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In many complex systems representable as networks, nodes can be separated into different classes. Often
these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared
eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust
connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by
utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze
connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple
vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color
and develop a “color-avoiding” percolation. We present an analytic theory for random networks and a
numerical algorithm for all networks, with which we can determine which nodes are color-avoiding
connected and whether the maximal set percolates in the system. We find that the interaction of topology
and color distribution implies a rich critical behavior, with critical values and critical exponents depending
both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we
show how color-avoiding percolation can be used as the basis for new topologically aware secure
communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of
hidden structure in a wide range of natural and technological systems.
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I. INTRODUCTION

In studies of security and robustness on complex net-
works, the nodes are typically assumed to be homogeneous
with respect to their vulnerabilities to eavesdropping or
failure. However, many real-world networks are hetero-
geneous [1], with large sets of nodes vulnerable to
particular adversaries or failures. These vulnerabilities
make networks far less secure and less robust than they
seem. By developing tools based on statistical physics of
networks, we show how this problem can be overcome,
obtaining secure communication and optimal redundancy
in networks with vulnerable classes of nodes.
A single vulnerability can affect many nodes in a number

of different scenarios. For instance, in communication
networks, servers under the same jurisdiction are vulner-
able to eavesdropping by their controlling entity (company
or government). A similar vulnerability structure emerges
when communication software is vulnerable to version-
specific bugs, like the Heartbleed bug of 2014 [2,3]. In each
of these cases, secure communication can be obtained by
splitting the message into pieces via secret sharing (so that
it cannot be reconstructed without all of its fragments)

[4–6] and transmitting them on different paths, each
avoiding a particular vulnerable class of nodes (controlling
entities or software versions). Depending on the topology
of the network, and the distribution of the vulnerable node
classes, this approach may or may not be possible. We
illustrate this problem in Fig. 1, where we compare two
schematic communication networks: one in which both
adversaries can be avoided with multiple paths and one in
which one of the adversaries cannot be avoided.
Clearly, a knowledge of network topology is needed

in order to obtain secure communication in this way.
Unfortunately, network topology has generally not been
considered when assessing the security of communication
networks. Those examples that do include topology [8–12]
do not consider the possibility of multiple simultaneous
adversaries, nor do they consider the new connectivity
structure that can emerge: Though connected to the net-
work, certain nodes are unable to communicate securely.
Percolation is the field of statistical physics that is generally
used to analyze connectivity in complex networks, but in
its existing forms, it cannot treat the heterogeneity of
multiple vulnerable classes. Here, we develop a new type
of percolation theory, which provides a general framework
for assessing secure connectivity in systems with multiple
adversaries or multiple classes of vulnerable nodes.
Beyond the application to secure messaging in networks

with multiple adversaries, our framework can discover
optimal redundancy in cases where there are correlated
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failures or other vulnerabilities that affect specific classes of
nodes. Though redundant connections via multiple paths
are assumed to improve robustness [13–15], if a given
vulnerability affects a large set of nodes, the redundant
links may not improve the robustness. Indeed, in any case
where node failure is more likely to occur in groups instead
of individually, effective robustness requires optimally
redundant paths, each avoiding one (or more) of the
vulnerable classes.
Here, we present a new framework for analyzing net-

works with vulnerable classes of nodes and show the
conditions for which—even if every node is vulnerable—
robust and secure connectivity can be maintained. We
represent the heterogeneity of the network by assigning
every node in the network exactly one color, representing a
particular vulnerability. The color may represent owner-
ship, geographical location, reliance on a critical material,
or some other vulnerability. We then develop a “color-
avoiding percolation” theory, which allows us to determine
the maximal set of nodes that are mutually connectable
under the removal of any color—i.e., the nodes that are
connectable via a collection of paths that avoids every
color. The existence of this giant color-avoiding component
indicates whether or not secure and robust connectivity can
be obtained by avoiding the vulnerable node classes.

II. COLOR-AVOIDING PERCOLATION

On a noncolored network, if node or link failures occur
with a given probability, percolation theory can be used to

determine overall connectivity [16,17]. Percolation on
complex networks has a rich history [16–20]. It has been
used to study the resilience of the Internet [21,22] and its
susceptibility to virus spreading [23,24], and even in
probabilistic routing algorithms [25]. It has also been used
to understand word-of-mouth processes in social networks
[26,27], and the robustness of many biological networks
including neural networks [28], metabolic networks [29],
and mitochondrial networks [30]. Here, we develop a new
framework based on percolation theory but not equivalent
to any previous percolation problems. In this framework,
connectivity corresponds to the ability to avoid vulnerable
sets of nodes via multiple paths.
We begin with an undirected unweighted networkGwith

N nodes and adjacency matrix Aij. Every vertex i is
assigned a color ci ∈ f1; 2;…; Cg, where C denotes the
total number of colors. In noncolored graphs, a single path
provides connectivity; in k-core percolation, any k paths
are sufficient [31,32]; and in k-connectivity, k-independent
paths are required [33]. Faced with the possible vulner-
ability or insecurity of all nodes of a single color, we seek a
set of paths between two nodes such that no color is
required for all paths. In general, splitting the message into
more pieces and sending them along more paths would
improve the possibility of secure communication between
the source and receiver, provided a secret-sharing algorithm
was used [4–6]. However, if the source and target become
disconnected when all the nodes of a certain color are
removed, then that color cannot be avoided no matter how
many paths are utilized. If we knew that only one color c�
was problematic, we could determine the securely con-
nectable nodes by simply removing all nodes of color c�
and checking which components remain, essentially equiv-
alent to standard percolation. Since we do not know which
colors are problematic, we need to examine the connec-
tivity upon the removal of every color.
Wenowdefine a pair of nodes as color-avoiding connected

if, for every color c, there exists a path connecting this pair
and avoiding all nodes of color c [in Fig. 2(a), nodes R and S
are CAC]. The color-avoiding paths are not necessarily
unique: Often, one path can avoid multiple colors. We do
not include the colors of the source and target nodes in the
definition of CAC (see Fig. 2). This assumption captures a
number of realistic scenarios: The source and receiver may
have special knowledge of the security of their own nodes,
the vulnerability may affect the nodes probabilistically so the
nodes seek to minimize their exposure, or the vulnerability
may affect the nodes as retransmitters but not as end points of
the path. After analyzing this assumption in detail, we show
how our theory can be extended to other trust models, in
particular, where the sender and receiver trust one another’s
colors. We return again to this distinction in our discussion
of the AS-level Internet.
Formally, we define a “color-avoiding connected com-

ponent” as a maximal set of nodes, where every node pair in

FIG. 1. Avoidable and nonavoidable adversaries. In this sce-
nario, the sender must transmit their message through nodes that
are controlled by either Lancaster (red rose) or York (white rose).
In diagram (a), a message can be split in two and transmitted on
two different paths: The upper path avoids York’s nodes, while
the lower path avoids Lancaster’s nodes. In diagram (b), both of
the paths pass through York’s nodes, and York cannot be avoided.
Lancaster and York were opponents in the Wars of the Roses in
England in the 15th century. Artwork after Ref. [7].
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the set is color-avoiding connected. Several examples of
CAC components are shown in Fig. 2(b4), and in Fig. 6 in
the Appendix. In this way, we transform the path-finding
problem into a percolation problem, which allows us to
study it in a fundamental way, analytically and numerically.
Note that there are nodes that are not themselves part of the
CAC component but are necessary for the color-avoiding
connectivity of nodes that are in the component. This
occurs, for example, when all of the neighbors that lead
from a node to the CAC component are of the same color,
as for node A in Figs. 2(a) and 2(b). In such a case, the node
itself is not CAC to the system as a whole because it must
pass through nodes of a certain color before it can reach
elsewhere. However, in general, this node will still be
necessary to form paths that avoid other colors. The fact
that non-CAC nodes may be needed to create overall
system color-avoiding connectivity is one indication that
a new kind of percolation theory is needed to uncover this
hidden structure.
By studying the largest CAC component, we obtain a

