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Abstract-Voltammetric prepeak height of the of o-nitrophenol (ONP) probe is very sensitive to the 

presence of acidic organic matter adsorbed on the mercury electrode. ONP prepeak height increases 

with increasing acidity of organic substances, depending also on their concentrations in solution 

and on adsorption time. For a better interpretation of real marine samples, adsorption behaviour was 

studied of a few model substances which may contribute to the acidity of the sample. Also, in 

phytoplankton monoculture media of diatom Phaeodactilum tricornutum, it was found that major 

acidic organic substances originated from hydrophilic fraction while acidity of organic substances 

excreted by microflagelate Emiliana huxleyi  was mostly ascribed to hydrophobic acid organic 

substances. Seawater samples from two stations in the northern Adriatic sea were investigated 

monthly during an one year period. The highest acidity values of the present organics were noticed 

during the winter period, corresponding to the dominant humic type organic material, while the 

obtained acidity values were lower in periods of higher phytoplankton activities. In two fractionated 

northern Adriatic seawater samples, the results obtained with the ONP probe demonstrated well 

how the composition of organic matter is influenced by dominant phytoplankton populations . 
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INTRODUCTION 

 

Marine organic matter is a very complex mixture, participating in many reactions both with organic 

and with inorganic species. A very important part of organic matter in the seawater are organic 

acids. Recently, there has been a growing interest in elucidating the role of organic acids in 

biogeochemical processes in natural waters (McKnight et al., 1990). 

The total pool of dissolved organic acids is made up of labile, mostly low molecular weight 

substances, and recalcitrant species. Recalcitrant substances are the greater fraction of higher 

molecular weight acids, composed mainly of humic substances. Another large portion consists of 

more hydrophilic organic acids which may have similar properties to fulvic acids. 

It was found that low molecular weight substances dominate the components of the mixture which 

comprises fulvic acid (Novotny and Rice, 1995) whose molecular weights are in the range 1000-

2000, while molecular weight of humic acids appears to be 2000-10000 and more. Carboxylic 

groups are more important in fulvic than in humic acids (Green et al., 1992). 

Marine humic substances are the most stable products of organic matter decomposition in nature. 

They are an unavoidable component of the ecosystem, important reservoir of biogenic elements, 

and they make the main fraction of dissolved organic matter in natural waters (Skopinstev, 1981; 

Romankevich, 1984; Aiken et al., 1985; Buffle, 1988). Marine humic substances have a great 

influence on physical, chemical, and biological processes in the sea environment due to their 

structure and physico-chemical properties. Complexation reactions with metals are caused by the 

presence of carboxylic and other oxygen containing functional groups in the molecule, while the 

binding of organic micropollutants is mainly determined by hydrophobic interactions. Humic 

substances can be electron mediators in redox processes. 

Polysaccharides with acidic properties can be found in the water column as a result of algal 

extracellular excretion or autolysis. Polysaccharides as well as proteins and lipids are labile in 

seawater and are promptly decomposed. Interactions between the products of decomposition of 

marine macromolecules lead to the formation of natural geobiopolymers, in which carbohydrate 

carbonyl units were found (Romankevich, 1984). It was found that carbohydrate units are more 

abundant in fulvic acids than in humic acids (Yumaoka, 1983). 

Melanoidins are polymers similar to natural humic substances obtained by dehydration and 

condensation of sugars and amino acids (Hedges, 1978). They are known as kerogen precursors and 

geochemical lipid sinks (Larter and Douglas, 1980). 
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Recently, an electrochemical method was developed which can be used for rough characterization 

of the type and concentrations of organic matter on the basis of electrochemical properties of o-

nitrophenol (ONP) as a probe (Gašparović and Ćosović, 1994). Using this method, the acidity of 

the surface active organic matter in the sample can be roughly estimated by following the changes 

of the ONP prepeak height (Gašparović and Ćosović, 1995). The method was improved by 

fractionation of organic matter in seawater samples into fractions of different hydrophobicity using 

the XAD-8 resin (Gašparović et al., 1997). Experiments with different model substances have 

shown that fatty acids go to the hydrophobic basic and neutral fraction, humic and fulvic acids to 

the hydrophobic acid fraction, neutral polysaccharides to the hydrophilic fraction, while acidic 

polysaccharides are distributed between hydrophilic (80 %) and hydrophobic acid (20 %) 

fractions (Vojvodić et al., 1994; Gašparović et al., 1997). 

