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Abstract

A scheme that successfully employs quantum mechanics in the design of autonomous learning agents
has recently been reported in the context of the projective simulation (PS) model for artificial intelli-
gence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via
random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we
propose an implementation of such classical and quantum agents in systems of trapped ions. We
employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counter-
parts by a nested process of adding coherent control, and we outline how this construction can be
realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents.
Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of
our proposal under certain noise models.

1. Introduction

In the past decades, quantum physics has been employed to enhance communication and information
processing with significant success, laying the foundation for the now well established fields of quantum
computation and quantum information [1-5]. In contrast, the potential of merging the related, but distinct,
field of artificial intelligence (AI) with quantum physics is significantly less well-understood. Thus far, advances
in this field have been reported mostly for algorithmic approaches to applied Al-related tasks, e.g., (un-)
supervised data clustering and process replication, where selected quantum algorithms could be utilized [6-10].

On the other hand, the first result showing that quantum mechanics can also aid in the complemental task of
designing autonomous learning agents—a task more closely related to robotics, and embodied cognitive
sciences—has only recently been provided in [11]. This work is embedded in the framework of projective
simulation (PS) for Al introduced in [12]. The central component of PS is a specific memory system utilized by
the agent. This memory system, called episodic and compositional memory (ECM), provides a platform for
simulating future action before real action is taken. The ECM can be described as a stochastic network of so-called
clips, which represent prior experiences of the learning agent, whose decision-making process is realized by a
stochastic random walk in the clip space. In the agent’s design, it is the specific structure of the ECM that is
particularly suitable for quantization.

In this work we present a proposal for the experimental implementation of both classical and quantum PS
agents in systems of trapped ions. While the classical variants of PS agents can easily be realized in physical
systems without requiring quantum control, we show here how certain implementations of classical agents in
ion traps can be used to construct quantum PS agents. This is achieved in a generic way through a nested process
of adding coherent control.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Projective simulation agent. The (PS) model for active learning agents, introduced in [12], describes an embodied agent that
interacts with its environment via sensory input (percepts), and action on the environment that is conducted using a set of actuators.
The sensors and actuators are linked to the episodic compositional memory (ECM), which relates new perceptual input to the agent’s
past experience.

The outline of this paper is as follows. In section 2 we briefly review the PS model and give the basic
operational elements which have to be constructed in an implementation of a classical or quantum PS agent.
Then, in section 3 we give a more formal treatment of the standard, classical PS agent, and show explicitly how
such an agent may be implemented in an ion trap set-up. In particular, in section 3.3, we discuss how the
technique of adding coherent control provides a generic construction for emulating the standard PS agent in
quantum systems, specifically in trapped ions. Finally, in section 4, we extend our analysis to quantum PS agents
by specifying all required operations and describing their implementation in ion traps. In the appendix we
further present a simple example for a quantum PS agent that can be straightforwardly implemented in an ion
trap, for which we provide numerical simulations incorporating an appropriate error model.

2.PS

The central component of a PS agent, illustrated in figure 1, is the ECM, which can be formally represented as a
stochastic network of clips. Clips represent the units of episodic memory, which consist of memorized percepts,
actions and ensuing rewards. The process of PS is triggered by perceptual input that initiates a random walk over
the clip space. This walk constitutes the stochastic replay of previously established memories and precedes the
initiation of real action. The agent’s capability to learn is represented by two mechanisms, (i) the adaption of the
transition probabilities between the clips, and (ii) the addition of new clips under compositional principles.

More formally, at any instance of time the ECM of an agent can be represented as a directed weighted graph,
where the vertices represent the clips, and the weights of the edges represent the transition probabilities, see
figure 2. We refer to this graph as the clip network. The random walk, or equivalently, the Markov chain,
associated to the process of PS is carried out over the clip network. Finally, the learning aspect of the agent is
realized by updating the clip network based on the (re)actions and rewards of the environment, with which it
interacts.

The criteria under which an action, that is, a clip representing a single memorized action in the ECM, is
coupled out as real action can vary, leading to distinct types of PS agents. Here we list a few examples that we will
encounter again later in this paper. In the so-called standard PS model, the first action clip that is encountered
during the random walk over the clip network is coupled out as the chosen real action. The standard PS model
can further be equipped with emotion clips, which are clip tags indicating, for instance, whether a chosen action
recently lead to a reward. In this extended model, the random walk process can be iterated if the encountered
action clip carries a ‘negative’ association—a process we will refer to as reflection.

Elaborating on the notion of reflection, in [11] some of the authors have recently introduced the reflecting PS
(RPS) agent model, in which the Markov chain associated to the clip network is ergodic, and hence has a unique
stationary distribution over the clip network. The RPS agent continues the random walk until the stationary
distribution is reached, and (iteratively) samples from it until an action clip is observed. Building on the
approaches of [ 13, 14] for quantizing random walks, this particular model was shown to have a quantum analog,
called quantum RPS, which permits a quadratic speed-up in active learning scenarios.

Aswe have mentioned previously, the PS model can be endowed with additional structures, such as the
aforementioned emotion tags, which further improve the agent’s learning capacity, see [ 15]. These additional
structures are, in principle, compatible with the constructions we present, but we shall only utilize the simplest
of these extensions, so-called flags, in the examples that are considered in the appendix. As we will discuss, these
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Figure 2. Clip network. An example for a network with four clips ¢; (i=1, 2, 3, 4) is shown. At any fixed time, the PS agent associates a
discrete-time homogeneous Markov chain with transition matrix P = | Py 1(i,j =1, 2, 3, 4) to the ECM, which governs the
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transition probabilities for a random walk in the network. In addition, flags, here indicated on clip ¢4, may be introduced, e.g., to relate
actions that were recently rewarded to the corresponding percepts.

flags allow for the demonstration of a quantum speed-up when incorporated into a very simple agent design,
which is readily implementable in current laboratories.

In the next section, we present a more formal treatment of the standard PS model, and show how it can be
implemented in an ionic set-up.

3. Standard PS agent

As noted, in the PS model, the ECM is represented as a clip network, that is, a weighted directed graph over the
set of vertices C = {c;} N |, where each ¢; represents a clip. The directed weighted edges of the graph represent the
transition probabilities from one clip to another’ given by a transition matrix P = | P Jwhich isan N XN left-
stochastic matrix, thatis,0 < p; < land))p i = 1 V j .Inthestandard PS, we can assume the clip network
always contains clips which are representations of individual percepts (from the set of percepts S = {s;};) as well
as clips that represent individual actions (from the set of actions A = {a;} ;),whereS U A C C °. When
presented with a percept s;, the standard PS initiates a random walk in the clip network, governed by P, and
starting from (the clip corresponding to) s;. The walk is terminated at the first instance an action clip is
encountered. This action is then coupled out as areal action.

