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Abstract 13 

Under the influence of previously published and some new theoretical results, potential- 14 

dependent adsorption and desorption of model electroinactive surfactants Triton X-100 (T-15 

X-100 or polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether) and sodium 16 

dodecyl sulfate (SDS) on the static mercury drop electrode (SMDE) were studied by 17 

square-wave voltammetry (SWV). Although (according to the theory) the resulting current 18 

– potential curve should consist of two highly separated peaks, only desorption signal 19 

could be seen on each experimentally obtained voltammogram, most probably because of 20 

the limitations concerning the available potential range. Different properties of the 21 

recorded peak are in good agreement with the theory indicating that square-wave 22 

voltammetry could be treated as a potential tool for tensammetric studies of 23 

electroinactive surface active substances. 24 
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Electroanalytical studies of adsorption processes at electrode surfaces have been in focus 1 

for many years. The current response depends on whether the electro- active or inactive 2 

substances adsorb on the working electrode [1-12]. Modern electrochemical instrumentation 3 

enables independent measurements of the faradaic and capacitive components of the current 4 

that flows across the electrode-electrolyte interface. Therefore, alternating current 5 

voltammetry is the most commonly used technique for the study of surface processes without 6 

electron transfer [1,12-16]. Electroanalysis of electroinactive surfactants is based on recording 7 

of their influence upon the electrode double layer structure. During adsorption of a redox 8 

inactive substance, the electrical double layer capacitance and thus the capacitive current 9 

decrease [13]. The measurement of ac capacitive current as a function of electrode potential is 10 

called tensammetry [17,18] but the same term is used when other voltammetric techniques are 11 

applied for the similar purpose. The potential region of low-capacity values is limited on both 12 

high-potential and low-potential sides by adsorption-desorption peaks, which reflect sharp 13 

changes in the surface charge within a narrow potential range [1,19].  14 

On the other hand, square-wave voltammetry is generally considered as being insensitive 15 

to capacitive current [20], i.e. one of the main advantages of SWV is its ability to effectively 16 

discriminate against charging current [21]. More precisely, SW voltammetry is a powerful 17 

electrochemical technique for kinetic and mechanistic studies as well as analytical 18 

examinations of faradaic processes [20,22-25]. Although some attempts of its application in 19 

the analysis of electroinactive surfactants were described [26], systematic studies of such a 20 

“new” method are not known. In the previous article from our laboratory [27] a basic theory 21 

of square wave voltammetry of surface-active, electroinactive compounds was developed. It 22 

was shown that tensammetric/desorption peak originates from the difference in surface 23 

coverage during the forward and backward series of pulses of SWV signal.  24 

In this article, experimentally obtained SW current - potential curves of model 25 

electroinactive surfactants Triton X-100 and sodium dodecyl sulfate will be presented and 26 

treated in the light of previously published [27] and some new theoretical results.  27 

 28 

2. Experimental 29 

All chemicals used in the experiments were of the best grade commercially available 30 

(Sigma-Aldrich) and were used without further purification. Model solutions of surface active 31 

substances (Triton X-100 and SDS) were prepared by diluting the same concentrated solution 32 
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(i.e. 5.62 g/L and 1x10
-2

 mol/L respectively). All solutions were prepared with water purified 1 

in a Milipore Mili-Q system. 2 

All voltammograms were recorded using a static mercury drop electrode (SMDE 663 VA 3 

Stand from Metrohm). A platinum rod served as a counter electrode whereas all potentials 4 

were given with respect to Ag/AgCl (3 mol/L KCl) with 3 mol/L NaCl in the electrolyte 5 

bridge (to prevent formation of sparingly soluble KClO4 in the frit).   6 

The electrode system was attached trough the corresponding IME (Interface for Mercury 7 

