation with up to 21% concentration of Cl (Kostenidou et al. 345 

2013). This source has 11% contribution and is manifested almost exclusively in the cold season (Table 346 

1).  347 

Table 1. Source contribution in μg/m3 annually and for the cold and warm season of the year 

 

Secondary 

Sulfates Sea Salt 

Shipping 

Emissions 

Biomass 

Burning 

Vehicle 

Emissions 

Mineral 

Dust 

Annual 7.2 1.9 2.2 2.4 7.1 0.3 

Warm 7.5 1.7 2.9 0.8 4.5 0.3 

Cold 7.0 1.9 1.7 3.4 8.8 0.3 

 348 

Vehicle exhaust emissions are traced by the high percentage of BC in the factor and the lower presence 349 

of Cu, Zn, K, and Cr. A vehicle non-exhaust factor has not been identified, probably because of the 350 

elevated position of the sampler and the small number of samples. The elevated position of the sampler 351 

made resuspension sources less influential. In addition, non-exhaust emissions generally contribute 352 

more to coarse rather than fine particles. The chemical profile obtained for this vehicle exhaust source, 353 

consists mainly of BC. The old technology buses, which are the only means of public transport in the city, 354 

as well as the many trucks that circulate in the port area, are expected to influence this source the most. 355 

The contribution of this source is 33% and it is higher on the cold period of the year probably due to the 356 

lower inversion layer, which limits the dilution of vehicular emissions during the winter season (Khillare 357 

and Sarkar 2012).  358 



Mineral dust is a well-defined factor identified by the high concentration of the crustal elements such as 359 

Al, Si, Ca, Ti and Fe. Al, Si, Ca and Ti are expected to originate mainly from this source. The contribution 360 

of this source is very small (2%) and stable throughout the year. Even though this source is not expected 361 

to have high contribution in PM2.5(Eleftheriadis and Colbeck 2001) it is expected that it is also 362 

influenced by the high sampling location. 363 

Generally no correlations are expected to exist between the sources, as each source contributes aerosol 364 

to the receptor independently from others. Examination of the scatter plot of secondary sulfates and 365 

shipping emissions contributions, reveals a lower edge in the data points, indicating that for high 366 

shipping emissions the secondary sulfates are also high (Figure 5).  Ships can emit SO3 which is 367 

transformed very fast to sulfates (Kim and Hopke 2008; Pandolfi et al. 2011). Combustion of residual oil 368 

will also produce particles containing vanadium (V) and nickel (Ni). Vanadium reacts with the oxygen 369 

from the combustion air surplus creating V2O5 that forms layers on the heat exchanger and other boiler 370 

and stack surfaces. The V2O5 acts as a catalyst in the temperature range of 500–800 oC, accelerating the 371 

SO3 formation. SO3 formed by this mechanism can exceed the amount produced in the flame by a factor 372 

of two or three (Kim and Hopke 2008). Therefore, part of secondary sulfates may be associated with 373 

shipping emissions. The absence of S from the shipping emissions might be another indication that 374 

partially shipping emissions are recognized by the model as secondary sulfates. The lack of ions in the 375 

analysis makes it hard for factors such as secondary sulfates to be very “selective”. That means that 376 

even though this source can be identified because of its high contribution, probably S originating from 377 

other processes is also accumulated in the factor. 378 

 379 

Figure 5. G space plot between secondary sulfates and shipping emissions 380 
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Result Evaluation 382 

The constrained applied first helped “clear” the factor profile from the “noise” that is present in the 383 

form of elements that are not related to the source itself. This problem is of course more pronounced in 384 

the case of small datasets and especially when the constituents included in the analysis represent only a 385 

small fraction of total PM mass. The elements of crustal origin being pulled up in the mineral factor and 386 

BC pulled up in the biomass burning factor are examples of the first type of constraints. The second type 387 

are constraints applied for reducing the rotational ambiguity of the factors. Rotational ambiguity is 388 

decreased when a sufficient number of zero values in G and F matrixes are present (Paatero and Hopke 389 

2008). Assigning fixed values to either F or G will have the same result as zero values but it might be a 390 

more subjective choice. Known elemental ratios fixed for certain source profiles and BC pulled to zero 391 

are examples of this type of constraints.  392 

Table 2. Uncertainty tools’ results for PM2.5 mass concentration (μg/m3) 

 

