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Abstract
A scheme that successfully employs quantummechanics in the design of autonomous learning agents
has recently been reported in the context of the projective simulation (PS)model for artificial intelli-
gence. In that approach, the key feature of a PS agent, a specific type ofmemorywhich is explored via
randomwalks, was shown to be amenable to quantization, allowing for a speed-up. In this workwe
propose an implementation of such classical and quantum agents in systems of trapped ions.We
employ a generic construction bywhich the classical agents are ‘upgraded’ to their quantum counter-
parts by a nested process of adding coherent control, andwe outline how this construction can be
realized in ion traps. Our results provide a flexiblemodular architecture for the design of PS agents.
Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of
our proposal under certain noisemodels.

1. Introduction

In the past decades, quantumphysics has been employed to enhance communication and information
processingwith significant success, laying the foundation for the nowwell establishedfields of quantum
computation and quantum information [1–5]. In contrast, the potential ofmerging the related, but distinct,
field of artificial intelligence (AI)with quantumphysics is significantly less well-understood. Thus far, advances
in thisfield have been reportedmostly for algorithmic approaches to appliedAI-related tasks, e.g., (un-)
supervised data clustering and process replication, where selected quantum algorithms could be utilized [6–10].

On the other hand, thefirst result showing that quantummechanics can also aid in the complemental task of
designing autonomous learning agents—a taskmore closely related to robotics, and embodied cognitive
sciences—has only recently been provided in [11]. This work is embedded in the framework of projective
simulation (PS) for AI, introduced in [12]. The central component of PS is a specificmemory systemutilized by
the agent. Thismemory system, called episodic and compositionalmemory (ECM), provides a platform for
simulating future action before real action is taken. The ECMcan be described as a stochastic network of so-called
clips, which represent prior experiences of the learning agent, whose decision-making process is realized by a
stochastic randomwalk in the clip space. In the agent’s design, it is the specific structure of the ECM that is
particularly suitable for quantization.

In this workwe present a proposal for the experimental implementation of both classical and quantumPS
agents in systems of trapped ions.While the classical variants of PS agents can easily be realized in physical
systemswithout requiring quantum control, we showhere how certain implementations of classical agents in
ion traps can be used to construct quantumPS agents. This is achieved in a generic way through a nested process
of adding coherent control.
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The outline of this paper is as follows. In section 2we briefly review the PSmodel and give the basic
operational elements which have to be constructed in an implementation of a classical or quantumPS agent.
Then, in section 3we give amore formal treatment of the standard, classical PS agent, and show explicitly how
such an agentmay be implemented in an ion trap set-up. In particular, in section 3.3, we discuss how the
technique of adding coherent control provides a generic construction for emulating the standard PS agent in
quantum systems, specifically in trapped ions. Finally, in section 4, we extend our analysis to quantumPS agents
by specifying all required operations and describing their implementation in ion traps. In the appendixwe
further present a simple example for a quantumPS agent that can be straightforwardly implemented in an ion
trap, for whichwe provide numerical simulations incorporating an appropriate errormodel.

2. PS

The central component of a PS agent, illustrated infigure 1, is the ECM,which can be formally represented as a
stochastic network of clips. Clips represent the units of episodicmemory, which consist ofmemorized percepts,
actions and ensuing rewards. The process of PS is triggered by perceptual input that initiates a randomwalk over
the clip space. This walk constitutes the stochastic replay of previously establishedmemories and precedes the
initiation of real action. The agent’s capability to learn is represented by twomechanisms, (i) the adaption of the
transition probabilities between the clips, and (ii) the addition of new clips under compositional principles.

More formally, at any instance of time the ECMof an agent can be represented as a directedweighted graph,
where the vertices represent the clips, and theweights of the edges represent the transition probabilities, see
figure 2.We refer to this graph as the clip network. The randomwalk, or equivalently, theMarkov chain,
associated to the process of PS is carried out over the clip network. Finally, the learning aspect of the agent is
realized by updating the clip network based on the (re)actions and rewards of the environment, withwhich it
interacts.

The criteria underwhich an action, that is, a clip representing a singlememorized action in the ECM, is
coupled out as real action can vary, leading to distinct types of PS agents. Herewe list a few examples that wewill
encounter again later in this paper. In the so-called standardPSmodel, thefirst action clip that is encountered
during the randomwalk over the clip network is coupled out as the chosen real action. The standard PSmodel
can further be equippedwith emotion clips, which are clip tags indicating, for instance, whether a chosen action
recently lead to a reward. In this extendedmodel, the randomwalk process can be iterated if the encountered
action clip carries a ‘negative’ association—a process wewill refer to as reflection.

Elaborating on the notion of reflection, in [11] some of the authors have recently introduced the reflecting PS
(RPS) agentmodel, inwhich theMarkov chain associated to the clip network is ergodic, and hence has a unique
stationary distribution over the clip network. The RPS agent continues the randomwalk until the stationary
distribution is reached, and (iteratively) samples from it until an action clip is observed. Building on the
approaches of [13, 14] for quantizing randomwalks, this particularmodel was shown to have a quantumanalog,
called quantumRPS, which permits a quadratic speed-up in active learning scenarios.

Aswe havementioned previously, the PSmodel can be endowedwith additional structures, such as the
aforementioned emotion tags, which further improve the agent’s learning capacity, see [15]. These additional
structures are, in principle, compatible with the constructions we present, butwe shall only utilize the simplest
of these extensions, so-called flags, in the examples that are considered in the appendix. Aswewill discuss, these

Figure 1.Projective simulation agent. The (PS)model for active learning agents, introduced in [12], describes an embodied agent that
interacts with its environment via sensory input (percepts), and action on the environment that is conducted using a set of actuators.
The sensors and actuators are linked to the episodic compositionalmemory (ECM), which relates newperceptual input to the agent’s
past experience.
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flags allow for the demonstration of a quantum speed-upwhen incorporated into a very simple agent design,
which is readily implementable in current laboratories.

In the next section, we present amore formal treatment of the standard PSmodel, and showhow it can be
implemented in an ionic set-up.

3. Standard PS agent

As noted, in the PSmodel, the ECM is represented as a clip network, that is, a weighted directed graph over the
set of vertices = =c{ }i i

N
1, where each ci represents a clip. The directedweighted edges of the graph represent the

transition probabilities fromone clip to another5 given by a transitionmatrix =P p[ ]ij which is anN×N left-

stochasticmatrix, that is, ⩽ ⩽p0 1ij and∑ = ∀p j1i ij . In the standard PS, we can assume the clip network

always contains clipswhich are representations of individual percepts (from the set of percepts = s{ }i i) as well
as clips that represent individual actions (from the set of actions = a{ }j j), where  ∪ ⊆ 6.When
presentedwith a percept si, the standard PS initiates a randomwalk in the clip network, governed by P, and
starting from (the clip corresponding to) si. Thewalk is terminated at the first instance an action clip is
encountered. This action is then coupled out as a real action.

This process can be viewed in terms of probability vectors as follows. Each clip ci can be represented as a
canonical basis vector of anN-dimensional real vector space , that is, = … …c [0, , 1,0, , 0]i

T , with the unity
at the ith position. The state after one randomwalk transition is

∑=P c p c , (1)i

j
ij j

which is a probability vector, i.e., a vector with real non-negative entries summing to one, representing a
probability distribution over the clip space. This distribution is then sampled from, obtaining some clip ck,
which, if it represents an action, is coupled out. Otherwise the randomwalk proceeds from ck.