This process can be viewed in terms of probability vectors as follows. Each clip ¢; can be represented as a
canonical basis vector of an N-dimensional real vector space V, thatis,c; = [0, ..., 1,0, ..., 0]7, with the unity
at the ith position. The state after one random walk transition is

Ci= Zpijcj’ (1)
j

which is a probability vector, i.e., a vector with real non-negative entries summing to one, representing a
probability distribution over the clip space. This distribution is then sampled from, obtaining some clip ¢,
which, if it represents an action, is coupled out. Otherwise the random walk proceeds from ¢;.

In the spirit of the reinforcement learning paradigm, each round of interaction with the environment is
either rewarded or not, and both cases lead to an update of the clip network, by altering the transition
probabilities, and/or by altering the clip set itself, which constitutes the learning aspect of the PS agent. For an
overview of the standard PS model, including examples of update rules, see [15].

Technically, since in the standard PS model, the action is coupled out whenever an action clip is hit, the probabilities of transiting from an
action clip are undefined. However, we can, for simplicity, assign a unit probability of transiting to itself to each action clip. Thus, action clips
are the absorbing states of the underlying Markov chain, although this will not be relevant for our work.

© In the last expression we have equated the representations of percepts and actions within the clip network with the actions and percepts
themselves, in a slight abuse of notation. In the following, we will be using s, (a;) to denote the percept (action) clips when the semantics of
the clip matters (e.g., whether it is an action or a percept), and the generic notation ¢, when it does not. Formally, there is a distinction
between percepts s;and actions a;, and their internal representation (a memory), usually denoted 4 (s;) and st (a;), respectively.
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3.1. Standard PS with trapped ions

We shall now discuss how the random walk initiated in an standard PS agent can be emulated in a quantum
system, in particular, using laser pulses on a string of trapped ions. Although a quantum implementation is not
strictly required for the classical random walk of the standard PS agent, such a construction is the prerequisite for
the fully quantized RPS agent that we will discuss in section 4. For the construction of a quantum mechanical
analogue of the transition matrix P we start by promoting the real vector space ¥ to a complex Hilbert space H,
and representing the clips ¢; as orthonormal basis states| c; ). We then construct a unitary U;, such that for a fixed
basis state denoted |0)—this may correspond to some clip state|c;) but the particular choice of this fixed state is
unimportant—the components of the state U; |0) with respect to the clip basis encode the transition amplitudes
as dictated by the transition matrix P, i.e.

N
CAEDIN i) (2)
j=1

We can see that a measurement of the state above in the clip basis recovers the right-hand side of the classical
equation (1). However a single unitary cannot encode all the transitions of P. This can be seen quite simply, by
noting that the columns of the matrix representation of U; are required to be orthogonal, while the columns of P
may even be identical. In general, one therefore requires N distinct unitaries U; to represent all transitions of P on
an N-dimensional Hilbert space. In other words, the first column, corresponding to the basis state|0), of the
unitary U; determines the transition probabilities from the clip ¢; to any other clip in the sense of equation (2).
Equation (1) could be recovered even if the amplitudes in equation (2) had arbitrary relative complex phases.
These phases are irrelevant in the context of the classical agent, but for the purpose of the extension to the
quantum RPS we restrict the entries of the first column of Uj to be real and positive.

Note that, given the set of unitaries {U;} X, each corresponding to a column of an N-state transition matrix
P, one can emulate any classical random walk by iterating the measurement of the quantum register (in the clip-
basis), resetting the register to the state|0), and applying the U; corresponding to the prior measurement result.
The capacity to generate such unitaries will, in the next section, be used as a primitive to construct coherent
quantum walks. Here we first analyze how such unitaries can be realized in an ionic set-up.

To proceed, we wish to encode the clip basis in the internal states of a chain of trapped ions, and the unitaries
U; in the laser pulses driving the transitions between them. We will consider a setup as described, e.g., in [16, 17].
Asstring of *°Ca* ions is confined by a quadrupole trap (Paul trap). The ion confinement can be described by
harmonic potentials, and the Coulomb repulsion of the ions couples the harmonic oscillators, such that the
motion of the ions can be captured in terms of their collective normal modes. For each ion, two Zeeman sub-
levels, for instance, |¢):=|S;,2,-12 ) and|e):=|Ds/,, 1,2 ), which can be coupled by a quadrupole transition, are
used to represent the computational basis states of a single qubit. In turn, we employ the state space of k qubits as
arepresentation of the clip network. Hence, the PS implementation we propose requiresk = |_ log,(N) -I ions
for a network of N clips.

The required unitaries can be realized with two laser beams [16, 17], one of which is abroad beam that is
nearly collinear to the ion chain, such that all ions are illuminated. The second laser beam can be focussed to
address each ion individually. When operated resonantly at the frequency w corresponding to the transition
|g) < |e), the first laser laser realizes the collective gate

k
Ux (6) = exp —i%ZX,' , (3)

i=1

where we use the shorthand notation X;forl; ® ... ® X; ® ... ® li, i.e., the Pauli X operator for the ith qubit.
The second laser, on the other hand, is applied off-resonance to provide the single-qubit gate

Uz (0) = exp(—i2Z;). (4)

The operations of equations (3) and (4) can further be complemented with an entangling gate, such as the Cirac—
Zoller [18] or Mplmer—Sgrensen [19] gate, to form a universal set of quantum gates, and hence provide the
possibility to construct the unitaries U; in principle. In general, the aim is to determine a sequence of operations

with(N — 1) free parameters 6, ..., @y_j, such that all entries of the first column of the resulting overall unitary
U (@), ..., On-1) arereal and positive, and for appropriate choices of the ; their squares can form any arbitrary
probability distribution{p, } L, with Y, p = 1. The freedom in the choice of parameters allows for all of the

operators U to be represented by some specific choices of the §;. In particular, the agent is considered to operate
based on a fixed internal architecture, in particular the tuning of the angles should have a simple operational
meaning. At every step of the learning process, the agent only updates a set of parameters, here the §;,
corresponding to the duration of some laser pulses within a fixed sequence. For instance, in the very simple case
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of a clip network with only two clips, the required unitary can be chosen to be a Pauli- Y rotation of a single qubit,
given by

4 .0
COSE —Sin -

_ 0\ 2
Uy (0) = exp (_IEY) = in? s | (5)
2 2

which can be realized by three laser pulses, i.e.
Uy, (0) = UX(_%) Uz, (0) Ux (%)> (6)

and where we have included the qubit label j for later convenience.

As we have mentioned earlier, the ‘probability unitaries’ presented above will become the building blocks of
the quantum PS agent. The second, and last, crucial ingredient in our construction is the technique of adding
coherent control, which we shall briefly present next.