clear quantitative measure of the feasibility of using

multiple paths to avoid vulnerable classes of nodes and
information on where those paths should be routed.
Furthermore, this gives us a way to measure the effect
of changes in network topology, link density, and color
distribution.
To find the largest set of color-avoiding connected nodes

in any network with any color distribution, we propose the
following algorithm. First, for every color c, we remove all
nodes with color c and find the largest component in the
remaining graph, Lc̄. This component represents the largest
set of nodes that are connected without requiring any nodes
of color c. Then, with Lþ

c̄ , we define the set of all nodes that
have a direct neighbor in Lc̄, trivially including Lc̄ and
additionally nodes of color c that are directly connected to
Lc̄. These “dangling” c-colored nodes represent the nodes
that can communicate via Lc̄, without requiring any c-
colored nodes aside from themselves. In Fig. 2(b1), we see
Lþ
white

, includingLwhite and somewhite “dangling” nodes as
node A, which also have access to paths avoiding further
white nodes. Every pair of nodes in Lþ

c̄ is connected by a
path-avoiding color c. As the second step of the algorithm,

FIG. 2. Illustration of color-avoiding connectivity. (a) In this network, the sender S and the receiver R are color-avoiding connected
(CAC), as the green path avoids blue nodes, the purple path avoids white nodes, and the yellow path avoids black nodes. (b) Finding
Lcolor, the largest color-avoiding connected component. (b1) The largest component without white nodes (L ¯white) and its direct white
neighbors (links to white neighbors are dashed) form Lþ

white
. Each pair of nodes in this component (Lþ

white
) can communicate, avoiding

white nodes on the path between sender and receiver. We repeat the process in (b2) for blue and in (b3) for black nodes. (b4) Nodes that
belong to all three components (in red) constitute the largest CAC component, Lcolor. Note that some nodes are not CAC but are
necessary to form the largest color-avoiding component, for example, node A. This node is not in Lþ

black
[see (b3)]. However, it is still

required to form a path avoiding blue nodes between nodes S and R [see (a)]. (c) Total CAC pairs ppair compared to the size of the giant
CAC component (Scolor) for quenched graphs. Red squares show Poisson graphs with N ¼ 105 nodes, average degrees k̄ ¼ 1.6, 1.7, 1.9,
4.0 (from left to right) and C ¼ 3 colors; the green circle shows the AS-level Internet [34,35], with colors representing countries as
described in Fig. 4. The black line S2color ¼ ppair represents all CAC occurring within the giant CAC component. Note that ppair was
approximated with samples of up to 5 × 105 pairs; error bars are smaller than the visible range.
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we define Lcolor ¼∩c L
þ
c̄ . This set consists of all the nodes

that belong to Lþ
c̄ for all colors c at the same time. This

algorithm generates an implicit multilayer structure, which
we explore in Sec. III B and compare with other multilayer
network formalisms [36–42]. In Fig. 2(b), we illustrate this
method, and further technical details are discussed in
Appendix A.
It is conceivable that Lcolor does not represent the overall

color-avoiding connectivity of the system. For example, the
bulk of the CAC nodes might be in smaller components,
without a single dominant set. However, if Lcolor scales
with system size and the size of the smaller color-avoiding
connected components does not, then in the limit of large
systems, the overall color-avoiding connectivity is deter-
mined by Lcolor, just like the overall connectivity is
determined by the size of the giant component in non-
colored graphs. With Scolor defined as the fraction of nodes
that are in Lcolor among allN nodes, and ppair defined as the
total fraction of color-avoiding connected pairs among all
node pairs, we can test if Lcolor accounts for the bulk of
color-avoiding connectivity [ppair ¼ 2npair=NðN − 1Þ,
where npair is the number of CAC pairs and N is the size
of the network]. In Fig. 2(c), we see, for random networks
and a real-world network, that color-avoiding connectivity
is indeed dominated by Lcolor. When Scolor is small, non-
giant clusters and the trivial color-avoiding connectivity
that accompanies individual links leads to deviations
between ppair and the connectivity predicted with Scolor,
but these deviations rapidly disappear as the system size
increases. This validates the treatment of Lcolor as a proxy
for color-avoiding connectivity.
By transforming the problem of connectivity via multi-

ple color-avoiding paths into a percolation problem, we
have provided a method to study the hidden connectivity
that emerges in networks with vulnerable classes of nodes.
This algorithm can be used to analyze any network with
vulnerable classes of nodes, as we show below with the
AS-level Internet. We proceed to develop analytical results
based on percolation theory for random networks, where
we will study the effects of the network topology and color
distribution on the color-avoiding connectivity.

III. ANALYTIC THEORY FOR
RANDOM NETWORKS

For the analytical treatment, we use the annealed
approximation of networks of size N described through
the configuration model [17], in which a degree distribution
pðkÞ is a conserved quantity from which an ensemble of
network realizations is drawn. For a more comprehensive
treatment, see Appendix B.
Every node i is assigned a color ci ∈ f1; 2;…; Cg. The

color sequence fcig has probability
Q

irci. If we assume
the colors are distributed uniformly at random, we get
rci ¼ rc ¼ 1=C for all ci.

We calculate Scolor in the limit of N → ∞ as the
probability that a single node belongs to Lcolor,
Scolor¼ProbðLcolorÞ¼ProbðLþ

1̄
∩Lþ

2̄
∩…∩Lþ

C̄Þ. Because
Lcolor is a subset of the regular giant component by
construction, we begin by obtaining the solution for
standard percolation on random graphs [17,43,44]. The
size of the giant component in a noncolored random graph
is S ¼ 1 − g0ðuÞ, where g0ðzÞ ¼

P
pkzk is the generating

function of the probability distribution pk. Here, u is the
probability that a node is not connected to the giant
component over one particular link, and it is computed
as the solution of u ¼ g1ðuÞ, where g1ðzÞ ¼ g00ðzÞ=g00ð1Þ is
the generating function of excess degree [17]. Second, we
let κc be the expected number of a randomly chosen node’s
neighbors of color c, which are connected to the giant
component of standard percolation. Considering κc for all
colors, we obtain the vector ~κ ¼ ðκ1;…; κCÞ, with k0 ¼P

cκc being the total number of links to the normal giant
component. Third, the conditional probability P~κ that the
links suffice to connect to Lcolor, given that they belong to
distribution ~κ and that they already belong to the normal
giant component, is

P~κ ¼
YC
c¼1

ð1 −Uk0−κc
c̄ Þ; ð1Þ

Uc̄ ¼ 1 −
1 − uc̄

ð1 − uÞð1 − rcÞ
; ð2Þ

in which Uc̄ denotes the conditional probability that a link
fails to connect to Lc̄ given that it does connect to the
normal giant component via a node having a color c0 ≠ c.
We define Uc̄ ¼ 1 if u ¼ 1. The probability uc̄ that a single
link does not connect to a giant Lc̄ is calculated with uc̄¼
rcþð1−rcÞg1ðuc̄Þ (site percolation with a surviving frac-

tion of nodes of 1 − rc [17]). Notice that ð1 −Uk0−κc
c̄ Þ is the

probability that the randomly chosen node is in Lþ
c̄ , given

that it has exactly k0 − κc links to the normal giant
component over nodes without color c. Combining these
terms, we obtain a formula for Scolor:

Scolor ¼
X∞
k¼0

pk

Xk
k0¼0

Bk;k0
Xk0

κ1;…;κC¼0

Mk0;~κP~κ; ð3Þ

where the binomial factor Bk;k0 [Appendix B, Eq. (B7)]
accounts for the probability that, out of k links, the k0 links
connect to the normal giant component. The multinomial
factor Mk0;~κ [Appendix B, Eq. (B8)] gives the multinomial
probability of having the color distribution ~κ among the
neighbors belonging to the normal giant component.
To obtain a closed-form solution for Scolor, we now

assume that every color occurs with equal probability:
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rc ¼ 1=C. With U1̄ ¼ Uc̄ being identical for all colors, we
have [Appendix C, Eq. (C11)]

Scolor;C ¼
XC
j¼0

ð−1Þj
�
C
j

�

× g0

�
uþ ð1 − uÞ

�
j
C
Uj−1

1̄
þ C − j

C
Uj

1̄

��
: ð4Þ

An alternative derivation of this equation based on combi-
natorics and set theory is presented in Appendix D. This
approach is equivalent to the theory presented here and can
be more tractable to some readers, depending on their
background.
We now discuss the limiting cases C ¼ 2 and C → ∞.

The result for two colors can be simplified to [Appendix C,
Eq. (C8)]

Scolor;2 ¼ 1–2g0ðu1̄Þ þ g0ð2u1̄ − 1Þ; ð5Þ

which directly depends on u1̄ only. As the number of colors
tends to infinity, standard percolation is not recovered.
Scolor remains smaller than the relative size of the giant
component S, and in fact, Scolor;∞ is identical to the giant
component in k-core percolation with k ¼ 2 [31,32]. The
reason that Scolor;∞ is equivalent to two-core percolation is
that—even if every node is a different color—if a nodewere
connected via only one link, it would not be able to avoid
the color of its sole neighbor. We demonstrate this directly
by deriving an asymptotic form for Scolor as C → ∞
[Appendix C, Eq. (C14)]:

Scolor;∞ ¼ S − ð1 − uÞ dg0ðzÞ
dz

����
z¼u

; ð6Þ

which is the same result as in two-core percolation. In
Fig. 3(a), we see that Scolor;C comes close to Scolor;∞ even for
C ¼ 10, indicating that even moderate color diversity
comes close to the infinite color case. We can thus use
two-core percolation as an envelope for maximal color-
avoiding connectivity: If a node is not in the two-core giant
component, it will not be in the CAC giant component,
regardless of the specific coloring.
We now discuss graphs with broad degree distributions

with pk ∼ k−α (k > 0) and generating functions g0ðzÞ ¼
LiαðzÞ=ζðαÞ and g1ðzÞ ¼ Liα−1ðzÞ=½zζðα − 1Þ�, with LiαðzÞ
the polylogarithm function. In Fig. 3(b), we see results
for C ¼ 2 and C ¼ 10 depending on the average degree
k̄ ¼ ζðα − 1Þ=ζðαÞ [17]. The limiting cases are diverging k̄
for α ¼ 2 and k̄ ¼ 1 for α → ∞. We see that k̄crit is not
strongly affected by the number of colors but that the size
of the giant CAC component is substantially smaller than in
the case of Erdős-Rényi networks [see Figs. 3(a) and 3(b)].
The critical connectivity can be calculated using Cohen’s
criterion for site percolation [21]. With the fraction
1 − rc of nodes surviving random removal, we obtain
1−rc¼1−1=C¼ k̄=ðhk2i−k̄Þ. Since hk2i¼ζðα−2Þ=ζðαÞ,
we have ζðα−2Þ=ζðα−1Þ¼ 1þC=ðC−1Þ. Accordingly,
k̄ ≈ 1.254 for two colors, and it converges to k̄ ≈ 1.195
for C → ∞.
We find that Erdős-Rényi (ER) networks are more color-

avoiding connected than scale-free networks of equal
average degree, the opposite of the results for resilience
to random failures [17,22,45]. This follows from the fact
that if the average degree is conserved while the degree
distribution is widened, there is a larger proportion of very
low degree nodes, and we see the same effect in the two-
core envelopes; compare Figs. 3(a) and 3(b).

FIG. 3. Size of the giant color-avoiding component Scolor in random networks with uniformly distributed colors. We show the
dependence of Scolor on average degree k̄ (a) for Erdős-Rényi networks and (b) scale-free networks with different numbers of colors.
Standard-deviation error bars are shown but barely visible for networks of size N ¼ 106. The blue lines show the corresponding
analytical results. For comparison, we include the giant component size of standard percolation S (black solid line) and the limiting case
of a system with an infinite number of colors, Scolor;∞ (black dashed line). As mentioned in the text, Scolor;∞ is the same as the giant
component in two-core percolation. (c) Critical exponent and finite-size scaling for Erdős-Rényi networks with C ¼ 3. Note that in the
critical region, the theory and simulations show a slope of almost exactly 3 as predicted by Eq. (8). Finite-size scaling is shown, with
results of > 150 realizations per size plotted individually and averaged.
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We now turn to the critical behavior of Scolor in Erdős-
Rényi networks with C uniformly distributed colors.
Similar to standard percolation, we find that the size of
the largest color-avoiding connected component Scolor
undergoes a phase transition at a specific k̄crit, which is
now determined by the number of colors (see Fig. 3). For
k̄ < k̄crit, color-avoiding connectivity is confined to clusters
of finite size (with vanishing relative size in the limit of
large N), and for k̄ > k̄crit, we have a largest color-avoiding
connected component of relative size Scolor, which scales
with system size. We find that the value of k̄crit decreases as
C increases and approaches the standard percolation thresh-
old as C → ∞. Since color-avoiding connectivity requires
that the giant component not be destroyed after the removal
of any single color, we require that k̄ERcrit ¼ k̄crit½ðC − 1Þ=C�,
where k̄ERcrit ¼ 1 is the percolation threshold for ER graphs
and ½ðC − 1Þ=C� is the fraction of links remaining after the
removal of 1=C nodes. Therefore, k̄crit ¼ C=ðC − 1Þ.
To discuss the scaling and critical exponents, we return

to the definition of P~κ, Eq. (1). We consider the region just
above k̄crit by defining ε≡ 1 −U1̄ ≈ Cðk̄ − k̄critÞ, which
holds as long as ðk̄ − k̄critÞ ≪ 1=C [Appendix C,
Eq. (C18)]. We analyze the behavior of P~κ for small ε
by expanding ð1 − ðU1̄Þk0−κcÞ ≈ ðk0 − κcÞε. Plugging this
approximation into Eqs. (1) and (3), we obtain

Scolor ∝ ðk̄ − k̄critÞβ ð7Þ

β ¼ C; k̄crit ¼ C=ðC − 1Þ: ð8Þ

We confirm the value of k̄crit and the scaling of Scolor
numerically in Fig. 3(c) for C ¼ 3 colors. As C → ∞, we
need to resolve the seeming contradiction of a divergent
critical exponent β ¼ C and convergence towards Scolor;∞
as it appears in Eq. (6). For ER networks, we show
[Appendix C, Eq. (C22)] that Scolor;∞ ∝ ðk̄ − 1Þ2 for k̄
near 1, implying β ¼ 2. The reason that we do not observe
β → ∞ as described in Eq. (8) is that the approximation
used to obtain Eq. (7) is only valid in a critical region
defined as ðk̄ − k̄critÞ ≪ 1=C. As C → ∞, Scolor increases
with the high exponent β ¼ C. However, the shrinking
critical region overpowers the diverging critical exponent,
and Scolor ∼ 0 takes on unobservable small values and
crosses over to β ¼ 2 scaling outside the critical region.
As mentioned above, in color-avoiding percolation, there

are transmission nodes that are needed to maintain con-
nectivity of the largest CAC component but are themselves
excluded from it. The number of these nodes can be much
larger than the number of nodes they are connecting near
criticality. We test this performing numeric simulations for
Poisson graphs with C ¼ 3 colors and rc ¼ 1=3 for all
colors. We take networks of size N ¼ 5 × 106 and con-
nectivity k̄ ¼ k̄crit þ 0.02 ¼ 1.52. All nodes in ∪cLc̄ might
be needed for other nodes in order to connect. Averaging

over 50 network realizations, we find, for the relative size
of this component, ∪cLc̄=N ¼ 5 × 10−2, while Scolor ¼
7 × 10−5 is more then 2 orders of magnitude smaller.
We note that transmission nodes are not present in
other percolation concepts as k-core percolation [31] or
percolation in multiplex and interdependent networks
[36–42,46], though a similar feature arises in k connec-
tivity [33].

