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Abstract: Protein adhesion and cell response to plasma-treated polymer surfaces were 

studied. The polymer polyethylene terephthalate (PET) was treated in either an oxygen 

plasma to make the surface hydrophilic, or a tetrafluoromethane CF4 plasma to make the 

surface hydrophobic. The plasma source was radiofrequency (RF) discharge. The 

adsorption of albumin and other proteins from a cell-culture medium onto these surfaces 

was studied using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy 

(XPS) and atomic force microscopy (AFM). The cellular response to plasma-treated 

surfaces was studied as well using an MTT assay and scanning electron microscopy 

(SEM). The fastest adsorption rate was found on the hydrophilic oxygen plasma-treated 

sample, and the lowest was found on the pristine untreated sample. Additionally, the 

amount of adsorbed proteins was higher for the oxygen-plasma-treated surface, and the 

adsorbed layer was more viscoelastic. In addition, cell adhesion studies support this finding 

because the best cell adhesion was observed on oxygen-plasma-treated substrates. 
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1. Introduction 

Polymers are often used in various biomedical applications for medical implants, for tissue 

engineering and for therapeutic purposes, e.g., for studying cancer metastasis [1–3]. In these cases, the 

polymers interact with blood proteins or cells. The first interaction involves water molecules, followed 

by proteins [1]. If there are many proteins, competitive adsorption occurs. The adsorbed protein film 

can show time-dependent conformational changes, which may cause desorption or even protein 

exchange [2]. Protein adsorption is very complex because it is driven by various forces, including Van 

der Waals, hydrophobic and electrostatic forces. The adsorbed protein layer has an important influence 

on cell adhesion, which is the last step in the interaction between the polymer and the host 

environment. Therefore, knowledge about protein adsorption and conformation is important for 

explaining cell-surface interactions.  

A gaseous plasma is often used for surface modifications of polymers to improve their 

biocompatibility [4–10] or to improve resistance to bacterial infections [11–14]. Various plasmas can 

be used to achieve the desired effect. Oxygen plasma can be used to introduce polar functional groups 

to the surface and to make the surface hydrophilic, while tetrafluoromethane plasma can be used to 

introduce non-polar functional groups and to make the surface hydrophobic [15,16]. In addition, the 

surface charge can be changed after plasma treatment. Plasma treatment can enhance cell adhesion, but 

less is known about protein adhesion on plasma-treated surfaces [17,18]. 

Proteins contain various regions, which can be hydrophilic/hydrophobic, charged/uncharged  

and polar/non-polar. Thus, at hydrophilic interfaces, proteins predominantly expose hydrophilic  

residue-containing patches toward the surface, and on hydrophobic surfaces, proteins direct their 

hydrophobic patches to the surface [19]. Analogously, proteins adsorbing at positively or negatively 

charged interfaces tend to expose the oppositely charged regions to the surface [19]. Proteins tend to 

adhere more strongly to the following: non-polar surfaces (relative to polar surfaces), areas of high 

surface tension (relative to areas of low surface tension) and charged substrates (relative to uncharged 

substrates) [19]. Non-polar surfaces can destabilise proteins and thereby facilitate conformational 

reorientations that lead to strong inter-protein and protein–surface interactions [20]. Thus, many 

researchers report that proteins have a higher affinity to hydrophobic surfaces and a lower affinity to 

hydrophilic surfaces [21]. An example of the possibly misleading nature of this general rule is the 

adsorption of glycoproteins, which adsorb extensively on hydrophilic surfaces and sparsely on 

hydrophobic surfaces [19]. 

Protein adsorption can be studied using a quartz crystal microbalance with a dissipation unit 

(QCM-D) [22–26]. This is one of few techniques that can be used for a direct observation of the 

adsorption process because it enables real-time measurements. Furthermore, QCM is a high-resolution 

mass-sensing technique with a sensitivity in the range of nanograms per cm2 [23]. QCM measures the 

mass per unit area by measuring the change in frequency of a quartz crystal. Any adsorption/desorption 
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of mass from the quartz sensor causes a change in the resonant frequency. A QCM that is equipped with 

a dissipation unit can also provide important information about the structure (rigidity) of the adsorbed 

layer. In the past decade, interest in using this technique for studying interactions between biological 

material and substrates and for monitoring cell adhesion has increased. 

The aim of this study was to determine how different surface modifications of a PET polymer using 

low-pressure plasma treatments influence the adsorption of albumin and other proteins from a cell 

culture medium. The adsorption was studied using the QCM-D technique, XPS and AFM. The results 

of the protein adhesion were further supported by cell adhesion studies using MTT assay [27]. The 

results are organised as follows. The first section describes the surface characteristics of plasma-treated 

samples. In the second section, we examine the protein adhesion using the XPS and AFM methods. In 

the third section, we describe the detailed adsorption kinetics of proteins measured with QCM, and in 

the last section, we introduce the cell adhesion results. 