In this work we attempted to evaluate the type and origin of surface active organic acids in natural 

seawater samples and their seasonal variations. Comparison is made with previous results obtained 

by using very different model substances, from a simple unsaturated fatty acid to more complex 

humic and fulvic acids, melanoidins, and acidic polysaccharides. In two phytoplankton culture 

media, we tried to determine which fractions, hydrophilic or hydrophobic, are responsible for the 

acidity of excreted organic substances. Seawater samples used in this work were collected in the 

northern Adriatic Sea. Some samples were fractionated before analysis on the XAD-8 resin. In 

these samples, the results are discussed with regard to the contribution of organic acids to particular 

fractions. 

 

 

EXPERIMENTAL 

 

Phase sensitive ac voltammetric measurements were performed by the EDT-ECP 110 Modular 

Research Polarograph (London, England). All experiments were performed in a three electrode 

system with hanging mercury drop electrode (HMDE) by Metrohm (Switzerland). Ag/AgCl 

electrode was used as the reference electrode and a platinum wire as the auxiliary electrode. ONP 

(10-4 M) was added into the model solution or to the marine sample just before voltammetric 

measurement. Model solutions contained 0.55 M NaCl and 2x10-3 M NaHCO3, at pH 8.4, 

simulating seawater conditions. Organic matter was accumulated on the mercury electrode at the 

potential of -0.35 V, prior to the potential scan, by stirring the solution for 1, 3 and 10 min. 
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Voltammetric measurements for each accumulation time included two scans recorded in the 

potential range from -0.35 V to -0.9 V. In the first scan, the reduction peak of ONP was recorded, 

while in the second scan on the same mercury electrode the reduction product gave a new peak at a 

more positive potential, which was denoted as the ONP prepeak A. 

All values of the ONP peak or prepeak heights for a particular accumulation time were given as 

relative values normalized to the ONP peak or prepeak height in the absence of organic matter for 

the model system, and normalized to the accumulation time t=0 for seawater samples and 

phytoplankton monocultures. 

Samples were fractionated using a(n) XAD-8 resin on which organic substances were separated 

according to hydrophobic-hydrophilic properties (Vojvodić and Ćosović, 1996). As described in 

our previous paper, we measured Fraction I which is effluent solution after sorption of hydrophobic 

neutral and basic compounds on the XAD-8 resin at pH 8.4, containing hydrophobic acid and 

hydrophilic components, and Fraction II which is effluent solutiont, after sorption of hydrophobic 

acid organic substances at pH 2, containing only hydrophilic substances (Gašparović et al., 1997). 

Determination of the dissolved organic carbon (DOC) content in the samples was performed using 

the high temperature catalytic oxidation (HTCO) technique, proposed by Sugimura and Suzuki 

(1988). A model TOC-500 System (Shimadzu, Japan) with a highly sensitive Pt catalyst and non-

dispersive infrared (NDIR) detector for CO2 measurements was used. 

Acidic dextrans were prepared from native dextran (Mw=40.000g/mol) by carboxymethylation of 

hydroxyl groups on random D-glucose units, and their acidities were determined by titration of the 

carboxylic groups with 0.1 M NaOH in a water:acetone mixture 50:50 (v/v) (Chaubet et. al., 1995). 

