Mechanochemistry

Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl *N*-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents**

Vjekoslav Štrukil,* Davor Gracin, Oxana V. Magdysyuk, Robert E. Dinnebier, and Tomislav Friščić*

Abstract: Monitoring of mechanochemical thiocarbamoylation by in situ Raman spectroscopy revealed the formation of aryl N-thiocarbamoylbenzotriazoles, reactive intermediates deemed unisolable in solution. The first-time isolation and structural characterization of these elusive molecules demonstrates the ability of mechanochemistry to access otherwise unobtainable intermediates and offers a new range of masked isothiocyanate reagents.

Mechanochemistry has emerged as an efficient means for rapid, solvent-free, and energy-efficient synthesis.^[1] In organic synthesis,^[2] neat and liquid-assisted grinding $(LAG)^{[3]}$ has provide rapid and clean access to a number of transformations, excellent control of reaction stoichiometry, and previously unknown reactivity.^[4–6] We now demonstrate the ability of mechanochemistry to access reactive intermediates considered unisolable in solution. We describe the first synthesis and isolation of aryl *N*-thiocarbamoylbenzotriazoles (**2a**–**g**, Scheme 1) as bench-stable solids by milling bis(benzotriazolyl)methanethione (**1**)^[7] with anilines (Table 1). Mechanochemical isolation of **2a**–**g** allows their use as reagents for the controlled solvent-free synthesis of thioureas (**3a–g**) without using corrosive isothiocyanates.

[*]	Dr. V. Štrukil, Prof. T. Friščić Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal, H3A 0B8 (Canada) E-mail: tomislav.friscic@mcgill.ca			
	Dr. V. Štrukil, Dr. D. Gracin Ruđer Bošković Institute Bijenička cesta 54, 100002 Zagreb (Croatia) E-mail: vstrukil@irb.hr			
	Dr. O. V. Magdysyuk, Prof. Dr. R. E. Dinnebier Max Planck Institute Stuttgart (Germany)			
	Dr. O. V. Magdysyuk Diamond Light Source Ltd. Harwell Science and Innovation Campus, OX11 0DE Didcot (UK)			
[**]	We thank Dr. E. Stavitski and Dr. J. Reid for synchrotron PXRD data collected at the CLS (supported by the Canadian Foundation for Innovation (CFI), NSERC, NRC Canada, Canadian Institutes of			

Health Research, Government of Saskatchewan, Western Economic Diversification Canada, and University of Saskatchewan). We acknowledge support from an NSERC Discovery Grant, FRQNT Nouveaux Chercheurs grant, CFI, and McGill University. Prof. D. S. Bohle and C. Mottillo are acknowledged for single-crystal X-ray diffraction data, and Dr. F. Morin for help in acquiring solid-state NMR data.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201502026.

Scheme 1. a,b) In contrast to solution chemistry, $^{[14-16]}$ mechanochemical reactions of 1 and anilines give *N*-thiocarbamoylbenzotriazoles (2a–g) as stable solids which, upon milling with anilines and a base, afford thioureas (3a–g).

Table 1: LAG synthesis of aryl N-thiocarbamoylbenzotriazoles $2\,a-g$ and thioureas $3\,a-g.^{[a]}$

	0		
Compound	R ¹	R ²	Yield of isolated product [%]
2a	4-Br	_	99
2 b	4-Cl	_	98
2c	4-CH₃	_	98
2 d	4-OCH ₃	-	99
2e	2-NH ₂	-	98
2 f	4-NH ₂	_	99
2 g ^[b]	4-NH ₂	-	99
3 a	4-Br	4-Br	97 ^[c]
3 b	4-Cl	4-Cl	97
3 c	4-CH ₃	4-CH ₃	98
3 d	4-OCH ₃	4-0CH ₃	98
3 e	4-OCH ₃	4-Cl	97 ^[d]
3 f	4-Cl	4-Br	99 ^[c,d]
3g	4-Br	2-NH₂	98 ^[d,e]

[a] 10 min LAG with CH₃CN (η = 0.25 µLmg⁻¹), 10 mm ball. [b] 2 equiv of **1**. [c] 45 min LAG. [d] Two-step synthesis. [e] 30 min LAG.