A. Generalization of the theory

While we presented closed-form results only for homo-
geneous color frequencies [see Eq. (4)], Eq. (3) holds for
any set of color frequencies rc. For heterogeneous color
frequencies rc, Eq. (3) can be evaluated directly. Because of
the sum on k, this becomes cumbersome when k is large.
For broad degree distributions pk, the full summation over
~κ can be replaced with a sampling method. The critical
behavior can be determined for heterogeneous color dis-
tributions rc, as demonstrated above, using an expansion
in Eq. (1).
An important generalization of color-avoiding percola-

tion is to allow for trusted colors. In particular, in many
scenarios, it is reasonable to trust the colors of the sender
and receiver nodes, as they cannot be avoided anyhow.
For this, we define A as the set of colors that have to be
avoided. This includes all colors 1;…; C, except for trusted
colors. We assumeA not to be empty. For the algorithm, we
have Lcolor ¼∩c∈A Lþ

c̄ . For analytical results, we replace
Eq. (1) with

P~κ ¼
Y
c∈A

ð1 −Uk0−κc
c̄ Þ ð9Þ

and use it together with Eqs. (2) and (3). Scolor can be
compared to the standard percolation result, if only one
color has to be avoided, and all other colors are trusted, in
the limit of A ¼ fcg. We have Scolor ¼ 1 − g0ðuc̄Þ, while
the standard percolation result reads ð1 − rcÞ½1 − g0ðuc̄Þ�.
Scolor is larger than standard percolation in this case because
nodes of the avoided color c are formally allowed as sender
or receiver nodes. However, restricting to nodes of colors
other than the avoided color c, standard percolation is
recovered. Notice that with trusted colors, results for Scolor
can exceed the two-core. This is because a single link
connecting to a node with a trusted color can be enough to
avoid all colors in A.

B. Comparison with other percolation types

Color-avoiding percolation includes two properties of
heterogeneous complex networks: the topological connec-
tivity, and metadata of node coloring, which we combine
with a multipath concept. Our theory for random graph
ensembles treats these two properties in two distinct steps,
using conditional probabilities. Probabilities for colors to
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be avoidable are conditioned on the overall connectivity
(via the giant component), which is treated separately.
The comparison with numerical results in Fig. 3 demon-
strates that this procedure works: Topology and coloring
can indeed be treated separately, and conditional proba-
bilities for avoiding colors are independent even when
requiring multiple color-avoiding paths. Furthermore, the
interaction of topology and color distribution implies a
rich critical behavior, with critical values and critical
exponents depending both on the topology and on the
color distribution. To our knowledge, the only reported
use of colorings in percolation is for polychromatic
percolation [47,48], which was developed to model
polymerization via simultaneous nonoverlapping largest
components in colored lattices. Polychromatic percolation
does not consider effects of network topology or multiple
paths, and it is designed to answer different questions
compared to our study, such as conductivity in hetero-
geneous lattices.
Multiplex networks are characterized by several layers

of links between the same nodes. In this context, there are
two main percolation approaches: one that assumes that
connections can move from layer to layer via the shared
nodes, and one that treats the connectivity of each layer
separately and requires the connectedness of the node in
all of the layers. The first approach is associated with
interconnected networks and is well suited to model
multimodal transportation networks, while the second
approach is associated with interdependent networks
and is better suited to model critical infrastructure.
The first approach determines overall connectivity as
the union of the giant components in each layer,
while the second approach uses the intersection of giant
components, with the additional requirement that the
reduced set of nodes continue to define a giant component
in each layer (this gives rise to the iterative solution and
cascade process).
Our percolation process can be understood as a trans-

formation from a single-layer node-colored network with
C colors to a C-layered multiplex noncolored network.
Each color defines a layer through its removal: After
removing all the nodes in the network of color c, we
determine the largest connected component and add to it
nodes of color c that are directly linked to it. This set Lþ

c̄
of nodes and links constitutes the layer corresponding to
color c. Notice that layers for two different avoidable
colors c and c0 can have many links in common, which
connect nodes of colors other than c or c0. Such over-
lapping links have strong implications for multiplex
connectivity [46,49].
Even after this transformation, the percolation process is

distinct from other multilayer percolation processes. After
obtaining layers for all colors, we take the intersection of
the giant component of all the layers. This collapsed giant
component corresponds to the maximal set of nodes that are

color-avoiding connected. This is not the same as the
mutual giant connected component of interdependent net-
works because we do not require that the nodes in the
intersection of the giant components remain connected in
each layer. Allowing the final set of nodes to not be directly
connected to one another in each layer leads to two
qualitative differences: There are no cascades because
the giant component is not recalculated repeatedly
[50,51], and there are transmission nodes that are required
for color-avoiding connectivity but are not color-avoiding
connected themselves.
This result is not merely a technical difference; it reflects

a qualitative difference in the reality that we are modeling:
Instead of looking at the set of nodes that remain in the
giant components of each layer (as in interdependent
networks) or that can be connected via paths that bridge
the layers (in interconnected networks), color-avoiding
connectivity looks for the pairs of nodes that have a path
in every layer, even if the nodes that compose the path do
not share this property. To our knowledge, this kind of
analysis has never been performed in a single-layer or a
multilayer context. The nearest analog is in studies of k
components [33], where connectivity is limited to nodes
that are connectable via k-independent paths.

IV. APPLICATIONS AND DISCUSSION

One immediate application of our framework is to secure
communication in a network where every node is con-
trolled by some entity and thereby subject to eavesdrop-
ping. Assuming C node owners, each of which eavesdrops
on its routers’ traffic, we can securely communicate if
messages are split with a secret-sharing protocol [4,5,52]
and transmitted along multiple color-avoiding paths
[53,54]. The nodes that can take advantage of this method
are exactly the elements of the largest CAC compo-
nent (Lcolor).
To study the hidden CAC structure of the Internet, we

use a symmetrized version of the AS-level Internet pre-
pared by Ref. [34], which was generated using data from
the CAIDA project [35] up to December 2013. We then
color every router according to the country to which the
router is registered, reflecting the assumption that every
country is eavesdropping on its traffic but that no countries
share information [Fig. 4(a)]. If two countries do share
information, we would simply recolor the collaborating
node colors to have the same color. For simplicity, we
confine our analysis to the case where no countries share
information. Using the algorithm for finding the largest
CAC component, we can determine which nodes are
securely connectable and which are not [Fig. 4(b)].
We find that 26 228 out of 49 743 (≈52.73%) of the