2. Results and Discussion 

2.1. Surface Characterisation of Plasma-Treated Samples 

Figure 1 shows an XPS survey spectrum for the control (untreated) PET sample and the PET 

samples treated in oxygen (O2) and tetrafluoromethane (CF4) plasmas. After the oxygen plasma 

treatment, the oxygen concentration on the surface doubled. Treating the polymer in CF4 plasma 

significantly reduced the oxygen concentration, and approximately 50 atomic % of fluorine is found. 

The incorporation of oxygen and fluorine species into the polymer surface during the plasma treatment 

resulted in the formation of different functional groups. As shown in Figure 2, the intensity of the 

peaks from C–O and O=C–O groups increased after the oxygen plasma treatment. Different fluorine 

groups are observed for the CF4 plasma treatment. The majority are CF2 groups, followed by CF 

groups and CF3 in smaller concentrations. Our results for both plasma treatments are consistent with 

previously published results [15,16,28–31]. The functional groups formed after treatments also alter 

the surface wettability. Therefore, O2 plasma treatment resulted in a very hydrophilic surface with a 

contact angle of only a few degrees, while CF4 plasma treatment resulted in the formation of a 

hydrophobic surface with a contact angle of 110°.  

Figure 1. XPS survey spectra for the control (untreated) PET sample and for PET samples 

treated in O2 and CF4 plasma.  
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Figure 2. XPS high-resolution spectra of carbon C1s for the control PET sample and for 

the PET samples treated in O2 and CF4 plasma.  

 

2.2. Surface Characterisation of the Adsorbed Protein Layer 

Plasma-treated samples were incubated in various protein solutions, i.e., a pure albumin (ALB) 

solution and a protein mixture used as a cell culture medium (FCS/DMEM), for different periods: 1, 

10, 100 and 1,000 s. Figure 3 shows typical XPS survey spectra for albumin adsorption for the shortest 

(1 s) and the longest (1,000 s) incubation times. Similar spectra were also observed for the 

FCS/DMEM solution. Figure 3a shows typical spectra for albumin adsorption on the untreated sample 

(control sample), while Figure 3b,c show the spectra for the samples treated in O2 and CF4 plasma, 

respectively. Figure 3a clearly shows the formation of a new peak after the incubation of the untreated 

sample in a protein solution; this peak is caused by the nitrogen that originates from the adsorbed 

albumin layer, regardless of whether the sample was exposed to the protein solution for 1 s or 1,000 s. 

Results similar to those obtained for the control samples were also observed for the plasma-treated 

samples—i.e., a nitrogen peak appeared as a result of the adsorbed protein. Supplementing the 

information in Figure 3, Figure 4 shows the high-resolution XPS spectra of the carbon peak recorded 

from the untreated sample and both plasma-treated samples after 1,000 s of incubation. Figure 4 shows 

that there is no pre-treatment difference between the various samples. In all cases, the shape of the 

spectrum is similar and typical for proteins and shows the presence of peptide and amine groups. 

Comparing Figure 4 with Figure 2 indicates that after 1,000 s of incubation, a layer of protein almost 

completely masks the plasma-treated substrate, because functional groups from the plasma-treated 

substrate are no longer visible.  

Figure 3 shows another interesting phenomenon. The CF4 plasma-treated sample still contains a 

fluorine peak that originates from the plasma-treated layer (Figure 3c). This finding indicates that the 

adsorbed protein layer is thinner than the detection depth of XPS. Supplementing the information in 

Figure 3c and Figure 5a compares the high–resolution carbon peaks for various incubation times for 

the CF4 plasma-treated PET sample. In addition to the typical protein peaks, another small peak is 

positioned near the 292 eV binding energy. This peak is due to the CF2 groups from the interface 

between the protein coating and the plasma-treated substrate (this peak was the most significant on  

the plasma-treated sample shown in Figure 2). Thus, in agreement with the XPS survey spectra  
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(Figure 3c), we can therefore also observe traces of fluorine peaks in the high-resolution spectra shown 

in Figure 5. 

Figure 3. XPS survey spectrum for: (a) the control (untreated) PET sample before and 

after incubation for 1 s and 1,000 s; (b) the PET sample treated in O2 plasma before and 

after incubation for 1 s and 1,000 s and (c) the PET sample treated in CF4 plasma before 

and after incubation for 1 s and 1,000 s in albumin solution. 
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Figure 4. XPS high-resolution spectra of carbon C1s for the untreated sample and both 

plasma-treated samples after incubation in an albumin solution for 1,000 s. 