3.2. Coherent controlization

Adding coherent control entails coherently conditioning (unitary) operations on the state of a control system.
More formally, this is represented as a mapping from a set of unitaries {U;} X, acting on a Hilbert space H, to a
single controlled unitary U of the form

Ul ®lw)=1j) ® Ujlw), V ly), (7)

whichactsonHe ® H ,whereH¢ isan (atleast) M-dimensional Hilbert space, and {|j)} is an orthonormal
basis of Hc . Practically, this mapping may be understood as a physical procedure of adding quantum control to
individual elementary operations [20]. We refer to such mappings and the associated physical processes, which
implicitly feature in many quantum algorithms [3, 21], as coherent controlization. As we will discuss in section 4,
coherent controlization forms an essential part of the construction of the quantum RPS agent.

Asafirstinstance of its applicability, coherent controlization provides an elegant method to generically
assemble and combine probability unitaries. The latter may also be assembled in other, sometimes more
efficient ways, and one alternative construction is provided in the appendix. Nonetheless, the construction of the
probability unitaries using coherent controlization offers the opportunity to illustrate this method on a simple
and useful example.

Before we begin, let us recall the task at hand. For a given probability distribution {p i } N, corresponding to
the jth column of the stochastic matrix P, we wish to construct the associated unitary U}, such that the first
column of U; has real and positive entries \/pj] ,withi=1,...,N.

As the elementary operations that depend on these parameters we select single-qubit Yrotations Uy (6;),
which, for a trapped ion setup, may be realized as in equation (6), and where we drop the label Y for ease of
notation. Any probability unitaryU (), ..., €x—1) on an N-clip network can then be assembled by a nested
scheme of coherent controlization on k qubits, where k is the smallest integer that is larger than log, (N). For
simplicity, let us assume here that the size of the clip network is such thatN 5 log, (N) = k, which can always be
achieved by duplicating some clips.

For a two-clip probability distribution {p,, p, }, the probability unitary is trivially realized by a single-qubit ¥
rotationU (6;), with p; = cos?(6,/2) and p, = sin*(6,/2). To extend this to a four-clip probability unitary
U (6, 65, 83), with probability distribution{p/, p,, p;, p,}, oneadds a second qubit, hence k = 2, and starts again
with the operation U () on the first qubit, where p, = p/ + p,and p, = p; + p,. Thisis followed by two
controlled Yrotations of the second qubit, conditioned on the state of the first, that is, U (6, ) is applied if the first
qubitis in the state|0), while U (6;) is applied when the first qubit is in the state| 1). The corresponding angles are
determined from the renormalized probabilities within the respective subspaces, i.e., cos? (6,/2) = p, /( p +p)
and cos®(65/2) = p,/(p; + p,)-

For larger values of k, the controlization becomes nested, see figure 3, e.g., for k=3 (N'=8), the lowest level of
single qubit operations, here U (6,) and U (6;), is followed by controlled operations on a third qubit. Labeling
the qubits asI, IT, and III, we may write the corresponding probability unitary as

U (0 07) = [ U(02 05 05) @ U(60: 06 65) | % [U(Gl)l ® ﬂn,m], (8)
where the controlled two-qubit operations are given by
U(Gz, 01, 05) =|u(e:) @ u(es)] IH[U(QZ)H ® Ilm], (9a)
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Figure 3. Coherent controlization. The circuit diagrams show the construction of a three-qubit probability unitary (9), using coherent
controlization. The filled dots ‘e’ on the controlled operations indicate that the unitaries on the target are conditioned on the control
qubit state|0), while the hollow dots ‘o’ represent conditioning on the control qubit state|1).

U (03, 66) 67) = [U (06) @ U (67)]11’111[(](03)11 ® JIIH]. (9b)

As we have argued above, coherent controlization allows for the construction of general probability unitaries
from basic single-qubit probability unitaries. Despite the simple appearance of the circuits in figure 3, the
practical implementation of coherent controlization requires additional attention. In fact, it is generally
impossible to decompose quantum-controlled operations ctrl (U) into individual gates ctrl (U) = G; U Gy,
such that the G; are independent of U, which implies that the gates G; may not be specified if Uis unknown
[22,23]. This seems to suggest that coherent controlization requires computational effort in its implementation.
However, for the ionic implementation that we will discuss next, we exploit additional degrees of freedom of the
physical setup to perform coherent controlization in a generic way.

3.3. Coherent controlization in trapped ions
We shall now discuss how quantum control can be practically added to unitaries that are realized by laser pulses
in a trapped ion setup, based on the scheme introduced in [20]. As an example we give the explicit pulse
decomposition that realizes the two-qubit unitary U (6;, 65, 85), which can be viewed as a special case of
equation (9a) for @y, ..., 8; = 0, where we use two ions, labeled I andII, respectively, before we explain how this
method is generalized to the control of k-qubit unitaries.

To start, we note that the operation [ U ® IIH] can be trivially implemented by the pulse sequence of

equation (6), and we can thus focus our attention on the remaining term [ U6, & U(bs) ]1 " Apart from the

laser pulses for the elementary operations U (6, ) and U (6;), our scheme for their coherent controlization also
consists of a number of additional Y rotations in two-dimensional subspaces of the ionic energy levels other than
the one spanned by|g) and|e), see figure 4. We will use additional superscripts, e.g., U;f , where the labels ‘#’
identify different detuning frequencies, and the subscripti € {I, II} identifies the ion, to distinguish these
operations. Furthermore, we make use of one of the common vibrational modes, which we assume has been
cooled to the ground state|0),, before the following steps are executed.

(i) Cirac—Zoller [18, 24] method: a sequence of appropriately blue-detuned laser pulses is applied on ion I to
realize ng (7r), which transfers the population of |¢)1|0), to |e)1|1),. This step encodes the state of qubit1

in the vibrational mode, i.e., the initial state of the form ( algh + flen ) [w)11]0), is transformed to
lely ) (4 10}, + a [1),)-

(ii) Hiding: red-detuned laser pulses corresponding to U;:l () and ng (7r) are applied to ion II to transfer the

populations from|g)i| 1), to|g")iz|0), , as well as from |e)y1|1), to|e');;|0),, as illustrated in figure 4. Denoting
the state ywencoded in the levels|g"); and |e’)yy as|y )11, we may write the overall state after this step as

ledi(@ Iy + Bl ) 10).

(iii) U (65): the pulse sequence that realizes U (65) is applied to ion II, which leaves the system in the state
|€>1<a [y + pU (93)|ll/>11) 0},




I0OP Publishing

NewJ. Phys. 17 (2015) 023006 V Dunjko etal
H,
U
[eH0), — — — _‘_‘ -
~
D G —
'S, e)I1),
1
NI\ o o o o e
12510)y VA
\
€)10)y i \
\
: \ H,
1 \\
1 S,
1 ° \
' |
! 12)1)y
1
1210y
Figure 4. Level structure of trapped ions. An illustration of the energy levels of one of the ions in the trap is shown. Two levels,|g) and
|e), are chosen to represent the qubit, while the auxiliary levels|g") and|e’), and the first excited state|1), of the common vibrational
mode are used in the process of coherent controlization. The transitions indicated by Hy, Hj, Sg, and S, can be realized by appropriately
detuned Y-pulses.