routers are in the largest CAC component and that this
accounts for the vast majority of CAC connected nodes
[Fig. 2(c)]. However, we also find that these results vary
greatly from country to country. For instance, only 25% of
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the routers registered to the USA are in the largest CAC
component compared to 89% of routers registered to Russia
[Fig. 4(c)]. This is partly because of the density of routers in
the USA, which is much higher than Russia, and indicates
that US eavesdroppers have far greater capacity to intercept
communication than their Russian counterparts.
Since the analytic calculations we presented in Sec. III

assumed that there was no correlation between the topology
and the node coloring, it is of interest to understand how the
deviations from that assumption affect color-avoiding
connectivity in a real-world network. Details for the
countries with the most nodes, together with a comparison
with theoretical results, are presented in Fig. 5(a). For
theoretical results, the degree distribution was used as
measured from the network, and the nodes were given
uniform color frequencies, where the frequencies rc are
determined from the shares of AS of each color. We find
three main reasons for the breakdown of color connectivity
in the real-world network compared to the equivalent
random system: (i) Their own country is not avoidable
(USA, Brazil, Poland, Sweden), (ii) USA is not avoidable
(Australia, Canada, Korea, India), or (iii) the nodes are
under-represented in the two-core largest component
(Netherlands).
We further consider the possibility that a pair of nodes

trust their own colors in Figs. 5(b) and 5(c). We find that for
type (i) countries, trusting their own color substantially
improves their connectivity, while for type (ii) countries,
it only helps when communicating with the USA; for

type (iii) countries, it does not make a substantial difference
at all.
A similar analysis can be made of technological com-

munication networks where the nodes are colored by
version, or in human communication networks like spy
networks with agents operating under different flags.
If classes of nodes are vulnerable to failure (as opposed

to eavesdropping), avoiding them with multiple paths as
determined by color-avoiding percolation leads to optimal
redundancy: Each backup path is optimized for the failure
affecting a different node class. When percolation is used to
describe spreading phenomena or robustness in networks, it
is commonly assumed that the nodes fail at random or
preferentially according to a topological property like
degree or betweenness [21,22]. However, in many systems,
certain sets of nodes are liable to fail all at once: pipe
networks with above-ground water pipes freezing over all
at once, smart grids where multiple power stations depend
on one communication station [54,55], logistical networks
where one contractor is responsible for several connections,
metabolic networks with different metabolic pathways
[56,57] depending on particular biochemicals, and any
other case where a specific set of nodes is liable to fail at
once [58,59]. Color-avoiding percolation provides a gen-
eral and extensible tool for analyzing effective robustness
and optimal redundancy in any of these realistic scenarios.
In economics and operations research, it has been argued

that global market competition today is essentially between
supply chains instead of between individual companies

FIG. 4. Color-avoiding connectivity of the AS-level Internet. (a) Here, we show the routers of the AS-level Internet in the Iberian
peninsula as a disjointly vulnerable network, with the colors determined by the country to which the router is registered. (b) The green
nodes are members of this set, while the red are not. This means that these routers can take advantage of multiple paths to maintain
security, as described in the main text. Panel (c) shows the number of CAC routers (nodes in Lcolor) compared to the total number of
routers for the top 20 countries worldwide, in terms of total number of AS routers registered to that country in Lcolor. Data for the USA
have been truncated for visibility; the total number of AS routers is 17 690. We use a symmetrized version of the network of Ref. [34],
which was generated using data from the CAIDA project [35] up to December 2013.
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[60,61]. Network studies about risks to supply chains have
shown that supply chains are often highly vulnerable, in
general [62,63]. With the exception of case studies [64],
risks associated with correlated failures due to geographical
proximity [65–67] or shared ownership have not been
studied. However, the effect of correlated failures can cause

serious supply-chain disruptions, such as those that
occurred with the hard-drive industry following the 2011
Thailand floods. Color-avoiding percolation can be directly
used to compute the portion of the world trade network
between entities, which is CAC secure with respect to
correlated failures. Calculating the fraction of a supply

FIG. 5. Details for the AS-level Internet. (a) For comparing with theoretical results Scolor ¼ jLcolorj=N (black line), we calculate shares
jLcolor ∩ fci ¼ cgj=jfci ¼ cgj for 20 countries with the most AS. Here, fci ¼ cg is the set of all AS assigned to country c, and jj is the
number of nodes in a set or component. Results are shown with black bars and compare well with theoretical results for the group of
eleven countries shown to the left of the vertical dashed line. To understand why color connectivity breaks down for the other countries,
we also plot the shares of two-core AS in the respective countries (white bars). The fraction jLþ

c̄ ∩ fci ¼ cgj=jfci ¼ cgj (shown with
red bars) is the fraction of AS in a country c which can communicate while avoiding further AS of that country c. The fraction
jLþ

c¼ŪSA ∩ fci ¼ cgj=jfci ¼ cgj (shown with cyan bars) is the fraction of AS in a country cwhich can communicate while avoiding AS
registered to the USA. Color-avoiding connectivity when sender and receiver colors are trusted: (b) The fraction of nodes of row color
that are in the largest CAC component when trusting all nodes of row color and column color. The value indicates the probability that a
node of color i can communicate with the largest CAC set of nodes of color j. In panel (c), we show the relative improvement compared
to not trusting the sender-receiver colors. For USA nodes, this makes them 4 times more likely to be color-avoiding connected, while for
most countries, it makes a less substantial difference, unless they are communicating with the USA.
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chain that is in the giant CAC component provides an
estimate of the resilience of different economic sectors to
correlated failures.
Another application that fits neither the rubric of

correlated failures nor that of security against eavesdrop-
pers is in determining the maximal infectable set of
individuals in a multistrain epidemic [68]. Coloring nodes
by strain immunity, color-avoiding percolation can be
used to evaluate the population’s susceptibility to a
multistrain infection. For example, let us consider the
case in which C different strain immunities are present
in the population. Let us assume that we do not know
a priori which of the strains will emerge next and that the
probability of infection for an immunized individual is
very small compared to the probability of infection of
nonimmunized individuals. Using color-avoiding perco-
lation, we can compute the largest set of infection-prone
individuals without knowledge of the exact type of strain
that will emerge. This component represents the lower
bound of the component affected by the epidemic and
could be used as a lower bound of the amount of resources
needed to contain the spread of disease, whatever strain
emerges.
Color-avoiding percolation can also be applied to

ecology. In Ref. [69], Barter and Gross propose a model
for an ecological system in which species are spread over
a network of spatial patches (islands). If different
species can not survive in certain patches, we can color
the patches depending on which species they do not
support. The model presented here could estimate a
portion of islands where it is possible to find all the
species, assuming that species can occasionally visit
neighboring islands even if they are uninhabitable for
that species.
Vulnerability colorings in real-world networks have not

been measured systematically in the past. In light of our
findings that this heterogeneity of vulnerabilities can be
used for improving security and robustness of complex
systems, we hope that the collection of vulnerability-
colored network data will be pursued in the future.
Here, we have presented the first systematic study of

complex networks with vulnerabilities affecting classes of
nodes and a way to maintain network robustness by
utilizing multiple paths. This led us to develop color-
avoiding percolation, a new type of percolation with a
number of unique properties. We have shown that even a
small diversity of colors can enable color-avoiding con-
nectivity to a large fraction of nodes in a random network
but that, in real-world networks, uneven distribution of
vulnerabilities can undermine this effect. The framework
and metrics uncover a hidden structure that underlies any
complex network with classes of vulnerable nodes and can
be used to devise new network design principles and
protocols for improving robustness and security in real-
world networks.