Electrode) module to the „PGSTAT 101“ instrument (from Eco Chemie, Utrecht), controlled 8 

by the electrochemical software “NOVA 1.5”.  9 

Before starting each new set of measurements, the solution in the electrolytic cell was 10 

deaerated with high purity (99.999%) nitrogen for 15 min. The room temperature was 11 

maintained at 25  1 °C. All measurements were carried out on “small size” mercury drops (S 12 

= 0.265 mm
2
) using 1 mol/L NaClO4 as supporting electrolyte. 13 

 14 

3. The model 15 

A simple potential dependent electrode reaction was assumed: 16 

 A (A)ads (1) 17 

According to the previous results [27] the normalized SWV response is defined by 18 

expression: 19 

 20 

i·(SCθ=0f)
-1 = ∆E·(Cθ=1/Cθ=0 – 1)·50·(θm-1 – θm) (2) 21 

in which ∆E = E - Epzc whereas other symbols have their usual meanings, given in 22 

Table 1. The constant 50 on the right side of equation 2 reflects the applied time 23 

increment (∆t = (50·f)
-1

). Other details of the simulation procedure are given in reference 24 

[27]. 25 

The model was developed to simulate the experiments with static mercury drop 26 

electrode, assuming that 1) adsorption of the studied surfactant can be described by 27 

Langmuir or Frumkin isotherm (with attractive interactions) and 2) potential of zero 28 

charge is not affected by addition of surface active substances to the electrolyte solution. 29 

From the practical point of view it is important that the normalized SW current 30 

depends on four parameters which are related to the a) bulk concentration of the reactant 31 

(y = c*D
1/2

/(Γmax·f
1/2

)), b) maximum adsorption constant (b0  = β0·Γmax·f
1/2

D
-1/2

), c) 32 
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capacity of a double layer on the free electrode surface (kc = Cθ=0·(1 - 1 

(Cθ=1/Cθ=0))/(2RTΓmax)) and  d) ratio of capacities of totally covered and free electrode 2 

surfaces  (Cθ=1/Cθ=0). In addition, SWV response depends on the Frumkin coefficient 3 

and the relationship between the potential of zero charge and the surface coverage as 4 

well.  5 

 6 

4. Results and discussion 7 

4.1. Theory 8 

According to the published theoretical results [27], a square-wave voltammogram of 9 

an electroinactive surfactant is generally characterized by a well defined desorption peak, 10 

assuming that scanning in the negative direction starts near the potential of zero charge 11 

whereas the whole process could be described by equation 1. When a (much) more 12 

positive starting potential is applied instead, the response of the type given in Fig. 1A is to 13 

be expected. It consists of two highly separated peaks with a zero current range between 14 

them. As pointed out elsewhere [27], tensammetric peaks in SWV reflect the difference in 15 

surface coverage during forward and backward series of pulses. From Fig. 1B, which 16 

gives surface coverage in dependence on the electrode potential, it follows that the more 17 

positive peak results from the gradual adsorption of the studied surfactant whereas the 18 

more negative peak (at E << Epzc) is a consequence of desorption process. In the range 19 

between them, the maximum coverage of the electrode surface (θ = 1) is achieved. 20 

Taking into account that simple, potential dependent adsorption is assumed, the values of 21 

the initial and final potential from Fig. 1A could be interchanged. Such a scanning in the 22 

positive direction should give the same pair of peaks as before but oriented in the opposite 23 

direction (Fig. 1C) as a result of the difference in surface coverage at negative and 24 

positive pulses (Fig. 1D). In such an experiment the more positive signal is expected to 25 

be higher than the more negative one whereas in Fig. 1A the opposite is true. At higher 26 

values of the concentration parameter, the difference between two peaks gradually disappears. 27 
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 1 

Fig. 1. (A) Normalized SW net voltammogram (n) along with its forward (f) and backward (b) 2 

components. (B) Dependence of the electrode surface coverage on the electrode potential. (C) 3 

and (D) The same as (A) and (B) but for the opposite scan direction (indicated by an arrow). 4 

