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Marko Karlus̆ić1, Sevilay Akcöltekin2, Orkhan Osmani2,3,
Isabelle Monnet4, Henning Lebius4, Milko Jaks̆ić1
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1 Institut Ruder Bošković, PO Box 180, 10002 Zagreb, Croatia
2 Fakultät für Physik, CeNIDE, Universität Duisburg-Essen,
47048 Duisburg, Germany
3 Physics Department and Research Center OPTIMAS,
University of Kaiserslautern, 67663 Kaiserslautern, Germany
4 CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5, France
E-mail: marika.schleberger@uni-due.de

New Journal of Physics 12 (2010) 043009 (10pp)
Received 6 November 2009
Published 1 April 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/4/043009

Abstract. We present experimental and theoretical data on the threshold
behaviour of nanodot creation with swift heavy ions. A model calculation
based on a two-temperature model that takes into account the spatially resolved
electron density gives a threshold of 12 keV nm−1 below which the energy
density at the end of the track is no longer high enough to melt the material.
In the corresponding experiments, we irradiated SrTiO3 surfaces under grazing
incidence with swift heavy ions. The resulting chains of nanodots were analysed
by atomic force microscopy (AFM). In addition, some samples of SrTiO3

irradiated under normal incidence were analysed by transmission electron
microscopy (TEM). Both experiments showed two thresholds, which were
connected with the appearance of tracks and the creation of fully developed
tracks. The threshold values were similar for surface and bulk tracks, suggesting
that the same processes occur at both glancing and normal incidence.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 043009
1367-2630/10/043009+10$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:marika.schleberger@uni-due.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Experimental determination of threshold values 3

2.1. Grazing incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Perpendicular incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. The two-temperature model 6
4. Discussion 8
5. Conclusion 9
Acknowledgments 10
References 10

1. Introduction

The irradiation of solid matter using heavy ions with energies in the MeV range has long been
known to result in structural modifications such as stoichiometric or morphological changes,
amorphization of the bulk and the creation of hillocks as well as chains of hillocks on the
surface [1–5]. In this energy range, the modification of the material is not due to direct
collisions of the projectile ion with the target atoms (nuclear stopping power regime) but
rather to a very intense interaction of the projectile with the electronic system of the target
(electronic stopping power regime). How this electronic excitation is transformed into material
modifications depends very much on the physical properties of the target material itself. Most
insulating materials exhibit nanosized hillocks at the impact zone of the ion when irradiated
normal to the surface. This effect has been evidenced and studied in detail for many years
(e.g. [6–8]) but is still not fully understood.

A rather successful approach for describing the conversion of an electronic excitation into
a heated lattice is based on a two-temperature model (TTM) and requires solving the coupled
differential equations for the electron and phonon temperatures [9]. The model has been used
to explain the track radii in various materials created by irradiation perpendicular to the surface
under the condition that the electron–phonon coupling constant g is a fitting parameter.

Recently, the TTM has been modified to include the spatially resolved electron density
instead of a homogeneous free electron gas [5], which is important if the irradiation takes place
under glancing angles. In this case, a single ion is able to create a chain of hillocks along its
otherwise latent track within the bulk. According to the model, the chains occur due to the non-
homogeneous nature of the electron density. Every time the projectile travels through a region
with a high density, the energy loss is sufficiently high to feed energy into the electronic system.
This energy is transferred into the phonon system, and a local melting occurs, which finally
results in a nanodot on the surface. Because the electron density reflects the periodicity of the
crystal, the nanodots appear with a certain periodicity on the surface.

So far, these chains of hillocks have always been produced with ions experiencing a
stopping power of about 20 keV nm−1, and nothing is known about the morphology at lower
stopping powers. The aim of this paper is to study ion-induced nanodot chains in SrTiO3 as a
function of the kinetic energy of the projectile to determine a threshold value for the stopping
power. In addition, we wish to show that the recently presented theoretical approach can be
applied to predict a threshold value that is in agreement with experimental data.
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This paper is organized as follows. We first present experimental data from two different
methods to determine the threshold energy for the production of nanodots. Next, in section 2.1,
we discuss the use of atomic force microscopy (AFM) to determine the minimum stopping
power required to create a chain of nanodots on the surface. As we normally treat the surface
chains as tracks on the surface, it is interesting to compare the two manifestations of a swift-
ion passage: surface chains and tracks in the bulk. Therefore, in section 2.2, we present the
results obtained with transmission electron microscopy (TEM) to determine the stopping power
required for amorphization. We then derive a value for the threshold from theory and compare
the experimental data with our theoretical predictions.

