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In order to better understand biochemical processes inside an individual cell, it is important to

measure the molecular composition at the submicron level. One of the promising mass

spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary

Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have

the ability to desorb large intact molecules with a yield that is several orders of magnitude higher

than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV

TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission

ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is

suitable for biological samples in which the STIM detector simultaneously measures the mass dis-

tribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by

imaging the chemical composition of CaCo-2 cells. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4930062]

Mass spectrometry techniques serve as indispensable an-

alytical tools in the investigation of molecular metabolic

pathways that are essential for maintaining cell physiology.

In addition to chemical analysis, mass spectrometry imaging

(MSI) techniques, such as matrix-assisted laser desorption/

ionization mass spectrometry (MALDI-MS)1–3 and second-

ary ion mass spectrometry (SIMS),4–6 could also provide in-

formation regarding molecular distributions at the

microscopic level. The minimum analyzed area for chemical

imaging using MSI techniques depends mainly on two fac-

tors: the minimum achievable beam spot size and the sensi-

tivity, which is the total number of molecules that can be

detected in the beam spot before the sample surface is

destroyed. Despite the good sensitivity of MALDI, which

uses a matrix to enhance the ionization probability, the spa-

tial resolution of the laser beam spot is in the range of

5–10 lm, with 3 lm as the best spatial resolution obtained by

analyzing a mouse brain section.7 Nevertheless, there is

another approach called Scanning Microprobe Matrix-

Assisted Laser Desorption Ionization (SMALDI),8 with laser

focus below 1 lm, but in order to perform high-resolution bi-

ological imaging, the limitations in the effective lateral reso-

lution due to matrix application remain to be solved.9

Contrary to the MALDI technique, the beam spot size with

SIMS is well below 1 lm, which provides an excellent spa-

tial resolution; however, the sensitivity of the technique is

much worse, thereby limiting the spot area under analysis to

�1 lm.10 Recent developments in keV cluster ion sour-

ces11,12 aiming to improve secondary molecular yields have

reduced the spatial resolution below 1 lm. In the work of

Kozole et al.,13 Cheng et al.,14 and Winograd,15 progress in

the potential use of C60
þ and Au3

þ cluster projectiles in the

high-resolution (submicron) mass imaging of the individual

cells is shown. In addition, Heeren and co-workers from

Amolf Institute presented a new approach in MSI,

microscope mode imaging, where secondary ions/molecules

are detected by the combination of ion optics and position

sensitive detector enabling lateral resolution of �600 nm.16

This approach decouples effective lateral resolution from de-

sorption and ionization spot size, so broad primary beam can

be used. It has been recently demonstrated17,18 that the use

of MeV primary ions, instead of the keV energy ions that are

used in conventional SIMS, significantly suppressed frag-

mentation and simultaneously enhanced the secondary ion

yield, especially for higher mass molecules (100–1000 Da).

An increase in yield of more than three orders of magnitude

was demonstrated using peptide samples, making MeV

TOF-SIMS a good candidate to perform molecular imaging

at the submicron level. However, similar to MALDI, the

beam spot size of the existing MeV TOF-SIMS systems is

typically several microns.19–23 The main reason for this is

that the ion microbeam pulsing (providing the start signal for

TOF) requires rather high initial ion beam currents, which

are delivered by the accelerator to the ion microprobe.19,20

In the recently commissioned MeV TOF-SIMS setup at

RBI,21 the most commonly used primary beams are oxygen

and silicon ions between 5 and 20 MeV. In order to obtain a

sufficiently narrow pulse width (<10 ns), which is essential

for high mass resolution, the primary ion microbeam current

has to be greater than 100 pA. This limits the lateral beam re-

solution to �10 lm, due to the large opening of the object

and collimator slits that are required. Thus, the minimum

spot size for the molecular mapping is limited by the beam

spot size, not by the sensitivity of the method.

In order to improve the resolution of the lateral beam,

the trigger for the TOF-START was replaced with a timing

signal that is provided by a silicon charged particle detector

that is used for Scanning Transmission Ion Microscopy

(STIM). The STIM detector is normally placed behind the

target and is transparent to the ions being used, as seen in

0003-6951/2015/107(9)/093702/4/$30.00 VC 2015 AIP Publishing LLC107, 093702-1
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Fig. 1. The data throughput with pulse processing electronics

(�10 kHz) permits measurements with continuous beams of

significantly lower beam currents (<1 fA). Reduction of the

beam current is performed by closing the object and collima-

tor slit openings, thus decreasing divergence of the ion

beam. This leads to a significant reduction of the ion beam

spot size (below 1 lm) using the same focusing elements

(Oxford quadrupole triplet). With this approach, the same

beam current was achieved as with the pulsed ion beam

mode, but the beam lateral dimension was reduced by more

than an order of magnitude.