(iv) Switching: to exchange the primed and unprimed levels, laser pulses for UYSIf (z)and U)flf (), which are blue-
and red-detuned, respectively, are applied to ion I, see figure 4. The resulting overall state after these

operationsis e (@ [y + /| (U (63)y) ) ) 10}

(v) U (6,): the pulse sequence that realizes U (6,) is applied to ion II, such that the system is now in the state
led(@U (02) Iy + B 1(U@:)y) ) 10),-

(vi) Switching: the primed and unprimed levels are exchanged again using the laser pulses for Uéf (z) and

Ulflf (z) onionII, which leaves the system in the state |e); (a [(U (@)w) 1 + pU (65) |l//)11) |0),.

(vii) Unhiding: the hiding operations of step (ii) are reversed by the application of U};Il (—m)and U};IZ (—m)toion
I1, leaving the system in the state |e); (aU (@) ly)Hull), + U (65) lw)Hul0), )

(viii) Return control: finally, ng (—m) is applied to ion I, which returns the control from the vibrational mode,

and a provides the desired state (a 1£)1U (62)ly)u + B le) U (65) |U/>II) |0),, that is, the unitary U (6,) acts

onionll, whenionlisin the state |g);, whileU (6;) acts upon the subspace in which the first ion is in the
state |e)r.

Ifrequired, the scheme laid out in steps (i)—(viii) may be straightforwardly extended to larger clip spaces by
increasing the number of control qubits and vibrational modes used. Each Yrotation in principle requires three
individual pulses, see equation (6), but the collective X rotations for the operations U (6;) can be subsumed into
two single pulses Uy (%) and Uy (—%) at the start and at the end of the entire pulse sequence, respectively. We
hence find that the overall number of elementary laser pulses necessary to assemble a k-qubit probability unitary
is given by (7 x 2K2 — 24k — 29) fork > 2. Note that an exponential scaling in terms of the qubits used is
inevitable, as k qubits encode 2* probabilities, and we must have the freedom to specify each one of these. In
terms of the state space of the ECM network (clip number) the scaling is linear.

Insuchaprocess(k — 1) vibrational modes of different frequencies are used to generalize steps (i) and (vii)
to condition (k — 1)-qubit operations on the state of the first qubit, i.e., by transferring the populations
(exclusively) between |g)]0...0),, ., and|e)|Ll...1), ., ..

Next, we give the basics of the classical and quantum RPS agent models, and show how the two components
—coherent controlization and probability unitaries—can be utilized to construct these in systems of
trapped ions.

4. Reflecting PS with trapped ions

We now turn to the so-called RPS agent introduced in [11]. The central aim of the RPS is to output the actions
according to a specific distribution, which we shall specify shortly, that is updated, indirectly, as the ECM

7



I0OP Publishing

NewJ. Phys. 17 (2015) 023006 V Dunjko etal

network is modified throughout the learning process. Here, the clip network C is disjoint, and it comprises
unconnected percept-specific subnetworks with associated stochastic (ergodic and time-reversible) matrices
B = [(py)ij} for each percept s;.

Depending on which percept is observed, the random walk is executed on the corresponding percept-
specific (sub-)network, where it is continued until the Markov chain P is (approximately) mixed, that is, until
the respective stationary distribution zp,, which has support over the entire clip space, is (approximately)
reached. The agent then samples from the obtained distribution, and iterates the procedure (which requires re-
mixing of the Markov chain) until an action is hit. More specifically, the RPS agent is designed to output (a good
approximation) of the failed distribution 7p, defined as

(10)

] 0, otherwise,

(ﬁp ) _ {./\f X (mp)j, if ¢j is an action,
k] .

where N is a normalization factor such that Y, i (7p,)j = L. Thatis, the re-normalized distribution zp, truncated
such that it has support only over the action space.

Despite the differences in the walk termination criteria of the standard PS and RPS models, all the
operational elements required for an emulation of a classical RPS agent in an ionic set-up have already been
presented in the last section, as the previously described construction enables the emulation of any classical
random walk.

In the remainder of this section, we aim to show how the quantum RPS agent, which employs a truly
coherent quantum walk (in the sense of [13, 14]) to obtain a quadratic speed-up over the classical RPS agent, can
be implemented based on the coherent controlization of unitaries as discussed in section 3.3. For notational
simplicity, we will from this point on ignore the subscript k indicating the percept the network in question
corresponds to, unless it is specifically required.

The central process of the quantum RPS model, the basics of which we present next, is a so-called Szegedy-
type quantum random walk, see, e.g. [14], that is performed on the percept-specific ECM (sub-)network. These
Szegedy-type quantum random walks are used in the quantum RPS agent in order to output an action
distributed according to the tailed stationary distribution 77p with a quadratically decreased number of
elementary diffusion steps, as compared to a classical RPS agent.

As the structure of this decision-making process is rather involved, let us briefly sketch it out here, before
proceeding in more detail. The basic building block of a Szegedy-type walk, is the elementary diffusion unitary
Up, which acts on a two register system, each one of sufficient dimensionality to represent the entire clip
network. One application of Up can be considered as the analog of one step of the classical walk governed by the
transition matrix P. The Szegedy walk operator W(P), on the other hand, is constructed using four applications
of Up (or its inverse), and some quantum operations which are independent from P. One of the distinct
properties of the operator W(P) is that its unique (+1) eigenstate| 7 ) is a particular coherent encoding of the
stationary distribution zp of the Markov chain. Exploiting this property, and using a modified Kitaev phase
estimation algorithm [21], we can construct an approximate reflection operator (ARO), which reflects over the
state|zp ). The speed-up achieved in the quantum RPS originates, in part, from the efficiency of the construction
of the ARO operator in terms of the number of applications of the diffusion unitary Up, relative to the mixing
time of the Markov chain as specified by P.

The ARO operator above can then be used in search algorithms (e.g., asin [13, 14]), as well as in the decision-
making process of the RPS agent, which can be seen as a Grover-type [4] reflection process in the following
sense. Upon the system, initialized in the state| 7 ), one sequentially applies a ‘check’ operator, which adds a
relative phase of (—1) to all basis states corresponding to actions, followed by the ARO operator, which reflects
over the coherent encoding of the stationary distribution. This, like in the Grover algorithm, induces a sequence
of rotations in a two-dimensional workspace, which, after a certain number of iterations, guarantees that the
system state has a constant overlap with the state encoding the aforementioned tailed distribution. The second
component of the quantum speed-up lies in the number of these iterations, which inherits the quadratic
improvement that is characteristic to Grover’s algorithm. With this in mind, let us now give further details of the
building blocks of the quantum RPS.