2. Experimental determination of threshold values

2.1. Grazing incidence

Single crystal samples of SrTiO3(100) (Crystec, Berlin, and Kelpin, Neuhausen) were
irradiated, at room temperature without prior surface treatment, at the 6.0 MV Tandem Van
de Graaff accelerator of Institut Ruder Bošković [10]. The irradiations were performed using
I ions with different kinetic energies, resulting in different stopping powers (calculated with
SRIM [11]): 6.5, 13, 18, 23 and 28 MeV, yielding 2.9, 5.3, 7.2, 9.0 and 10.5 keV nm−1,
respectively. The angle of incidence with respect to the surface was fixed at φ = 1.3◦. The
samples were oriented along the (001) direction within a few degrees. Fluences were typically
chosen to yield around 10 tracks per µm2 on average, assuming that every ion produces one
track. For lower stopping powers, higher fluences were used to compensate for a possible loss
in production efficiency. Additional samples of SrTiO3(100) were irradiated under φ = 1◦ at the
IRRSUD (92 MeV Xe23+, 21 keV nm−1) and SME (700 MeV Xe23+, 29 keV nm−1) beam lines of
GANIL (Caen, France). After irradiation, the samples were analysed by AFM in tapping mode
under ambient conditions. Some samples were cleaned prior to AFM measurements by snow-
cleaning and wiping with ethanol. By comparing chains of nanodots from irradiated samples
with and without cleaning treatment, we made sure that this procedure did not affect either the
shape or the height of the hillocks. All AFM images were processed with the software package
WSxM [12].

The typical surface track morphology that is obtained in a glancing angle geometry if the
projectile energy is high enough can be seen in figure 1(c). This SrTiO3 surface was irradiated
with 10.5 keV nm−1 ions at a glancing angle of φ = 1.3◦. Each chain in figure 1(c) was produced
by a single ion because the average number of chains (≈10 per µm2) corresponds well with the
nominal fluence of 1 × 109 ions cm−2. Thus, the production efficiency is close to one. The chain
length is about 300 nm, and the individual hillocks within the chains are a few nanometres
high. The length of the track as well as the typical separation of the dots is in good agreement
with earlier experiments on a variety of materials [5, 13]; the influence of the direction of the
incoming beam on the morphology has been discussed in [14, 15]. At this stopping power, the
height and diameter of the dots appear to be the same as found in earlier experiments with higher
stopping powers (see figures 1(d) and (e)). For a general discussion of the velocity effect in the
electronic energy loss region on the measured chains of hillocks, see [16].

In figures 1(a) and (b), we show representative AFM images of samples irradiated with
ions of 5.3 keV nm−1 and 7.2 keV nm−1, respectively (the same fluence and the same angle as
in figure 1(c)). The morphology is clearly different from the one shown in figure 1(c). Ions with
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Figure 1. Topographic images of a SrTiO3 surface irradiated with different
energy losses under grazing incidence. Whereas I ions at φ = 1◦ were used in
(a)–(c), Xe ions at φ = 1◦ were used in (d, e). The frame size was 1 µm × 1 µm.
To enhance the contrast, false colouring was used. Electronic energy losses in the
sub parts of the figure are (a) 5.3 keV nm−1, (b) 7.2 keV nm−1, (c) 10.5 keV nm−1

with a height profile of the marked track, (d) 21 keV nm−1 and (e) 29 keV nm−1.

5.3 keV nm−1 (figure 1(a)) as well as with lower energy losses produce no visible chains. Chains
were first detected at 7.2 keV nm−1 (figure 1(b)). As can be seen, the average chain length as
well as the number of chains is smaller than for higher energy losses. Our statistical data were
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Figure 2. Chain length as a function of stopping power. The data points at 21 and
29 keV nm−1 are taken from samples irradiated with Xe ions under 1◦. The chain
length was corrected to present an incidence angle of φ = 1.3◦, i.e. they were
divided by cot 1.3◦/cot 1◦

= 1.3. The other data points are from irradiations with
iodine ions at φ = 1.3◦.

not sufficient to quantitatively discuss the chain production efficiency (chains per incident ion),
but we were able to study the length of the chains.

To demonstrate more clearly the evolution of chains as a function of ion energy, we have
performed a statistical analysis of at least 60 chains for each kinetic energy, see figure 2. It
should be noted that the error bars in the length measurement do not originate from uncertainties
in the measurement itself, but from the statistical nature of the interaction process. From
figure 2, we find that the minimum stopping power needed to create a chain is between 5.3
and 7.2 keV nm−1. Up to a stopping power of between 10.5 and 21 keV nm−1, the chain length
increases with increasing kinetic energy until a constant chain length is reached. The SRIM
calculations as well as our calculations in section 3 were made for Xe ions. Because iodine is
right next to xenon in the periodic table, there is not much difference between these two ions
with respect to the modifications they produce. Experimentally, we have seen no difference
between chains created by iodine and xenon ions.