Conditions: Est = (-) 1 V vs. Epzc, Es = 5 mV, Esw = 50 mV, y = 0.3, kc = 10 V
-2

, b0 = 333, 5 

Cθ=1/Cθ=0 = 0.5, a = 0 and Epzc,θ=1 = Epzc,θ=0. 6 

 7 

4.2. Model experiments 8 

 In order to test the theoretical results, experimental studies were performed with Triton X-9 

100 and sodium dodecyl sulfate (SDS), as “representatives” of nonionic and negatively 10 

charged surface active substances. In Fig. 2, desorption peaks of Triton X-100 along with 11 

components of some net currents are given for the concentration range 0.50 - 9.80 mg/L. 12 

The concentrations are given in mg/L because molecular weight of Triton X-100 is not well 13 

defined [28] (as a result of the fact that in the formula C14H22O(C2H4O)n, n = 9 -10). If the 14 
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approximate value of 625 is applied for calculations, it follows that the measurements were 1 

performed in the range 0.800 – 15.68 µmol/L. 2 

 3 

 4 

Fig. 2. (A) Square-wave net voltammograms of T-X-100. (B) Their forward (if) and 5 

backward (ib) components. Surfactant concentrations: 0, 0.50, 1.00, 2.98, 5.93 and 9.80 6 

mg/L in 1 mol/L NaClO4. Est = - 0.5 V, Esw = 50 mV, Es = 2 mV, f = 50 s
-1

. 7 

 8 

By inspection of Fig. 2, it could be noticed that adsorption peak does not appear, 9 

irrespective of the surfactant concentration, when scanning in the negative direction starts at - 10 

0.5 V. Shifting of the starting potential to the most positive values (accessible in experiments 11 

with SMDE), even after elimination of chloride ions from the electrolyte bridge (i.e. their 12 

substitution with nitrates) does not change the properties of the electrode response, i.e. 13 

adsorption peak stays “invisible”. All desorption signals are of the similar shape, their 14 

backward components are well defined, whereas peak potential becomes more negative as the 15 

analyte concentration increases (dEp/d log c = - 100 mV/d.u.).  16 

When the similar set of voltamograms of SDS is recorded (Fig. 3), final conclusions are 17 

the same as for Triton X-100 as long as analyte concentration is kept within the range 5 18 

µmol/L – 0.1 mmol/L. At (significantly) higher levels of the dissolved surfactant, the signal 19 

becomes extremely sharp and split in two close peaks. The formal origin of such splitting 20 

could be found in the fact that components of the net current are shifted, one with respect to 21 

the other (Fig. 3B).  22 
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 1 

Fig. 3. (A) Square-wave net voltammograms of SDS. (B) Their forward (if) and backward 2 

(ib) components. Surfactant concentrations: 0, 5.0, 10.0, 49.8, 69.5, 99.0 and 291.0 3 

µmol/L in 1 mol/L NaClO4. Est = - 0.5 V, Esw = 50 mV, Es = 2 mV, f = 50 s
-1

. 4 

 5 

Similar effects, i.e. the dependence of ac experimental results on the reactant 6 

concentration were previously observed by other authors [29] and ascribed to different types 7 

of molecular associations. In order to avoid the mentioned “complications”, all other 8 

measurements were performed at c(SDS) ≤ 2x10
-5

 mol/L. It is possible that the described and 9 

some other changes in the peak properties could be useful analytical tools for recognition of 10 

the systems, in which electrode reaction cannot be described as a simple, potential dependent 11 

adsorption of an electroinactive surfactant. For such an application of SWV, additional 12 

theoretical results and experimental measurements are needed.  13 

Theoretical dependence of the normalized SWV peak current on the concentration 14 