In the spirit of the reinforcement learning paradigm, each round of interactionwith the environment is
either rewarded or not, and both cases lead to an update of the clip network, by altering the transition
probabilities, and/or by altering the clip set itself, which constitutes the learning aspect of the PS agent. For an
overview of the standard PSmodel, including examples of update rules, see [15].

Figure 2.Clip network. An example for a networkwith four clips ci (i=1, 2, 3, 4) is shown. At anyfixed time, the PS agent associates a
discrete-time homogeneousMarkov chainwith transitionmatrix = =P p i j[ ]( , 1, 2, 3, 4)ij to the ECM,which governs the

transition probabilities for a randomwalk in the network. In addition, flags, here indicated on clip c4,may be introduced, e.g., to relate
actions that were recently rewarded to the corresponding percepts.

5
Technically, since in the standard PSmodel, the action is coupled out whenever an action clip is hit, the probabilities of transiting from an

action clip are undefined.However, we can, for simplicity, assign a unit probability of transiting to itself to each action clip. Thus, action clips
are the absorbing states of the underlyingMarkov chain, although this will not be relevant for ourwork.
6
In the last expressionwe have equated the representations of percepts and actionswithin the clip networkwith the actions and percepts

themselves, in a slight abuse of notation. In the following, wewill be using sk (ak) to denote the percept (action) clips when the semantics of
the clipmatters (e.g., whether it is an action or a percept), and the generic notation ckwhen it does not. Formally, there is a distinction
between percepts sj and actions aj, and their internal representation (a memory), usually denoted μ s( )j and μ a( )j , respectively.
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3.1. Standard PSwith trapped ions
We shall nowdiscuss how the randomwalk initiated in an standard PS agent can be emulated in a quantum
system, in particular, using laser pulses on a string of trapped ions. Although a quantum implementation is not
strictly required for the classical randomwalk of the standard PS agent, such a construction is the prerequisite for
the fully quantized RPS agent that wewill discuss in section 4. For the construction of a quantummechanical
analogue of the transitionmatrix Pwe start by promoting the real vector space to a complexHilbert space,
and representing the clips ci as orthonormal basis states∣ 〉ci .We then construct a unitaryUi, such that for afixed
basis state denoted∣ 〉0 —thismay correspond to some clip state∣ 〉cl but the particular choice of this fixed state is
unimportant—the components of the state ∣ 〉U 0i with respect to the clip basis encode the transition amplitudes
as dictated by the transitionmatrix P, i.e.

∑=
=

U p c0 . (2)i

j

N

ji j

1

Wecan see that ameasurement of the state above in the clip basis recovers the right-hand side of the classical
equation (1).However a single unitary cannot encode all the transitions ofP. This can be seen quite simply, by
noting that the columns of thematrix representation ofUi are required to be orthogonal, while the columns ofP
may even be identical. In general, one therefore requiresN distinct unitariesUi to represent all transitions ofP on
anN-dimensional Hilbert space. In otherwords, the first column, corresponding to the basis state∣ 〉0 , of the
unitaryUi determines the transition probabilities from the clip ci to any other clip in the sense of equation (2).
Equation (1) could be recovered even if the amplitudes in equation (2) had arbitrary relative complex phases.
These phases are irrelevant in the context of the classical agent, but for the purpose of the extension to the
quantumRPSwe restrict the entries of thefirst columnofUi to be real and positive.

Note that, given the set of unitaries =U{ } ,i i
N

1 each corresponding to a columnof anN-state transitionmatrix
P, one can emulate any classical randomwalk by iterating themeasurement of the quantum register (in the clip-
basis), resetting the register to the state∣ 〉0 , and applying theUi corresponding to the priormeasurement result.
The capacity to generate such unitaries will, in the next section, be used as a primitive to construct coherent
quantumwalks. Herewefirst analyze how such unitaries can be realized in an ionic set-up.

To proceed, wewish to encode the clip basis in the internal states of a chain of trapped ions, and the unitaries
Ui in the laser pulses driving the transitions between them.Wewill consider a setup as described, e.g., in [16, 17].
A string of 40Ca+ ions is confined by a quadrupole trap (Paul trap). The ion confinement can be described by
harmonic potentials, and theCoulomb repulsion of the ions couples the harmonic oscillators, such that the
motion of the ions can be captured in terms of their collective normalmodes. For each ion, twoZeeman sub-
levels, for instance,∣ 〉 =∣ 〉−g S: 1 2, 1 2 and∣ 〉 =∣ 〉−e D: 5 2, 1 2 , which can be coupled by a quadrupole transition, are
used to represent the computational basis states of a single qubit. In turn, we employ the state space of k qubits as

a representation of the clip network.Hence, the PS implementationwe propose requires =k Nlog ( )2
⎡⎢ ⎤⎥ ions

for a network ofN clips.
The required unitaries can be realizedwith two laser beams [16, 17], one of which is a broad beam that is

nearly collinear to the ion chain, such that all ions are illuminated. The second laser beam can be focussed to
address each ion individually.When operated resonantly at the frequencyω corresponding to the transition
∣ 〉 ↔ ∣ 〉g e , the first laser laser realizes the collective gate

∑θ = − θ

=

U X( ) exp i , (3)X

i

k

i2
1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

wherewe use the shorthand notationXi for ⊗ … ⊗ ⊗ … ⊗ Xi k1 , i.e., the PauliX operator for the ith qubit.
The second laser, on the other hand, is applied off-resonance to provide the single-qubit gate

θ = − θ( )U Z( ) exp i . (4)Z i2i

The operations of equations (3) and (4) can further be complementedwith an entangling gate, such as theCirac–
Zoller [18] orMølmer–Sørensen [19] gate, to form a universal set of quantumgates, and hence provide the
possibility to construct the unitariesUi in principle. In general, the aim is to determine a sequence of operations
with −N( 1) free parametersθ θ… −, , N1 1, such that all entries of the first columnof the resulting overall unitary

θ θ… −U ( , , )N1 1 are real and positive, and for appropriate choices of theθ j their squares can form any arbitrary

probability distribution =p{ }n n
N

1, with∑ =p 1.n n The freedom in the choice of parameters allows for all of the
operatorsUi to be represented by some specific choices of theθ j. In particular, the agent is considered to operate
based on afixed internal architecture, in particular the tuning of the angles should have a simple operational
meaning. At every step of the learning process, the agent only updates a set of parameters, here theθi,
corresponding to the duration of some laser pulses within afixed sequence. For instance, in the very simple case

4
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of a clip networkwith only two clips, the required unitary can be chosen to be a Pauli-Y rotation of a single qubit,
given by

θ = − =
−θ

θ θ

θ θ( )U Y( ) exp i
cos sin

sin cos
, (5)Y 2

2 2

2 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

which can be realized by three laser pulses, i.e.

θ θ= −π π( ) ( )U U U U( ) ( ) , (6)Y X Z X2 2j j

andwherewe have included the qubit label j for later convenience.
Aswe havementioned earlier, the ‘probability unitaries’ presented abovewill become the building blocks of

the quantumPS agent. The second, and last, crucial ingredient in our construction is the technique of adding
coherent control, whichwe shall briefly present next.

3.2. Coherent controlization
Adding coherent control entails coherently conditioning (unitary) operations on the state of a control system.
More formally, this is represented as amapping froma set of unitaries =U{ }i i

M
1, acting on aHilbert space, to a

single controlled unitaryU of the form

ψ ψ ψ⊗ = ⊗ ∀U j j U , , (7)j

which acts on ⊗C , whereC is an (at least)M-dimensionalHilbert space, and ∣ 〉j{ } is an orthonormal
basis ofC . Practically, thismappingmay be understood as a physical procedure of adding quantum control to
individual elementary operations [20].We refer to suchmappings and the associated physical processes, which
implicitly feature inmany quantumalgorithms [3, 21], as coherent controlization. Aswewill discuss in section 4,
coherent controlization forms an essential part of the construction of the quantumRPS agent.