ACKNOWLEDGMENTS

We acknowledge financial support from the European
Commission FET-Proactive project MULTIPLEX (Grant
No. 317532) and the Italy-Israel NECST project. M. D. is
grateful to the Azrieli Foundation for support. M. D. thanks
Alan Danziger for first suggesting router software versions
as a percolation problem. V. Z. acknowledges support by
the H2020 CSA Twinning Project No. 692194, RBI-T-
WINNING, and Croatian centers of excellence Quantix
and Center of Research Excellence for Data Science
and Cooperative Systems. We also express gratitude to
Shlomo Havlin, Damir Vukičević, Marko Popović, Hrvoje
Štefančić, and Damir Korančić for helpful comments in the
preparation of this manuscript.
All authors contributed to the idea, discussion of results,

and writing of the paper. S. K. and M. D. performed
simulations, and S. K. developed the analytical treatment.

APPENDIX A: COLOR-AVOIDING
CONNECTED COMPONENTS AND

THE MAXIMALITY OF Lcolor

As shown in Fig. 6, CAC components can have a broad
variety of forms, and they can overlap. Compared to
standard component analysis, this complicates the identi-
fication of CAC components. However, it is possible to
show that Lcolor is always a CAC component (if it is not
empty). For this, it has to be shown that Lcolor is maximal.
To show that Lcolor is a maximal component in the sense

that there can be no other nodes that are CAC with all the
nodes in Lcolor and are not a member of Lcolor, we provide
the following argument. First, let us assume that Lcolor is
not maximal. That means that there exists a node v in the
network which is (a) CAC to every node in Lcolor and
(b) excluded from Lcolor. Condition (b) means that there
exists a color c0 for which the node v is not a member of
Lþ
c̄0 . Consequently the node v cannot connect to the nodes

in Lcolor which is by construction a subset of Lþ
c̄0 , which

contradicts (a).

FIG. 6. Variety of color-avoiding components. Color-avoiding
components may overlap, as shown in diagrams (b) and (c). Color-
avoiding components can assume diverse forms. In a chain (a),
paths between nodes of one color exist and can be reached by
connections between nodes of different colors. In diagram (b), the
black node serves as an alternative path provider for the blue nodes.
Graph (d) does not need any connection among nodes of the same
color, but there is a massive overhead of nodes and connections to
achieve color-avoiding connectivity of the blue nodes. Graph
(e) shows that a clique is a color-avoiding component.
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List of variables

Networks
N Number of nodes
k̄ Average degree
ki Degree of node i
pk Degree distribution
α Exponent of scale-free degree distribution
g0 Generating function of degree
g1 Generating function of excess degree

Colors
C Number of colors
c ∈ 1; 2;…C A color
rc Color distribution

Standard percolation ingredients
L Set of nodes in the largest component

(color blind)
u Probability of not being connected to a

giant comp. over a link
S Size of giant component
Lc̄ Set of nodes in the largest component,

after nodes of color c deleted
uc̄ Probability of not being connected

to giant Lc̄ over a link
Sc̄ Size of giant Lc̄

Lþ
c̄ Union of Lc̄ with all nodes of color c

being direct neighbors of nodes in Lc̄

Percolation over color-avoiding paths
Lcolor Candidate set of nodes for the largest

avoidable color component
Scolor Size of giant Lcolor
Bk;k0 Probability that, out of k links, k0 connect

to a giant component
Mk0;~κ Probability that, out of k0 links, κ1

connect to color 1, etc.
P~κ Success probability having neighbors

of colors acc. to ~κ
Uc̄ Probability that a link fails to connect to

Lcolor, which already connects to L and
a node not having color c

Scolor;∞ Size of the set of all nodes being connected
to giant components over two links
or more

β Critical exponent
k̄crit Critical value of average degree

APPENDIX B: SIZE OF GIANT AVOIDABLE-
COLORS COMPONENT IN THE

CONFIGURATION MODEL

We can find analytical results for Scolor for random graph
ensembles with randomly distributed colors in the limit of
infinite graphs. These results can be used to estimate the
situation in finite quenched networks. We are able to gain a
general understanding including phase transitions. This
knowledge can guide our understanding of real-world
networks.

We use the generalized-configuration-model graph
ensemble with N nodes, where each degree sequence
fkig occurs with probability

Q
ipki, with the degree

distribution pk. Additionally, we assign to every node i
a color ci ∈ 1; 2;…; C. The color sequence fcig has
probability

Q
irci with the color distribution rc. For a

graph GN out of the graph ensemble, Lcolor has a certain
size NcolorðGNÞ. For the whole graph ensemble, we have to
use the average value. By considering only giant contri-
butions growing with network size, we have

Scolor ¼ lim
N→∞

X
GN

PðGNÞ
NcolorðGNÞ

N
; ðB1Þ

where PðGNÞ ¼
Q

ipkiω
Q

irci is the probability of having
the graph GN of size N, including ω, the probability of the
connection scheme of GN as a matching of half edges.

1. Question and connection to percolation theory

For calculating Scolor in the random graph ensemble, we
follow the ideas of Erdős and Rényi [43] and Newman [44].
For calculating the size of the giant component, they used
probabilities of connections for a single node in the graph
ensemble. As we have to extend the method to a gradual
procedure with conditional probabilities, it is useful to
introduce the original method in detail with a shifted
viewpoint.
Let us denote with L the set of all nodes belonging to the

largest component. In the top panels of Fig. 7, a possible
situation is illustrated. The largest component contains a
large part of the network, and the remaining nodes belong
to smaller components. We have to calculate the size S of
the giant component, meaning the average relative size of L
in the network ensemble in the limit of infinite network
size. For this calculation, we can define the average
probability u that a node fails to connect to L over one
particular link. This is illustrated in the left part of the
figure. Again, the thermodynamic limit N → ∞ is implied.
With the definition of u at hand, we can calculate S in two
steps: First, using a self-consistency equation, u is calcu-
lated. The probability u is identical to the probability that
the neighbor does not connect to the giant component over
any of the remaining links,

u ¼ g1ðuÞ; g1ðzÞ ¼
X
k

qkzk: ðB2Þ

In this equation, g1 is the generating function of excess
degree qk ¼ ðkþ 1Þpkþ1=k̄. For important degree distri-
butions, e.g., Poisson or scale-free, the equation for u can
only be solved numerically. The second step is an averaging
over nodes with various degrees k. The probability to
connect to the giant component over any of k links is
ð1 − ukÞ, meaning that not all links fail at the same time.
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This is illustrated in the bottom part of the figure. As a node
that connects to the giant component belongs to it,

S ¼
X∞
k¼0

pkð1 − ukÞ ¼ 1 − g0ðuÞ; g0ðzÞ ¼
X
k

pkzk:

ðB3Þ

In analogy to the procedure described above, we calcu-
late Scolor as the probability that a randomly chosen node
belongs to Lcolor. This has to be evaluated in the graph
ensemble of infinite size. As we perform an averaging over
nodes with various degrees k, the following question has to
be answered: What is the probability that a node with k
links connects to a giant Lc̄ for all colors c at the same time.
This is illustrated in Fig. 8. On the left, the situation for a
graph with colors on the nodes is illustrated. Nodes of all
colors might be in the largest component. After deleting all
nodes of one color c, the remaining largest component Lc̄
might still contain a large part of all nodes in L. The
condition for the node belonging to Lcolor is illustrated in
the right part of the figure.
We use the same two steps to attack this problem, as

described for calculating the giant component above. First,
we provide some single link probabilities that can be used
as primitives for further calculations. Second, we combine
the single link probabilities to calculate Scolor.