Kappa ()-carrageenan (Sigma) is a sulphated polysaccharide extracted from red seaweeds (Painter, 

1983), and xanthan (Sigma) is a polysaccharide possessing polyelectrolyte properties, and produced 

by Xanthomonas campestris (Rinaudo and Milas, 1982) were used as model acidic polysaccharides 

which can be found in marine environment. Humic acid-Canet and fulvic acid-Canet isolated from 

the lagoon Canet sediment, Mediterranean, and humic acid isolated from the Raša Bay, Adriatic 

sea, were used. 

Seawater samples were collected in the northern Adriatic Sea along the transect between the 

Croatian coast (Station 107) and the Po river discharge near the Italian coast (Station 101). Samples 

were taken with a Niskin sampler from 0.5, 5, 10, 20, and 30 m, approximately monthly during a 

period of one year. Samples were stored in dark glass bottles at 4 C, and measured within 24 
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hours. Two seawater samples were collected in the northernmost part of Adriatic sea, near Piran, 

Slovenia on April 3, 1995 (Sample 1) and on June 19, 1995 (Sample 2). 

Phytoplankton monocultures, Phaeodactilum tricornutum as a representative of diatoms and 

Emiliania huxleyi as a representative of microflagelates, were in the exponential phase of growth 

when analyzed. Monocultures provided by the Biological Station, Piran, Slovenia, were grown in 

T/2 medium (Guillard and Ryther, 1962), at 293 K, under fluorescent light (I.P.R. 40 W) and a 

regiment of 12 hours light and 12 hours dark. Phytoplankton cells were removed from the sample 

by gentle filtration, under the vacuum pressure of 20  kPa. 

Filtration of samples was performed through a Whatman GF/F paper filter with 0.7 m pore size. 

 

 

RESULTS AND DISCUSSION 

 

Model substances 

The simple method used here for rough characterization of organic matter in seawater is based on 

the fact that electrochemical characteristics of the ONP peak and prepeak are strongly influenced by 

the properties of adsorbed organic substances on the mercury electrode, particularly the 

hydrophobicity and acidity of organic molecules. This was illustrated for a number of model 

substances, representative of organic constituents of natural seawater (Gašparović and Ćosović, 

1994 and 1995). It was shown that the ONP prepeak height increased in the presence of acidic 

organic substances, or decreased in the presence of neutral or positively charged organic matter in 

comparison to that in the absence of organic matter. Ac voltammograms of ONP obtained in the 

absence and in the presence of 0.4 mg dm-3 humic acid-Raša bay for two adsorption times are 

presented in Fig.1. However, the extent of the increase and the concentration range of maximum 

effects were different for different organic layers adsorbed on the electrode. 

Therefore, we used the electrochemical method with the ONP probe to study the acidity behaviour 

of a few model organic substances which could contribute to the acidity of marine samples. Among 

the chosen model organic substances, there were organics with different acidic functional groups, 

such as carboxylic, sulphate, and phenolic and nitrogen-containing groups contained in humic 

substances. Total acidities in meq/g are given in Table 1. Fig. 2. illustrates the influence of 

increasing concentrations of linoleic acid, marine humic and fulvic acids, melananoidin, as well as 

polysaccharides such as acidic dextran, -carraggeenan and xanthan on the ONP prepeak height. 
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The obtained curves had more or less pronounced maxima. The ascending part coincided with the 

increasing adsorption of a particular organic substance, while at the electrode surface which was 

completely covered with the organic substance the prepeak height decreased more or less slowly 

depending on adsorption characteristics of the organic substance on the mercury electrode 

(Gašparović and Ćosović, 1995). Fig 2. shows that curves of more hydrophobic substances (linoleic 

acid, humic acid) fell in a lower concentration range and possessed more pronounced maxima with 

steep descending parts than is the case of hydrophilic substances (polysaccharides), where the 

descending part of the curve slowly decreased over a wide concentration range. Fulvic acid and 

melanoidin exhibited characteristics beetween the two mentioned ones, which can suggest that 

melanoidins can be substances which represent one step of transformation of unstable organics such 

as polysaccharides to recalcitrant humic organic substances in the marine environment. 