As a first instance of its applicability, coherent controlization provides an elegantmethod to generically
assemble and combine probability unitaries. The lattermay also be assembled in other, sometimesmore
efficient ways, and one alternative construction is provided in the appendix. Nonetheless, the construction of the
probability unitaries using coherent controlization offers the opportunity to illustrate thismethod on a simple
and useful example.

Before we begin, let us recall the task at hand. For a given probability distribution =p{ }ij i
N

1, corresponding to

the jth columnof the stochasticmatrix P, wewish to construct the associated unitaryUj, such that the first

columnofUj has real and positive entries pij , with i=1,…,N.

As the elementary operations that depend on these parameters we select single-qubitY rotations θU ( )Y i ,
which, for a trapped ion setup,may be realized as in equation (6), andwherewe drop the labelY for ease of
notation. Any probability unitary θ θ… −U ( , , )N1 1 on anN-clip network can then be assembled by a nested
scheme of coherent controlization on k qubits, where k is the smallest integer that is larger than Nlog ( )2 . For
simplicity, let us assume here that the size of the clip network is such that ∋ = N klog ( )2 , which can always be
achieved by duplicating some clips.

For a two-clip probability distribution p p{ , }1 2 , the probability unitary is trivially realized by a single-qubitY

rotation θU ( )1 , with θ=p cos ( 2)1
2

1 and θ=p sin ( 2)2
2

1 . To extend this to a four-clip probability unitary

θ θ θU ( , , 3)1 2 , with probability distribution ′ ′ ′ ′p p p p{ , , , }1 2 3 4
, one adds a second qubit, hence k= 2, and starts again

with the operation θU ( )1 on thefirst qubit, where = ′ + ′p p p1 1 2
and = ′ + ′p p p2 3 4

. This is followed by two
controlledY rotations of the second qubit, conditioned on the state of the first, that is, θU ( )2 is applied if thefirst
qubit is in the state∣ 〉0 , while θU ( )3 is appliedwhen the first qubit is in the state∣ 〉1 . The corresponding angles are
determined from the renormalized probabilities within the respective subspaces, i.e., θ = ′ ′ + ′p p pcos ( 2) ( )2

2 1 1 2

and θ = ′ ′ + ′p p pcos ( 2) ( )2
3 3 3 4 .

For larger values of k, the controlization becomes nested, see figure 3, e.g., for k=3 (N=8), the lowest level of
single qubit operations, here θU ( )2 and θU ( )3 , is followed by controlled operations on a third qubit. Labeling
the qubits as I, II, and III, wemaywrite the corresponding probability unitary as

θ θ θ θ θ θ θ θ θ… = ⊕ × ⊗ ( ) ( ) ( ) ( )U U U U, , , , , , , (8)1 7 2 4 5 3 6 7
I,II,III

1
I

II,III
⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

where the controlled two-qubit operations are given by

θ θ θ θ θ θ= ⊕ ⊗ ( ) ( ) ( )U U U U a, , , (9 )2 4 5 4 5
II,III

2
II

III
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

5
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θ θ θ θ θ θ= ⊕ ⊗ ( ) ( ) ( ) ( )U U U U b, , . (9 )3 6 7 6 7
II,III

3
II

III
⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

Aswe have argued above, coherent controlization allows for the construction of general probability unitaries
frombasic single-qubit probability unitaries. Despite the simple appearance of the circuits infigure 3, the
practical implementation of coherent controlization requires additional attention. In fact, it is generally
impossible to decompose quantum-controlled operations Uctrl( ) into individual gates =U G U Gctrl( ) 1 2,
such that theGi are independent ofU, which implies that the gatesGimay not be specified ifU is unknown
[22, 23]. This seems to suggest that coherent controlization requires computational effort in its implementation.
However, for the ionic implementation that wewill discuss next, we exploit additional degrees of freedomof the
physical setup to perform coherent controlization in a generic way.

3.3. Coherent controlization in trapped ions
We shall nowdiscuss howquantum control can be practically added to unitaries that are realized by laser pulses
in a trapped ion setup, based on the scheme introduced in [20]. As an examplewe give the explicit pulse
decomposition that realizes the two-qubit unitary θ θ θU ( , , )1 2 3 , which can be viewed as a special case of
equation (9a) forθ θ… =, , 04 7 , wherewe use two ions, labeled I and II, respectively, beforewe explain how this
method is generalized to the control of k-qubit unitaries.

To start, we note that the operation θ ⊗ U( )1 I II
⎡⎣ ⎤⎦ can be trivially implemented by the pulse sequence of

equation (6), andwe can thus focus our attention on the remaining term θ θ⊕U U( ) ( )2 3
I,II

⎡⎣ ⎤⎦ . Apart from the

laser pulses for the elementary operations θU ( )2 and θU ( )3 , our scheme for their coherent controlization also
consists of a number of additionalY rotations in two-dimensional subspaces of the ionic energy levels other than
the one spanned by∣ 〉g and∣ 〉e , see figure 4.Wewill use additional superscripts, e.g., UY

#
i
, where the labels ‘#’

identify different detuning frequencies, and the subscript ∈i {I, II} identifies the ion, to distinguish these
operations. Furthermore, wemake use of one of the common vibrationalmodes, whichwe assume has been
cooled to the ground state∣ 〉0 v, before the following steps are executed.

(i) Cirac–Zoller [18, 24] method: a sequence of appropriately blue-detuned laser pulses is applied on ion I to
realize πU ( )Y

CZ
I

, which transfers the population of ∣ 〉 ∣ 〉g 0I v to ∣ 〉 ∣ 〉e 1I v. This step encodes the state of qubit I

in the vibrationalmode, i.e., the initial state of the form α β ψ∣ 〉 + ∣ 〉 ∣ 〉 ∣ 〉( )g e 0 vI I II is transformed to

ψ β α∣ 〉 ∣ 〉 ∣ 〉 + ∣ 〉( )e 0 1v vI II .

(ii) Hiding: red-detuned laser pulses corresponding to πU ( )Y
H
II

1 and πU ( )Y
H
II

2 are applied to ion II to transfer the

populations from∣ 〉 ∣ 〉g 1 vII to∣ ′〉 ∣ 〉g 0 vII , as well as from∣ 〉 ∣ 〉e 1 vII to∣ ′〉 ∣ 〉e 0 vII , as illustrated infigure 4.Denoting
the stateψ encoded in the levels∣ ′〉g II and∣ ′〉e II as ψ∣ ′〉II, wemaywrite the overall state after this step as

α ψ β ψ∣ 〉 ∣ ′〉 + ∣ 〉 ∣ 〉( )e 0 vI II II .

(iii) θU ( )3 : the pulse sequence that realizes θU ( )3 is applied to ion II, which leaves the system in the state

α ψ β θ ψ∣ 〉 ∣ ′〉 + ∣ 〉 ∣ 〉( )e U ( ) 0 vI II 3 II .

Figure 3.Coherent controlization. The circuit diagrams show the construction of a three-qubit probability unitary (9), using coherent
controlization. The filled dots ‘•’ on the controlled operations indicate that the unitaries on the target are conditioned on the control
qubit state∣ 〉0 , while the hollow dots ‘◦’ represent conditioning on the control qubit state∣ 〉1 .