 

Figure 5. XPS high-resolution spectra of carbon C1s for the CF4 plasma-treated PET 

sample after incubation in an albumin solution for various periods. 
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thickness d, as described in the following relation [21]: 

 (1) 

where  is the measured fluorine signal emerging through the protein layer,  is the measured 

fluorine signal of plasma-treated sample without the protein layer, λ is the inelastic mean free path for 

F1s electrons passing through the protein layer (~3 nm), and θ is the electron take-off angle (45°). 
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 (2) 

The protein thickness was calculated for all incubation times and is shown in Table 1, along with 

the fluorine concentration and F/C ratio. A lower fluorine signal indicates a thicker protein layer 

(because some of the signal was lost when passing through the protein layer). Table 1 shows that the 

protein thickness first increases with incubation time and later becomes constant. These results refer 

only to the case of the fluorine plasma-treated sample. For the oxygen plasma-treated sample, it is not 

possible to calculate the layer thickness because the oxygen originates not only from the polymer but 

also from the overlying protein. Therefore, additional information about the quantity of adsorbed 

proteins can be obtained only by QCM. 

Table 1. Fluorine concentration and calculated protein film thickness versus incubation 

time in albumin solution for the CF4 plasma-treated PET sample. 

t (s) F (at.%) F/C d (nm) 
1 8.4 0.14 1.9 

10 4.4 0.07 4.2 
100 2.8 0.04 5.3 

1000 2.7 0.04 5.3 

Furthermore, to find additional information about albumin adhesion, the intensity of the nitrogen 

N1s peak was measured because the nitrogen peak originates only from the adsorbed layer of the 

protein albumin and not from the polymer substrate. The N/C ratio was calculated for the various 

samples, and the results are shown in Table 2 and Figure 6a. The adsorption of albumin to the polymer 

surfaces starts very quickly because after just 1 second there is already a substantial amount of nitrogen 

on the surface. With increasing incubation time, the nitrogen concentration is slightly increased. 

Table 2. Surface composition of the samples after incubation in albumin solution (in atomic %). 

PET ctrl C N O S F N/C 

1 s 67.2 11.0 21.3 0.6 / 0.16 
10 s 69.8 12.2 17.5 0.5 / 0.18 

100 s 66.6 12.9 20.1 0.5 / 0.19 
1000 s 63.8 16.2 19.3 0.8 / 0.25 

PET + O2 C N O S F N/C 

1 s 66.1 12.0 21.3 0.6 / 0.18 
10 s 64.3 13.8 21.3 0.6 / 0.22 

100 s 63.6 15.5 20.2 0.7 / 0.24 
1000 s 63.6 15.2 20.5 0.7 / 0.24 

PET + CF4 C N O S F N/C 

1 s 61.4 11.9 17.7 0.7 8.4 0.19 
10 s 61.9 13.5 19.5 0.6 4.4 0.22 

100 s 61.8 15.0 19.8 0.7 2.8 0.24 
1000 s 61.9 15.1 19.7 0.7 2.7 0.24 
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Figure 6. Comparison of the N/C ratio after incubation of untreated PET samples and O2 

and CF4 plasma-treated samples in albumin solution (a) and FCS/DMEM solution (b). 

 

Careful examination of Figure 6a shows differences between the untreated and the plasma-treated 

samples, e.g., the nitrogen content is lower in the untreated sample in the first 100 s of relative to that 

in both plasma-treated samples (hydrophilic and hydrophobic ones). This difference in nitrogen 

content disappeared after 1,000 s of incubation—the nitrogen content on the polymer surface was then 

practically the same for all samples regardless of whether they were treated in the plasma. The nitrogen 

content differs only in the first few minutes of incubation; therefore, the protein adsorption is slightly 

faster on the two plasma-treated samples than on the untreated sample, but this difference vanished 

later. The protein adhesion trend for the FCS/DMEM protein mixture (Figure 6b) was similar to that of 

albumin. In addition, we can find more nitrogen on the surface of the plasma-treated samples in the 

first 100 s of incubation, while this difference later diminishes. 

These results are also supported by QCM measurements, as shown later in the text. The results 

clearly show that proteins very quickly reach and adsorb on the polymer surface. This adsorbed layer 

of proteins then governs the further adhesion of cells that appear much later. 

To obtain additional information regarding the surface characteristics of the plasma-treated samples, 

AFM analyses were performed to determine the surface topography, which can also influence protein 

and cell adhesion. The AFM images are shown in Figure 7.  

