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Abstract 

Adsorption of well-known surfactant Triton-X-100 (T-X-100) and mixed systems 

comprising T-X-100 with o- or p-nitrophenols, at the mercury/electrolyte solution interface 

vs. T-X-100 bulk concentration has been studied. Diversified approach comprising 

capacitive current measurements, desorption peak height analysis, fractal analysis, 

nonthermodynamic calculation of coefficient of lateral interaction, calculation of relative 

coverage assuming flat and perpendicular dispositions of molecules, fit with Flory-Huggins 

isotherms corresponding to different molecular orientations, and predictions of Random 

Sequential Adsorption (RSA) and equilibrium (generalized RSA) theories, together with 

analysis of reduction mechanisms of nitrophenols has been used.  

It is found that the adsorbed layer of T-X-100 and mixed layers are fractal. Fine 

structural changes of adsorbed layer(s) are identified and related to corresponding changes 

in fractal dimension. Evidence derived from ac and sw voltammetric measurements and 

theoretical considerations support these conclusions. For the adsorption of T-X-100 four 

different adsorption phases, corresponding to increasing bulk concentration, are identified 

and characterized. Mixed systems undergo different changes in microstructure that are 
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reflected in observed changes of reduction mechanisms of nitrophenols. Those are in turn 

related to the differences in molecular interactions between T-X-100 and certain 

nitrophenol. The results are relevant for study of any system exhibiting fractal features and 

accessible to electrochemical methods such as adsorbed films, models of biological 

membranes, etc. 
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1. Introduction 

 

The adsorption processes and structure properties of adsorbed films are subjects of 

interest in different fundamental and applied scientific and technological areas studied by 

different theoretical methods and experimental techniques. The electrochemical approach is 

wide spread due to possibility of investigation of different phase boundaries and interface 

processes. On the other hand, since adsorbed layers may have fractal structure 1, 2 their 

characteristics can be described and understood in terms of fractal geometry [3]. Fractal 

analysis was found to be powerful tool to follow adsorbed layer build up on a molecular 

level, whenever molecular reorientation and/or formation of patches and/or layer 

restructuring takes place 1, 4.  

The fractal analysis approach is based on the possibility to describe quantitatively 

complex objects that are statistically scale-invariant. This property is manifested in a 

power-law-scaling ratio that characterizes one or more of the features of an object or a 

process carried out near or at the object: 

   Feature  scale     (1) 

Here “feature” and “scale” are considered in the broadest sense, and the non-integer 

exponent  (“effective fractal dimension”) is a parameter, that indicates how sensitive the 

considered feature is to changes in the applied scale. Recently, based on this principle the 

method of hanging mercury drop electrode scaling was developed for determination of 

fractal dimension, D, of adsorbed layer 1.  In this method the used “feature” is capacitive 

current and “scale” is the electrode surface area expressed through the radius of hanging 

mercury drop. Hence, 
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ic   rD       (2)  

or expressed through spherical electrode surface area: 

ic   AD/2      (2a)  

This relation has its roots in the fact that permittivity and derived quantities of any 

fractal structure scale as ~ RD-d, where R is the structure size (extent) and d the Euclidean 

dimension of embedding space 5. Consequently, the specific capacitance Cs, scales as Cs ~ 

rD-2
. Since the differential capacitance of the interface is given by CD = ACs, and as ic ~ CD, 

with A ~ r2, we again get Eq. (2). 

However, although Eq. (1) is generally valid, and often used, one must be cautious 

in its use and interpretation of power-law dependence as sign of fractality [6,7]. Because, 

mathematically speaking, power-law scaling is necessary but not sufficient condition: 

power-low dependence of some feature on scale does not necessarily mean that the 

underlying structure is self-similar and that D has geometrical meaning. It is therefore 

necessary to verify assumptions of geometric self-similar structure and evaluate the cutoffs 

of scaling regime [8]. In spatial fractals, the scaling range is limited by the size of the basic 

building blocks and the system size and it is usually further reduced due to system or 

apparatus limitations or properties.  

The study of organic substance adsorption is important also due to the fact that 

organic substances in aquatic media modify all phase boundaries. The organic adsorbed 

layers may have selective permeability for other molecules and ions and such modified 

boundaries could facilitate coadsorption of other organics. In such systems both 

electrostatic and/or hydrophobic interactions can take place influencing the layer 

characteristics. The structure of the adsorbed layer and adsorption kinetics depend on the 
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interactions between molecules themselves and with the surface, and on external forces 

applied during the adsorption. Also, the kinetics of reduction on the electrode surface is 

influenced by the presence of adsorbed organic molecules and can be correlated with the 

microstructure of the adsorbed layer. Hence, it is of interest to get insight into the 

morphology, structural changes, build-up mechanisms, and involved interactions in and at 

the layer. 

In this paper, voltammetric and fractal analysis have been used to study complex 

adsorption of system comprising nonionic surfactant Triton-X-100 (T-X-100) and o- or p-

nitrophenol (ONP and PNP, respectively). T-X-100, (CH3)3C-CH2-C(CH3)2-C6H4-

(OCH2CH2)9-10-OH, a well-known commercial surfactant, was selected due to its wide use 

in different areas, as in polarography 9-12, petroleum industry 13, etc. Nitrophenols are 

known to be pollutants that appear in the natural aquatic systems 14, and are included on 

the list of priority pollutants of the Environmental Protection Agency 15. The chosen 

nitrophenols were selected to investigate influence of molecular geometry (substituent 

position) on mixed layer structure and build-up. The observed changes of the 

electrochemical reduction of nitrophenols in the presence of adsorbed T-X-100 are 

connected to microstructure of adsorbed layer and to the transformations during its build-

up. Competitive adsorption at different bulk concentration has been studied and explained 

in terms of structural changes of mixed adsorbed layers. 
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2. Experimental  