The range of concentrations where the ONP prepeak increased for the investigated organic 

substances pointed to the following conclusions. For linoleic acid, as a representative of fatty 

substances, the increase of the ONP prepeak height is visible at concentrations comparable to those 

of real marine samples, 0.06-1.59 mg dm-3 (Romankevich, 1984). Fulvic and especially humic acids 

caused a prepeak height increase in the range of concentrations which can be found in marine 

samples as well, viz. 0.06-0.6 mg dm-3 expressed as DOC (Thurman, 1985). Investigated acidic 

polysaccharides caused an increase of the ONP prepeak at concentrations much higher than their 

reported values in real seawater samples, from traces to a few milligrams per liter (Romankevich, 

1984). 

In the experiment with four dextrans of the same weights but increased acidities, it was found that 

the ONP prepeak height increased with increasing  acidity of dextrans (Table 2). 

 

Phytoplankton culture media 

As the largest part of organic matter in the sea derives from a biological activity, like in-situ 

production of planktonic organisms (Lee and Wakeham, 1988), it was interesting to examine which 

type of acidic organic substances are excreted by phytoplankton species. For this reason, the 

experiment was done with two phytoplankton monocultures, diatom P. tricornutum and 

microflagelate E. huxleyi. Recorded electrochemical characteristics of the ONP voltammetric peaks 

and prepeaks for the filtered phytoplankton media and the fractions are presented in Table 3. 

P. tricornutum monoculture excreted acidic organic material into the medium where was grown, 

which showed a relative increase of the ONP prepeak height by 2.6 times in 3 min and 1.6 in 10 
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min accumulation. In the hydrophilic fraction (Fraction II), there was a 3.3 times increase of the 

prepeak height in 10 min of accumulation, indicating the presence of acidic polysaccharides, which 

mainly constitute the hydrophilic fraction. We can suppose that these polysaccharides increase the 

ONP prepeak height at higher concentrations in comparison with model polysaccharides from Fig 

2, which was concluded from the fact that about 60% of the starting DOC value (5.0 mg dm-3) was 

distributed in the hydrophilic fraction (Vojvodić et al., 1996). In the nonfractionated sample, the 

concentration of organic material was higher than in individual fractions, which was reflected in the 

time dependence of the ONP prepeak height. For the nonfractionated sample, the maximum was 

expected between 1 and 10 min of accumulation time. The hydrophilic fraction showed the 

ascendent part of the ONP prepeak curve, and the maximum was not reached in 10 min of 

accumulation. Fraction I, composed of hydrophilic and hydrophobic acid organic material, was 

measured diluted (1:2), and the obtained relative increase of the prepeak height of 4.2 times 

indicated the presence of very acidic organic substances. 

In the E. huxleyi monoculture medium, the presence of acidic organic substances was observable 

too. The time dependence curve for the increase of the ONP prepeak height had a maximum. A 

relatively high increase of the prepeak height was observed at short accumulation times (2.4 and 3.1 

for 1 and 3 min, respectively), thus indicating the presence of more hydrophobic substances in the 

culture medium. In the hydrophilic fraction (Fraction II), prepeak heights for 1, 3 and 10 min 

accumulation times were small, indicating the presence of organic substances of very low acidities. 

Fraction I, diluted 1:2, exhibited an ONP prepeak increase of almost 5 times, and the prepeak curve 

was still in the ascendent part. As the hydrophilic fraction contained substances of lower acidity 

effects on the ONP probe, the most likely explanation for the behaviour of Fraction I would be that 

hydrophobic acid substances, which are components of that fraction too, were responsible for the 

ONP prepeak height. The shift of the ONP peak potential and the decrease of the main peak height 

were more pronounced in Fraction I than in Fraction II, in spite of the fact that Fraction I was 

measured diluted. This is in accordance with our assumption that hydrophobic acid substances are 

the prevalent part of organic matter of Fraction I. 