After oxygen plasma treatment, the surface has a highly oriented structure and is rougher compared 

with the control sample. The fluorine plasma-treated surface does not show any oriented structure, but 

several peaks are observed. After incubation in albumin, the samples do not show any significant 

difference in surface morphology. By contrast, after incubation in FCS/DMEM solution, the surface 

becomes smoother except from unevenly distributed features. These isolated peaks formed upon 

incubation might be protein agglomerates. 
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Figure 7. AFM images (2 × 2 µm) of different plasma-treated surfaces before and after 

incubation in a protein solution. 
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2.3. Adsorption Kinetics of Proteins Studied by QCM 

One of the best methods for studying the adsorption kinetics of proteins is QCM, which measures 

the mass per unit area by measuring the change in frequency of a quartz crystal resonator. Typical 
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adsorption curves, i.e., change in frequency as a function of time, for albumin are shown in Figure 8a, 

while the adsorption curves for FCS and FCS/DMEM are shown in Figures 9a and 10a, respectively.  

Figure 8. Frequency changes (a) and dissipation changes (b) for albumin adsorption on 

untreated and plasma-treated PET substrates.  

 

Figure 9. Frequency changes (a) and dissipation changes (b) for FCS adsorption on 

untreated and plasma-treated PET substrates. 

 

Figure 10. Frequency changes (a) and dissipation changes (b) for FCS/DMEM adsorption 

on untreated and plasma-treated PET substrates. 
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plasma-treated sample show no important differences. This finding is true for all three protein 

solutions used.  

Another conclusion can be drawn from Figures 8–10. In the case of albumin, the adsorption 

equilibrium was reached at Δf = −63 Hz for the control sample, Δf = −124 Hz for the fluorine  

plasma-treated sample and Δf = −194 Hz for the oxygen plasma-treated sample. This frequency 

difference between the samples indicates that the mass of adsorbed proteins was lowest on the control 

sample and highest on the oxygen plasma-treated sample. By contrast, for the fluorine plasma-treated 

sample, the adsorbed mass was between these two values. The same results were also observed for 

FCS and for FCS with DMEM–in all cases, more proteins adsorbed on the O2 plasma-treated surface.  

After the samples were rinsed with PBS solution (the starting point of rinsing is marked with arrows 

in Figures 8–10), the resonant frequency changes, indicating the desorption of loosely bound proteins. 

The desorption is the most pronounced for the control sample, for which the majority of the proteins 

was desorbed. The plasma-treated samples also showed high desorption, but because of the higher 

mass of pre-adsorbed proteins, many proteins remain on the surface in comparison to the control 

sample. In particular, the oxygen plasma showed the most favourable conditions; i.e., the majority of 

the proteins remained on the surface, and we probably have several monolayers of protein, which was 

further proved with dissipation measurements. These results therefore show that more proteins were 

adsorbed on the hydrophilic (polar) surface than on the hydrophobic (non-polar) one.  

The mass of the adsorbed proteins on the various plasma-treated samples is shown in Figure 11. 

Again, all protein solutions show a similar result: the largest amount of adsorbed proteins was on the 

oxygen plasma-treated surface, and the lowest amount was found on the surface of the control 

(untreated) sample.  

Figure 11. Mass of adsorbed proteins on untreated and plasma-treated samples. 
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FCS; by contrast, in the case of FCS with the addition of DMEM, the difference is very small 
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component of DMEM is salt; the type of salt can vary, and the salt is a source of various ions. 

Furthermore, as reported in the literature, dissolved ions (i.e., the ionic strength) can change the protein 

adsorption process [19]. This is probably the reason for more stable adsorption of proteins on the 

polymer surface with FCS compared with the surface with DMEM. 

Figure 12. Comparison of the adsorption process of different protein solutions to the 

oxygen plasma-treated surface. 

 

In conjunction with the measured QCM frequency, dissipation measurements can provide further 

information regarding protein adsorption (Figures 8b–10b). The change in dissipation was smaller for 

the CF4 plasma-treated sample than for the O2 plasma-treated sample. The lowest dissipation was 

found for the control sample, except for FCS adsorption (Figure 9b). The dissipation was the largest 

for the oxygen plasma-treated sample; therefore, the adsorbed protein layer was thicker and less 

compact than that on the CF4 plasma-treated sample or the control sample. This difference can also be 

caused by the different conformation of proteins on the surface or the binding/trapping of more water 

molecules in the adsorbed protein film [26]. 