2. Single link probabilities

We have already shown Eq. (B2) for calculating the
probability u. In the case of colors on the nodes, as
illustrated in the left part of Fig. 9, the colors can simply
be ignored. We further need the probability to connect to a
node of color c, which is simply rc. This is illustrated in the
second column of the figure. We further introduce uc̄, the
probability that a single link does not connect to a giant Lc̄.
See the third column of the figure for an illustration. This
can be calculated using percolation theory for random
attack by solving

uc̄ ¼ rc þ ð1 − rcÞg1ðuc̄Þ: ðB4Þ

Unfortunately, uc̄ cannot be used directly for calculating
Scolor. If we look at the same link, the probabilities uc̄ are
dependent for different colors. The most obvious argument
is that we always have Πcð1 − uc̄Þ ¼ 0, as a link must at
least miss one of the Lc̄. Instead, we use the conditional
probability Uc̄, as illustrated with the outer right column of
the figure. The precondition is that a link connects to the
giant component, and the node it connects to has no color c.
Here, Uc̄ is the probability that such a link connects to Lc̄.
For calculating it, we use the primitives introduced so far,
as illustrated in Fig. 10. Assuming independence of the
probabilities (1 − u) for connecting to the giant component
and ð1 − rcÞ for not connecting to a node of color c, the
precondition of Uc̄ can be constructed. In this way, we can
construct ð1 − uc̄Þ using the probability we are searching
for: ð1 − uc̄Þ ¼ ð1 − uÞð1 − rcÞð1 −Uc̄Þ. With this result,
we find

Uc̄ ¼ 1 −
1 − uc̄

ð1 − uÞð1 − rcÞ
: ðB5Þ

If ð1 − uÞð1 − rcÞ ¼ 0, the precondition holds for an empty
set of nodes. In this case, we define Uc̄ ¼ 1. Notice that the
additional information of the explicit color, instead of only
stating that the color is not c, does not alter the results, as a

FIG. 7. We base our theory on the method to calculate the size
of normal giant components, as illustrated in this figure. Using a
self-consistency equation, the probability u can be calculated.
This is the probability that a node is not connected to the giant
component over a single link (see top). On the bottom, the
probability for a node with k links is illustrated to have at least
one link connecting to the giant component. Note that uk is the
probability that all links fail.

FIG. 8. We have to calculate the probability, if a node with k
links is, for every color c, connected to the giant component Lc̄
with deleted color c. All connections over at least one link have to
exist at the same time. We illustrate this question with red (c ¼ r),
green (c ¼ g), and blue (c ¼ b). If a link connects to LLḡ, it
definitely does not connect to Lc̄ for one of the other colors. This
kind of dependence forces us to use a stepwise calculation with
conditional probabilities.
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further restriction of the colors would decrease the numerator
and the denominator by the same factor.

3. Averaging over link distributions

As in Eq. (B3) for the giant component, we want to get
an analytical result for Scolor by averaging over possible link

constellations of a randomly chosen node. Let us give the
whole result and then explain it step by step afterwards:

Scolor ¼
X∞
k¼0

pk

Xk
k0¼0

Bk;k0
Xk0

κ1;…;κC¼0

Mk0;~κP~κ; ðB6Þ

Bk;k0 ¼
�
k
k

�0
ð1 − uÞk0uk−k0 ; ðB7Þ

Mk0;~κ ¼
k0!

κ1!…κC!
ðr1Þκ1…ðrCÞκCδk0;κ1þ���þκC ; ðB8Þ

P~κ ¼
YC
c¼1

½1 − ðUc̄Þk0−κc �: ðB9Þ

The formulas include the single link probabilities rc, u
[Eq. (B2)] and UC̄ [Eq. (B5) with (B4)]. An illustration of
the procedure can be seen in Fig. 11. Here, Bk;k0 is the
binomial probability that, out of the k links, k0 links connect
to the giant component. Note that Mk0;~κ gives the multi-
nomial probability for a certain color distribution among
the k0 links connecting to the giant component. We assume
that this second step is independent of the first step, which
is confirmed with the final results. The numbers κc count
the links that connect to a node of color c in the giant
component. Finally, P~κ gives the joint probability that for
the color distribution given by ~κ, all giant Lc̄ are connected
at the same time. There is at least one link connecting to Lc̄

with probability 1 − ðUc̄Þk0−κc. If this is successful, the

FIG. 9. Probabilities for a single link to connect to different parts of the network. We use these probabilities as primitives to calculate
the probability for many links. While u, rc, and uc̄ can be calculated with standard methods invented for the configuration model, the
conditional probability Uc̄ can be calculated as a combination of the others.

FIG. 10. Calculation of Uḡ using the equality
ð1 − uÞð1 − rgÞð1 − UḡÞ ¼ 1 − uḡ. For this calculation, we have
assumed independence of the qualities of the link under consid-
eration, especially of the color it connects to and if it connects to
the giant component.
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randomly chosen node belongs to Lþ
c̄ . The success prob-

abilities for different colors have to be multiplied, as all Lc̄
have to be simultaneously reached.

APPENDIX C: EXAMINATION OF Scolor

1. Closed-form solutions

We now calculate closed-form solutions for Scolor for
special cases. This calculation is done to demonstrate
how the extensive summations over k0, k, and ~κ can be
performed analytically. In cases where this is not possible, a
sampling of values ~κ has to be performed. The results can
be tested against the analytically tractable situations and by
comparing with numerical results. The closed-form sol-
utions presented here were used to calculate analytical
results for the main article as well.
For evaluating Eq. (B6) with two colors, we first rewrite

σk0 ≡
Xk0

κ1;κ2¼0

Mk0;~κP~κ ðC1Þ

¼
Xk0
κ1¼0

�
k0

κ1

�
ðr1Þκ1ðr2Þk0−κ1 ½1−ðU1̄Þk0−κ1 �½1−ðU2̄Þκ1 � ðC2Þ

¼
Xk0
κ1¼0

�
k0

κ1

�
½ðr1Þκ1ðr2Þk0−κ1 − ðr1U2̄Þκ1ðr2Þk0−κ1 � ðC3Þ

− ðr1Þκ1ðr2U1̄Þk0−κ1 þ ðr1U2̄Þκ1ðr2U1̄Þk0−κ1
¼ 1 − ðr1 þ r2U1̄Þk0 − ðr2 þ r1U2̄Þk0 þ ðr1U2̄ þ r2U1̄Þk0 :

ðC4Þ

In the last step, the binomial formula was used backward.
We can use this procedure once more, and with Eq. (B5)
and r1 þ r2 ¼ 1, we find

Scolor ¼
X
k

pk

Xk
k0¼0

Bk;k0σk0 ðC5Þ

FIG. 11. For calculating the probability of a node with k links to belong to Lcolor, we have to average over different link constellations
that this node might show. First, Bk;k0 is the probability that, out of the k links, k0 connect to the giant component. It is calculated using u
(compare the left side of Fig. 9). Second,Mk0;~κ gives the probability for a certain color distribution among the links. It is calculated using
rg, etc. (compare Fig. 9, second from left). We assume that this second step is independent of the first step, which is confirmed with the
final results. Third, P~κ gives the joint probability that for this color distribution, Lr̄ , Lb̄, and Lḡ are connected at the same time. This is
calculated using Ur̄ , etc. (compare the right side of Fig. 9).
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¼
X
k

pk

Xk
k0¼0

�
k
k

�0
uk−k

0

× ½ð1 − uÞk0 − ðð1 − uÞðr1 þ r2U1̄ÞÞk0 −…� ðC6Þ

¼
X
k

pk½1 − ðu1̄Þk − ðu2̄Þk þ ðu1̄ þ u2̄ − 1Þk� ðC7Þ

¼ 1 − g0ðu1̄Þ − g0ðu2̄Þ þ g0ðu1̄ þ u2̄ − 1Þ: ðC8Þ

This result holds for any degree distribution and color
distribution. Notice that rc ≤ uc̄ ≤ 1. The result for two
colors only depends on the probabilities uc̄, while condi-
tional probabilities such as Uc̄ were eliminated. This was
possible as L1̄ and L2̄ are not overlapping for two colors.
For Poisson graphs, we find, with the according generating
function,

g0ðzÞ ¼ g1ðzÞ ¼ ek̄ðz−1Þ; ðC9Þ

Scolor ¼ ½1 − g0ðu1̄Þ�½1 − g0ðu2̄Þ�: ðC10Þ

For more than two colors, Lc̄ overlap. For homogeneous
color distributions rc ¼ 1=C, a closed-form solution can be
found in the same way as for two colors with the binomial
formula. We find