 

Seawater samples 

During the one year period, changes of the ONP prepeak height in the presence of the naturally 

occurring mixture of organic matter of the northern Adriatic seawater samples were followed (Fig. 

3). It is visible that the biggest increases of the ONP prepeak height, indicating the presence of 
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organic acidic material, were obtained for the samples collected in winter, November and February. 

This especially applies to Station 107, which is far away from the influence of  the Po river  

discharge. The behaviour of the investigated model substances and comparison to the DOC values 

of the samples (Table 4) pointed to the conclusion that humic substances might be the dominant 

organic acids in these samples, due to such a big increase of the prepeak height and the fact that low 

temperatures and light intensities during the winter limit the phytoplankton production, which is 

usually higher in the warmer period of the year. Also, as high molecular weight humic and fulvic 

acids were found in degrading diatom debris in a laboratory experiment in a period of max. 4 

months (Poutanen and Morris, 1983), it can be expected that, after the summer period of high 

phytoplankton productivity, freshly produced acidic organic material can be transformed by winter 

time and turn into dominant surface active substances in the seawater samples. 

In the seawater samples from November, Station 107 (Fig. 3), relative increases of the ONP 

prepeak height changed from 2.9 to 4.1, from upper to deeper seawater layers, indicating increasing 

concentrations of humic substances with depth, which is in agreement with the previously obtained 

results of fractionated seawater samples (Vojvodić and Ćosović, 1996). Despite increased 

concentrations of humics with depth, the DOC values were very uniform along the vertical profile 

(Table 4).  

Minimum values of the ONP prepeak height were obtained for samples collected in March, June, 

July, and September at Station 107. Those months coincide with the seasonal cycle for this region, 

which is characterized by spring and autumn diatom maxima and summer dinoflagelate succession 

(Revelante and Gilmartin. 1976 a and b). Thus, we could conclude that organic matter, which 

shows such influence on the ONP probe, is excreted by phytoplankton, and that it is of lower 

acidity. Dominant organic matter might involve neutral or acidic polysaccharides. 

As shown in Table 4 variations of DOC values along the vertical profile are more pronounced for 

samples from June 1994 than for those from November 1994. 

Measurements of surface active substances concentrations during a 10-year period in the same 

region showed that low values are more frequent in winter months while highest concentrations 

occur in the period from spring to early autumn (Vojvodić and Ćosović, 1996). 

Two northern Adriatic samples from April ´95 (sample 1) and June ´95 (sample 2) were 

fractionated, and the ONP voltammetric characteristics were recorded for the nonfiltered and 

filtered samples as well as for the fractions (Table 5). For sample 1, the ONP prepeak heights of 

nonfiltered and filtered samples and Fractions I and II were very similar indicating that the 
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hydrophilic fraction contributes mostly to the acidity of organic matter of the seawater sample from 

April. 

As a greater shift of the ONP peak potential (E), as indicator of hydrophobicity of organic 

molecules, was observed in the filtered sample than in the nonfiltered sample, it can be concluded 

that hydrophilic organic substances prevailed in the particulate phase of the sample too. Namely, in 

the presence of hydrophilic substances, the maximum peak potential shift could be around 100 mV. 

In contrast, a more pronounced shift up to 250 mV is expected for hydrophobic or conditionally 

hydrophobic substances, which are hydrophobic at more acidic pHs (Gašparović and Ćosović, 

1994). As the nonfiltered sample showed an ONP peak potential shift for 10 min accumulation of 

only 72 mV, and the filtered sample of 107 mV for the same accumulation time, this indicated that 

hydrophilic particulate organic substances were removed from the sample during filtration, while 

dissolved hydrophobic substances which remained in solution were responsible for the shift of the 

ONP peak potential in the filtered sample. These substances were removed from the sample by 

sorption on the XAD-8 column, and therefore they were not present in Fraction I, which resulted in 

a peak potential shift of only 65 mV for 10 min accumulation in this particular fraction. 