6
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(iv) Switching: to exchange the primed and unprimed levels, laser pulses for πU ( )Y
Sg

II
and πU ( )Y

Se
II

, which are blue-
and red-detuned, respectively, are applied to ion II, see figure 4. The resulting overall state after these

operations is α ψ β θ ψ∣ 〉 ∣ 〉 + ∣ ′〉 ∣ 〉( )e U( ( ) ) 0 vI II 3 II .

(v) θU ( )2 : the pulse sequence that realizes θU ( )2 is applied to ion II, such that the system is now in the state

α θ ψ β θ ψ∣ 〉 ∣ 〉 + ∣ ′〉 ∣ 〉( )e U U( ) ( ( ) ) 0 vI 2 II 3 II .

(vi) Switching: the primed and unprimed levels are exchanged again using the laser pulses for πU ( )Y
Sg

II
and

πU ( )Y
Se
II

on ion II, which leaves the system in the state α θ ψ β θ ψ∣ 〉 ∣ ′〉 + ∣ 〉 ∣ 〉( )e U U( ( ) ) ( ) 0 vI 2 II 3 II .

(vii) Unhiding: the hiding operations of step (ii) are reversed by the application of π−U ( )Y
H
II

1 and π−U ( )Y
H
II

2 to ion

II, leaving the system in the state α θ ψ β θ ψ∣ 〉 ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉( )e U U( ) 1 ( ) 0v vI 2 II 3 II .

(viii) Return control: finally, π−U ( )Y
CZ
I

is applied to ion I, which returns the control from the vibrational mode,

and a provides the desired state α θ ψ β θ ψ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉 ∣ 〉( )g U e U( ) ( ) 0 vI 2 II I 3 II , that is, the unitary θU ( )2 acts

on ion II, when ion I is in the state ∣ 〉g I, while θU ( )3 acts upon the subspace inwhich the first ion is in the
state ∣ 〉e I.

If required, the scheme laid out in steps (i)–(viii)may be straightforwardly extended to larger clip spaces by
increasing the number of control qubits and vibrationalmodes used. EachY rotation in principle requires three
individual pulses, see equation (6), but the collectiveX rotations for the operations θU ( )i can be subsumed into
two single pulses πU ( )X 2

and −πU ( )X 2
at the start and at the end of the entire pulse sequence, respectively.We

hencefind that the overall number of elementary laser pulses necessary to assemble a k-qubit probability unitary
is given by × − −+ k(7 2 24 29)k 2 for ⩾k 2. Note that an exponential scaling in terms of the qubits used is
inevitable, as k qubits encode2k probabilities, andwemust have the freedom to specify each one of these. In
terms of the state space of the ECMnetwork (clip number) the scaling is linear.

In such a process −k( 1) vibrationalmodes of different frequencies are used to generalize steps (i) and (vii)
to condition −k( 1)-qubit operations on the state of the first qubit, i.e., by transferring the populations
(exclusively) between ∣ 〉 ∣ … 〉 … −g 0 0 v vI , , k1 1 and∣ 〉 ∣ … 〉 … −e 1 1 v vI , , k1 1.

Next, we give the basics of the classical and quantumRPS agentmodels, and showhow the two components
—coherent controlization and probability unitaries—can be utilized to construct these in systems of
trapped ions.

4. Reflecting PSwith trapped ions

Wenow turn to the so-called RPS agent introduced in [11]. The central aim of the RPS is to output the actions
according to a specific distribution, whichwe shall specify shortly, that is updated, indirectly, as the ECM

Figure 4. Level structure of trapped ions. An illustration of the energy levels of one of the ions in the trap is shown. Two levels,∣ 〉g and
∣ 〉e , are chosen to represent the qubit, while the auxiliary levels∣ ′〉g and∣ ′〉e , and thefirst excited state∣ 〉1 v of the common vibrational
mode are used in the process of coherent controlization. The transitions indicated byH1,H2, Sg, and Se can be realized by appropriately
detunedY-pulses.
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network ismodified throughout the learning process. Here, the clip network is disjoint, and it comprises
unconnected percept-specific subnetworks with associated stochastic (ergodic and time-reversible)matrices

=P p[( ) ]k k ij , for each percept sk.
Depending onwhich percept is observed, the randomwalk is executed on the corresponding percept-

specific (sub-)network, where it is continued until theMarkov chain Pk is (approximately)mixed, that is, until
the respective stationary distributionπPk

, which has support over the entire clip space, is (approximately)
reached. The agent then samples from the obtained distribution, and iterates the procedure (which requires re-
mixing of theMarkov chain) until an action is hit.More specifically, the RPS agent is designed to output (a good
approximation) of the tailed distribution π̃Pk

defined as


π

π
=

×
( )

c
˜

( ) , if is an action,

0, otherwise,
(10)P

j

P j j
k

k
⎧⎨⎩

where is a normalization factor such that π∑ =( ˜ ) 1j P jk . That is, the re-normalized distributionπPk truncated

such that it has support only over the action space.
Despite the differences in thewalk termination criteria of the standard PS andRPSmodels, all the

operational elements required for an emulation of a classical RPS agent in an ionic set-up have already been
presented in the last section, as the previously described construction enables the emulation of any classical
randomwalk.

In the remainder of this section, we aim to showhow the quantumRPS agent, which employs a truly
coherent quantumwalk (in the sense of [13, 14]) to obtain a quadratic speed-up over the classical RPS agent, can
be implemented based on the coherent controlization of unitaries as discussed in section 3.3. For notational
simplicity, wewill from this point on ignore the subscript k indicating the percept the network in question
corresponds to, unless it is specifically required.

The central process of the quantumRPSmodel, the basics of whichwe present next, is a so-called Szegedy-
type quantum randomwalk, see, e.g. [14], that is performed on the percept-specific ECM(sub-)network. These
Szegedy-type quantum randomwalks are used in the quantumRPS agent in order to output an action
distributed according to the tailed stationary distribution π̃P with a quadratically decreased number of
elementary diffusion steps, as compared to a classical RPS agent.

As the structure of this decision-making process is rather involved, let us briefly sketch it out here, before
proceeding inmore detail. The basic building block of a Szegedy-type walk, is the elementary diffusion unitary
U ,P which acts on a two register system, each one of sufficient dimensionality to represent the entire clip
network.One application ofUP can be considered as the analog of one step of the classical walk governed by the
transitionmatrix P. The Szegedywalk operatorW(P), on the other hand, is constructed using four applications
ofUP (or its inverse), and some quantumoperations which are independent from P. One of the distinct
properties of the operatorW(P) is that its unique +( 1) eigenstate π∣ ′ 〉P is a particular coherent encoding of the
stationary distributionπP of theMarkov chain. Exploiting this property, and using amodifiedKitaev phase
estimation algorithm [21], we can construct an approximate reflection operator (ARO), which reflects over the
state π∣ ′ 〉P . The speed-up achieved in the quantumRPS originates, in part, from the efficiency of the construction
of the AROoperator in terms of the number of applications of the diffusion unitary UP , relative to themixing
time of theMarkov chain as specified byP.

TheAROoperator above can then be used in search algorithms (e.g., as in [13, 14]), as well as in the decision-
making process of the RPS agent, which can be seen as aGrover-type [4] reflection process in the following
sense. Upon the system, initialized in the state π∣ ′ 〉P , one sequentially applies a ‘check’ operator, which adds a
relative phase of −( 1) to all basis states corresponding to actions, followed by the AROoperator, which reflects
over the coherent encoding of the stationary distribution. This, like in theGrover algorithm, induces a sequence
of rotations in a two-dimensional workspace, which, after a certain number of iterations, guarantees that the
system state has a constant overlapwith the state encoding the aforementioned tailed distribution. The second
component of the quantum speed-up lies in the number of these iterations, which inherits the quadratic
improvement that is characteristic toGrover’s algorithm.With this inmind, let us now give further details of the
building blocks of the quantumRPS.