 

The nonionic surfactant T-X-100 is highly hydrophobic (calculated octanol/water 

partition constant, log KOW=4.1 [16]) and has a great tendency to adsorb onto surfaces 

influencing mass and energy transfer across the modified interface. The adsorption of T-X-

100 has been found to be diffusion-controlled 17. Its critical micellar concentration 

(CMC) in 0.5 M NaCl is 1.41 x 10-4 M i.e.  85 mg/dm3 18. ONP and PNP are few orders 

of magnitude less hydrophobic than T-X-100, the octanol/water partition coefficients for 

ONP and PNP are: log KOW = 1.89 and 2.04 for neutral species, respectively, and the 

corresponding values for the ionic species are –1.77 and –1.76 19. The ONP and PNP 

pKa values are 7.23 and 7.08, respectively 19. Their adsorption on the electrode is in 

general characterized by the presence of the aromatic moiety. The energetic adsorbate-

mercury electrode interaction is usually expressed through the standard adsorption Gibbs 

energy Gads. The experimental Gads values are always related to a planar disposition of 

the aromatic molecule on the metal surface, and the mean Gads for 38 aromatic 

compounds was found to be –25 kJ/mol 20 indicating physisorption. This free energy of 

adsorption is higher than that of T-X-100 ( - 36 kJ/mol, as calculated from the adsorption 

coefficient from ref 17).  

For the study of adsorption of T-X-100, phase sensitive alternating current (ac) 

voltammetry (90 out of phase) was used. For the study of the oxidation-reduction 

processes of the ONP and PNP, without and in the presence of T-X-100, phase sensitive ac 

(in phase mode) and square wave (sw) voltammetry were used. 



  ST03-470 2nd Resubmitted Version 

 7

Ac and sw voltammetric measurements were performed by AUTOLAB with 

PGSTAT 20 (Ecochemie, Netherlands). The frequency of the ac voltage was 170 Hz, the 

amplitude 0.010 VMS, potential step 0.0021 V, interval time 0.29 s and modulation time 

was 0.19 s. For sw voltammetry frequency was 170 Hz, step potential 2.1 mV and 

amplitude was 0.02 V. All experiments were performed in a three-electrode system. 

Working electrode was hanging mercury drop (Metrohm, Switzerland), with Ag/AgCl/3 M 

KCl electrode as the reference and a platinum wire as the auxiliary electrode. All 

measurements were performed under stirring of the solution (270 r.p.m.), at the potential of 

–0.35 V, with 1 min accumulation prior to the potential scan.  

The fractal dimension, D, is determined from the slope of the log-log plot of ic vs. A 

obtained from the size scaling of the hanging mercury drop electrode 1. Measurement was 

performed each time with a freshly prepared new drop of a selected size that was not 

changed during the measurement. 

For the purpose of the adsorption analyses the measurements were performed in the 

potential range E = - 0.35V to – 1.85 V. The values of differential capacitance were 

calculated from the measured capacity current. The calibration was done using a series of 

known capacitors (polypropylene-type, precision  1%, mfg. “Iskra”). The adsorption of T-

X-100 was studied in a concentration range of 0 - 10 mg/dm3 (0 - 1.7 10-5 M). The 

adsorption in mixed systems (T-X-100 + ONP or PNP) and study of oxido-reduction 

processes of the nitrophenols in presence of T-X-100 were studied for 10-4 M solution of 

nitrophenols and changing T-X-100 concentration in the range 0 - 10 mg/dm3. In the study 

of oxido-reduction processes the applied potential was in the range of E = - 0.35V to – 1.0 
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V. Pure nitrogen was used for deaeration of the solutions in the faradic current 

measurements. 

T-X-100 (Rohm and Haas, Italy) and ONP and PNP (Sigma, USA) were used 

without further purification. Mercury was purified by double distillation under reduced 

pressure. NaHCO3 (Merck) was used without prior purification. NaCl (Kemika, Croatia) 

was purified by prolonged heating at 450C. All solutions were prepared with deionised 

water obtained with the Milly-Q Water System (Millipore, Switzerland). Carbonate buffer 

was used to maintain pH 8.3. 

 

 

 

3. Results and discussion 

 

In Fig. 1 log-log plot of measured capacitance current vs. electrode area for pure 

electrolyte and representative T-X-100 concentration are depicted. According to the Eq. 2a 

the slope of the line gives the fractal dimension. The fractal dimension is elaborated for 

electrode potential – 0.35 V at which there is no oxido-reduction processes of nitrophenols. 

For the purpose of fractal analysis in the voltammetric measurements the electrode surface 

area of the mercury drop was varied stepwise over nine sizes in the range of 0.9 to 3.8 mm2. 

 

Adsorption of Triton-X-100 
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Adsorption of T-X-100 has been studied by ac voltammetry, out of phase mode. 

Resulting differential capacitance vs. applied potential curves for increasing bulk T-X-100 

concentrations are shown in Fig. 2. For comparison the capacitance curves of ONP and 

PNP, (labeled in Fig. 2 as ONP and PNP, respectively) are added. At E = - 0.35 V and at 

the bulk concentration of 10-4 M, higher decrease of the differential capacitance is observed 

for PNP in comparison to that of ONP. Since there is no change in differential capacitance 

of ONP and PNP, for different adsorption times, we have assumed that adsorption of 

nitrophenols is practically instantaneous.  

The shapes of T-X-100 capacitance curves (cf. Fig. 2) indicate that, at least at the 

investigated concentrations, T-X-100 does no form compact layer that is characterized by 

appearance of capacitance pit [21]. Also, chronoamperometric measurements had not 

provided any evidence of nucleation processes [22]. Such behavior is usually associated 

with the transformation of an adsorbed layer that consists of close-packed patches of 

associated adsorbate molecules, rather than continuos single entity layer [23, 24]. 

