

RB

PRACTICING RADIATION PROTECTION sharing the experience I new challenges

¹⁴C activity in atmospheric CO₂ and biological samples around the Nuclear Power Plant Krško, Slovenia

Ines KRAJCAR BRONIĆ¹, B. Obelić¹, J. Barešić¹, N. Horvatinčić¹, B. Breznik², A. Volčanšek², A. Sironić¹, D. Borković¹

¹Ruđer Bošković Institute, Zagreb, CROATIA ²Krško Nuclear Power Plant (NEK), Krško, SLOVENIA <u>krajcar@irb.hr</u>

Anthropogenic ¹⁴C

Carbon-14 can be produced in:

- ¹³C(n,gamma)¹⁴C and ¹⁷O(n,alpha)¹⁴C with <u>thermal neutrons</u>
- ¹⁵N(n,d)¹⁴C and ¹⁶O(n,³He)¹⁴C with <u>fast neutrons</u>

In PWR ¹⁴C is produced by neutron activation with oxygen ¹⁷O or nitrogen ¹⁴N in fuel, moderator and coolant of the reactor. It is emitted into the environment in the form of **CO**₂, which **enters the natural carbon cycle** in the vicinity of power stations. Through food chain (ingestion) it can contribute to the additional irradiation of the population, resulting thus to the enhancement of the effective dose of the population.

Figure 1. Sampling sites Krško and Dobova.

Atmospheric CO₂

Absorption of atmospheric CO₂ on saturated NaOH during 2-month periods forming Na₂CO₃ (shorter period exceptionally during the refueling process);

- A Na₂CO₃ reacts with HCl and obtained CO₂ is transformed to benzene;
- Measurement of ¹⁴C activity in liquid scintillation counter (LSC) *Quantulus 1220.*

Tray with saturated NaOH (location **B**)

Atmospheric CO₂

* measured at J. Stefan Inst., Ljubljana, Slovenia

¹⁴C activity in atmospheric CO_2 at locations **A** and **B** (maximal values), correlated with the highest ¹⁴C activity in monthly gaseous effluents released during the outage periods. Atmospheric ¹⁴C activity at the location **B** is always slightly higher than that at the location **A**.

The higher the ¹⁴C activity of gaseous effluent, the higher the atmospheric ¹⁴C activity.

¹⁴C in biological samples, spatial distribution

Summer sampling, after refueling in April

Seasonal average values

Dependence of the mean ¹⁴C activity (a¹⁴C) of samples from the inner circle sampled in the summer campaign (\blacksquare) and in the autumn sampling campaign (\bigcirc) on total released ¹⁴C activity in gaseous effluents, A¹⁴C.

Only years with the spring (April) outage periods .

to asses the radiation dose rate (by consumption/ingestion):

- activity conc. in foodstaffs, a¹⁴C [Bq/kgC]
- relevant consumption rates daily uptake of C by food:
 0.3 kg (ICRP, 1996)
- ICRP ingestion dose coefficients are needed e = 5.8×10^{-10} Sv/Bq

$\mathbf{E} = \mathbf{e} \times \mathbf{a}^{14}\mathbf{C} \times \mathbf{m} \times \mathbf{t}$

however, obtaining the consumption data for particular areas may not be simple;

luckily – the specific ${}^{14}C$ activity in all types of (terrestrial) foodstaff is the same

Comparison of annual effective doses due to ingestion of ¹⁴C for population in the close environment of NEK and at the control point Dobova. No significant difference is observed.

CONCLUSIONS

- Increase of ¹⁴C activity in atmospheric CO₂ and in plants was observed during and immediately after the refueling of the nuclear power plant
- Spatial distribution depends on the local wind rose and the distance from the exhaust of the plant ventilation system
- higher activities in plants collected after the spring refueling outage - intake of ¹⁴C from gaseous effluents during the vegetation period
- The maximum increase of total annual dose to local population due to the release of ¹⁴C from NEK in the years of spring refueling was estimated to be negligible and within the errors of the estimate