parameter y is given in Fig. 4. It was calculated for kc = 10 V
-2

, Cθ=1/Cθ=0 = 0.5 [27] and b0 = 15 

236, corresponding to Γmax = 10
-9

 mol/cm
2
, D = 9 x 10

-6
 cm

2
/s, β0 = 10

8
 cm

3
/mol [27] and a 16 

value of SW frequency f = 50 Hz. Experimentally obtained current - concentration plot should 17 

be of the same type, when measurements (under otherwise identical conditions) are performed 18 

at increasing concentration of the studied surfactant. For Triton X-100, the agreement of 19 

experimental results with theory is good. The only (formal) difference could be found in the 20 

sign of current because its positive value was (arbitrarily) assumed during theoretical 21 

treatment of the whole problem, whereas measured value was always negative. The net peak 22 

current increases (linearly) with increasing surfactant concentration until the electrode surface 23 

saturation is achieved. Thus, the quasi-linear range for Triton X-100) ≤ 3 mg/L (regression 24 
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line:  - Δip / A = (0.0372· mg L
-1

 – 0.0034) x 10
-6

, R
2
 = 0.994) could be suitable for 1 

determinations of T-X-100 with detection limit of 0.1 mg/L. The detection limit can be 2 

lowered by introduction of the accumulation step prior the potential scanning in SWV 3 

experiment. In addition, for practical purposes, such as measurement of an unknown 4 

concentration, it is useful to find conditions under which current-concentration plot could be 5 

described as a straight line with (virtually) zero intercept. This can be achieved by proper 6 

choice of square-wave amplitude.  7 

 8 

 9 

Fig. 4. (●) Theoretical influence of dimensionless concentration parameter y on the 10 

normalized desorption net peak current for Est = - 0.2 V vs. Epzc, Esw = 50 mV, kc = 10 V
-2

, 11 

Cθ=1/Cθ=0 = 0.5, a = 0, Epzc,θ=1 = Epzc,θ=0, b0 = 236 and Es = 2 mV. (○) Dependence of the real 12 

desorption net peak current on concentration of T-X-100 (in 1 mol/L NaClO4) for conditions 13 

given in description of Fig. 2. 14 

 15 

The absence of adsorption peaks on all experimentally obtained tensammetric SWV 16 

curves is not fully unexpected. According to model calculations, for conditions given in 17 

description of Fig. 1, separation of the two signals should be highly pronounced and 18 

additionally dependent on the value of Frumkin coefficient (Fig. 5). In other words, one peak 19 

could be shifted with respect to the other for 1.4 – 1.5 V (or even more) under real conditions. 20 

At the same time the half-peak width could be highly reduced in comparison with the value 21 

for a = 0. 22 
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 1 

Fig. 5. (●) Theoretical dependence of potential difference between adsorption (1) and 2 

desorption (2) peaks of SWV signal and (∆, ▲) their half-peak widths on Frumkin coefficient. 3 

Other parameters are given in description of Fig. 1. 4 

 5 

Although tensammetric measurements are generally performed on mercury (because 6 

its clean surface can be obtained again and again without difficulties), the additional 7 

application of some other electrode material, on which scanning in a wider potential range 8 

(that includes more positive values than in the present case) is possible, seems promising for 9 

some purposes. The point is that only in such a way the electrode response from Fig. 1A 10 

could be obtained in real experiments.  When only desorption peak appears, it could be a 11 

problem to make difference between it and the signal that reflects reduction from the adsorbed 12 

state, because current – frequency linearity (Fig. 6) and current – concentration plots of the 13 

same type (Fig. 4) arise from both electrode processes.  14 
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 1 

Fig. 6. Dependence of the experimentally obtained (a, b) and normalized theoretical (c) 2 

desorption SWV net peak currents on SW frequency. Conditions: a) 1 mg/L T-X-100 (Esw = 3 