As part of our interest in the mechanosynthesis of ureas and thioureas,^[8,9] we applied the recently introduced technique of in situ Raman spectroscopy monitoring of mechanochemical reactions^[10-13] to the mechanosynthesis of **3a** by milling **1** with two equivalents of 4-bromoaniline in the

Angew. Chem. Int. Ed. 2015, 54, 1-5

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

Dateiname: Pfad: Status Datum: **Z502026E** L:/daten/Verlage/VCH/ACH/hefte/pool/ Neusatz 21 KW., 22. Mai 2015 (Freitag) Pagina: Seite: Umfang (Seiten): Zeit: 1 te von 5 5 8:30:38 Uhr 59

16

17

19

2

24

25

31 32

34

41

42

43

44

45

46

47

49

51

Figure 1. a) Mechanochemical base-assisted reaction of 1 and p-bromoaniline to form the thiourea 3a and b) in situ collected Raman spectra for this reaction.

presence of Na_2CO_3 (Figure 1a). While 1 is a known reagent for base-catalyzed thioacylations and thiocarbamoylations in solution,^[7,14] thereby giving benzotriazole (HBt) as a byproduct, its mechanochemical reactivity is still unexplored. Monitoring the reaction in situ reveals that characteristic bands of 1 are completely replaced with those of 3a (e.g. 407, 712, 1170, 1302 cm⁻¹, Figure 1 b) within 40 min. A characteristic band of the by-product HBt sodium salt also appears at 1380 cm⁻¹. However, the spectra also revealed an unknown intermediate with bands at 544, 1041, 1159, 1248, and 1511 cm⁻¹, appearing about 2 min into milling and disappearing concomitantly with the appearance of 3a.

Katritzky et al. proposed that 1 reacts with anilines in solution via reactive aryl N-thiocarbamoylbenzotriazole intermediates that are not isolable due to their rapid fragmentation into isothiocyanates (Scheme 1).^[14-16]

Speculating that the herein observed intermediate might be the elusive N-thiocarbamoylbenzotriazole, we repeated the milling without a base, and with only one equivalent of aniline. Under these conditions the intermediate was obtained as the only product (see the Supporting Information). Solution ¹H NMR spectroscopy and thin-layer chromatography revealed this product deteriorates quickly in organic solvents into HBt and 4-bromophenylisothiocyanate. However, a ¹H NMR spectrum recorded immediately after dissolution was consistent with the generation of N-thiocarbamoylbenzotriazole 2a (Scheme 1, Table 1). Intrigued by the possibility of mechanochemically accessing such elusive molecules, we conducted LAG of 1 with a series of substituted anilines (Table 1, Scheme 1 a,b). In all cases, LAG followed by simple aqueous washing gave crystalline solids, which were identified as N-thiocarbamoylbenzotriazoles 2a-g by crosspolarization magic angle spinning (CP-MAS) ¹³C and ¹⁵N solid-state NMR spectroscopy (SSNMR, Figure 2a), thermogravimetric analysis (TGA), differential scanning calorim-

Figure 2. a) ¹⁵N NMR CP-MAS SSNMR spectrum of 2d; b) a centrosymmetric pair of 2d molecules in the crystal structure, based on PXRD data; and c) final Rietveld fit for the crystal-structure determination of **2d** by PXRD.

etry (DSC), and, where possible, structure determination from synchrotron powder X-ray diffraction (PXRD) data (Figure 2b,c and Figure 3a-d). Solid-state characterization was mandated by the instability of 2a-g in solution: the ¹H NMR spectra in CDCl₃, [D₆]DMSO, or CD₃CN reveals degradation to isothiocyanates in minutes (see the Supporting Information). The 2-amino derivative 2e decomposed in solution into 2-mercaptobenzimidazole (4) and HBt. In contrast, the compounds were stable in the solid state: FTIR-ATR spectra of mechanochemically prepared 2a-d did not change after storage for more than 1 year.^[17]

The CP-MAS ¹³C SSNMR spectra of 2a-g reveal the signal of the thiocarbonyl group shifted downfield by about 2-5 ppm relative to that of **1**. The spectrum of **2 f** reveals signal twinning, thus suggesting Z' = 2.^[18] With the exception of **2 f**,

www.angewandte.org

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

41

57

These are not the final page numbers!