4.1. The Szegedy walk operator

Aswe have argued previously, a unitary on an N-dimensional Hilbert space is not capable of representing all
transitions of an arbitrary Markov chain over a network of N clips. For this reason, the classical random walk for
a given transition matrix P that we have described in section 3.1 is realized by, in general, N unitaries

U, ..., Un,where U;isassociated with the ith column of P. In the Szegedy-type approach to quantum walks,
two copies, H; and Hyj, of an N-dimensional Hilbert space, i.e.,dim (H;) = dim(Hy) = N areused to
accommodate for all the required degrees of freedom. For a time-reversible Markov chain we define the unitary
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Figure 5. Szegedy walk operator. The circuit representations of the Szegedy walk operator W(P) of equation (14), as well as the
reflections over A and B (see equation (13)) are shown in (a), (b), and (c), respectively. The reflection over A (B) is fully determined by
the walk operator Up (Vp) and a reflection over|0),1.e., Do = 2 [0)(0 | — Iy.

walk operators Up and Vp as

Up lei) |0 = lei); Ui |0, (11a)
Ve [0)iledy = (Us 101) leikys (11b)

where{|c;)|i = 1, ..., N} form bases of Hy/j;. The unitaries U;acton |0);,11 = |c1)1,1 according to

N
Ui |0 = ZJP i |Cj>I/H- (12)
j=1

In the context of quantum RPS agents, we assume that the underlying ergodic Markov chain is time-
reversible, i.e., it satisfies detailed balance. Although the Szegedy-type walk can be defined even if this is not the
case, one would additionally require access to the time-reversed transition matrix’ P" in such a situation. Here,
we will present the construction in the most general terms, with the implicit understanding that for the RPS, the
unitary Vp can be obtained from Up by swapping the registers prior to, and after the application of Up. With the
operators Up and Vp at hand, we can now proceed with the construction of the Szegedy walk operator W(P),
which is implemented by reflecting over the spaces A and B, defined as

A:=span{|y/iA> = Up [ei); |0 | i=1,..., N}, (13a)
B:=span{|l//iB> =Vp |0>1|c,-)H|i= 1, ...,N}. (13b)
The generalized walk operator is then defined as
W (P) = ref(B)ref(A), (14)
where, for X = A, B, wehave

N
ref(X) = 2| ) (v = Lwsw. (15)

i=1

The two operatorsref(A) and ref (B) are constructed from the diffusion operators, Up and V5, along with
reflections over |0);, and|0);; denoted Dy ; and D 11, respectively, as shown in figure 5. The unique (+1)
eigenstate|xp ) of the Szegedy walk operator W(P), which coherently encodes the stationary distribution zp on
the two registers, is given by

|7p) = Up | |0)n = Y. [(zp)i ey Ui [O)u. (16)

Note that the asterisk on the time-reversed transition matrix P* = ;) does not indicate complex conjugation, and its components are
given bYP,'} =Pji (mp)il (zp);.
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Figure 6. Phase detection and approximate reflection. The circuit in (a) shows the phase detection operator PD (W), which forms part
of Kitaev’s phase estimation scheme [21]. Registers | and II are complemented by (n + 1) ancilla qubits, here labeled

Aux 0, Aux 1, ..., Aux n, which are all initialized in the state|0) suxi (i = 0, ..., 1), followed by Hadamard gates Hay;. The executions
of the (2") th power of Wy are then conditioned on the state of qubit Aux m, before another Hadamard gate is performed. In (b) the
approximate reflection operator (ARO) is combined from the phase detection circuit PD (W) and its inverse PD (W), with an
intermediate reflection over the ancilla state|00...0) o .

4.2.The ARO
The next step in the design of a quantum RPS agent is the construction of the ARO from the walk operator W(P).
The ARO operator is designed to approximate the (ideal) reflection operator

ref(lzr[;)) =2 |ﬂ[;)<7t[)| = Iy (17)

With the generalized walk operator W(P) at hand, an approximate reflection over |z ) is obtained [14] by
implementing the phase detection operator PD (W), a modification of Kitaev’s [21] phase estimation algorithm,
shown in figure 6. For this task, we add (n + 1) ancilla qubits, where 7 scales aslog, (1/ J8),wheres =1 — |,]
is the spectral gap of the Markov chain, i.e., 4, is the second largest eigenvalue of P. We employ PD (W) and its
inverse operation, with an intermediate reflection over the ancilla state|00...0) 5 x. This combination of
operations approximates the reflection over|z, ) from equation (17). An analysis of the fidelity of the reflection,
asa function of n, is given in [14]. The crucial feature of this construction is that the ARO operates based on a
number of calls to W(P) that scales as O (1//8 )*, while the number of calls to Pto prepare the stationary
distribution for the classical RPS scales as O (1/5).

4.3. Quantum deliberation

To output a distribution of actions that corresponds to the tail of the stationary distribution with support only
over the (flagged) actions, the agent performs a quantum deliberation process with elements reminiscent of
Grover-like steps [4, 14]. In the preparation phase, the agent first initializes the joint system of registersI and IT in
the state|zp ) from equation (16). While the preparation of this initial state may be involved in general, in certain
cases, including the one presented in the appendix, it becomes straightforward. Consecutively, the agent
alternatingly applies the following two operations:

(1) Reflection over the actions:

ref(A) =2 ) ey (e — I (18)

ieA
where A denotes the set of (flagged) actions.

(ii) Approximate reflection over the state |zp).The sequence of operations above will, similarly to Grover’s
algorithm, increase the amplitude of the actions with respect to non-action components in the state of the
system, while maintaining the relative weights of the action elements. This ensures that the actions are
output according to the correct distribution, as explained in [11].

After iterating these steps a number of times that is determined by the relative probabilitye = .. ,(zp); of
the actions within the stationary distribution, the agent samples, that is, measures in the clip basis of register I If
adesired action is found, it is coupled out, otherwise the procedure is repeated [ 1 1]. The average number of
iterations of the Grover-like steps (i) and (ii) scales as O (1/+/€ ), while the classical RPS agent requires O (1/¢)
iterations on average.

The tilde-O notation designates that, for this analysis, we are ignoring factors which are contributing only logarithmically.
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4.4. Reflecting PS implementation for trapped ions

Finally, let us examine the possibility to implement the decision-making process of a quantum RPS agent in an
ion trap. As we have explained, two operators are required, the reflection over (flagged) actions, and the ARO.
The former can be generically achieved, for instance, by applying the detuned pulses corresponding to Ugﬁ“ (27)

or Ugg (27) of the coherent controlization step (iv) specifically to those basis states corresponding to (flagged)
actions, flipping their sign. The latter, the ARO, is implemented starting from the probability unitaries, by
coherent controlization, in conjunction with a few fixed operations, Dy 1, Dy, 11, Do, aux and H.