Base 

Value 

BS 5th BS 

Median 

BS 

95th 

BS-

DISP 

5th 

BS-DISP 

Average 

BS-

DISP 

95th 

DISP 

Min 

DISP 

Average 

DISP 

Max  

Secondary 

Sulfates 
7.1 4.9 7.0 7.2 0.8 5.0 9.2 5.7 6.9 8.1 

Sea Salt 
1.8 0.0 3.0 3.4 0.0 2.1 4.1 0.9 1.8 2.6 

Shipping 

Emissions 
2.2 2.5 2.8 3.1 1.1 3.9 6.7 1.6 2.4 3.2 

Biomass 

Burning 
2.3 0.6 0.8 0.9 0.6 5.1 9.6 2.8 3.3 3.8 

Vehicle 

Emissions 
7.1 4.2 6.9 7.4 0.4 5.0 9.6 5.6 6.5 7.4 

Mineral 

Dust 
0.3 0.0 0.5 0.8 0.0 3.4 6.9 0.1 0.6 1.1 

 393 

 394 

 395 

 396 



 Table 3. Uncertainty tools’ results for specific elements used as tracers of particular sources, 

where: SSU secondary sulfates, SEA sea salt, SHI shipping emissions, BIB biomass burning, VEH 

vehicle exhaust and MID mineral dust 

 

Source Base 

Value 

BS 

5th 

BS 

Median 

BS 

95th 

BS-

DISP 

5th 

BS-DISP 

Average 

BS-

DISP 

95th 

DISP 

Min 

DISP 

Average 

DISP 

Max  

S SSU 1.789 1.496 1.132 1.389 3.169 0.888 1.250 1.612 1.236 1.512 

Na SEA 0.200 0.141 0.162 0.234 1.084 0.104 0.145 0.186 0.130 0.165 

V SHI 0.005 0.004 0.001 0.003 0.005 0.000 0.002 0.004 0.003 0.004 

K BIB 0.271 0.217 0.025 0.068 0.103 0.148 0.210 0.273 0.217 0.244 

BC VEH 1.601 1.648 1.143 1.583 3.049 0.635 1.120 1.604 1.287 1.444 

Si MID 0.279 0.231 0.049 0.203 0.434 0.236 0.264 0.292 0.244 0.262 

 397 

In Tables 2 and 3 the results from the uncertainty tools offered by PMF 5.0 are presented. The results 398 

provided in Table 2 are based on PM2.5 concentration for each source. Mineral dust has high 399 

uncertainty as expected by the low contributing mass concentration of this source. For secondary 400 

sulfates and vehicle emissions the results are quite stable as indicated by the three rotational tools. The 401 

higher uncertainty for BS and BS-DISP, indicates that a number of peak events affect these factors. 402 

Those events might not be resampled in the BS runs leading to higher uncertainty. The time series of 403 

24h source contributions presented in Figure 4, reveals that such events do exist. A matter of discussion 404 

is whether such events should be considered as outliers and be subsequently removed from the 405 

analysis. It is noted here that after the first model run the results were evaluated in order to locate any 406 

possible outliers in the dataset. After the convergence of the PMF algorithm the program calculates the 407 

residuals and identifies the points of bad fit (Paatero and Tappert 1994). For the small number of such 408 

cases identified, their corresponding uncertainties were increased thus their significance in the fitting 409 

was decreased. Events of episodic nature such as forest fires or intense long range transport events may 410 

appear as outliers, but if they are down weighted, then a serious modeling error is made, leading to loss 411 

of critical information (Paatero et al. 2014). 412 



  413 

Figure 4. Source contributions and their time variability 414 

Sea salt seems to have a similar uncertainty level as secondary sulfates and vehicle emissions, with BS 415 

tests yielding the highest uncertainty. Unlike the sources discussed so far, in the case of sea salt 416 

resampling is not assured for both low (or even zero values) and peak events instead of peak events 417 

only, affecting the uncertainty. Shipping emissions seem to be more sensitive to BS-DISP even though BS 418 

and DISP when tested separately produce similar results. Generally speaking sources identified only by a 419 

small number of elements are much more sensitive to DISP based analysis. Biomass burning has the 420 

highest uncertainty for all three tests. Biomass burning has either very high (cold season) or very 421 

low/zero (warm season) contributions and it is identified mainly by one element (K), thus it is very 422 

sensitive both to resampling and displacement. Generally speaking high uncertainties are to be expected 423 

when small datasets are used (Paatero et al. 2014).  424 

The uncertainties provided by the rotational tools correspond to profile uncertainties. The uncertainty 425 

given on Table 2 regarding PM2.5 applies also to estimates of average PM2.5 contribution from each 426 

factor because all modeling is performed under the constraint that average G values must be normalized 427 

for each factor with respect to mass (Paatero et al. 2014).  A straightforward method to calculate 428 

uncertainty for individual (24-h) contribution values does not yet exist, although intercomparison 429 

studies has given some indications towards this direction (Belis et al. 2015). An approach using 430 

regression analysis is proposed in this work. The error of the source contribution was calculated based 431 

on the standard error of the coefficients of a multiple regression between the daily PM2.5 concentration 432 