Figure 13 plots the dissipation change versus frequency change (ΔD = f(Δf) plot), which can 

provide important information about the softness/rigidity of the protein layer formed during 

adsorption. A lower slope indicates a more dense and rigid layer, while a higher slope indicates the 

formation of a softer and more dissipating layer [26]. For the oxygen plasma, at the beginning, the 

spacing between the data points is greater, whereas the data points later become closertogether. This 

indicates faster adsorption kinetics at the beginning [25]. Additionally, the adsorption is uniform at the 

beginning, whereas the slope of the adsorption curve changes later (Figure 13a). For FCS and 

FCS/DMEM, the slope increased because of the faster deposition of mass, which might be caused by a 

change in conformation or even by multilayer adsorption. By contrast, for albumin, the slope decreased 

afterwards. Figure 13a also shows that all of the curves are positioned close together at the beginning. 

Shortly thereafter, the curve for FCS/DMEM turns away, while the curves for FCS and ALB remain 

very close for a longer time before finally turning away in opposite directions.  
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Figure 13. ΔD = f(Δf) function for protein adsorption on plasma-treated PET substrates for 

albumin (a), FCS (b) and FCS with DMEM (c). 

 

 

 

The slope of the curve for the CF4 plasma treatment (Figure 13b) is much less steep, indicating a 

more densely adsorbed layer, in contrast to the oxygen plasma treatment, which has a very steep curve, 

indicating a more loosely bound layer. Thus, for the oxygen plasma treatment, the curve is always 

above the dotted line, showing the so-called “soft-rigid” boundary. By contrast, for the CF4 plasma 

treatment, the adsorption curve is always below the dotted line. For the control sample (Figure 13c), 

the slope is occasionally very close to the “soft-rigid” boundary, but only lies above this boundary for 

FCS/DMEM. 
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On the basis of these results, we can propose a hypothetical model for protein adsorption on 

hydrophilic or hydrophobic surfaces (Figure 14). Albumin can be adsorbed in two different 

orientations: side-on or end-on [32,33]. Because the layer is more rigid for the CF4 plasma, the protein 

should be more closely packed, which can only be achieved in the end-on orientation. By contrast, the 

oxygen plasma results in a more loosely bound layer; thus, the protein is probably adsorbed in such a 

way that its configuration is similar to the side-on orientation (Figure 14). In this case, multilayer 

adsorption is likely to occur. 

Figure 14. A hypothetical model for protein adsorption on an oxygen plasma-treated 

(hydrophilic) surface with trapped water molecules (A) and a CF4 plasma-treated 

(hydrophobic) surface (B). 

 

 

2.4. Cellular Response to Plasma-Treated Surfaces 

Finally, to observe the influence of plasma treatment and protein adhesion on cell proliferation, we 

studied human osteosarcoma (HOS) cell adhesion. The characteristics of the cell adhesion and the 

morphology of HOS cells on different polymers were investigated with optical microscopy and SEM 

(Figure 15). The best adhesion of HOS cells was observed on the oxygen-plasma-treated samples, 

while there was no significant difference in cell adhesion between the control (untreated) and the 

fluorine-treated samples. Some differences between the samples can be observed in Figure 15. 

For the control samples after 1 day of incubation, we observed spread cells that form some 

microvilli and active margins, allowing the cells to connect to each other. By contrast, on the oxygen 

plasma-treated polymers, we observed extensively spread cells. The majority of the cells pulled in their 

thinner margins, while others were already in mitosis. More microvilli and active margins, which 

connect between themselves and form an extracellular matrix for cells to adhere on the surface, were 

visible. Such cell morphology occurs in a suitable environment for cell growth, which we have 

provided with the oxygen-treated polymer surface.  

On the fluorine plasma-treated polymers after 1 day of incubation, the cells have a morphology 

similar to that of the control sample. Most cells are spread with a flattened nuclear region and are 

relatively free of microvilli, while some are similar to the spread cells observed in the control samples 

and are slightly rounded with raised nuclear regions. 
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Figure 15. HOS cell adhesion and morphology on the PET polymer surface after plasma 

treatment, as measured using light microscopy and SEM analysis after 1 day of incubation.  
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Plasma-treated samples were also tested for cell adhesion and proliferation (Figure 16), and a 

substantial difference in cell adhesion was found on the plasma-treated surfaces. The results of the 

MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay for HOS cell 

incubation after 2 and 6 days are shown in Figure 16. This figure shows the much better cell 

proliferation for the O2 plasma-treated PET sample treated in compared with that for the CF4  

plasma-treated sample. As demonstrated by QCM, this finding can be explained by the different 

protein conformation on the surface and the different mass of adsorbed proteins.  