T-X-100 is strongly adsorbed over wide range of potentials both at positively and 

negatively charged mercury electrode surface. In the bulk T-X-100 concentration range up 

to5 mg/dm3 one desorption peak was recorded at E - 1.6 V, associated with monomer 

desorption 25. The second desorption peak recorded at E -1.8 V for concentrations 

above 5 mg/dm3 is attributed to the adsorption-desorption of dimers 25. The height of the 

first desorption peak is proportional to the logarithm of T-X-100 bulk concentration, that is 

usually associated with simple adsorption/desorption processes of monomers. In Fig. 3 we 

can identify four concentration ranges with different proportionality constants indicating 

different adsorption stages. First three ranges comprising bulk T-X-100 concentrations up 
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to 4 mg/dm3 are characterized with positive proportionality constant, while for higher 

concentrations the trend reverses as the height of this first peak decreases due to the 

adsorption/desorption of the T-X-100 dimers. The observed capacitance minimum is 3.11 

F/cm2. 

In order to determine the fractal dimension of the adsorbed T-X-100 layer the 

capacitive current data obtained by phase sensitive ac voltammetry were subjected to a 

fractal analysis. For pure electrolyte it was obtained that D=2.020.02 indicating smooth 

nonfractal electrode surface.  

The changes of the fractal dimension during adsorbed T-X-100 layer build-up are 

compared to the corresponding apparent adsorption isotherm. Results are presented in the 

Figs. 4a and b, curves 1. The apparent adsorption isotherm, depicted in Fig. 4b was 

obtained from the measured capacitive current ic vs. T-X-100 bulk concentration. The 

corresponding fractional electrode coverage, , was determined from the measured 

capacitive current, ic, vs. T-X-100 concentration from the following relation: 

     
)1(

)(

0

0









c

c

ii

ii
     (3) 

Here, i0 represents the capacitive current corresponding to the interface capacitance 

without organic molecules, ic() the capacitive current in the presence of adsorbed organic 

molecules and ic(=1) the capacitive current obtained for the totally covered electrode. 

To describe the adsorption process of T-X-100 we have used the Frumkin isotherm  

26  that includes adsorbate-adsorbate interaction, and is given by: 

     Bce a 


 


 2

1
    (4) 
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Here, a is the interaction coefficient, c is the bulk concentration of the adsorbate and 

B is the adsorption constant.  

However, data points in Fig. 4b representing  calculated from Eq. (3) are 

connected with B-spline fit and not with Frumkin – type isotherm (sigmoidal fit). This has 

been done in order not to smooth out, but rather to emphasize finer features related to the 

adsorption process, such as slight “knee” in apparent isotherm. Based on fractal analysis the 

similar “knee” observed in the case of linoleic acid adsorption was attributed to the onset of 

reorientation 1. The observed slight decrease in coverage with increase of concentration, 

around CT-X-100  0.25 mg/dm3 (“knee”) could be explained as a consequence of onset of 

erection of initially flatly adsorbed molecules that by erecting provide more free space for 

adsorption, resulting in apparent decrease of the relative electrode coverage. 

The Fig. 4a, curve 1, shows that adsorbed layer of T-X-100 exhibit fractal 

properties, hence, arranges itself in a self-similar way even at low fractional electrode 

coverage. The experimental data presented in this figure are purposefully left “raw” i.e. no 

smoothing has been applied, and data are fitted with B-spline, consequently resulting in 

some minor peaks that are probably just experimental scatter. This has been done in order 

to preserve some not so prominent features that might come out as significant in subsequent 

analysis. In a first stage of adsorption process D increases gradually with increase of bulk 

concentration up to 0.2 mg/dm3 (0.35) while molecules probably adsorb flatly in a 

similar way but progressively more dense, due to the reduction of space available for 

adsorption. In the T-X-100 concentration range between 0.2 and 0.8 mg/dm3 the fractal 

dimension changes considerably, exhibiting two prepeaks and pronounced main peak. 

Here, reduction of available space on the electrode surface, combined with molecular 
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lateral interactions, forces adsorbed molecules to erect. This reorientation is reflected in 

rapid increase of fractal dimension up to value D=2.62, observed at T-X-100 bulk 

concentration of 0.4 mg/dm3 (6.7x10-7 M), corresponding to 80 % fractional electrode 

coverage. However, the process of erection is not instantaneous and not limited to the 

specific concentration, but rather spread over finite concentration range, characterized with 

relatively broad main fractal peak. The hypothesis of molecular erection can be also 

checked considering the thickness of adsorbed layer. Rod-like molecules, such as T-X-100; 

form a thinner layer when flatly adsorbed than when adsorbed in slant or erected position. 

Indeed, evaluation of average layer thickness of adsorbed T-X-100 at bulk concentration of 

0.26 mg/ dm3 yields thickness of about 1.7 nm 5, a value that is much higher than the 

estimated T-X-100 “diameter” (about 0.7 nm). This average layer thickness value indicates 

that at this concentration all molecules are not adsorbed flatly (in compliance with 

theoretical predictions, cf. Fig 5b) and are partly adsorbed perpendicularly or in slant 

position. This complies with finding of Guidelli and Moncelli 27 that, for concentrations 

bellow 10-4 M, T-X-100 is adsorbed in a monolayer with an orientation intermediate 

between the flat and the perpendicular with alkyl end of the molecule in contact with 

electrode. The end of adsorbed layer transformation is indicated by the decrease of fractal 

dimension to a value slightly above 2. In the next concentration range, up to 4 mg/dm3 