In sample 2 from June, the ONP prepeak height was almost unchanged after filtration, while in 

Fraction I, after removing hydrophobic neutral and basic substances from the sample, the prepeak 

decreased. The effects upon the ONP probe obtained in Fraction I originated from both types of 

substances making up this fraction, i.e. hydrophobic acid and hydrophilic groups of compounds. 

Namely, hydrophilic Fraction II made the greater part of organic matter of the sample (DOC 1.08 

mg dm-3), and these substances caused an additional small decrease of the ONP prepeak in 

comparison with Fraction I. The hydrophobic acid substances, which usually show a big increase of 

the ONP prepeak height, represented only a small part of organic matter in this particular sample 

(DOC 0.37 mg dm-3). 

 

 

SUMMARY AND CONCLUSION 

 

There are different groups of organic substances, with different acidic functional groups, which 

contribute to the acidity of marine samples. Experiments with model surface active acidic organic 

substances and the ONP probe showed that all groups which contribute to the acidity of organic 

substances, like carboxylic, phenolic and sulphate groups, increase the ONP prepeak height. 
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Changes of the prepeak height in the presence of organic substances produced by living organisms 

in the marine environment, such as polysaccharides, lipids and proteins are smaller than those 

obtained with transformed organic substances such as humic and fulvic acids and melanoidins. The 

highest acidities of the present organic matter, obtained as the ONP prepeak height increase, in 

North Adriatic seawater samples, were obtained in the winter months and in deeper seawater layers, 

which can be attributed to the prevalence of humic type substances in these samples. Also, humic 

substances can be expected after the transformation of phytoplankton produced labile organic 

matter and simultaneous sedimentation of the transformed organic matter. 

Phytoplankton monocultures, which were richer in organic substances than the seawater samples, 

were investigated as well. In diatom P. tricornutum monoculture media, acidic organic substances 

were found mainly in the hydrophilic fraction, indicating that in natural seawater samples during 

the time of diatom blooms a lower ONP prepeak height increase can be expected, partly because of 

the potential presence of noncharged polysaccharides. In microflagelate E. huxleyi monoculture 

medium, hydrophobic substances were more acidic. It is in good correlation with the results of 

fractionated seawater samples where, in sample 1 collected in the period dominated by diatoms, 

acidic organic substances originated mostly from the hydrophilic fraction, while in sample 2, where 

microflagelates prevailed, all types of organics gave rise to the sample acidity. 
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Fig. 1. Ac voltamograms (in phase) of 10-4 M ONP in 0.5 M NaCl, pH 8.4 in the presence of 0.4 

mg dm-3 humic acid-Raša bay . Accumulation times: 0 (curves 1 and 1A), 1 (curves 2 and 2A) and 3 

(curves 3 and 3A) min. Curves (1), (2) and (3) first scan, and (A) second scan at the same mercury 

drop, recorded immediately after potential turned back to initial. 
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Fig. 2. Dependence of the normalized current of ONP prepeak height on the concentration of a) 

linoleic acid (1), humic acid-Canet (2), humic acid-Raša bay (3), fulvic acid-Canet (4), and b) 

acidic dextran-2 (5), melanoidin (6), -carrageenan (7), and xanthan (8). For comparison, neutral 

dextran (9) is  presented by dashed line. Accumulation time 3 min. 



 16

 

Fig. 3. Variations of ONP prepeak height in seawater samples collected in the northern Adriatic Sea 

at (a) Station 101 and (b) Station 107 at () 0.5, (�) 5, () 10, () 20, () 30, and () 35 m depths. 