Let us briefly describe the individual steps of this procedure. By coherently conditioning the probability
unitaries U, the operation Up is obtained, from which the pulse sequence for V; is obtained by swapping the
registers, which, in practice, corresponds to an exchange of the qubit/ion labels in the pulse sequence for Up. The
associated inverse operators follow immediately by setting@; — (— 0;). The reflections Dy 1, Dy 11, and Dy a.x are
obtained as special cases of the reflection over the (flagged) actions. The Hadamard gate

(1 )
n=—(1 1) (19)
can be implemented up to a phase of (—1), that is, for the jth ion we have the pulse sequence
- H = Ux(=5) Uz, (%) Ux () Uz (), (20)

with Uy as in equation (3), and Uy, given by equation (4). The superfluous phase (—i) cancels naturally, since the
Hadamard gate is used four times for every ancilla in the ARO, twice each for the realization of PD (W) and its
inverse, see figure 6. Finally, we make again use of coherent controlization to construct the phase detection
operator PD (W) and its inverse from the walk operator W(P). The possibility to add control to arbitrary
(unknown) unitaries hence provides a modular structure, that allows, in principle, for the generic
implementation of all operations that required for the decision-making of a quantum RPS agent. The modular
use of coherent controlization in the design of the agent can thus be summarized by the following sequence:

Uy (6))5U; (81 vor Onmt ) U, W (P)~SARO.

That is, starting from single qubit Y rotations, parameterized according to the stochastic matrix P, we construct
the probability unitaries using coherent controlization. From the probability unitaries we then construct, again
by coherent controlization, Up and Vp, which are used to assemble W(P). Finally, from W(P) we construct the
ARO operator that is central to the quantum deliberation steps, once again employing coherent controlization.

Aswe have argued, all individual operations of the quantum RPS are implementable with current
technology. While large network sizes, as well as small values of € or 6, impose challenges for state-of-the-art
ionic implementations of the generic RPS decision-making process, these technological restrictions may be
overcome by the continuing development of scalable ion trap arrays. Nonetheless, special cases of the general
scheme we have laid out here are well within reach of experimental testing. In the appendix, we present such an
example for a quantum RPS agent based on an ECM using two qubits, and we give an explicit pulse
decomposition of its entire decision-making process, including an error analysis.

5. Conclusions

We have presented a modular architecture for the implementation of the deliberation process of PS agents in
systems of trapped ions. We have shown first how the probability unitaries, which are required for the emulation
of classical random walks, can be generically constructed using coherent controlization, and second how this
process allows for the implementation of a quantum RPS agent based on these probability unitaries. A main
feature of our construction is its modular architecture, that is, any changes of the probabilities as part of the
learning process can be dealt with at the level of the implementation of the probability unitaries, whereas the rest
of the construction is unaltered. The generic construction relies only on elementary single-qubit Y rotations and
coherent controlization, which allows for a straightforward assembly, as well as straightforward updating of the
probability unitaries.

This is an important advantage, if not a prerequisite, for the realization of a learning agent that is
continuously adjusting the probabilities underlying its deliberation process. Having to re-compute the entire
sequence of gates which need to be applied to realize the quantum RPS agent for any change of the underlying
Markov chain would impose a large computational overhead on the agent, and significantly diminish the
advantage in speed that is provided by quantizing the RPS agent.

In addition to the general modular architecture, we have provided numerical simulations of an
implementation of simple RPS agents using trapped ions. As our investigation shows, proof-of-principle
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T

Figure Al. Rank-one reflection operator. For rank-one Markov chains, Up and Vp are local operations on registersII and I,
respectively. The Szegedy walk operator W(P) that is shown in (a) hence factorizes into two independent applications of U Dy U .
Since the walk operator further becomes Hermitean, W = W, the single remaining ancilla is also redundant, the approximate
reflection circuit shown in (b) reduces to one application of W(P) as shown in (c), and the reflection becomes exact.

e, )
1

realizations of these agents are simple enough to be implementable in current experimental setups, while they
are sufficiently involved to demonstrate the quadratic speed-up.
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Appendix. Rank-one reflecting PS in ion traps

Here, we provide an example for a quantum RPS agent sophisticated enough for the demonstration of a
quantum speed-up, whilst being sufficiently simple to allow an immediate implementation in readily available
ion trap setups, e.g., as described in [16, 17]. The appendix is structured as follows. In section A.1 we first discuss
the simplified decision-making process for a quantum RPS agent whose underlying ECM network corresponds
to arank-one Markov chain. To provide context, the role of these simple agents is then illustrated for the
invasion game in section A.2. In section A.3, we propose an ion trap implementation of the rank-one quantum
RPS agent, for which we supply the explicit overall pulse sequence. We accompany our proposal with an
appropriate error model, and corresponding numerical simulations, which are given in the final section A.4.

A.1.Rank-one reflecting PS

A special case of the RPS agents that we have considered in section 4 is obtained by considering the reflective
analog of so-called ‘two-layered’ PS agents, where all transition are one-step transitions from percepts to actions
[11]. Such agents have a very simple structure, yet were shown to be capable of learning to solve non-trivial
environmental tasks [15,25]. In the RPS analog of two-layered PS agents [ 11], the associated Markov chains of
each percept-specific clip network are rank-one throughout the entire learning process of the agent. The
columns of Pare then all identical, and equal to the stationary distribution. The spectral gap is given by = 1, and
the Markov chain mixes in one step. Let us consider the consequences—radical simplifications—for the
construction of the RPS agent.

In the rank-one case, the probability unitaries U; for a fixed Pare all the same, so we may remove the
subscript, write only U, but we keep in mind the distinction of U and Up. Moreover, coherent controlization is
no longer necessary for the construction of Up, since U'is applied regardless of the state of the control register,
Up=1® U (Vp = U Q® ). As can be easily seen, the reflections ref(A) and ref (B) shown in figure 5 then
commute, acting locally on registers Il and I, respectively, see figure A1 . Similarly, the coherent encoding of the
stationary distribution is now given by the product state|zp); ;1 = |7Zp)1|7p)11.

When assembling the phase detection operator PD (W) and the ARO, see figure 6, the spectral gap of § =1
means that (at most) one ancilla qubit is required. Now, note that the walk operator W(P) for rank-one matrices
P, as shown in figure Al(a), is Hermitean, and thus the entire circuit shown in figure A1(b) reduces to a single
application of the Szegedy walk operator W(P). An exact reflection over|zp ) can hence be performed by applying
W (P) = U Dy U to either of the registers, see figure A1(c). Without loss of generality we select register I, where
we drop the subscript indicating the register from now on, to perform all the Grover-like steps to output actions
according to the tailed stationary distribution, which entails the following steps.
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Figure A2. Invasion game. In the invasion game [12] the agent defends a region of space against an adversary that tries to enter
through a series of openings. To be rewarded, the agent is to prevent the adversary from entering, by blocking the passages, which can
be achieved if the adversary’s signals, |, “’, and ‘—=’, indicating its next move, are interpreted correctly, and the agent mirrors the
adversary’s moves.