4.1. The Szegedywalk operator
Aswe have argued previously, a unitary on anN-dimensional Hilbert space is not capable of representing all
transitions of an arbitraryMarkov chain over a network ofN clips. For this reason, the classical randomwalk for
a given transitionmatrix P that we have described in section 3.1 is realized by, in general,N unitaries

…U U, , ,N1 whereUi is associatedwith the ith columnof P. In the Szegedy-type approach to quantumwalks,
two copies,I andII, of anN-dimensionalHilbert space, i.e.,  = = Ndim( ) dim( )I II are used to
accommodate for all the required degrees of freedom. For a time-reversibleMarkov chainwe define the unitary
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walk operators UP andVP as

=U c c U a0 0 , (11 )P i i iI II I II

= ( )V c U c b0 0 , (11 )P i i iI II I II

where ∣ 〉 ∣ = …c i N{ 1, , }i I II formbases ofI II. The unitariesUi act on ∣ 〉 = ∣ 〉c0 I II 1 I II according to

∑=
=

U p c0 . (12)i

j

N

ji jI II

1
I II

In the context of quantumRPS agents, we assume that the underlying ergodicMarkov chain is time-
reversible, i.e., it satisfies detailed balance. Although the Szegedy-typewalk can be defined even if this is not the
case, onewould additionally require access to the time-reversed transitionmatrix7P* in such a situation.Here,
wewill present the construction in themost general terms, with the implicit understanding that for the RPS, the
unitaryVP can be obtained fromUP by swapping the registers prior to, and after the application ofUP.With the
operatorsUP andVP at hand, we can nowproceedwith the construction of the Szegedywalk operatorW(P),
which is implemented by reflecting over the spacesA andB, defined as

ψ= = = …{ }A U c i N a: span 0 1, , , (13 )i
A

P i I II

ψ= = = …{ }B V c i N b: span 0 1, , . (13 )i
B

P iI II

The generalizedwalk operator is then defined as

=W P B A( ) ref( )ref( ), (14)

where, for =X A B, ,wehave

∑ ψ ψ= −
=

×Xref( ) 2 . (15)
i

N

i
X

i
X

N N

1

The two operators Aref( ) and Bref( ) are constructed from the diffusion operators,UP andVP, alongwith
reflections over∣ 〉0 I, and∣ 〉0 II denotedD0,I andD0,II, respectively, as shown infigure 5. The unique +( 1)
eigenstate π∣ ′ 〉P of the Szegedywalk operatorW(P), which coherently encodes the stationary distributionπP on
the two registers, is given by

∑π π π′ = =U c U0 ( ) 0 . (16)P P P

i

P i i iI II I II

Figure 5. Szegedywalk operator. The circuit representations of the Szegedywalk operatorW(P) of equation (14), as well as the
reflections overA andB (see equation (13)) are shown in (a), (b), and (c), respectively. The reflection overA (B) is fully determined by
thewalk operatorUP (VP) and a reflection over∣ 〉0 , i.e., = ∣ 〉 − D 2 0 0 N0 .

7
Note that the asterisk on the time-reversed transitionmatrix =P p* ( )ij

* does not indicate complex conjugation, and its components are
given by π π=p p ( ) ( )ij ji P i P j* .
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4.2. TheARO
The next step in the design of a quantumRPS agent is the construction of the ARO from thewalk operatorW(P).
TheAROoperator is designed to approximate the (ideal) reflection operator

π π π′ = ′ ′ − ( )ref 2 . (17)P P P I,II

With the generalizedwalk operatorW(P) at hand, an approximate reflection over π∣ 〉P is obtained [14] by
implementing the phase detection operator WPD( ), amodification of Kitaev’s [21] phase estimation algorithm,
shown infigure 6. For this task, we add +n( 1) ancilla qubits, where n scales as δlog (1 )2 , where δ λ= − ∣ ∣1 2

is the spectral gap of theMarkov chain, i.e., λ2 is the second largest eigenvalue ofP.We employ WPD( ) and its
inverse operation, with an intermediate reflection over the ancilla state∣ … 〉00 0 Aux. This combination of
operations approximates the reflection over π∣ ′ 〉P from equation (17). An analysis of thefidelity of the reflection,
as a function of n, is given in [14]. The crucial feature of this construction is that the AROoperates based on a
number of calls toW(P) that scales as δÕ (1 )8, while the number of calls toP to prepare the stationary
distribution for the classical RPS scales as δÕ (1 ).

4.3.Quantumdeliberation
To output a distribution of actions that corresponds to the tail of the stationary distributionwith support only
over the (flagged) actions, the agent performs a quantumdeliberation process with elements reminiscent of
Grover-like steps [4, 14]. In the preparation phase, the agent first initializes the joint systemof registers I and II in
the state π∣ ′ 〉P from equation (16).While the preparation of this initial statemay be involved in general, in certain
cases, including the one presented in the appendix, it becomes straightforward. Consecutively, the agent
alternatingly applies the following two operations:

(i) Reflection over the actions:




∑= −
∈

c cref( ) 2 , (18)
i

i i
I

I

where denotes the set of (flagged) actions.

(ii) Approximate reflection over the state π∣ ′ 〉P .The sequence of operations above will, similarly to Grover’s
algorithm, increase the amplitude of the actionswith respect to non-action components in the state of the
system, whilemaintaining the relative weights of the action elements. This ensures that the actions are
output according to the correct distribution, as explained in [11].

After iterating these steps a number of times that is determined by the relative probability ϵ π= ∑ ∈ ( )i P i of
the actionswithin the stationary distribution, the agent samples, that is,measures in the clip basis of register I. If
a desired action is found, it is coupled out, otherwise the procedure is repeated [11]. The average number of
iterations of theGrover-like steps (i) and (ii) scales as ϵÕ (1 ), while the classical RPS agent requires ϵÕ (1 )
iterations on average.

Figure 6.Phase detection and approximate reflection. The circuit in (a) shows the phase detection operator WPD( ), which forms part
of Kitaev’s phase estimation scheme [21]. Registers I and II are complemented by +n( 1) ancilla qubits, here labeled
Aux 0, Aux 1,…, Aux n, which are all initialized in the state∣ 〉0 iAux = …i n( 0, , ), followed byHadamard gatesH iAux . The executions
of the(2 )m th power ofWk are then conditioned on the state of qubit Aux m, before anotherHadamard gate is performed. In (b) the
approximate reflection operator (ARO) is combined from the phase detection circuit WPD( ) and its inverse WPD( )†, with an
intermediate reflection over the ancilla state∣ … 〉00 0 Aux .

8
The tilde-Onotation designates that, for this analysis, we are ignoring factors which are contributing only logarithmically.
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4.4. Reflecting PS implementation for trapped ions
Finally, let us examine the possibility to implement the decision-making process of a quantumRPS agent in an
ion trap. Aswe have explained, two operators are required, the reflection over (flagged) actions, and the ARO.

The former can be generically achieved, for instance, by applying the detuned pulses corresponding to πU (2 )Y
S
i

g

or πU (2 )Y
S
i

g of the coherent controlization step (iv) specifically to those basis states corresponding to (flagged)
actions,flipping their sign. The latter, the ARO, is implemented starting from the probability unitaries, by
coherent controlization, in conjunctionwith a few fixed operations,D0,I,D0,II,D0,Aux andH.