2.2. Perpendicular incidence

A SrTiO3 single crystal (Crystec, Berlin), cut along the (100)-plane, was irradiated under
normal incidence with 92 MeV Xe23+ ions under a fluence of 2 × 1013 ions cm−2 at the
IRRSUD beamline of GANIL (Caen, France). At these fluences, individual tracks overlap. After
irradiation, the sample was cut and glued together with epoxy to produce two layers that are
facing each other. This sandwich was then encased and glued in a 3 mm thin-walled tube. The
tube was cut into 1 mm thick discs. These discs were mechanically thinned to about 100 µm in
thickness and dimpled so that the centre thickness was less than 5 µm. Finally, Gatan’s Precision
Ion Milling System was used to thin the specimen from both sides with 3.5 keV Ar+ ions at 5◦

incidence angle until perforation. These targets were studied with a 2010F Jeol transmission
electron microscope equipped with a 200 keV field electron gun.
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Figure 3. Upper part: TEM image of a SrTiO3 sample irradiated under normal
incidence. Ions enter on the right side: see arrow. The axis below the image shows
the depth from the surface. Lower part: the central image is a magnification of
the central part of the image on top. The left and right images in the lower part
show the diffraction patterns obtained at ion penetration depths of 6 and 3 µm,
respectively.

A TEM image of the obtained cross section is shown in the upper part of figure 3. The
bright triangle on the right side stems from the glue, denoting the surface region of the crystal.
The ions penetrate the crystal in the direction indicated by the arrow. In the first region along
the trajectory, the crystal was amorphized by the projectile, as can be seen from the diffraction
pattern on the right side, which was taken from this region of the crystal. This first region
extends from the surface to a penetration depth of '3.6 µm. To correlate these data with
the stopping power, we performed SRIM calculations. The results are shown in figure 4. In
the first region, where the crystal was amorphized, the electronic energy loss decreases from
21 to 11.7 keV nm−1. From this, we determine the threshold of amorphization to be about
11.7 keV nm−1.

At larger penetration depths, partial amorphization is seen in figure 3. This continues to a
depth of 5.1 µm. At this depth, the energy loss is 7.3 keV nm−1, according to SRIM, as shown in
figure 4. At even larger penetration depths, the material remains single crystalline, as shown by
the diffraction pattern on the left of figure 3. Therefore, we can distinguish two thresholds: one
at 7.3 keV nm−1 for the appearance of partially amorphized tracks and one at 11.7 keV nm−1 for
complete amorphization.

3. The two-temperature model

After we experimentally determined the minimum stopping power required to create a chain
of nanodots, we focused on giving a theoretical description. Modifications to the standard
TTM [9] were necessary because neither the variation in energy loss due to anisotropy of the
electron density nor the close vicinity of the surface can be correctly described. Thus, in order to
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Figure 4. SRIM simulation of Xe ions impinging on a SrTiO3 single crystal
at 92 MeV kinetic energy. The electronic energy loss as a function of the
penetration depth of the incident ion is shown. The thin lines denote the
thresholds for complete amorphization and for the appearance of partially
amorphized tracks, as determined from the TEM images of figure 3.

improve the TTM, we extended it to a full 3D description including the integration of a spatially
resolved electron density [5, 14]. The general shortcomings of the TTM as e.g. discussed by
Klaumünzer [6] are not solved by this approach. Unfortunately, there is still a lack of alternative
theoretical models describing the hillock formation in detail. However, the modified TTM can
be used in this paper because we are only interested in the threshold energy. The basic procedure
for determining the threshold energy is described in detail in [14, 15] and will be explained here
only insofar as it is necessary to understand the additions we have made to the model.

In order to determine the minimal necessary stopping power to create a fully developed
chain, the following scheme was applied. The calculations were performed on the basis of a
3D TTM using space- and time-resolved electronic stopping powers for the actual case. It was
proven before that there is a fixed maximum depth where it is possible for the incident ion to
create surface hillocks due to the electronic energy loss [5, 14]. Therefore, the distance covered
by the incident ion at the point perpendicular to the last hillock can easily be extracted using
geometrical calculations from the incident angle and the above-mentioned maximum depth. The
depth for SrTiO3 is d ' 8.5 nm, and the track length l can then be calculated by l = d cot φ. In
the next step, we calculated the energy loss of the ion at this precise point for different kinetic
energies and used it as a source for the 3D TTM. In this way, surface temperatures at the end
of the hillock chain could be obtained as a function of the incident ion energy: see figure 5.
Assuming that the melting temperature (Tmelt = 2353 K [17]) has to be reached to induce surface
modifications, the incident ion has to have a minimum kinetic energy of 31 MeV, corresponding
to an energy loss of 12.7 keV nm−1.