In the preparation stage, the state|zp ) is initialized by one application of U to the state|0). Then, the two
operators of the Grover-like process, i.e., the reflection over the action ref(.A), and the reflection over | zp ), are
applied a prescribed number of times determined by ¢, the relative probability of the actions within the
stationary distribution. Consecutively, the agent measures in the clip basis. If the measurement provides an
action, it is coupled out, otherwise the agent iterates this procedure.

Before we continue with the ionic implementation of the deliberation process, let us briefly examine an
example for a task—the invasion game—for which the agent may employ its capabilities of learning and
decision-making.

A.2. The invasion game

Asasimple example that can be solved by two-layered agents, let us discuss the invasion game, as considered in
[12]. In this game, the agent is tasked with guarding a region of space from an adversary who attempts to enter
the region through an array of entrances, see figure A2 . The agent’s goal is to prevent the adversary from
entering by blocking sites. In every round of the game, the adversary has three possible moves. It may attempt to
enter at its current location, or move one door to the left, or one door to the right and attempt to enter through
one of these openings. The agent is rewarded if it matches the move, thus blocking the adversary.

To emphasize the learning aspect of the game, we assume that the game starts with the adversary and the
agent located at the same entrance, and before the adversary moves, it displays some signal that indicates which
way he intends to move next. Thus, the set of percepts of the agent (the defender) is{ |, <, —}, which hintat
the possible subsequent move of the attacker. The agent itself can also choose to remain where it is, move left, or
move right in an attempt to block, corresponding to the three action clipsc; (a, ), ¢; (a), and ¢5 (a_,) accessible to
the agent.

For the RPS agents discussed previously, this simple game may be represented by associating a three clip
network to each of the percepts. In what follows, we shall only focus on a network associated to one percept, say
1’, as everything will also hold for other subnetworks as well, and we shall drop the corresponding subscript for
ease of notation. For such two-layered settings there is a simple construction relating the probabilities of
outputting a particular action, and the structure of the underlying percept-specific Markov chain. In particular,
the action probabilities 7 = (7}, 7,, 73) are realized by the stochastic matrix where each column is the vector z.
Thelearning of the agent manifests in the relative increases of probabilities corresponding to rewarded actions,
and examples for specific update rules can be found, e.g., in [12].

In basic two-layered settings in both the RPS and the analogous standard PS agent models, an action is
coupled out after exactly one diffusion step. In order to illustrate a speed-up in such a scenario, we therefore need
to consider some additional structure that increases the learning efficiency of the agent, but induces a longer
deliberation time. Such a structure can be provided by percept-specific flags, which correspond to rudimentary
emotion tags. Flags can be interpreted as the agent’s short term memory, indicating favored actions. In other
words, absent flags indicate that a particular choice of action, for a given percept, was not rewarded in the
previous step, and should be avoided. More precisely, this structure works as follows. Initially, all the actions are
flagged. Then after an action has been coupled out, the flag is removed if the action is not rewarded. If the
unflagged action is selected again after encountering the same percept in a consecutive round, the deliberation
process is repeated until the deliberation results in a flagged action. In the case that the last remaining flag is
removed, which indicates a definite change in the setting of the environment, all flags are re-set.

This structure leads to great improvements in settings where the environment (e.g., the adversary in the
invasion game) changes its strategy, for instance, by permuting the meaning of the percepts [12]. In this case, if
the network is already well-taught, the probability of outputting the correct action, once the meaning of percepts
has been altered, can be very low. We will be interested in precisely such a setting. Suppose the attacker pursues a
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Table Al. Representation of a three-clip net-
work as two qubits. A two qubit system can
represent four clips, but as the desired network
only requires three, a redundancy is intro-
duced, e.g. in clip ¢;.

Clip Interpretation Two-qubit state
I Action a |00)
I Actiona._ |01)
c3 Action a_, 110),]11)

consistent strategy for a prolonged period of time, and the agent has learned well. This entails that, for a given
percept, one of the values in the distribution # = (7}, 75, 73), say the third, is much larger than the others, e.g.,
73 <K € = m + m,and only the action clip corresponding to 7 is flagged. Now, if the environment is to
suddenly change its strategy, no longer rewarding this action, the flag on this clip will disappear, while flags on
other clips are introduced again. Subsequently, the agent is required to output the tail of the distribution z with
support only over the actions corresponding to 7; and ,. However, for the classical RPS model, as well as for the
standard PS model, the average number of iterated diffusion steps required until one of the remaining flagged
actions is hitis O (1/¢), which can be exceptionally large, if the network was well-taught. The quantum variant of
the RPS will then be quadratically faster, only requiring O (1/+/€ ) steps. In any given round, the decision-making
process after encountering a percept can then be represented on a two-qubit-Hilbert space according to
table Al .

Next, we discuss how a rank-one quantum RPS deliberation process based on this two-qubit system can be
represented using two trapped ions.

A.3.Rank-one quantum RPS with trapped ions

To implement a rank-one quantum RPS agent for a setting such as the one described above, we construct the
two-qubit operations U, Dy and ref(.A), where the latter operation is now a reflection over flagged actions only,
from laser pulses on two trapped ions. As we have described in section 3.2, coherent controlization may be
employed to assemble the probability unitary U, but in this simple case we may resort to a simpler option. As
shown in table A1, we operate on a two-qubit-Hilbert space, but we only distinguish between three clips, such
that only two independent angles, 8; and 6,, parameterize the probability unitary U. A pulse sequence that
achieves this is given by

U (61 0:) = Ux (=%) Uz (20:) U (261 ) Ux (%), (A1)

where the collective X and single-qubit Z pulses are realized by individual laser pulses as described in section 3.1.
In terms of the probabilities 7; and 7, which we assume correspond to the two flagged actions, the angles 6, and
6, are given by

6, = arccos/m + 75, (A.2a)

arccos _n , form + 7y #0,
0, = m+ (A.2b)

0, otherwise.

For the implementation of ref (.A), the reflection over the actions, one simply applies the single-qubit Z
operation

Uz, (z) = diag{—i, —i,i,1i}. (A.3)

Since the rank-one RPS operates solely on one register, the overall phase of the reflection is irrelevant, as long
as the relative sign between flagged actions and all other clips is flipped. Finally, we propose the following
implementation of Dy. A detuned Molmer—Serensen pulse, see [19], is used to transfer the population of the
state|gg), corresponding to|00), to an auxiliary state|g’g"). While the state|00) is hidden in this way, a single-
qubit Z pulse Uy, (27) flips the sign of all other basis states, before a second Mglmer—Serensen pulse returns the
population to|00).