Let us briefly describe the individual steps of this procedure. By coherently conditioning the probability
unitariesUi, the operationUP is obtained, fromwhich the pulse sequence forVP is obtained by swapping the
registers, which, in practice, corresponds to an exchange of the qubit/ion labels in the pulse sequence forUP. The
associated inverse operators follow immediately by settingθ θ→ −( )i i . The reflectionsD0,I,D0,II, andD0,Aux are
obtained as special cases of the reflection over the (flagged) actions. TheHadamard gate

= −( )H
1

2
1 1
1 1

, (19)

can be implemented up to a phase of −( i), that is, for the jth ionwe have the pulse sequence

π− = −π π π( ) ( ) ( )H U U U Ui ( ), (20)X Z X Z2 2 2j j

withUX as in equation (3), andUZ j
given by equation (4). The superfluous phase −( i) cancels naturally, since the

Hadamard gate is used four times for every ancilla in the ARO, twice each for the realization of WPD( ) and its
inverse, see figure 6. Finally, wemake again use of coherent controlization to construct the phase detection
operator WPD( ) and its inverse from thewalk operatorW(P). The possibility to add control to arbitrary
(unknown) unitaries hence provides amodular structure, that allows, in principle, for the generic
implementation of all operations that required for the decision-making of a quantumRPS agent. Themodular
use of coherent controlization in the design of the agent can thus be summarized by the following sequence:

θ θ θ⟶ … ⟶ ⟶−( ) ( )U U U W P, , , ( ) ARO.Y i j N P
CC

1 1
CC CC

That is, starting from single qubitY rotations, parameterized according to the stochasticmatrix P, we construct
the probability unitaries using coherent controlization. From the probability unitaries we then construct, again
by coherent controlization,UP andVP, which are used to assembleW(P). Finally, fromW(P) we construct the
AROoperator that is central to the quantumdeliberation steps, once again employing coherent controlization.

Aswe have argued, all individual operations of the quantumRPS are implementable with current
technology.While large network sizes, as well as small values of ϵ or δ, impose challenges for state-of-the-art
ionic implementations of the generic RPS decision-making process, these technological restrictionsmay be
overcome by the continuing development of scalable ion trap arrays. Nonetheless, special cases of the general
schemewe have laid out here are well within reach of experimental testing. In the appendix, we present such an
example for a quantumRPS agent based on an ECMusing two qubits, andwe give an explicit pulse
decomposition of its entire decision-making process, including an error analysis.

5. Conclusions

Wehave presented amodular architecture for the implementation of the deliberation process of PS agents in
systems of trapped ions.We have shown first how the probability unitaries, which are required for the emulation
of classical randomwalks, can be generically constructed using coherent controlization, and second how this
process allows for the implementation of a quantumRPS agent based on these probability unitaries. Amain
feature of our construction is itsmodular architecture, that is, any changes of the probabilities as part of the
learning process can be dealt with at the level of the implementation of the probability unitaries, whereas the rest
of the construction is unaltered. The generic construction relies only on elementary single-qubitY rotations and
coherent controlization, which allows for a straightforward assembly, as well as straightforward updating of the
probability unitaries.

This is an important advantage, if not a prerequisite, for the realization of a learning agent that is
continuously adjusting the probabilities underlying its deliberation process. Having to re-compute the entire
sequence of gates which need to be applied to realize the quantumRPS agent for any change of the underlying
Markov chainwould impose a large computational overhead on the agent, and significantly diminish the
advantage in speed that is provided by quantizing the RPS agent.

In addition to the generalmodular architecture, we have provided numerical simulations of an
implementation of simple RPS agents using trapped ions. As our investigation shows, proof-of-principle
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realizations of these agents are simple enough to be implementable in current experimental setups, while they
are sufficiently involved to demonstrate the quadratic speed-up.

Acknowledgments

Weare grateful to AdiMakmal,Markus Tiersch, Benjamin P Lanyon, DanielNigg andThomasMonz for
valuable discussions and comments. HJB acknowledges discussions withGavin Brennen at an early stage of this
project. This work has been supported in part by the Austrian Science Fund (FWF) through the SFB FoQuS:
F4012 and the TempletonWorldCharity fund grant TWCF0078/AB46.

Appendix. Rank-one reflecting PS in ion traps

Here, we provide an example for a quantumRPS agent sophisticated enough for the demonstration of a
quantum speed-up, whilst being sufficiently simple to allow an immediate implementation in readily available
ion trap setups, e.g., as described in [16, 17]. The appendix is structured as follows. In sectionA.1we first discuss
the simplified decision-making process for a quantumRPS agentwhose underlying ECMnetwork corresponds
to a rank-oneMarkov chain. To provide context, the role of these simple agents is then illustrated for the
invasion game in sectionA.2. In sectionA.3, we propose an ion trap implementation of the rank-one quantum
RPS agent, for whichwe supply the explicit overall pulse sequence.We accompany our proposal with an
appropriate errormodel, and corresponding numerical simulations, which are given in thefinal sectionA.4.

A.1. Rank-one reflecting PS
A special case of the RPS agents that we have considered in section 4 is obtained by considering the reflective
analog of so-called ‘two-layered’PS agents, where all transition are one-step transitions frompercepts to actions
[11]. Such agents have a very simple structure, yet were shown to be capable of learning to solve non-trivial
environmental tasks [15, 25]. In the RPS analog of two-layered PS agents [11], the associatedMarkov chains of
each percept-specific clip network are rank-one throughout the entire learning process of the agent. The
columns ofP are then all identical, and equal to the stationary distribution. The spectral gap is given by δ=1, and
theMarkov chainmixes in one step. Let us consider the consequences—radical simplifications—for the
construction of the RPS agent.

In the rank-one case, the probability unitariesUi for afixedP are all the same, sowemay remove the
subscript, write onlyU, but we keep inmind the distinction ofU andUP .Moreover, coherent controlization is
no longer necessary for the construction ofUP, sinceU is applied regardless of the state of the control register,

= ⊗U UP ( = ⊗ V UP ). As can be easily seen, the reflections Aref( ) and Bref( ) shown infigure 5 then
commute, acting locally on registers II and I, respectively, see figure A1 . Similarly, the coherent encoding of the
stationary distribution is now given by the product state π π π∣ ′〉 = ∣ 〉 ∣ 〉P P PI,II I II.

When assembling the phase detection operator WPD( ) and the ARO, see figure 6, the spectral gap of δ=1
means that (atmost) one ancilla qubit is required. Now, note that thewalk operatorW(P) for rank-onematrices
P, as shown infigure A1(a), isHermitean, and thus the entire circuit shown infigure A1(b) reduces to a single
application of the Szegedywalk operatorW(P). An exact reflection over π∣ 〉P can hence be performed by applying

=W P U D U( ) 0
† to either of the registers, seefigure A1(c).Without loss of generality we select register I, where

we drop the subscript indicating the register fromnowon, to perform all theGrover-like steps to output actions
according to the tailed stationary distribution, which entails the following steps.

Figure A1.Rank-one reflection operator. For rank-oneMarkov chains,UP andVP are local operations on registers II and I,
respectively. The Szegedywalk operatorW(P) that is shown in (a) hence factorizes into two independent applications of U D U0

†.
Since thewalk operator further becomesHermitean, =W W †, the single remaining ancilla is also redundant, the approximate
reflection circuit shown in (b) reduces to one application ofW(P) as shown in (c), and the reflection becomes exact.
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In the preparation stage, the state π∣ 〉P is initialized by one application ofU to the state∣ 〉0 . Then, the two
operators of theGrover-like process, i.e., the reflection over the action ref( ), and the reflection over π∣ 〉P , are
applied a prescribed number of times determined by ϵ, the relative probability of the actionswithin the
stationary distribution. Consecutively, the agentmeasures in the clip basis. If themeasurement provides an
action, it is coupled out, otherwise the agent iterates this procedure.