(6.7x10-6 M), D remains practically constant with average value 2.05 indicating that 

adsorption proceeds with molecules adsorbed perpendicularly in a relatively homogenous 

layer. Second increase of fractal dimension, obtained at T-X-100 bulk concentrations 

higher than 4 mg/dm3, coincides with adsorption of T-X-100 dimers 25. Adsorption of 

dimers causes loss of homogeneity and increase of fractal dimension to D2.14. 
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The four concentration ranges of T-X-100 identified with fractal analysis and 

characterized by different behavior of D coincide with concentration ranges identified in 

the analysis of the first desorption peak height (Fig. 3). These ranges are related to the four 

different adsorption stages. First three are related to the adsorption of monomers as follows: 

initially flatly adsorbed molecules, transformation stage, and adsorption in the 

perpendicular position. The fourth stage, appearing at the highest investigated bulk 

concentrations, corresponds to adsorption of dimers. This analysis shows complexity of the 

adsorption process of T-X-100, also observed in an earlier study by Batina et al 17. The 

observed deviation from their model of adsorption process was attributed to rate-

determining step in the overall mechanism caused by reorientation of adsorbed molecules 

or formation of several adsorbed layers. Fractal analysis approach facilitates resolution of 

such problems by providing evidence that the reorientation of adsorbed molecules indeed 

takes place in certain fractional electrode coverage range. 

The observed changes of fractal dimension with increase in T-X-100 bulk 

concentration are a consequence of structural changes in the adsorbed layer. These 

structural changes are in turn related to changes of molecular interactions between adsorbed 

molecules. Theoretically these interactions are included in a Frumkin type isotherm (Eq. 

(4)) through the coefficient of lateral interaction, a. This coefficient was calculated from 

measured data applying method described elsewhere 1, 26. Due to the non-equilibrium 

conditions in the experiment, the results, although obtained using a nonthermodynamic 

method, should be interpreted cautiously. However, we think that they do reflect, at least 

qualitatively, the nature of lateral interaction between the molecules during the adsorption 

process. Although, 2lim
5.0




a


, one must be cautious in evaluating the value of a at  
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exactly 0.5 due to possible numerical errors. However, this is not relevant for our 

considerations that are qualitative. Fig. 5a shows the variations of the coefficient of lateral 

interaction, a, with increasing T-X-100 bulk concentration. The change in coefficient a 

corresponds to before discussed adsorption stages. In the first stage coefficient a is positive 

and changes very slowly. In the second adsorption stage an abrupt change of a appears 

around bulk concentration of 0.3 mg/dm3. This “discontinuity” of a, that lies in the 

concentration range where the onset of major changes in D takes place, is attributed to the 

structural transformation(s) of the layer. The next stage in which adsorption proceeds with 

molecules adsorbed in the erected position forming relatively homogenous layer (D  2), is 

characterized by a positive and increasing coefficient of lateral interaction. The similar 

range of values for the attractive coefficient of lateral interaction was obtained, albeit by 

different methods, for the adsorption of T-X-100 on dropping mercury electrode [27]. 

The observed changes can be better understood considering disposition of adsorbed 

molecules on the electrode surface. Calculation of fractional electrode coverage with 

horizontally and perpendicularly adsorbed molecules in dependence on the T-X-100 bulk 

concentration can be accomplished on the basis of the experimentally determined surface 

coverage as described elsewhere 1, 26. The results are presented in Fig. 5b. In a 

concentration range corresponding to low fractional electrode coverage T-X-100 molecules 

are adsorbed almost exclusively in a flat position probably forming patches due to attractive 

lateral interactions. The contribution of flatly adsorbed molecules to the fractional electrode 

coverage continues to increase up to the transition point at which the contribution of 

perpendicularly adsorbed molecules supersedes that of flatly adsorbed. From that point on, 

the adsorption proceeds with dominant erected orientation. The onset of the reorientation 
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can be estimated from the point (concentration or coverage) at which the number of 

horizontally adsorbed molecules reaches maximum and starts to decrease (due to erection 

process), this corresponds to C  0.26, i.e.   0.51 (cf. Fig. 5b). In fractal domain this 

corresponds to maximum value of prepeak (D  2.3). The reorientational process (erection) 

is not instantaneous, but extends through certain finite coverage range, and is accompanied 

by corresponding changes in fractal dimension, that after slight decrease increases up to the 

main fractal peak (D  2.6). The end of erection is marked with decrease from maximum 

value of main fractal peak to the near constant value of fractal dimension corresponding to 

more uniform and compact layer. In this concentration range the contribution of flatly 

adsorbed molecules is negligible.  

The reorientation (erection) should be also manifested in the adsorption isotherm. 

The flatly or perpendicularly adsorbed molecules due to the different cross-sectional area in 

contact with the electrode surface displace different number of solvent molecules. This 

effect is efficiently accounted for by using modified Flory-Huggins (F-H) isotherm [28, 

29], that, besides the coefficient of lateral interaction includes an additional parameter n 

that describes the number of solvent molecules displaced by one adsorbing molecule. 