(independent variable) and the six source contributions for any given day (dependent variables). The 433 

regression approach assumes that all the factors that explain the mass are identified. However, if a 434 

significant portion of the mass that is not directly correlated with the species that are in the PMF 435 
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analysis is missed, the source contributions will be overestimated. This might be an important source of 436 

additional uncertainty.  Results are shown in Table 4. It must be noted that this method captures only 437 

one part of the uncertainty, because it does not include the error arising from the profile uncertainty 438 

and the rotational ambiguity. Using this method we can investigate how well the daily contributions can 439 

recreate the daily PM mass. Since the correlation of the model predicted mass and the true PM mass is 440 

high (R2= 0.80) it is believed that this method could provide an estimate of this uncertainty.  441 

 442 

Table 4. Sources contribution and corresponding error in μg/m3 

 Contribution Err 

Secondary Sulfates 7.2 0.1 

Sea Salt 1.9 0.6 

Shipping Emissions 2.2 0.6 

Biomass Burning 2.4 0.5 

Vehicle Emissions 7.1 0.2 

Mineral Dust 0.3 0.2 

 443 

The errors calculated by this method are quite low indicating a good model fit. Mineral dust because of 444 

its very low contribution has a high error assigned to its contribution.  445 

In Table 3 the uncertainty of the main elements used as tracers for each source are presented. Those 446 

results are very useful because they are needed in order to evaluate which factors may be more reliably 447 

attributed to sources, by showing which components were fitted confidently and which components 448 

were too uncertain to be considered for source identification. All elements uncertainties are considered 449 

reasonably low and thus the factors can be indeed identified as specific PM sources. The only element 450 

that shows quite high uncertainty for BS is K probably because of the variability in concentrations it has, 451 

making it very sensitive on resampling. DISP result for the same element is much more stable.  452 

 453 

Conclusions 454 

A small dataset of 55 samples was used in order to identify the sources of PM2.5 in Patras. The target of 455 

the study, appart from source identification and characterizarion, was to evaluate the stability of the 456 



sollution resulting from the use of a small dataset, using the tools offerd by PMF 5.0. When no 457 

constraints are applied, the results from the base run were characterized by high uncertainty, to the 458 

extent that no sources could be attributed to the factors. After the application of the constraints the 459 

solution was stable and could be interpreted in a meaningful manner.  460 

The constraints applied were in the form of elemental ratios and in particular for shipping emissions (V - 461 

3×Ni=0) and for biomass burning (S - 0.5×K=0).  Al, Si, Ca and Ti were pulled up maximally in the mineral 462 

dust source, BC was pulled up in biomass burning and finally BC was set to zero in mineral dust. The 463 

change in Q after the application of the constraints was low (<1%).  464 

Six sources were identified and were namely biomass burning (11%), shipping emissions (10%), sea salt 465 

(9%), secondary sulfates (34%), mineral dust (2%) and vehicle emissions (34%). This is the first time that 466 

the contribution of shipping emissions is quantified in a Greek urban area with port. This information 467 

can be used for the development of more effective measures for the improvement of the air quality of 468 

the area. 469 

BS, DISP and BS-DISP results showed that the profile uncertainty for the elements used as tracers for 470 

factor identification was quite low, providing strong evidence for the identification of the factors. PM2.5 471 

concentration in the profiles has high uncertainty in some cases, a fact that is attributed mainly to the 472 

small dataset and the high level of uncertainty assigned to PM2.5 when set as total variable (uncertainty 473 

is tripled in that case). The case of biomass burning revealed that sources with high seasonal variability 474 

are especially vulnerable to resampling techniques in small datasets.  475 

Overall the results indicate that the use of the tools offered by PMF 5.0 and the consideration of 476 

appropriate constraints significantly improve the solution even for data sets of limited number of 477 

samples. It is very important to fully report the uncertainty of the solution in source apportionment 478 

studies especially if small datasets are used. In any case it should be noted that this work does not 479 

encourage the use of small datasets, and datasets with a larger number of samples should be used 480 

whenever possible.  481 
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