Before we continuewith the ionic implementation of the deliberation process, let us briefly examine an
example for a task—the invasion game—for which the agentmay employ its capabilities of learning and
decision-making.

A.2. The invasion game
As a simple example that can be solved by two-layered agents, let us discuss the invasion game, as considered in
[12]. In this game, the agent is taskedwith guarding a region of space from an adversarywho attempts to enter
the region through an array of entrances, see figure A2 . The agent’s goal is to prevent the adversary from
entering by blocking sites. In every round of the game, the adversary has three possiblemoves. Itmay attempt to
enter at its current location, ormove one door to the left, or one door to the right and attempt to enter through
one of these openings. The agent is rewarded if itmatches themove, thus blocking the adversary.

To emphasize the learning aspect of the game, we assume that the game starts with the adversary and the
agent located at the same entrance, and before the adversarymoves, it displays some signal that indicates which
way he intends tomove next. Thus, the set of percepts of the agent (the defender) is ↓ ← →{ , , }, which hint at
the possible subsequentmove of the attacker. The agent itself can also choose to remainwhere it is, move left, or
move right in an attempt to block, corresponding to the three action clips ↓c a( )1 , ←c a( )2 , and →c a( )3 accessible to
the agent.

For the RPS agents discussed previously, this simple gamemay be represented by associating a three clip
network to each of the percepts. Inwhat follows, we shall only focus on a network associated to one percept, say ‘
↓’, as everything will also hold for other subnetworks aswell, andwe shall drop the corresponding subscript for
ease of notation. For such two-layered settings there is a simple construction relating the probabilities of
outputting a particular action, and the structure of the underlying percept-specificMarkov chain. In particular,
the action probabilitiesπ π π π= ( , , )1 2 3 are realized by the stochasticmatrix where each column is the vector π.
The learning of the agentmanifests in the relative increases of probabilities corresponding to rewarded actions,
and examples for specific update rules can be found, e.g., in [12].

In basic two-layered settings in both the RPS and the analogous standard PS agentmodels, an action is
coupled out after exactly one diffusion step. In order to illustrate a speed-up in such a scenario, we therefore need
to consider some additional structure that increases the learning efficiency of the agent, but induces a longer
deliberation time. Such a structure can be provided by percept-specific flags, which correspond to rudimentary
emotion tags. Flags can be interpreted as the agent’s short termmemory, indicating favored actions. In other
words, absent flags indicate that a particular choice of action, for a given percept, was not rewarded in the
previous step, and should be avoided.More precisely, this structure works as follows. Initially, all the actions are
flagged. Then after an action has been coupled out, the flag is removed if the action is not rewarded. If the
unflagged action is selected again after encountering the same percept in a consecutive round, the deliberation
process is repeated until the deliberation results in aflagged action. In the case that the last remaining flag is
removed, which indicates a definite change in the setting of the environment, allflags are re-set.

This structure leads to great improvements in settings where the environment (e.g., the adversary in the
invasion game) changes its strategy, for instance, by permuting themeaning of the percepts [12]. In this case, if
the network is alreadywell-taught, the probability of outputting the correct action, once themeaning of percepts
has been altered, can be very low.Wewill be interested in precisely such a setting. Suppose the attacker pursues a

Figure A2. Invasion game. In the invasion game [12] the agent defends a region of space against an adversary that tries to enter
through a series of openings. To be rewarded, the agent is to prevent the adversary from entering, by blocking the passages, which can
be achieved if the adversary’s signals, ‘↓’, ‘←’, and ‘→’, indicating its nextmove, are interpreted correctly, and the agentmirrors the
adversary’smoves.
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consistent strategy for a prolonged period of time, and the agent has learnedwell. This entails that, for a given
percept, one of the values in the distributionπ π π π= ( , , )1 2 3 , say the third, ismuch larger than the others, e.g.,
π ϵ π π≪ = +3 1 2, and only the action clip corresponding toπ3 isflagged. Now, if the environment is to
suddenly change its strategy, no longer rewarding this action, theflag on this clip will disappear, whileflags on
other clips are introduced again. Subsequently, the agent is required to output the tail of the distribution πwith
support only over the actions corresponding toπ1 andπ2. However, for the classical RPSmodel, as well as for the
standard PSmodel, the average number of iterated diffusion steps required until one of the remainingflagged
actions is hit is ϵO (1 ), which can be exceptionally large, if the networkwaswell-taught. The quantumvariant of
the RPSwill then be quadratically faster, only requiring ϵO (1 ) steps. In any given round, the decision-making
process after encountering a percept can then be represented on a two-qubit-Hilbert space according to
table A1 .

Next, we discuss how a rank-one quantumRPS deliberation process based on this two-qubit system can be
represented using two trapped ions.

A.3. Rank-one quantumRPSwith trapped ions
To implement a rank-one quantumRPS agent for a setting such as the one described above, we construct the
two-qubit operationsU,D0 and ref( ), where the latter operation is now a reflection over flagged actions only,
from laser pulses on two trapped ions. Aswe have described in section 3.2, coherent controlizationmay be
employed to assemble the probability unitaryU, but in this simple case wemay resort to a simpler option. As
shown in table A1, we operate on a two-qubit-Hilbert space, but we only distinguish between three clips, such
that only two independent angles,θ1 andθ2, parameterize the probability unitaryU. A pulse sequence that
achieves this is given by

θ θ θ θ= −π π( ) ( )( ) ( ) ( )U U U U U, 2 2 , (A.1)X Z Z X1 2 2 2 1 22 1

where the collectiveX and single-qubitZ pulses are realized by individual laser pulses as described in section 3.1.
In terms of the probabilitiesπ1 andπ2, whichwe assume correspond to the twoflagged actions, the anglesθ1 and
θ2 are given by

θ π π= + aarccos , (A.2 )1 1 2

θ
π

π π
π π

= +
+ ≠

b
arccos , for 0,

0, otherwise.

(A.2 )2

1

1 2
1 2

⎧
⎨⎪
⎩⎪

For the implementation of ref( ), the reflection over the actions, one simply applies the single-qubitZ
operation

π = − −{ }U ( ) diag i, i, i, i . (A.3)Z1

Since the rank-one RPS operates solely on one register, the overall phase of the reflection is irrelevant, as long
as the relative sign between flagged actions and all other clips isflipped. Finally, we propose the following
implementation ofD0. A detunedMølmer–Sørensen pulse, see [19], is used to transfer the population of the
state∣ 〉gg , corresponding to∣ 〉00 , to an auxiliary state∣ ′ ′〉g g .While the state∣ 〉00 is hidden in this way, a single-
qubitZ pulse πU (2 )Z1

flips the sign of all other basis states, before a secondMølmer–Sørensen pulse returns the

population to∣ 〉00 .
Taken together, all operations for one iteration of theGrover-like reflectionmay hence be realized by 12 laser

pulses. In addition, four individual pulses are needed for the preparation of the initial state. At last, in the next
section, we investigate the performance of our ion-trap quantumRPS agent in a series of numerical simulations
that incorporate a suitable errormodel.

TableA1.Representation of a three-clip net-
work as two qubits. A two qubit system can
represent four clips, but as the desired network
only requires three, a redundancy is intro-
duced, e.g. in clip c3.