Hence, instead of Eq. (4) we have: 

Bce
n

a
n




 


 2

)1(
, 

an isotherm convenient for interpretation of adsorption of a substance in two different 

orientations. However, in assigning a value to the parameter n one must be aware that the 

water molecules are displaced from the surface in clusters corresponding to area of 0.3-0.4 

nm2 [30]. Flat lying T-X-100 molecule occupies an area of approximately 1.63 nm2 [31]. 
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Based on this we may expect the value of parameter n in F-H isotherm to be n  4. The 

projected area of vertical linear hydrocarbon chain amounts to  0.21 nm2 [32], hence we 

may expect that for perpendicularly oriented T-X-100 molecules the values of parameter n 

in F-H isotherm would be at least n  0.5. Fig. 6 shows fit of experimental adsorption 

isotherm with two F-H isotherms corresponding to low and high concentration ranges. The 

intermediate coverage range that is transitional in regard to the reorientational 

transformation and was not included in the fitting procedure. The adsorption in the low 

concentration (coverage) range (C  0.15 mg/dm3) (where flat orientation predominates) is 

well approximated (R2 = 0.926) with F-H isotherm with n = 2.3, a = 1.08 and B = 5.8 x 105 

mol-1. In the high concentration (coverage) range (C >0.4 mg/dm3) the corresponding best-

fit F-H parameters are n = 0.44, a = 1.92, B = 2.24 x 105 mol-1 (R2 = 0.888).  The 

coefficients of lateral interaction obtained from F-H isotherm fitted to experimental data are 

in perfect agreement with average values of a for the respective concentration ranges 

obtained from experimental isotherm independently by nonthermodynamic calculation (cf. 

Fig. 5a). The value of parameter n obtained for the high coverage range is in good 

agreement with the value predicted for perpendicular adsorption. Lower value of n obtained 

for low concentration range (C < 0.2 mg/dm3) in respect to that predicted for flat 

adsorption, may be attributed to the fact that even in this low concentration range a not 

negligible fraction of molecules is adsorbed in perpendicular or slant position (cf. Fig 5b) 

resulting in lower average n-value.  Hence, we may conclude that at low relative electrode 

coverage the molecules are adsorbed predominantly in flat position, while at high relative 

electrode coverage the molecules are adsorbed in perpendicular position.  
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To get some additional insight into the structural changes during the adsorption 

process through comparison with theoretical predictions we shall approximate the T-X-100 

molecule with a rigid rod with aspect ratio k = 5.6 (k = l/w, where l and w are length and 

width of the “rod”). This approximation is justified by the shape of molecule comprising 

hydrophobic “head”-group and hydrophilic chain with 9 or 10 ethylene oxide segments, 

with average total length of molecule, l  3.9 nm and width, w  0.7 nm. Under the 

assumption of a random sequential adsorption (RSA) of rigid rods [33] in the two-

dimensional space the jamming limit or saturation coverage, S, depends on aspect ratio k, 

of model rods. The larger the aspect ratio k the lower the jamming limit. RSA Monte Carlo 

simulations for k = 4 and 6 give saturation coverage S =0.74 and S =0.59, respectively 

[34]. For a rod like molecule of aspect ratio close to that of T-X-100 the jamming limit 

estimated from interpolation of cited Monte Carlo simulation results is S = 0.5 (RSA). 

Contrary to the assumption of RSA model, the generalized RSA or equilibrium model [35] 

permits limited movement of molecules upon adsorption and consequently another 

phenomena, namely planar isotropic to nematic transition. The isotropic to nematic (I-N) 

transition coverage I-N is also aspect ratio dependent. Application to molecules with k = 

5.6 gives I-N = 0.62.  

In order to check the applicability of these theoretical considerations for adsorption 

of T-X-100 in Fig. 7 the dependence of fractal dimension and coefficient of lateral 

interaction on   (curves D and a, respectively) are presented. It can be seen that the 

pronounced changes of fractal dimension and coefficient a appear in the coverage range 

corresponding to theoretically predicted S and I-N. Hence, the observed changes of D and 

a could be associated with transitional processes [36], namely, reaching the jamming limit 
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and isotropic to nematic orientational transition. Additional pronounced change of D is 

associated with reorientation of molecules from flat to perpendicular position. 

In the RSA model in isotropic phase of adsorption the coefficient of lateral 

interaction should be positive, and gradually increase up to the saturation limit. On the 

other hand, the fractal dimension should also increase with increased coverage (density). 

Hence, one should expect that the saturation limit shall be marked with maximum in a and 

D. Inspection of Fig. 7 shows that indeed the theoretical jamming limit lies in vicinity of 

maxima of D-prepeak and a. The saturation coverage determined from the a and D is at 

S(T-X-100)  0.5  This value complies with the predicted RSA value S = 0.5.  

On the other hand, the predicted isotropic-to-nematic transition point lies in vicinity 

of coverage at which the rate of change of coefficient of lateral interaction after return to 

positive values has decreased and stabilized (inflection point of a-curve in Fig. 7), 

indicating structurally ordered layer. At this point the fractal dimension exhibits local 

extreme. Hence, the isotropic to nematic transition seems to occur at I-N. 0.6.  

Based on these findings the transformation of the layer should go like this: initially, 

the attractive forces between molecules that are mostly lying, are responsible for formation 

of isotropic patches. As the coefficient of lateral interaction slowly increases the density of 

adsorbed molecules increases up to the jamming limit, characterized by high positive a-

value and the fractal prepeak. After the jamming limit has been reached, sudden reverse of 

a to negative values, corresponding to strong repulsive interaction, indicates onset of major 

structural changes: transition from isotropic to nematic structure representing planar 

reorientation and simultaneously accompanied by process of 3d reorientation from flat to 

erected adsorption. Isotropic to nematic transition is completed at I-N. 0.6. On the other 
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hand, the erection of molecules continues after the transition point as indicated by the 

further change in D, and is finished when fractal dimension decreases from maximum to 

the nearly constant value. After the reorientation has been completed further adsorption 

continues in erected orientation resulting in relatively homogeneous layer of D  2.  

 

 

Adsorption of mixed systems: T-X-100+ ONP and T-X-100 + PNP 

 

Oppositely to the T-X-100, the adsorbed layers of pure nitrophenols do not exhibit 

fractal properties at investigated concentration and at potential – 0.35 V. The values of 

fractal dimension obtained for pure ONP and PNP adsorbed layers are 1.98 and 1.99 (± 

0.02), respectively. 