Dateiname: Pfad: Status Datum

Z502026E L:/daten/Verlage/VCH/ACH/hefte/pool/ Neusatz 21 KW., 22. Mai 2015 (Freitag)

Umfang (Seiten):

5

6 7

9

37

40

41

42

43

45

46

47

57

Figure 3. Centrosymmetric arrangement of molecules (top) and the final Rietveld fits (bottom) for the crystal structures of a) **2b** and b) **2e**, determined from PXRD data.

the ¹³C SSNMR spectra for all the compounds are consistent with one molecule per asymmetric unit (Z' = 1).

The ¹⁵N CP-MAS SSNMR spectra of 2d and 2g (Figure 2a, see also the Supporting Information) showed four signals, consistent with four non-equivalent nitrogen atoms per molecule. TGA shows **2a–d** to be stable to approximately 120°C, with the first decomposition event corresponding to elimination of aryl isothiocyanate, followed by loss of HBt. DSC of 2a-d reveals a melting signal at 90–105 °C. Compound 2e also undergoes an exothermic event at 92°C, as a result of cyclization to 4 with loss of HBt, as confirmed by TGA and PXRD (see the Supporting Information). Crystal structures of 2b, 2d, and 2e were determined from synchrotron PXRD data collected at the Canadian Light Source (CLS) beamline 08B1-1 ($\lambda = 0.6897$ Å). Indexing gave monoclinic unit cells with Z=4. Determination of the structure using TOPAS revealed Z' = 1, in agreement with SSNMR spectroscopic analysis. 2d, 2b, and 2e are nonplanar, with the angle between the phenyl and benzotriazolyl substituents being 83°, 65°, and 86°, respectively. The thione and benzotriazole groups are nearly coplanar in all cases. The molecules form centrosymmetric pairs with long N-H-N interactions between the thiocarbamoyl group and benzotriazole (2b, 2d) or 2-aminophenyl (2e) groups of neighboring molecules (Figures 2 and 3).

Amino-substituted *N*-thiocarbamoylbenzotriazoles, such as **2e** and **2f**, are attractive as precursors for catalytically interesting aminothioureas^[19] and amino-substituted isothiocyanates. Both **2e** and **2f** were readily obtained by milling **1** with one equivalent of either *ortho-* (*o*-pda) or *para*phenylenediamine (*p*-pda). The ¹H NMR spectrum of **2f** in $[D_6]DMSO$ reveals rapid decomposition to the tentatively identified *p*-aminophenyl isothiocyanate (see the Supporting Information).^[20] Although stable for weeks, solid **2f** slowly degrades on prolonged standing, as shown by ¹H NMR and FTIR-ATR spectroscopy.

The bis-N-thiocarbamoylbenzotriazole 2g was quantitatively obtained by LAG of *p*-pda with two equivalents of 1 (Scheme 1 b). Attempted analogous synthesis of the bis-N- thiocarbamoylbenzotriazole **5** from *o*-pda and two equivalents of **1** yielded the bisthione **6**, probably as a result of an intramolecular cyclization of the expected product (Figure 4a,b, see also the Supporting Information). The alternative path, cyclization of **2e** into **4** followed by reaction with **1**, was dismissed because **1** and **4** do not react on milling.

Figure 4. a) Mechanochemical reaction of **o-pda** with **1** in a 1:1 stoichiometric ratio yields **2e** (which slowly degrades into **4**) and milling in 1:2 ratio affords **6**, most likely by intramolecular cyclization of the expected **5**. b) Molecular structure of **6** from single-crystal X-ray diffraction. c) The use of mechanochemically prepared aryl *N*-thiocarbamoylbenzotriazoles as masked isothiocyanates.