20 mV) and b) 5x10
-6

 mol/L SDS (Esw = 50 mV) in 1 mol/L NaClO4; Es = 2 mV. c) D = 9 × 4 

10
-6

 cm
2
s

-1
, c* = 10

-3
 mol/L, Γmax = 10

-9
 mol/cm

2
, β0 = 10

8
 cm

3
/mol, a = 0, Epzc,θ=1 = Epzc,θ=0, Es 5 

= 2 mV and Esw = 20 mV. 6 

 7 

Therefore only the full tensammetric curve with two well defined and highly separated 8 

peaks becomes the best qualitative indicator of the electroinactive surfactant and its surface 9 

reactions. It is because in a Faradaic process, complicated by reactant adsorption, broadening 10 

of the signal or appearance of two, poorly separated peaks could usually be noticed at 11 

relatively high reactant concentrations [9] whereas only in the case of tensammetric signals, 12 

i.e. adsorption/desorption of surface active but electroinactive solutes, two well defined but 13 

highly separated signals are to be expected.   14 

From Figs. 1A and 1C, it follows that cyclic square-wave voltammetry could also be 15 

applicable in experimental studies of electroinactive surfactants. The mentioned technique 16 

was recently developed and applied for characterization of kinetically controlled faradaic 17 

processes [30,31]. Its potential “strength” in tensammetry is not quite clear but it is worth 18 

further examination. An example of the resulting current – potential curves for different 19 

concentrations of anionic surfactant SDS is given in Fig.7.  20 
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 1 

Fig. 7. Cyclic square-wave voltammograms of SDS for conditions given in description 2 

of Fig.2. Surfactant concentrations: 0 (black), 10.0 (green), 49.8 (red) and 291.0 (blue) 3 

µmol/L in 1 mol/L NaClO4. 4 

 5 

5. Conclusions 6 

 7 

From the theoretical and experimental results, it follows that a pronounced electrode 8 

response is to be expected when square wave voltammogram of an electroinactive surfactant 9 

is recorded. This is important for at least three reasons because it indicates that: a) SWV 10 

signal obtained during analysis of an unknown sample does not always reflect a redox 11 

reaction b) SWV is not so insensitive to capacitive currents as usually stated and c) the 12 

technique is a potential tool for different studies of adsorption/desorption processes and trace 13 

analysis of surface active substances. The latter is possible because the signal could be highly 14 

increased if accumulation step is included. 15 

Although the whole current – potential curve should consist of two highly separated peaks 16 

which reflect adsorption and desorption reactions, i.e. a pronounced change of surface 17 

coverage within a narrow potential range in each case, real measurements on SMDE give only 18 

a desorption signal. Most probably, the problem arises from the fact that really positive 19 

potentials are not available in experiments with a mercury electrode. For many practical 20 
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purposes, however, the presence of only one peak is sufficient especially because of the fact 1 

that its properties are in good agreement with the theory. 2 

Taking into account that measurements of electroinactive surfactants is usually performed 3 

by ac voltammetry it is of prime importance to compare such results with those that arise 4 

from the application of square wave voltammetry, i.e. to find if SWV could be applied in 5 

addition to ac voltammetry or even instead of it. 6 

 7 
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Table 1. List of symbols 

a                                                         Frumkin coefficient 

b0                                                       dimensionless adsorption constant 

c                                                         concentration of the reactant 

c*                                                       bulk concentration of the reactant 

Cθ=0                                                     capacity of free electrode surface 

Cθ=1                                                     capacity of totally covered electrode surface 

D                                                         diffusion coefficient 

E                                                         electrode potential 

Epzc                                                     potential of zero charge 

Epzc,θ=0                                                potential of zero charge of free electrode surface 

Epzc,θ=1                                                potential of zero charge of totally covered electrode 

surface 

Es                                                        SW potential step 

Est                                                                                   starting potential 