The fractal dimensions of mixed systems for T-X-100 with addition of 10-4 M ONP 

or PNP are shown in Fig. 4a, curves 2 and 3, respectively. The corresponding isotherms are 

given in Fig. 4b, curves 2 and 3, respectively. The differences in D of the mixed systems in 

comparison to the pure T-X-100 are most pronounced in the concentration range that 

corresponds to low and moderate fractional electrode coverage at which the main fractal 

peak appears and transformation of T-X-100 adsorbed layer takes place. The T-X-100 layer 

formed in the presence of ONP is subject to similar transformation as that of pure T-X-100, 

although somewhat subdued. In the case of mixed layer with PNP the fractal picture is 

quite different. The observed peaks are substantially reduced in comparison to that of pure 

T-X-100. The fractal structures generated in presence of repulsive interactions are generally 

characterized with lower fractal dimension in comparison to the system with attractive 



  ST03-470 2nd Resubmitted Version 

 20

interactions. Hence, the substantial decrease of fractal dimension observed for mixed 

system, in comparison to that of pure T-X-100, can be attributed to the repulsive 

interactions between PNP and T-X-100. The reduction of D is most pronounced for the 

main peak associated with molecular reorientation of T-X-100. Hence, we may conclude 

that in the mixed adsorbed layer of T-X-100 with PNP the reorientation of T-X-100 from 

flat to-perpendicular position is not the dominant process. This could indicate that T-X-100 

molecules are adsorbed mostly in the perpendicular position even at low fractional 

electrode coverage as probably indicated with a fractal peak appearing at C 0.15 mg/dm3. 

At low bulk concentrations of T-X-100, the respective electrode coverage in a mixed 

system is high (  0.3) due to major contribution to the electrode coverage from PNP 

molecules that are supposed to adsorb flatly 20. Consequently, we may conclude that 

there is high competition between PNP and T-X-100 molecules for the free electrode 

surface, aggravating flat adsorption of T-X-100. At higher electrode coverage possible 

reorientation of PNP within the complex layer could be assumed 37 and such process 

assigned to one of observed fractal peaks.  

Organic substances adsorbed on the mercury electrode usually exert an inhibitory 

influence on the electrochemical processes that take place at the electrode surface due to the 

steric effects and due to the decrease in the rate constant(s) of the electrode reactions or 

accompanied chemical reaction(s). One may expect that the electrochemical behavior of the 

redox system in the presence of the adsorbed layer on the electrode surface is correlated 

with the microstructure of the layer. Hence, it may be helpful to examine changes in 

reduction processes of nitrophenols in mixed layers with T-X-100 to better elucidate fine 

structural transformations of the layers observed by the fractal analysis. 
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Electroreduction of o- and p-nitrophenols were studied in the presence of increasing 

concentrations of T-X-100. Reduction peak current of both nitrophenols is changing 

depending on the T-X-100 concentration in the solution. Fig. 8 shows dependence of ac 

peak current of the 10-4 M ONP (curve 1) and 10-4 M PNP (curve 2) on T-X-100 bulk 

concentration. The electrochemical behavior of ONP in presence of T-X-100 can be 

separated in three phases. In the first phase, corresponding to lower concentration range of 

T-X-100 (up to 0.38 mg/dm3, <0.6, cf. Fig. 4b) the ONP peak current decreases 

following the increase of , due to the effective blocking of the area available for the ONP 

reduction by the adsorbed T-X-100 molecules. In the second phase (>0.6), the ONP peak 

current rapidly increases and attains the maximum value of  1.1 A at 1. In the third 

phase the peak current remains constant in a broad T-X-100 concentration range. In the 

case of PNP similar behavior of the peak current is observed for a low concentration range 

of T-X-100. Initial decrease of peak current is followed by abrupt current increase up to a 

value of  1.1 A (T-X-100 bulk concentration rangeof 0.26 - 0.45 mg/dm3). After 

reaching the maximum, contrary to the ONP reduction, the peak current of PNP 

continuously decreases with further increase of T-X-100 bulk concentration. A small 

increase of currents, observed for both nitrophenols, at T-X-100 bulk concentration of 

about 6 mg/dm3, coincides with the adsorption of dimers. These changes of peak current 

coincide with T-X-100 concentration domains of different D values and occurrence of 

fractal peaks (cf. Fig. 4). Hence, we may conclude that they are indeed correlated to the 

structural changes of mixed adsorbed layers during their buildup. 

The general and simplified scheme of the reduction of nitrophenols at pH 8.3, may 

be written as follows: 
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NHOHPh NO-Ph .NOPh NO-Ph
222

22
2   

  HeOH,Hee
-
,

-
,  

This scheme is really more complicated owing to reactions of protonation and 

dismutation 38-40. First step of this scheme shows that nitro group is reversibly reduced 

in a one-electron reaction to radical anion. Second step is an irreversible reduction to the 

nitrosophenol, which is further reversibly reduced to the phenylhydroxylamine. In the 

aqueous medium and on a mercury electrode the reaction of organic compounds such as 

aromatics practically always occurs via the adsorbed species 40, 41.  

At applied experimental conditions reduction of o- and p-nitrophenols, without T-

X-100 is irreversible, as confirmed by sw voltammetry (Figs. 9a and b, curves 1). 

Fig. 10 shows ac voltammograms and corresponding changes of capacitive currents 

of pure nitrophenols and in the mixture with T-X-100 at few selected concentrations. In the 

Fig. 10a, curve 1 represents the ac voltammogram of 10-4 M ONP. In repeated scan on the 

same mercury drop (curve 1A) a prepeak can be observed. This prepeak represents 

reversible oxidation of hydroxylamin to nitroso group as confirmed by SW voltammetry 

(peak A in Fig. 9a). The reduction of nitroso group occurs at the potential more positive 

than the reduction of the corresponding nitro-group 39. Hence, at used experimental 

conditions the reduction of ONP is the four-electron reaction up to phenylhydroxylamine.  