Scolor ¼
XC
j¼0

ð−1Þj
�
C
j

�

× g0

�
uþ ð1 − uÞ

�
j
C
Uj−1

1̄
þ C − j

C
Uj

1̄

��
: ðC11Þ

Let us finally discuss the behavior for C → ∞. This can
be done by utilizing the term σk0 , the probability that a node
connecting over k0 links to the giant component belongs to
Scolor. As can be seen with Eq. (B9), σ0 ¼ σ1 ¼ 0. On the
other hand, with rc → 0, Eq. (B4) converges to Eq. (B2),
and therefore U1̄ → 0. This means that σk0>1 → 1. We
finally find, with Eq. (B6), that

Scolor;∞ ≡ lim
C→∞

Scolor ðC12Þ

¼ 1 −
X∞
k¼0

pk½uk þ kð1 − uÞuk−1� ðC13Þ

¼ 1 − g0ðuÞ − ð1 − uÞdg0ðzÞ
dz

����
z¼u

: ðC14Þ

2. Critical behavior for Poisson graphs

With Eq. (B6), vanishing σk0 causes Scolor ¼ 0.
According to

σk0 ¼
Xk0

κ1;…;κC¼0

Mk0;~κ

YC
c¼1

½1 − ðUc̄Þk0−κc �; ðC15Þ

this is the case if Uc̄ ¼ 1 for any color c. With Eq. (B5), we
find that Uc̄ ¼ 1 whenever uc̄ ¼ 1. Examining Eq. (B4) for
uc̄, we can relate it to site percolation (random removal of
nodes). For Poisson graphs, we have rcrit ¼ ðk̄ − 1Þ=k̄.
With homogeneous color distribution rc ¼ 1=C, we can
resolve the critical connectivity given the number of colors

k̄crit ¼ C=ðC − 1Þ: ðC16Þ

The normal giant component size S shows a special
critical behavior just above the transition point; it scales
linearly with k̄ − 1. Here, we are interested in the behavior
of Scolor, which is a function of 1 − u1̄, which itself can be
related to 1 − u ¼ S. By inserting into Eq. (B4), it can be
shown that uc̄ðk̄Þ ¼ rc þ ð1 − rcÞuðð1 − rcÞk̄Þ. For small
arguments ðk̄ − k̄critÞ,

1 − u1̄ðk̄ > k̄critÞ ≈ ð1 − r1Þ2
dð1 − uÞ

dk̄

����
k̄¼1þ0

ðk̄ − k̄critÞ:

ðC17Þ

Inserting this into Eq. (B5), we find, using
1 − uðk̄ > 1Þ ≈ ½dð1 − uÞ=dk̄�jk̄¼1þ0ðk̄ − 1Þ,

ε≡ 1 − U1̄ ≈ Cðk̄ − k̄critÞ; ðC18Þ

if additionally k̄ − k̄crit ≪ k̄ − 1 holds (1 − u1̄ small com-
pared to 1 − u).
For calculating σk0 , we first need to evaluate P~κ, includ-

ing expressions 1 − ðU1̄Þk0−κc . Replacing this with ε and
applying an approximation, we find 1 − ðU1̄Þk0−κc ¼
1 − ð1 − εÞk0−κc ≈ ðk0 − κcÞε. This is true at least as long
as k0ε ≪ 1. With this result, we find P~κ ∝ ðk̄ − k̄critÞC
independent of ~κ, and

σk0 ∝ ðk̄ − k̄critÞC: ðC19Þ

Finally, we find

Scolor ∝ ðk̄ − k̄critÞβ; ðC20Þ

β ¼ C: ðC21Þ

The critical behavior of Scolor∞, for Poisson graphs can
be evaluated with the generating function Eq. (C9) and
S ¼ 1 − u. We find Scolor;∞ ¼ S − k̄Sð1 − SÞ, and for small
positive k̄ − 1, the giant component grows approximately
with S ≈ 2ðk̄ − 1Þ=k̄2. Therefore,
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Scolor;∞ ≈ ðk̄ − 1Þ2ð4=k̄2 − 2=k̄3Þ ∝ ðk̄ − 1Þ2: ðC22Þ

APPENDIX D: FINDING Scolor
IN A DIFFERENT WAY

So far, we have constructed Scolor by averaging over
possible link configurations of a randomly chosen node.
There is a more direct way to calculate Scolor, by under-
standing Lþ

c̄ as events and using rules for probabilities of
intersections and unions of events. We start by rewriting
with the complementary event

Scolor ¼ ProbðLþ
1̄
∩ Lþ

2̄
∩ … ∩ Lþ

C̄Þ ðD1Þ

¼ 1 − ProbðLþ
1̄
∪…∪Lþ

C̄Þ: ðD2Þ

Negation turns the intersection into a union. The union is
hard to calculate using single link probabilities. Therefore,
we use the inclusion exclusion principle [70]

ProbðLþ
1̄
∪…∪Lþ

C̄Þ ¼
X
c

ProbðLþ
c̄ Þ

−
X
c<q

ProbðLþ
c̄ ∩ Lþ

q̄ Þ þ � � � ðD3Þ

The probability of a union of events equals the sum of
probabilities of the events, corrected for pair overlaps of
events, which are further corrected for triplet overlaps and
so on. Furthermore, we can calculate the needed proba-
bilities using generating functions and single link proba-
bilities. We use u1̄;…;j̄ as the probability that a node does
not connect to component Lþ

1̄
, and that at the same time,

over the same link, it does not connect to Lþ
2̄
;…, and that

over the same link, it does not connect to Lþ
j̄ . We have

ProbðLþ
1̄
∩ … ∩ Lþ

j̄ Þ ¼ g0ðu1̄;…;j̄Þ: ðD4Þ

If all colors have the same frequency, it holds that u1̄;2̄ ¼
uc̄;q̄ for any c < q ≤ C, etc. Therefore, many terms can be
grouped together, and we find

Scolor ¼
XC
j¼0

ð−1Þj
�
C
j

�
g0ðu1̄;…;j̄Þ: ðD5Þ

For u1̄;…;j̄, we can give an approximate result, which finally
leads to what we found in Eq. (C11):

u1̄;…;j̄ ≈ uþ ð1 − uÞ
�
j
C
Uj−1

1̄
þ C − j

C
Uj

1̄

�
: ðD6Þ

With probability u, a link does not connect to the giant
component, so u1̄;…;j̄ ≥ u. If it connects to the giant

component [probability (1 − u)], then the node on the
other side has either one of the j colors (probability j=C),
leaving a simultaneous failure probability of Uj−1

1̄
, or it has

a different color with probability ðC − jÞ=C, leaving a
simultaneous failure probability of Uj

1̄
. In this approxima-

tion, we only neglect dependencies among the conditional
probabilities U1̄, U2̄, etc.
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