Esw                                                      SW amplitude 

∆E                                                      difference between electrode potential and potential of               

zero charge 

f                                                          SW frequency 

i                                                          capacitive current 

i (S Cθ=0  f)
-1

                                        normalized SWV response 

i                                                       net current 

if                                                                                     forward component of net current in SWV 

ib                                                                                     backward component of net current in SWV 

ip                                                                                  net peak current 

kc                                                        capacity parameter 

R                                                         gas constant 

S                                                         electrode surface area 

T                                                         temperature 

W1/2                                                    half-peak width 

y                                                         dimensionless concentration parameter 

β0                                                       adsorption constant at E = Epzc 

γ                                                         mass concentration 

Γ                                                         surface concentration of the adsorbed reactant 

Γmax                                                    maximum surface concentration of the adsorbed reactant 

θ = Γ / Γmax                                        electrode surface coverage 

  1 
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Figures Caption 1 

Fig. 1. (A) Normalized SW net voltammogram (n) along with its forward (f) and backward 2 

(b) components. (B) Dependence of the electrode surface coverage on the electrode potential. 3 

(C) and (D) The same as (A) and (B) but for the opposite scan direction (indicated by an 4 

arrow). Conditions: Est = (-) 1 V vs. Epzc, Es = 5 mV, Esw = 50 mV, y = 0.3, kc = 10 V
-2

, b0 = 5 

333, Cθ=1/Cθ=0 = 0.5, a = 0 and Epzc,θ=1 = Epzc,θ=0. 6 

Fig. 2. (A) Square-wave net voltammograms of T-X-100. (B) Their forward (if) and backward 7 

(ib) components. Surfactant concentrations: 0, 0.50, 1.00, 2.98, 5.93 and 9.80 mg/L in 1 mol/L 8 

NaClO4. Est = - 0.5 V, Esw = 50 mV, Es = 2 mV, f = 50 s
-1

. 9 

Fig. 3. (A) Square-wave net voltammograms of SDS. (B) Their forward (if) and backward (ib) 10 

components. Surfactant concentrations: 0, 5.0, 10.0, 49.8, 69.5, 99.0 and 291.0 µmol/ L
 
 in 1 11 

mol/L NaClO4. Est = - 0.5 V, Esw = 50 mV, Es = 2 mV, f = 50 s
-1

. 12 

Fig. 4. (●) Theoretical influence of dimensionless concentration parameter y on the 13 

normalized desorption net peak current for Est = - 0.2 V vs. Epzc, Esw = 50 mV, kc = 10 V
-2

, 14 

Cθ=1/Cθ=0 = 0.5, a = 0, Epzc,θ=1 = Epzc,θ=0, b0 = 236 and Es = 2 mV. (○) Dependence of real 15 

desorption net peak current on concentration of T-X-100 (in 1 mol/L NaClO4) for conditions 16 

given in description of Fig. 2. 17 

Fig. 5. (●) Theoretical dependence of potential difference between adsorption (1) and 18 

desorption (2) peaks of SWV signal and (Δ, ▲) their half-peak widths on Frumkin 19 

coefficient. Other parameters are given in description of Fig. 1. 20 

Fig. 6. Dependence of the experimentally obtained (a, b) and normalized theoretical (c) 21 

desorption SWV net peak currents on SW frequency. Conditions: a) 1 mg/L T-X-100 (Esw = 22 

20 mV) and b) 5x10
-6

 mol/L SDS (Esw = 50 mV) in 1 mol/L NaClO4; Es = 2 mV. c) D = 9 × 23 

10
-6

 cm
2
s

-1
, c* = 10

-3
 mol/L, Γmax = 10

-9
 mol/cm

2
, β0 = 10

8
 cm

3
/mol, a = 0, Epzc,θ=1 = Epzc,θ=0, Es 24 

= 2 mV and Esw = 20 mV. 25 

Fig. 7. Cyclic square-wave voltammograms of SDS for conditions given in description of 26 

Fig.2. Surfactant concentrations: 0 (black), 10.0 (green), 49.8 (red) and 291.0 (blue) µmol/L 27 

in 1 mol/L NaClO4. 28 
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