In the Fig. 10b, curve 1 represents the ac voltammogram of 10-4 M PNP. In this case 

the repeated scan at the same mercury drop did not reveal any prepeak, neither at ac nor at 

SW voltammetry. This indicates that at chosen experimental conditions PNP is reduced in 

an irreversible two-electron process. 

In the mixed systems, in the low bulk concentration range of T-X-100 the number 

of electrons partaking in reduction of nitrophenols is unchanged. However, the 
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electroreduction is more irreversible as indicated by broadening and potential shift of the 

peaks (curves 2 in Figs 9a and b). For ONP in repeated scan at the same mercury drop the 

prepeak was observed for all T-X-100 concentrations up to 0.38 mg/dm3. Hence, it is 

reasonably to assume that at the low surface coverage with T-X-100 molecules the 

reduction of nitrophenols still proceeds from the adsorbed state.  

In the next narrow concentration range of T-X-100, where the peak currents of both 

nitrophenols show abrupt increase (cf. Fig. 8), the repeated scan at the same mercury drop 

did not reveal any prepeak. For both investigated nitrophenols the maximum peak current 

value is  1.1 A and the half-peak width is 90 mV. In ac voltammetry this corresponds to 

a reversible one-electron reduction. In sw voltammetry the peaks show quasi-reversible 

behavior (Fig. 9, curves 2) starting at T-X-100 bulk concentrations of 0.55 and 0.44 

mg/dm3 for mixtures with ONP and PNP, respectively, therefore these T-X-100 

concentrations were chosen for presentation in Fig. 9. Hence, it may be concluded that in 

this T-X-100 concentration range the reduction mechanism of nitrophenols has changed 

from multi-electron irreversible to the one-electron reversible. We suppose that the rate 

constants of proton and electron transfers in the reduction processes of investigated 

nitrophenols in T-X-100 layer have decreased rendering first electron reversible reduction 

to become measurable in the applied experimental window. Similarly, the decrease of the 

standard rate constants of the C6H5NO2
·-/ C6H5NHOH and C6H5NHOH/PhNO processes in 

the study of nitrobenzene reduction in the presence of increasing concentration of 

hexamethylphosphotriamide (HMPA) has been observed 42. At higher surface coverage 

(T-X-100 bulk concentration up to 10 mg/dm3) and at given experimental conditions, the 

reduction of ONP to radical anion remains unchanged indicating enhancement of radical 
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anion stability in such layers. The enhanced stability of nitrobenzene radical anion was also 

found in nonionic micelles and was assigned to the surface interactions 43. In the same 

concentration range of T-X-100 the first reduction step of PNP undergoes 

irreversibilization, as manifested in a decrease of peak current as well as peak broadening 

(Fig. 10b, curve 4).  

Observed changes in the reduction mechanism of nitrophenols in the presence of T-

X-100 can be related to the microstructure of the adsorbed layer and different orientation of 

the nitrophenols in the layer. Different orientations of nitroaromatics in the adsorbed layer 

prefer different pathways of electroreduction. Parallel orientation favors electron 

acceptance as a first stage of electroreduction while perpendicular orientation in the layer 

favors protonation of nitro group as a first step 37. At very low bulk concentration of T-

X-100 in the mixture with 10 –4 M nitrophenol the dominant species adsorbed on the 

electrode surface is nitrophenol due to its much higher concentration in the bulk. Increase 

of T-X-100 concentration in this concentration range results in reduction of available space 

for adsorption and reduction of nitrophenols due to the much higher hydrophobicity of T-

X-100. However, the structure of adsorbed layer does not change significantly and 

reduction mechanism of particular nitrophenol does not change significantly. In this phase 

flat orientation of adsorbed nitrophenol molecules is probably preferred. In the next narrow 

T-X-100 concentration range that corresponds to major restructuring of the mixed adsorbed 

layer, the nitrophenol molecules also very probably change orientation from flat to erected, 

although not necessarily synchronously with T-X-100 erection. This is indicated by change 

of reduction mechanism of nitrophenols from multi- to one-electron and also by 

corresponding appearance of fractal peaks. Similar phenomenon was observed for the 
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reorientation of 2-mercaptopyridine N-oxide on the mercury electrode in the presence of T-

X-100 layer 44. In the range of high T-X-100 concentration, corresponding to high 

electrode surface coverage, the fractal dimension of all investigated adsorbed layers is D  

2, indicating relatively uniform and smooth layers. However, different reduction 

mechanisms of the two nitrophenols may indicate that ONP partitionates in the layer of 

nonionic surfactant T-X-100, while PNP does not. The hypothesis that ONP can 

partitionate in nonionic surfactant phase is supported by previously published evidence of 

interaction between nitrobenzene radical anion and nonionic micelles 43. The different 

affinity for T-X-100 layer between o- and p-isomers is probably caused by geometrical, 

steric inhibition of para positioned functional groups on the benzene ring. 

 

 

 

4. Conclusions 

 

The study of adsorption processes and structural transformations of simple and 

mixed adsorbed layers (T-X-100 and T-X-100 with o- or p-nitrophenol) at the mercury 

electrode surface has been performed using electrochemical methods and fractal analysis.  

Investigation of adsorption process of T-X-100 with classical capacitive current 

measurements reveals adsorption of monomers and dimers without providing any finer 

details of the process or involved structural changes of the adsorbed layer. These are 

provided through diversified approach comprising desorption peak height analysis, fractal 

analysis, nonthermodynamic calculation of coefficient of lateral interaction, calculation of 
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relative coverage assuming flat and perpendicular dispositions of molecules, fit of 

experimental data with two modified Flory-Huggins isotherms and predictions of RSA and 

equilibrium (generalized RSA) theories.  