Compounds 2a-d represent masked aryl isothiocyanates that are useful in thiourea mechanosynthesis. Milling 2a-dwith anilines and Na₂CO₃ gave 3a-g in near quantitative yields (Table 1). Symmetrical 3a-d were also obtained by milling 1 with two equivalents of an aniline and Na₂CO₃, while nonsymmetrical 3e-g were obtained by a two-step one-pot procedure from 1, thus confirming the structures of 2a-d. Similarly, 2g allows the synthesis of bisthioureas: milling 2gwith *p*-anisidine and Na₂CO₃ gave 7 quantitatively after 3 h. The same product was obtained in 98% yield by milling 2dand *p*-pda with Na₂CO₃ for 45 min (Figure 4c).

In summary, real-time monitoring revealed the utility of mechanochemistry to trap and quantitatively synthesize molecules too reactive to access in solution. Solid-state analysis enabled the first structural, physical, and chemical identification of aryl thiocarbamoylated benzotriazoles and, in combination with structure determination from PXRD data, full structural characterization of members of this compound family. In addition to providing a new family of bench-stable thiocarbamoylation reagents, this also establishes mechanochemistry as a means to circumvent solventinduced limitations of traditional synthesis.

Angew. Chem. Int. Ed. 2015, 54, 1-5

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

These are not the final page numbers!

Dateiname: Pfad: Status Datum: Z502026E L:/daten/Verlage/VCH/ACH/hefte/pool/ Neusatz 21 KW., 22. Mai 2015 (Freitag) Pagina: Seite: Umfang (Seiten): Zeit:

Angewandte Communications

Experimental Section

Δ

17

24

34

40

41

43

44

45

46

47

49

51

53

56

In a typical experiment, 200 mg of an equimolar mixture of 1 and a substituted aniline was milled for 10 min with dry CH₃CN (50 µL, $\eta = 0.25 \,\mu \text{Lmg}^{-1})^{[3]}$ with a 10 mm stainless-steel ball in a Retsch MM400 mill at 30 Hz. The crude mixture was meticulously scraped from the jar and suspended in 10 mL distilled water by vigorous stirring for 30 min. The solid was filtered off, washed, and dried in air. 1 and 6 were also characterized by ¹H and ¹³C NMR spectroscopy as well as single-crystal X-ray diffraction. See the Supporting Information for PXRD, FTIR, SSNMR, TGA/DSC, TLC, MS, solution degradation, and in situ monitoring data.

Crystallographic data: 1: monoclinic, $P2_1/c$, a = 8.747(5), b =7.370(5), c = 19.079(12) Å, $V = \blacksquare \blacksquare$? $\blacksquare \blacksquare$, Z = 4, $R_1 = 0.0338$, $wR_2 =$ 0.0814 (1795 data, $I \ge 2\sigma_I$); 6: triclinic, $P\bar{1}$, a = 7.1962(11), b =7.8855(12), c = 12.7962(19) Å, $\alpha = 98.710(2)$, $\beta = 104.144(2)$, $\gamma =$ 93.099(2)°, $V = 692.85(18) \text{ Å}^3$, Z = 2, $R_1 = 0.0484$, $wR_2 = 0.0987$ (1861, with $I \ge 2\sigma_I$); **2b**: monoclinic, $P2_1/n$, a = 21.7933(7), b =14.7693(9), c = 3.9624(1) Å, $\beta = 97.125(3)^\circ$, V = 1265.5(1) Å³, Z = 4, $R_{\text{exp}} = 0.40\%$, $R_{\text{p}} = 2.73\%$, $R_{\text{wp}} = 3.84\%$; **2d**: monoclinic, $P2_1/n$, a =17.6266(8), b = 8.9650(4), c = 8.6183(5) Å, $\beta = 100.034(4)^{\circ}$, V =1341.1(1) Å³, Z = 4, $R_{exp} = 2.00\%$, $R_p = 4.98\%$, $R_{wp} = 6.46\%$; **2e**: monoclinic, $P2_1/c$, a = 13.0760(3), b = 12.0177(7), c = 8.1421(9) Å, $\beta = 98.25(2)^{\circ}, V = 1266.3(3) \text{ Å}^3, Z = 4, R_{exp} = 1.64\%, R_p = 3.85\%,$ $R_{\rm wp} = 5.53$ %. CCDC 1050984 (1), 1050985 (6), 1050986 (2b), 1050987 (2d), and 1050988 (2e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif,