Although the proposed approach requires working with

thin samples (transparent for the primary ions being used),

another advantage of this setup is that together with the mo-

lecular image, a STIM image of the sample is also recorded.

This provides information about the sample density distribu-

tion, which is essential for biological materials, such as tis-

sue sections or single cells. In addition, the beam dose is

easily monitored, because a STIM detector directly counts

the number of atoms that strikes each pixel. Altogether, due

to the well-defined submicron beam focus and the high sensi-

tivity, molecular imaging of a single cell at a sub-cellular

level is now achievable also using MeV TOF-SIMS.

Fig. 1 shows a schematic view and the picture of the ex-

perimental setup for the simultaneous TOF-SIMS and STIM

measurements. For the TOF-SIMS measurement, a linear

TOF spectrometer is positioned at an angle of 135� toward

the beam direction. Additional details regarding the TOF

spectrometer can be found in Ref. 21.

The energy of the transmitted ions and the START sig-

nal were recorded using a HAMAMATSU PiN diode

S1223–01 that is placed 10 mm behind the sample (STIM

detector). Due to the damage that is induced by the O ion

beam, the spectroscopic characteristics of the PiN diode de-

grade with accumulated ion fluence. Therefore, the diode

should be replaced frequently (for each measurement), which

is not a concern due to the low cost. Secondary molecular

ions, which are desorbed from the sample surface after inter-

action with the MeV primary ions, are accelerated toward

the spectrometer with a þ5 kV voltage difference between

the target and the extractor. Sample was positioned (focused)

by long working distance microscope attached to the

microbeam chamber.

The initial tests of the beam’s lateral resolution and of

TOF-SIMS measurements were performed using a 9 MeV

O4þ beam that was accelerated by a 6 MV EN Tandem Van

de Graff accelerator. The beam’s lateral resolution was

deduced from STIM measurements on a Ni-plated grid of

known dimensions, as demonstrated in Fig. 2.

The two-dimensional map in Fig. 2 consists of 256 � 256

pixels, which corresponds to a scanned area of 27 � 27 lm2.

Color bar represents the number of events in the pixel. There

are no events at the bar position, since it is too thick for ion

passage. Beam resolution was calculated by fitting the “error

function” on the grid bar edge extracted from the grid image:

(300 6 60) nm in the x-direction and (500 6 100) nm in the

y-direction, respectively. It can be seen that the smallest grid

bars (nominally 400 nm) are nicely resolved in the

x-direction, which demonstrates that the beam resolution is

less than 400 nm. The same bars are not visible in the

y-direction, which indicates that the beam resolution is worse

than 400 nm. One reason for this is because the target is

inclined under 45� to the beam direction, and the beam resolu-

tion is diminished in the y-direction by a factor of 21/2.

Molecular mapping capabilities of the setup were eval-

uated using a CaCo-2 cell line, which is derived from a

human colorectal adenocarcinoma. Thin (5 nm) Au film was

evaporated onto the 100 nm thin silicon nitride (Si3N4) win-

dow (1 � 1 mm2 window and 5 � 5 mm2 Si frame size from

the SILSON Company) in order to ensure a uniform extrac-

tion field between the target and the spectrometer extractor.

The silicon nitride windows and cells (60 000 cells/ml) were

FIG. 1. Schematic view and the picture of the setup for the combined TOF-

SIMS and STIM measurements.

FIG. 2. STIM image of the Ni-plated grid recorded using a 9 MeV O4þ

beam, with total count (TC) displayed.
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placed in glass Petri dishes in complete Dulbecco’s Modified

Eagle Medium (DMEM) from GibcoTM (detailed composi-

tion can be found at the producer webpage). The cells were

grown at 37 �C with 5% CO2 on the upper (gold) side of the

window for 24 h. Subsequently, the silicon windows with the

cells were washed 5 times using a volatile salt solution of

ammonium formate (HCOONH4, Sigma, 150 mM), followed

by cryofixation in liquid nitrogen.24 Lyophilization (freeze

drying) was performed overnight at �80 �C at a pressure of

10�3 mbar (Lyovac GT2E, Steris, Germany), and the silicon

nitride windows were stored in a drying chamber until used.

The TOF-SIMS spectrum acquired from the cellular region

is shown in Fig. 3.