It appears that fractal analysis is a powerful tool, as fractal dimension is sensitive to 

subtle structural change(s) of adsorbed layer. Hence, observed specific changes of fractal 

dimension were assigned to certain structural changes such as saturation, isotropic to 

nematic transition, erection of initially flatly adsorbed molecules etc.  

In conclusion, based on all considerations, the transformation of the adsorbed layer 

of nonionic surfactant T-X-100 goes through four phases corresponding to different T-X-

100 concentration ranges: 

- initially, isotropic phase in which the attractive forces between flatly adsorbed 

molecules are responsible for formation of isotropic patches, 

- secondly, the transformation phase characterized by the increase of density in 

adsorbed layer up to saturation at S(T-X-100)  0.5, followed by planar 

nematization at I-N. 0.6, and erection of the molecules, 

- thirdly, homogenization phase in which adsorption proceeds with molecules 

adsorbed in erected position in relatively compact and homogenous layer with D 

 2, 

- finally, adsorption of dimers. 

At bulk concentration of nitrophenols of 10-4 M and potential E = -0.35 V the 

adsorbed layers of pure nitrophenols do not exhibit fractal properties. However, the mixed 

layers of T-X-100 with ONP or with PNP have fractal structures that are changing with the 

increase of T-X-100 bulk concentration. Markedly different fractal dimension of the mixed 
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systems and observed changes in the reduction mechanisms between the two nitrophenols 

in the presence of T-X-100, were induced by the corresponding changes in the 

microstructure of the adsorbed layer. The mixed layer of T-X-100 and ONP is subject to 

similar changes as that of pure T-X-100, indicating partitioning of ONP in the T-X-100 

layer. The mixed layer with PNP exhibits completely different behavior as a consequence 

of repulsive interactions between PNP and T-X-100 molecules, resulting in expulsion of 

PNP from the layer at higher coverage, followed by the change of reduction mechanism of 

PNP that has not been observed for ONP. 
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Figure captions: 

Fig. 1. Dependence of the measured capacitive current at –0.35 V vs. electrode 

surface area for pure electrolyte (curve 1) and 0.3 mg/dm3 T-X-100 (curve 2). Symbols 

denote experimental points and lines corresponding linear fits. D and R denote the 

estimated fractal dimension and the regression coefficient, respectively. 

 

Fig. 2. Differential capacity-potential curves for the bulk Triton-X-100 

concentrations: 0.1, 0.4, 0.7 and 5 mg/dm3 (curves 2-5). Pure electrolyte (curve 1), o-

nitrophenol (curve ONP) and p-nitrophenol (curve PNP). Accumulations time 1 min.  

 

Fig. 3. Desorption peak height vs. bulk concentration of Triton-X-100. Measured 

data are presented with circles and lines represent approximation with logarithmic function. 

 

Fig. 4. (a) Dependence of the fractal dimensions on bulk Triton-X-100 

concentration for the electrode potential E = -0.35 V; (b) The corresponding fractional 

electrode coverages. Curves 1, 2 and 3 correspond to pure T-X-100, T-X-100 with ONP 

and T-X-100 with PNP. Symbols denote measurement points while lines represent the fit 

with B-spline.  

 

Fig. 5. (a) Variation of the coefficient of lateral interaction with T-X-100 bulk 

concentration, (b) Fractional electrode coverage with horizontally (H) and perpendicularly 

oriented (P) molecules vs. T-X-100 bulk concentration. Symbols denote points calculated 

from the measured data while lines represent the fit with B-spline. 
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Fig. 6. Fit of experimental isotherm with two modified Flory-Huggins isotherms 

corresponding to low and high coverage ranges, denoted F-H 1 and F-H 2, respectively. 

Symbols denote measurement points while lines represent the fit.  

 

 

Fig. 7. Dependence of the fractal dimension (curve D) and coefficient of lateral 

interaction (curve a) on relative electrode coverage for T-X-100 layer. Experimental points 

are denoted by symbols and corresponding fits by lines. Arrows denote relative electrode 

coverage corresponding to the saturation coverage s(RSA) and Isotropic-to-Nematic 

transition (I-N), as predicted by Monte Carlo simulations for rod-like molecules with aspect 

ratio k =5.6. 

 

Fig. 8. Dependence of the o-nitrophenol () and p-nitrophenol (o) ac voltammetric 

reduction peak currents on the T-X-100 concentration. Symbols denote measurement points 

while lines represent the fit with B-spline. Accumulation time 1 min.  

 

Fig. 9. sw voltammograms of (a) pure 10-4 M o-nitrophenol (curve 1), second scan at 

the same mercury drop (curve 1A) and ONP in the presence of 0.55 mg/dm3 T-X-100 (curve 2) 

and (b) 10-4 M PNP (curve 1) and PNP in the presence of 0.44 mg/dm3 T-X-100 (curve 2). 

Curves f – forward current and curves b - backward current. Accumulation time 1 min. 
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Fig. 10. (a) and (b) show ac voltammograms and (a’) and (b’) corresponding 

capacitive currents of pure nitrophenols and in the mixture with T-X-100. (a) ac 

voltammograms of 10-4 M ONP in the presence of increasing T-X-100 bulk concentration: 

0, 0.38 and 5.0 mg/dm3 T-X-100, curves 1, 2 and 3, respectively. Curves A represent 

second scan at the same mercury drop. Accumulation time 1 min. (b) ac voltammograms of 

10-4 M p-nitrophenol in the presence of increasing T-X-100 bulk concentration: 0, 0.26, 

0.46 and 3.0 mg/dm3 T-X-100, curves 1, 2, 3 and 4, respectively. Accumulation time 1 min. 
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Fig.1. 
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Fig. 2. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. 
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