Keywords: mechanochemistry · reactive intermediates · thiocarbamoylation · thiourea

- [1] a) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Angew. Chem. Int. Ed. 2012, 41, 413 not found ; Angew. Chem. 2012, 124, 2; b) D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 2013, 42, 7638; c) E. Boldyreva, Chem. Soc. Rev. 2013, 42, 7719; d) A. Bruckmann, A. Krebs, C. Bolm, Green Chem. 2008, 10, 1131; e) Ball Milling Towards Green Synthesis: Applications, Projects, Challenges (Eds.: B. Ranu, A. Stolle), RSC, London, 2015.
- [2] a) A. Stolle, T. Szuppa, S. E. S. Leonhardt, B. Ondruschka, Chem. Soc. Rev. 2011, 40, 2317; b) B. Rodríguez, A. Bruckmann, T. Rantanen, C. Bolm, Adv. Synth. Catal. 2007, 349, 2213; c) W. C. Shearouse, C. M. Korte, J. Mack, Green Chem. 2011, 13, 598; d) N. Mukherjee, T. Chatterjee, B. C. Ranu, J. Org. Chem. 2013, 78, 11110; e) G.-W. Wang, Chem. Soc. Rev. 2013, 42, 7668; f) A. Stolle, B. Ondruschka, Pure Appl. Chem. 2011, 83, 1343; g) J. G. Hernández, E. Juaristi, Chem. Commun. 2012, 48, 5396.
- [3] T. Friščić, S. L. Childs, S. A. A. Rizvi, W. Jones, CrystEngComm 2009, 11, 418.
- [4] a) G.-W. Wang, K. Komatsu, Y. Murata, M. Shiro, Nature 1997, 387, 583; b) D. Tan, C. Mottillo, A. D. Katsenis, V. Štrukil, T. Friščić, Angew. Chem. Int. Ed. 2014, 53, 9321; Angew. Chem. 2014, 126, 9475.