Figure 16. Proliferation of HOS cells on untreated and plasma-treated PET polymers, as 

measured using an MTT assay. 
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control sample or the CF4 plasma-treated sample. The improved cell proliferation occurs because the 

oxygen plasma-treated surface promotes protein adsorption. Furthermore, proteins are likely to maintain 

their active form on a hydrophilic surface; it was reported that on a hydrophilic surface, proteins prefer to 

maintain their conformations, whereas on a hydrophobic surface, proteins denature [34]. 

2.5. Discussion of Cell- and Protein-Material Interactions 

A similar study was performed by Kurniawan et al. [35]. They used O2 and CF4 plasmas to modify 

the surface properties of bacterial cellulose (BC) fibres and study the adhesion of fibroblasts and 

Chinese hamster ovary cells. Interestingly, they found better cell adhesion on the CF4 plasma-treated 

surface than on the surface treated with O2 plasma. This was explained by the higher quantity of 

proteins adsorbed to the CF4 plasma-treated surface. Because those researchers used a different 

substrate material that has a fibrous structure (and not a foil) and different cells, it is difficult to 

correlate their work with ours. Furthermore, reports from some other authors support our finding that 

CF4 plasma is not optimal for cell adhesion [36,37]. In addition, Blackstone et al. found better cell 

adhesion of cancer cells on an air plasma-treated surface than on a CF4 plasma-treated surface [38].  

Different authors may observe different results because of the complexity of plasma treatments. We 

have mentioned that plasma treatments can modify different surface properties of polymer materials, 

including the surface chemistry, polarity, roughness and hydrophilicity. It is difficult to perform a 

plasma treatment in a manner that changes only one surface property; therefore, it is not possible to 

determine explicitly which surface parameter is most important for cell and protein adhesion, e.g., the 

surface hydrophilicity can be varied using polar functional groups at the surface as well as by changing 

the surface roughness. Furthermore, surfaces with the same hydrophilicity may have different types of 

functional groups. For example, treating polymers with oxygen-containing plasma increases the 

surface hydrophilicity; however, osteoblast cells adhered to a pure oxygen plasma-treated surface, 

whereas there was less adhesion on the surface treated in sulphur dioxide plasma [39]. Jacobs et al. [39] 

and Griesser et al. [17] provide good reviews of plasma treatments and cell adhesion. Griesser reports 

that nitrogen-containing plasmas were used to improve cell adhesion because of the ability to induce 

amine groups on the surface [17,18]. Normally, the results showed an increase in cell adhesion with 

increasing nitrogen content, but some authors have also concluded that amine groups rather than the 

total nitrogen content is important. By contrast, other authors have found that amide groups appear to 

be the main surface chemical group that promotes cell adhesion [18]. The same problem arises with 

oxygen plasma, which also improves cell adhesion; however, it is also not clear which functional 

group promotes better adhesion of cells. Enhanced cell adhesion did not always correlate with the 

amount of oxygen at the surface. It appears that the surface chemistry must play an important role in 

surface interactions. Nevertheless, as shown in a review paper by Jacobs et al. [39], plasma treatments 

in O2, CO2, air and ammonia lead to improved cell elongation, attachment and/or proliferation; 

unfortunately, other plasmas, such as CF4, were not mentioned. 

There are also interesting studies on the influence of surface hydrophilicity on cell adhesion.  

Lee et al. have performed a special corona treatment to make a wettability gradient along a polymer 

surface (from 97° to 48°) [40]. They found that moderately hydrophilic surfaces with a contact angle 

of 65° showed the best proliferation rate. By contrast, we can find reports of very good cell 
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proliferation on very hydrophilic oxygen plasma-treated surfaces with a water contact angle below  

10° [41]. Some authors, such as Dowling et al., have also studied the effect of surface wettability and 

roughness on cell proliferation [42]. Surfaces with a contact angle from 12° to 155° were obtained 

through a combination of modifying surface roughness (by grinding), deposition of siloxane coatings 

and surface fluorination. These researchers also reported optimum cell adhesion at 64°. The only 

problem is that they also changed two parameters: surface roughness and surface chemistry. When 

they changed only the surface roughness, cell adhesion increased with increasing surface roughness in 

the range of 19–2,365 nm.  

Surface roughness in combination with morphology can have an important influence on cell 

spreading. Therefore, there have been many previous attempts to study cell “contact-guidance” along 

specially patterned micro-structured surfaces. Good reviews of such studies have been published [43,44]. 

In recent years, nano-rough surfaces have been used to study cell adhesion. Besenbacher et al. provide 

a good review of the influence of nanoscale surface topography with surface features smaller than  

100 nm [45]. From the review, it is obvious that nano-rough surfaces change protein conformations. 