The calculation of the threshold for the appearance of chains in this way is much more
difficult as the track length at stopping powers close to the threshold is no longer constant but
depends on local fluctuations caused by impurities, defects, etc. This makes it necessary to
solve the TTM equations at each point along the entire track of some hundreds of nm, including
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Figure 5. Temperature in K at the surface of SrTiO3 when irradiated by Xe ions
under different kinetic energies. To reach the melting temperature of SrTiO3, the
projectile has to have an energy of 31 MeV, corresponding to a stopping power
of dE/dx = 12.7 keV nm−1. The dotted line represents a linear fit to the data; it
is given to serve as a guide to the eye.

fluctuations and repeating the calculations numerous times in order to account for the statistics.
This leads to a tremendous increase of the computational effort. Instead we used the TTM to
calculate the surface temperature that would result from ion irradiation under perpendicular
incidence with stopping powers of 6, 7, 8 and 9 keV nm−1. The resulting temperatures were
1830, 2100, 2350 and 2580 K, respectively. These values indicate that the lower threshold should
be approximately 8 keV nm−1, which is in good agreement with the experimental data.

All calculations ignore the necessary (but unknown) heat of fusion, and the energy loss
values obtained in this way therefore present a lower limit. Additionally, the model calculations
were performed for Xe ions. The minimum kinetic energy for I ions would have to be only
slightly higher to achieve the same stopping power.

4. Discussion

In table 1, all the threshold values obtained for glancing and normal incidence, as well as the
theoretical predictions, are shown. Experimental and theoretical data indicate that two threshold
values exist.

If the energy loss is lower than '7 keV nm−1 the energy stored in the electronic system is
simply not sufficient to melt the material and no modifications are observed. This first threshold
should therefore be comparable to the minimum energy loss that is necessary to produce a
nanodot on the surface irradiated under perpendicular incidence (see section 3). Under glancing
angles, tracks appear at kinetic energy losses larger than (5.3–7.2) keV nm−1 when studied by
means of AFM (section 2.1). The tracks are shorter because the energy loss is close to the
threshold for melting and will easily fall below the critical value due to fluctuations, resulting in
a missing hillock or an incomplete track, respectively. This fits well with the TEM measurements
(section 2.2), where the appearance of tracks was seen for energy losses of 7.3 keV nm−1. The
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Table 1. Threshold values in keV nm−1 obtained from the experiments (AFM
and TEM) and the TTM.

Grazing angle (AFM) Appearance of chains Constant length of chains
5.3–7.2 10.5–21

Normal incidence (TEM) Appearance of tracks Amorphization
7.3 11.7

Grazing angle (TTM) Constant length of chains
12.7

Normal incidence (TTM) T > Tmelt

8

TEM measurements show discontinuous tracks at these low energy loss values, in agreement
with the AFM data.

Amorphization in the bulk (TEM), as well as fully developed surface tracks (AFM), can
only be seen at energy losses above 11.7 keV nm−1 and (10.5–21) keV nm−1, respectively. This
second threshold fits well with the calculated threshold of 12.7 keV nm−1, where melting of
the surface over the full surface track length was defined as a requirement to produce hillocks
(see section 3). If the energy loss approaches the threshold, the remaining energy loss at the
maximum depth d may not be sufficient to result in surface modifications. For sufficiently high
energy losses, d is constant even if the initial energy loss of the impinging ion changes by over
70% [16]. This can explain why surface track length increases with increasing energy loss as
observed in figure 2.

The discovery of two different values for the hillock creation is not a contradiction: it
merely reflects that the hillock creation at stopping powers >12.7 keV nm−1 is independent of
statistical fluctuations. Below this value, the individual nanodot creation is a more statistical
phenomenon, which results in ‘incomplete’ tracks.

5. Conclusion

We have presented new experimental AFM and TEM data from which two thresholds for
the formation of ion tracks in SrTiO3 were established, one for the formation of surface
tracks and the other for distinguishing between partially and fully developed (i.e. full length)
surface tracks. These findings are in agreement with calculations based on the TTM. The
determination of the threshold with surface tracks has two main advantages. Experiments
performed under perpendicular incidence create single hillocks, which are difficult to identify
in ex situ experiments, especially if the production efficiency goes down or the single
hillocks become smaller as they approach the threshold. A chain is easily spotted and can be
unambiguously identified as an ion-induced feature, for example the direction must comply with
the direction of the irradiation. Because we made no specific assumptions with respect to the
material, we believe that the method is capable of predicting the minimal energy required to
create nanodots in many other insulating materials of technological importance, such as Al2O3

or TiO2.
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