Accumulation time 3 min. Lines are guides for eyes. 
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Table 1. Acidities of model organic substances 

 

 Acidity 
meq/g 

HA-Canet  3.65a 
FA-Canet  5.82a 
HA-Raša Bay  4.18b 
Acidic Dextran 1  1.99c 
Acidic Dextran 2  2.83c 
Acidic Dextran 3  3.65c 
Acidic Dextran 4  3.95c 

 
 
a Faguet, 1982 
b Petrović, 1995 
c provided by Jozefonvicz J. (Chaubet et al., 1995) 
 
Table 2. Maximum prepeak current of ONP normalized to ONP in the absence of organic matter for 

dextrans of different acidities are presented. Prepeak heights are obtained for same accumulation 

time (3 min). 

  iA/iAo 
Acidic Dextran 1 3.57 
Acidic Dextran 2 4.14 
Acidic Dextran 3 4.32 
Acidic Dextran 4 5.20 
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Table 3. Electrochemical characteristics of ONP voltammetric peaks for the phytoplankton 

monocultures and fractions for different accumulation times (1, 3 and 10 min) 

 

 
Monoculture DOC  iA/iAo

a   E/mVb   ip/ip0
c 

 (mgdm-3)    1      3     10    1     3      10    1         3       10 
P. Tricornutum     5.0  1.7   2.6   1.6    Se    70   103    S       0.73   0.51 
Fraction I (1:2)d   1.5   2.5   4.2   16    43    86   0.84   0.71   0.56 
Fraction II   1.5   2.2   3.3   19    50    77   0.80   0.67   0.57 
E. Huxleyi     5.4  2.4   3.1   1.6   43    85  110   0.76   0.65   0.60 
Fraction I (1:2)d   1.8   3.1   4.9   13    30    80   0.84   0.70   0.56 
Fraction II   1.4   2.1   2.2     6     21    66   0.91   0.75   0.58 
 
 
anormalized prepeak current of ONP (second scan); iA0 is the prepeak current without accumulation and iA is 
the prepeak current after a certain accumulation time 

bshift of the peak potential of ONP voltammetric peak 

cnormalized peak current of ONP; ip0 is the peak current without accumulation and ip is the peak current after 
certain accumulation time 

ddilution 
einterferences influencing the use of ONP probe; possible presence of sulphur species 
 
Table 4. DOC values of seawater samples from different depths at Station 107, in June 21, 1994 

and November 17, 1994. 

 
 Date DOC (mg dm-3)    
  0.5 m 5 m 10 m 20 m 35 m 
Sample 1 June 21, 1994 1.25 0.93 1.83 0.92 1.01 
Sample 2 November 17, 1994 1.53 1.12 1.23 1.14 1.14 
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Table 5. Electrochemical characteristics of ONP voltammetric peaks for the seawater samples and 

fractions for different accumulation times (1, 3 and 10 min) 

 
 
Sample  DOC iA/iAo

a   E/mVb    ip/ip0
c 

 (mgdm-3)  1      3      10    1     3     10     1         3       10 
Sample 1       
Nfd  1.7   2.4   3.9   12   42    72    0.85   0.71   0.58 
Fe  1.07 1.6   2.2     -   16   54  107    0.67   0.44     - 
Fraction I  0.74 1.7   2.3   4.4    8    30    65    0.83   0.58   0.47 
Fraction II  0.48 1.7   2.4   3.9    3    21    86    0.90   0.60   0.53 
Sample 2       
Nfd  3.1   3.4   3.7   37   69   75    0.68   0.62   0.48 
Fe  1.84 2.5   3.4   3.6   34   57   84    0.78   0.72   0.60 
Fraction I  1.45 2.0   2.7   3.1   13   43   77    0.84   0.70   0.61 
Fraction II  1.08 2.6   2.8   2.1    6    38   57    0.73   0.59   0.57 
 
anormalized prepeak current of ONP (second scan); iA0 is the prepeak current without accumulation and iA is 
the prepeak current after certain accumulation time 

bshift of the peak potential of ONP voltammetric peak 

cnormalized peak current of ONP; ip0 is the peak current at t=o and ip is the peak current for selected 
accumulation time 
dnonfiltered sample 
efiltered sample 
 