Clip Interpretation Two-qubit state

c1 Action ↓a ∣ 〉00

c2 Action ←a ∣ 〉01

c3 Action →a ∣ 〉10 ,∣ 〉11
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A.4. Numerical simulations
For the numerical simulations thatwe present in this final section, we consider imprecisions in the laser pulse
frequency or duration, resulting in varying angles for the laser pulses, as the primary sources of errors.Wemodel
such errors by randomly varying the angles for each pulse in the sequence according to aGaussian distribution
with standard deviation σ that is centered around the correct value.

In the simulations, we specify a pair of valuesπ > 01 andπ > 02 , such thatϵ π π= + < 11 2 , initialize the
corresponding state vector π θ θ∣ 〉 = ∣ 〉U ( , ) 0P 1 2 , and apply the combination of the reflections ref( ) and

U D U0
† a total ofm times, where ∈ m is chosen randomly from the interval ϵm[0, ], with ϵ= ⌈ ⌉ϵm 1 . The

clips are then randomly sampled according to the probability distribution

( )c U D U Uref 0 , (A.4)i
m

i

0
†

2⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭
which corresponds to ameasurement in the clip basis. If noflagged action is found, a newnumberm is
generated, and the procedure is iterated until aflagged action has been sampled. For every fixed set ofπ1 andπ2

the process is repeated for 104 runs to build up statistics, out of whichN1 (N2) result in an output of the action
clip c1 (c2), corresponding toπ1 (π2). Additionally, the overall numberNU of calls to the operatorUuntil a
flagged action is observed is recorded in each run.

ForNU the expected scaling as ϵ(1 ) is largely independent from the error parameter, as can be seen from
figure A3 , since this behavior is governed by the structure of the process, in particular, the upper bound ϵm for
the randomly chosen valuem. The integer steps bywhich ϵm increases, as ϵ(1 )decreases, also explain the step-
like pattern visible in the data offigure A3. That is, in such aGrover-like scheme, the probability to sample a
flagged action growsmonotonically with the number of iterations only up to somepoint, fromwhich on
additional applications of the reflectionswill alternatingly decrease and increase the probability. The average
number of repetitions set by the value ϵm , which corresponds to afixed interval of ϵ-values, is hence not optimal
for all ϵwithin that interval, which can be seen from the slanting of the data points, and their standard deviations,
in each of the ‘steps’ seen infigure A3(a). The errors partially cover this effect, as can be seen infigures A3(b)
and (c).

To illustrate the speed-up of the quantumRPS agentwith respect to a classical RPS agent, we directly
compare their performance in a simulationwithout errors, that is, forσ = 0, see figure A4 . The classical rank-
oneRPS agent is emulated here by running the rank-one quantumRPS deliberation process described in this
section for =ϵm 0 , that is, the state ∣ 〉U 0 is prepared, and a sample is taken, such that clip ci is obtainedwith

probability∣〈 ∣ 〉∣∣c U 0i
2. If noflagged action is obtained, the procedure is repeated.

What remains to be confirmed by the simulations is the output offlagged actions according to the tail of the
stationary distribution, as predicted in [11].We address this question in twoways. First, we evaluate the behavior
of a few selected illustrative pairs of probabilitiesπ1 andπ2 for increasing error parameters infigure A5 . As a
measure for the accuracy of the output, we use the statistical distance

∑π
π

π π
=

+
−

+=
( )D N

N

N N
˜, ˜ 1

2
, (A.5)

i

i i

1,2 1 2 1 2

Figure A3.Average number of calls toU. The results of the numerical simulation for the average number of calls to the probability
unitaryUuntil an action clip is hit are shown for error parametersσ π= 100,σ π= 20, andσ π= 10, in (a), (b), and (c),
respectively. Each blue dot corresponds to the average over 104 runs for a fixed valueϵ π π= +1 2. The vertical gray lines indicate three
standard deviations of themean values (over 100 runs each) in each direction. The solid purple curves show the bestfits that are linear
in ϵ(1 ), while the dashed red curves show the bestfits that are linear in ϵ(1 ), andwe have confirmed that the former fit the data
better than the latter.
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Figure A4.Comparison of classical and quantumRPS.Numerical simulations of classical (upper red data points) and quantumRPS
(lower blue data points) agents are shown. The data points are obtained as averages over 104 runs for each value of ϵ. The vertical green
and yellow bars indicate three standard deviations of themean values (over 100 runs each) in each direction.The fitted curves are
linear in ϵ(1 ) (top orange curve) and ϵ(1 ) (bottompurple curve), respectively.

Figure A5. Statistical distance to tailed distribution. The statistical distance πD N( ˜, ˜ ), see equation (A.5), of the output from the tailed
stationary distribution is plotted against thewidth σ of the error distribution, for values ϵ = 0.05 (solid) and 0.001 (dots), and ratios
π π = 91 2 , 4, and 2 (top to bottom). The dashed horizontal lines indicate the statistical distance to the uniformdistribution for each
pair π π{ , }1 2 , which is approachedwhen the errors dominate the behavior of the agent.

Figure A6.Output according to tailed distribution. The plots in (a)–(c) show the ratiosN N1 2 of the counts in the numerical
simulations in comparisonwith the corresponding ratiosπ π1 2 according to the (tailed) stationary distribution, for error parameters
σ π= 100,σ π= 20, andσ π= 10, respectively. The solid purple lines show the best linearfits, which shouldmatch the 45°
diagonal, shown as dashed gray line, in an ideal RPS agent. Each group of data points along a vertical line corresponds to fixed value of
π π1 2, but varying ϵ. The data used is in fact the same as that used forfigure A3.
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of the output distribution = + =N N N N˜ { ( )}i i1 2 1,2 and the tailed stationary distribution
π π π π= + =˜ { ( )}i i1 2 1,2. Infigure A6 we then compare the relative frequenciesN N1 2 withwhich the twoflagged
actionswere obtained to the corresponding ratiosπ π1 2 of the (tailed) stationary distribution, for a broad range
of valuesπ1 andπ2, and for the three error parameters previously chosen used in figure A3.

The data shown infigure A5 illustrates that large errors result in an output according to a uniform
distribution over the flagged actions. The farther the tailed stationary distribution is away from the uniform
distribution, the smaller the tolerance for errors. As the stationary distribution is updated throughout the
learning process the errors will thus cause a stronger deviation from the desired output distribution.

Tomake these statementsmoremeaningful in terms of learning agents, let us consider a specific example.
Let us assume that for afixed percept, the tailed stationary distributionmay be biased towards the action clip c1,
such that an ideal agent outputs this action in 90%of the cases9. To reach this goal, such an agent updates the
correspondingMarkov chain throughout the learning process, until the associated stationary distribution is
such thatπ π = 91 2 .Wemay then set an error threshold, by assuming that the agent is still considered to
succeed, if the action c1 is performed only 70%of the time, i.e., a statistical distance of 20%. Brief inspection of
the topmost solid curve infigure A5 reveals that for ϵ = 0.05 the threshold value corresponds roughly to the
largest error,σ π= 10, that we consider in figure A3. This, in turn, suggests amaximal number of =ϵm 5
coherent iterations of the reflections in theGrover-like process before ameasurement is performed, which
translates to 64 individual laser pulses as described in sectionA.3.

The initial analysis presented in this appendix suggests that our proposal for the implementation of two-
layered quantumRPS agentsmay be feasible, and be readily implemented in a laboratory as a proof-of-principle
demonstration of learning agents enhanced by employing quantumphysics.
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