- [5] a) J. Bonnamour, T.-X. Métro, J. Martinez, F. Lamaty, Green Chem. 2013, 15, 1116; b) P. Nun, C. Martin, J. Martinez, F. Lamaty, Tetrahedron 2011, 67, 8187.
- [6] a) D. Tan, V. Štrukil, C. Mottillo, T. Friščić, Chem. Commun. 2014, 50, 5248; b) M. Ferguson, N. Giri, X. Huang, D. Apperley, S. L. James, Green Chem. 2014, 16, 1374.
- [7] C. Larsen, K. Steliou, D. N. Harpp, J. Org. Chem. 1978, 43, 337.
- [8] V. Štrukil, M. D. Igrc, L. Fábián, M. Eckert-Maksić, S. L. Childs, D. G. Reid, M. J. Duer, I. Halasz, C. Mottillo, T. Friščić, Green Chem. 2012, 14, 2462.
- [9] Z. Zhang, H.-H. Wu, Y.-J. Tan, RSC Adv. 2013, 3, 16940.
- [10] a) D. Gracin, V. Štrukil, T. Friščić, I. Halasz, K. Užarević, Angew. Chem. Int. Ed. 2014, 53, 6193; Angew. Chem. 2014, 126, 6307; b) M. Tireli, M. Juribašić, Kulcsár, N. Cindro, D. Gracin, N. Biliškov, M. Borovina, M. Ćurić, I. Halasz, K. Užarević, Chem. Commun. 2015, DOI: 10.1039/C5CC01915J. update?
- [11] L. Batzdorf, F. Fischer, M. Wilke, J. Wenzel, F. Emmerling, Angew. Chem. Int. Ed. 2015, 54, 1799; Angew. Chem. 2015, 127, 1819.
- [12] For in situ reaction monitoring by PXRD, see A. D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P. A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S. A. J. Kimber, P. Lazić, O. Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friščić, Nat. Commun. 2015, 6, 6662.
- For stepwise monitoring, see a) X. Ma, W. Yuan, S. E. J. Bell, [13] S. L. James, Chem. Commun. 2014, 50, 1585; b) I. A. Tumanov, A. F. Achkasov, E. V. Boldyreva, V. V. Boldyrev, CrystEng-Comm 2011, 13, 2213; c) L. Tröbs, F. Emmerling, Faraday Discuss. 2014, 170, 109.
- [14] a) A. R. Katritzky, R. M. Witek, V. Rodriguez-Garcia, P. P. Mohapatra, J. W. Rogers, J. Cusido, A. A. A. Abdel-Fattah, P. J. Steel, J. Org. Chem. 2005, 70, 7866; b) A. R. Katritzky, S. Ledoux, R. M. Witek, S. K. Nair, J. Org. Chem. 2004, 69, 2976; c) V. V. Sureshbabu, G. Chennakrishnareddy, H. P. Hemantha, Synlett 2010, 715.
- [15] a) A. Singh, Synlett 2010, 2045; b) A. R. Katritzky, N. M. Khashab, S. Bobrov, Helv. Chim. Acta 2005, 88, 1664; c) C. Larsen, D. N. Harpp, J. Org. Chem. 1980, 45, 3713; d) A. R. Katritzky, N. M. Khashab, S. Bobrov, M. Yoshioka, J. Org. Chem. 2006, 71, 6753.
- [16] Alkyl and heteroaryl derivatives can be isolated from solution.^[15]
- [17] The presence of acetonitrile in LAG does not affect the integrity of 2a-g, as established by PXRD analysis of crude reaction mixtures immediately after milling, which revealed only HBt and 2a-g. Attempts to synthesize 2a or 2d by stirring 1 with 4bromoaniline or p-anisidine in CH₂Cl₂ failed, only yielding a mixture of 2d, the isothiocyanate, and HBt. Reactions in acetonitrile gave only HBt and respective isothiocvanate (Figures S41-S44). Such observations confirm that the reactivity of the catalytic liquid in LAG can be different from that in a bulk solvent: T. Friščić, A. V. Trask, W. Jones, W. D. S. Motherwell, Angew. Chem. Int. Ed. 2006, 45, 7546; Angew. Chem. 2006, 118, 7708.
- [18] J. W. Steed, Chem. Commun. 2003, 169.
- [19] X. Fang, C.-J. Wang, Chem. Commun. 2015, 51, 1185.
- [20] This compound was never previously synthesized or characterized due to its high propensity to polymerization, consistent with our NMR analysis.

Received: March 4, 2015 Published online:

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

Dateiname: Pfad: Status Datum

Z502026E L:/daten/Verlage/VCH/ACH/hefte/pool/ Neusatz 21 KW., 22. Mai 2015 (Freitag)

Umfang (Seiten):

Communications

Mechanochemistry

Δ

12 13

D

18 19

33 34

40 41

42

43

44 45

46 47

49

54

V. Štrukil,* D. Gracin, O. V. Magdysyuk, R. E. Dinnebier, T. Friščić* ______ IIII - IIII

Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl *N*-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents

Saved from drowning in solvent: Switching from solution to mechanochemistry enabled the first-time isolation and structural characterization of aromatic *N*-thiocarbamoyl benzotriazoles, a family of reactive and previously thought unisolable intermediates of thiocarbamoylation reactions.

Mechanochemie

V. Štrukil,* D. Gracin, O. V. Magdysyuk, R. E. Dinnebier, T. Friščić* _____

Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl *N*-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents

Sicher im Trockenen: Ein Wechsel von Lösungs- zu Mechanochemie ermöglichte die Isolierung und strukturelle Charakterisierung aromatischer (*N*-Thiocarbamoyl)benzotriazole. Diese reaktiven Zwischenstufen von Thiocarbamoylierungen wurden bislang für nicht isolierbar gehalten.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

These are not the final page numbers!

Dateiname: Pfad:

Status

Datum

Z502026E L:/daten/Verlage/VCH/ACH/hefte/pool/ Neusatz 21 KW., 22. Mai 2015 (Freitag)

Pagina: Seite: Umfang (Seiten): Zeit: 5 te von 5 5 8:30:42 Uhr