Proteins with dimensions of the same order as the surface are not conformationally altered, while 

proteins with dimensions much smaller or larger than the surface roughness are conformationally 

altered upon adsorption. There appears to be no general trend in the amount of adsorbed proteins 

because different results were obtained. The same is true for cell proliferation. Some authors found 

enhanced cell proliferation and sometimes the cells were aligned along the nanogrooves, but  

some authors also found reduced cell adhesion. The type of cell appears to play an important role. 

Furthermore, the detailed shape of the nanofeatures may be important. Cells will normally align along 

the groves, but other topographical features, such as wells, pits or pillars, do not result in such a clear 

cell alignment [43]. We can only conclude that surface wettability, roughness and chemistry must be 

optimised for different polymer materials and different cell types. 

3. Experimental  

3.1. Plasma Treatment 

Samples of poly(ethylene terephthalate) (PET) polymer (from Goodfellow Cambridge Ltd., 

Huntingdon, UK) in the form of thin disks with a thickness of 0.25 mm and diameter of 10 mm were 

exposed to oxygen (O2) or tetrafluoromethane (CF4) plasma. The plasma was created in a glass 

discharge tube with a diameter of 4 cm and length of approximately 60 cm. A rather uniform glow 

discharge was created within an RF coil, which was 15 cm long. The coil was connected to an RF 

generator operating at a frequency of 27.12 MHz with a nominal power of approximately 200 W. 

Commercially available oxygen or tetrafluoromethane was leaked into the glass tube on one side, 

while the other side was continuously pumped with a two-stage rotary pump. Continuous pumping 

allowed for rapid removal of any reaction products that might otherwise accumulate in the plasma 

reactor and distort the original gas composition. Samples of PET polymer were treated in plasma at a 

floating potential for 30 s. Samples were treated either in O2 plasma to make the surface hydrophilic or in 

CF4 plasma to make it hydrophobic. 
  



Molecules 2013, 18 12458 

 

 

3.2. Protein Adsorption 

To study the kinetics of protein adsorption to plasma-treated surfaces, the samples were incubated 

in various protein solutions that are used as cell-culture medium. The following solutions were used: 

(i) 1% albumin (Sigma Aldrich Co., Taufkirchen, Germany) solution; (ii) 10% foetal calf serum (FCS) 

and (iii) DMEM supplemented with 10% FCS serum. DMEM (Dulbecco’s Modified Eagle’s Medium) 

contains amino acids, salts (calcium chloride, potassium chloride, magnesium sulphate, sodium chloride 

and monosodium phosphate), glucose and vitamins (folic acid, nicotinamide, riboflavin and B12). By 

contrast, FCS contains a rich variety of proteins, and a major component is albumin. 

3.3. Quartz Crystal Microbalance (QCM) 

The mass of the proteins adsorbed to the untreated polymer or the plasma-treated PET polymer was 

studied for various incubation times. The adsorption kinetics of the proteins was determined using a 

quartz crystal microbalance with a dissipation unit, QCM-D (Model E4, QSense AB, Göteborg, 

Sweden). The QCM measured the mass of the protein adsorbed on a PET film that was spin-coated 

onto a quartz crystal sandwiched between two electrodes. The electrodes were connected to a power 

supply that caused the crystal to oscillate at its fundamental resonance frequency and several 

overtones. The resonance frequency was disturbed by the addition or removal of mass. The frequency 

shift induced by a mass change was calculated using the Sauerbrey model [16,18]. Thus, the 

adsorption rate of proteins versus incubation time was measured. In addition to measuring the 

frequency, the dissipation was measured. The dissipation is a parameter quantifying the damping in the 

system, and it is related to the sample’s viscoelastic properties. 

3.4. X-Ray Photoelectron Spectroscopy (XPS) 

The surface functionalisation of the polymer samples after plasma treatment was studied by  

high-resolution X-ray photoelectron spectroscopy. The samples were exposed to air for a few minutes 

after the plasma treatment and then mounted in a TFA XPS instrument (Physical Electronics Inc., 

Chanhassen, MN, US). The base pressure in the XPS analysis chamber was approximately 6 × 10−8 Pa. 

The samples were excited with X-rays over a 400-µm spot area with monochromatic Al Kα1,2 radiation 

at 1486.6 eV. The photoelectrons were detected with a hemispherical analyser positioned at an angle of 

45° with respect to the normal sample surface. The energy resolution was approximately 0.5 eV. 