Taken together, all operations for one iteration of the Grover-like reflection may hence be realized by 12 laser
pulses. In addition, four individual pulses are needed for the preparation of the initial state. At last, in the next
section, we investigate the performance of our ion-trap quantum RPS agent in a series of numerical simulations
that incorporate a suitable error model.
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Figure A3. Average number of calls to U. The results of the numerical simulation for the average number of calls to the probability
unitary U until an action clip is hit are shown for error parameters o = 7/100,6 = 7/20,ande = #/10,1n (a), (b), and (c),
respectively. Each blue dot corresponds to the average over 10* runs for a fixed valuee = z; + 7,. The vertical gray lines indicate three
standard deviations of the mean values (over 100 runs each) in each direction. The solid purple curves show the best fits that are linear
in(1/+/€), while the dashed red curves show the best fits that are linear in (1/¢), and we have confirmed that the former fit the data
better than the latter.

A.4.Numerical simulations
For the numerical simulations that we present in this final section, we consider imprecisions in the laser pulse
frequency or duration, resulting in varying angles for the laser pulses, as the primary sources of errors. We model
such errors by randomly varying the angles for each pulse in the sequence according to a Gaussian distribution
with standard deviation o that is centered around the correct value.

In the simulations, we specify a pair of values 7; > 0 and z, > 0, such thate = n; + 7, < 1, initialize the
corresponding state vector|zp) = U (6, 6,)|0), and apply the combination of the reflections ref(.A) and
U D, U" atotal of m times, wherem € Nis chosen randomly from the interval[0, . ], withm, = [1/+/€]. The
clips are then randomly sampled according to the probability distribution

{ (e [v () umf}. (A9

which corresponds to a measurement in the clip basis. If no flagged action is found, a new number 1 is
generated, and the procedure is iterated until a flagged action has been sampled. For every fixed set of z; and 7,
the process is repeated for 10* runs to build up statistics, out of which N (N5) result in an output of the action
clip ¢; (¢3), corresponding to ) (1,). Additionally, the overall number Ny, of calls to the operator Uuntil a
flagged action is observed is recorded in each run.

For Ny the expected scaling as (1//€ ) is largely independent from the error parameter, as can be seen from
figure A3, since this behavior is governed by the structure of the process, in particular, the upper bound m, for
the randomly chosen value m. The integer steps by which m1, increases, as (1//€ ) decreases, also explain the step-
like pattern visible in the data of figure A3. That is, in such a Grover-like scheme, the probability to sample a
flagged action grows monotonically with the number of iterations only up to some point, from which on
additional applications of the reflections will alternatingly decrease and increase the probability. The average
number of repetitions set by the value m,, which corresponds to a fixed interval of e-values, is hence not optimal
for all e within that interval, which can be seen from the slanting of the data points, and their standard deviations,
in each of the ‘steps’ seen in figure A3(a). The errors partially cover this effect, as can be seen in figures A3(b)
and (c).

To illustrate the speed-up of the quantum RPS agent with respect to a classical RPS agent, we directly
compare their performance in a simulation without errors, that is, for 6 = 0, see figure A4 . The classical rank-
one RPS agent is emulated here by running the rank-one quantum RPS deliberation process described in this
section form, = 0 , thatis, the state U |0) is prepared, and a sample is taken, such that clip ¢; is obtained with
probability| {¢;U |0)||. If no flagged action is obtained, the procedure is repeated.

What remains to be confirmed by the simulations is the output of flagged actions according to the tail of the
stationary distribution, as predicted in [11]. We address this question in two ways. First, we evaluate the behavior
of a few selected illustrative pairs of probabilities ; and 7, for increasing error parameters in figure A5 . Asa
measure for the accuracy of the output, we use the statistical distance

N 7 N
D(n,N)_zizzl;z — T EN (A.5)
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Figure A4. Comparison of classical and quantum RPS. Numerical simulations of classical (upper red data points) and quantum RPS
(lower blue data points) agents are shown. The data points are obtained as averages over 10* runs for each value of . The vertical green
and yellow bars indicate three standard deviations of the mean values (over 100 runs each) in each direction.The fitted curves are
linear in(1/¢) (top orange curve) and (1/+/€ ) (bottom purple curve), respectively.

Figure A5. Statistical distance to tailed distribution. The statistical distance D (7, N), see equation (A.5), of the output from the tailed
stationary distribution is plotted against the width o of the error distribution, for valuese = 0.05 (solid) and 0.001 (dots), and ratios
m/my = 9,4,and 2 (top to bottom). The dashed horizontal lines indicate the statistical distance to the uniform distribution for each
pair {z;, m,}, which is approached when the errors dominate the behavior of the agent.
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Figure A6. Output according to tailed distribution. The plots in (a)—(c) show the ratios N;/N, of the counts in the numerical
simulations in comparison with the corresponding ratios r;/ 7, according to the (tailed) stationary distribution, for error parameters
o = /100,06 = 7/20,and ¢ = /10, respectively. The solid purple lines show the best linear fits, which should match the 45°
diagonal, shown as dashed gray line, in an ideal RPS agent. Each group of data points along a vertical line corresponds to fixed value of
m /7y, but varying e. The data used is in fact the same as that used for figure A3.
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of the output distribution N = {N; / (N1 + N;)} =1, and the tailed stationary distribution

7 = {m;/(m + 7,)}i=1,,. Infigure A6 we then compare the relative frequencies Ni/N, with which the two flagged
actions were obtained to the corresponding ratios /7, of the (tailed) stationary distribution, for a broad range
of values ) and ,, and for the three error parameters previously chosen used in figure A3.

The data shown in figure A5 illustrates that large errors result in an output according to a uniform
distribution over the flagged actions. The farther the tailed stationary distribution is away from the uniform
distribution, the smaller the tolerance for errors. As the stationary distribution is updated throughout the
learning process the errors will thus cause a stronger deviation from the desired output distribution.

To make these statements more meaningful in terms of learning agents, let us consider a specific example.
Let us assume that for a fixed percept, the tailed stationary distribution may be biased towards the action clip ¢;,
such that an ideal agent outputs this action in 90% of the cases’. To reach this goal, such an agent updates the
corresponding Markov chain throughout the learning process, until the associated stationary distribution is
such that s /m, = 9. We may then set an error threshold, by assuming that the agent is still considered to
succeed, if the action ¢; is performed only 70% of the time, i.e., a statistical distance of 20%. Brief inspection of
the topmost solid curve in figure A5 reveals that for ¢ = 0.05 the threshold value corresponds roughly to the
largest error, o = 7/10, that we consider in figure A3. This, in turn, suggests a maximal number of m, = 5
coherent iterations of the reflections in the Grover-like process before a measurement is performed, which
translates to 64 individual laser pulses as described in section A.3.

The initial analysis presented in this appendix suggests that our proposal for the implementation of two-
layered quantum RPS agents may be feasible, and be readily implemented in a laboratory as a proof-of-principle
demonstration of learning agents enhanced by employing quantum physics.
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