The most pronounced peaks in the spectra were identi-

fied and were shown to exhibit the typical composition of a

biological sample:25 Naþ and Kþ ions, and lipid fragments

at masses 86.1 (C5H12Nþ) and 184.1 (C5H15NPO4
þ). Mass

resolution of our present linear TOF instrument is only �1/

500,21 so peaks are not defined with a high precision. Since

analyzed sample was pure CaCo-2 cell, we assigned peak at

mass of 184.1 to a fragment of phospholipid, which is natu-

rally occurring in biological samples.

Fig. 4 displays a 2D distribution of Naþ, Kþ, and lipid

fragments together with the STIM image of CaCo-2 cell. A

corresponding optical image is also shown.

CaCo-2 cells were grown attached to the silicon nitride

window, maintaining the same shape as in a culture flask

(Fig. 4 optical image). A higher peak of potassium than so-

dium ions obtained in the SIMS spectra of CaCo-2 cells is in

accordance with sodium/potassium gradient that exists in a

living cell due to preserved function of active ion pumping

and channels across the plasma membrane. The higher potas-

sium peak is observed in, e.g., human fibroblasts,24 although

the exact K/Na ratio could vary due to the difference in cells

types, a level of cellular metabolic activity, and the type of

medium used for cell culture (high or low glucose). Signal

background (Naþ, Kþ, and lipids) is expected due to how

CaCo-2 cells are growing. They grow in the clusters and it is

hard to separate individual cell from the signal coming from

the surrounding cells.

The scan size of the images in Fig. 4 is 85 � 85 lm,

which corresponds to �330 nm/pixel. The color bars next to

each SIMS image represent the number of counts per pixel.

In the case of the STIM image, the color bar represents the

density distribution within the cell (in arbitrary units), from

the highest (blue color, cytoplasm) to the lowest density (red

color, nucleus).

If we assume that typical composition of the dehy-

drated biological sample is C3H7NO, with density of

q¼ 1.4 g cm�3,26 range of the 9 MeV O ions according to

the SRIM27 calculations is 6.8 lm. Since the STIM spectra

was collected simultaneously, we found that average thick-

ness of the analysed dehydrated CaCo-2 cell is in a range of

�1 lm (SRIM27 calculations).

The yield of the selected masses of the secondary mo-

lecular ions as a function of the primary ion flux is shown in

Fig. 5.

It can be seen that the yield of secondary molecular ions

does not change with the primary ion flux, which indicates

that the criteria for static SIMS are preserved.

Normally, the static SIMS limit is in the range of

1012–1013 ions/cm2 for keV Arþ, Gaþ, and Inþ ions and it

can be even lower for the cluster ion sources.28 Recently, we

performed damage cross section measurements on a pure

Leucine sample using 5 MeV 28Si ions showing that static

SIMS criteria is preserved for 1013 ions/cm2. Therefore, we

expect that we can improve statistics for each mass presented

in 2D maps (maps where created by 4 � 1011 O ions/cm2).

According to Ref. 23, the minimum yield required for

molecular imaging in a 1 lm2 area is 10�4. It can be seen

from Fig. 5 that the area obtained using MeV TOF-SIMS is

well below this value for the molecules in this range, because

the lowest yield is �2 � 10�3 for Naþ ions. Due to the

FIG. 3. TOF-SIMS spectra of CaCo-2 cell acquired using a 9 MeV O4þ

beam.

FIG. 4. 2D distribution of Naþ, Kþ, and lipids in CaCo-2 cell. A STIM

image (density distribution) is also presented, together with an optical

image. Total number of counts (TC) for each mass is displayed.
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variety of the primary ion beams and energies which can be

chosen, system can be easily tuned in order to obtain the best

yield for the dedicated molecule under the investigation. It is

worth mentioning that measurements of the secondary ion

yield are straightforward when each primary ion is directly

detected in the STIM detector, which was not the case for

the setup that used a pulsed beam.

From the present data, it can be concluded that this MeV

TOF-SIMS arrangement, which uses a particle STIM detec-

tor beyond the target for START triggering, shows great

potential for subcellular molecular imaging with a lateral re-

solution well below 1 lm. Additionally, STIM images are

simultaneously collected, thus providing additional informa-

tion about the sample density distribution and allows for cel-

lular localization without the use of additional markers.

Because the system is very simple, it is readily compatible

with existing heavy ion microprobes. An additional advant-

age is that MeV TOF-SIMS will provide more complete

insight of the sample composition compared to analyses per-

formed using standard ion beam techniques such as PIXE or

RBS. The only apparent disadvantage is that samples must

be thin enough to allow for primary ions to pass through

(several microns). Therefore, samples should be mounted on

delicate 100 nm Si3N4 windows, which makes sample prepa-

ration more difficult in some cases.
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equipment. Part of this work was supported by the UKF

project “Study of modern paint materials and their stability
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