Survey-scan spectra were acquired at a pass energy of 187.85 eV, while for C1s, individual high-resolution 

spectra were taken at a pass energy of 23.5 eV with a 0.1 eV energy step. Because the samples were 

insulators, an additional electron gun was used to allow for surface neutralisation during the 

measurements. All spectra were referenced to the main C1s peak of the carbon atoms, which was 

assigned a value of 284.8 eV. The concentration of the different chemical states of carbon in the C1s 

peak was determined by fitting the curves with symmetrical Gauss-Lorentz functions. The spectra 

were fitted using MultiPak v8.1c software (Ulvac-Phi Inc., Kanagawa, Japan, 2006) from Physical 

Electronics, which was supplied with the spectrometer.  
  



Molecules 2013, 18 12459 

 

 

3.5. Atomic Force Microscopy (AFM) 

An AFM (Solver PRO, NT-MDT, Moscow, Russia) was used to characterise the surface 

topography of the samples. All measurements were performed in semi-contact mode using golden 

silicon probes NSG10 tips (NT-MDT, Limerick, Ireland) with a resonance frequency of 140–390 kHz 

and force constant of 3.1–37.6 N/m. The images were 2 × 2 µm2.  

3.6. Cell Adhesion, Growth and Viability (MTT Assay) 

Human osteosarcoma cells (HOS) were seeded at 2 × 104 cells in 100 μL of medium on the upper 

side of the polymers (concentration: 2.55 × 104 cells/cm2) and left for 3 h to attach before the addition 

of medium to cover the polymer discs [19,20]. Cells were plated in DMEM supplemented with 10% 

FCS (foetal calf serum) and left to grow on polymer discs at 37 °C in a humidified atmosphere of 5% 

CO2. Triplicates of the cultures for each time and treatment were prepared for adhesion and cell 

viability assays.  

Cell adhesion was monitored daily, and micrographs of samples on the different polymer surfaces 

were taken after the 1st and 6th days of culturing. The MTT-related colorimetric assay (EZ4U; 

Biomedica GmbH, Wien, Austria) was used to determine cell growth and viability, according to the 

manufacturer's instructions and Jaganjac et al. [20]. This method is based on the fact that living cells 

are capable of reducing the less-coloured tetrazolium salts into intensely coloured formazan 

derivatives. This reduction process requires functional mitochondria, which are inactivated within a 

few minutes after cell death. 

Briefly, after the 1st and 6th days of HOS cell culture on the different polymer surfaces, the 

medium was removed and 1 mL of fresh Hanks’ Balanced Salt Solution (HBSS) and 100 μL of the 

tetrazolium agent were added to each culture. After 2 h of incubation, the supernatants were transferred 

into 96-well plates and measured in a microplate reader (Easy-Reader 400 FW, SLT Lab Instruments 

GmbH, Salzburg, Austria) at 450/620 nm. 

3.7. Scanning Electron Microscopy (SEM) 

Cell adhesion was also monitored with a scanning electron microscope. In this case, a rather short 

cell incubation time of 4 h was chosen because we wanted to capture the initial moments of the cell 

adhesion. Prior to SEM measurements, the samples were dehydrated in a sequence of alcohols and 

then vacuum dried and finally covered with a thin layer of gold. For gold evaporation PECS instrument 

(Model 682) from Gatan GmbH (München, Germany) was used. SEM analyses were performed at two 

magnifications, 250× (not shown) and 1,500× using a JEOL JSM-840 Scanning Electron Microscope 

(JEOL, Tokyo, Japan).  

4. Conclusions 

The adsorption rate of proteins on the plasma-treated PET substrates was studied using the QCM-D 

technique. The source of proteins was the cell-culture medium, which is used to support the growth of 

cells. PET was treated either in oxygen plasma to make the surface hydrophilic or in CF4 plasma to 

make the surface hydrophobic. At low protein incubation time, XPS results indicated a similar 
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concentration of proteins on both plasma-treated surfaces in comparison to the pristine untreated 

sample. By contrast, for longer incubation times, the differences between the plasma-treated samples 

and the untreated sample diminished, as detected by XPS. Compared to XPS, QCM can provide much 

better information regarding the adsorption kinetics of proteins. The adsorption rate was fastest for the 

oxygen plasma-treated sample and slowest for the control sample. The protein adsorption on the 

oxygen plasma-treated surface caused the maximum change in frequency as well as in dissipation, 

indicating maximum adsorption. By contrast, the control sample caused the minimum protein 

adsorption. Thus, the mass of the adsorbed proteins was highest for the oxygen plasma-treated sample, 

lowest for the control sample, and somewhere in between for the fluorine plasma-treated sample. The 

results clearly demonstrate that hydrophilic surfaces can also adsorb a large amount of proteins,in our 

case twice as much as hydrophobic surfaces. Therefore, such hydrophilic surfaces caused better cell 

proliferation and adhesion compared with the more hydrophobic surfaces.  
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