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Introduction

High statistics data from the current experiments push the particle
physics into the precision realm.

It is necessary to have a complete control over the radiative
corrections, starting with the one-loop contributions.

For one-loop contributions, the problem has been completely
solved, both analytically and numerically and applied in calculating
many experimentally interesting cross sections.

We raise the question: is the standard approach optimal?
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The standard approach to one-loop amplitudes

The calculation of the amplitude is performed in a reductionistic,
diagram-by-diagram, approach.

iM =
∑

diagram

diagram =
∑

coefficient×Master integral

The master integrals are universal scalar integrals and have been
tabulated.

The coefficients can be calculated in a number of different ways:
Passarino-Veltman, Integration-by-parts, Tensor reduction,
Unitarity cuts, . . .
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The standard approach: shortcomings

For large number of external particles, the number of contributing
diagrams grows rapidly  the calculation of the coefficients is a
very demanding and repetitive procedure  needs to be
automatized.

The final expression for the amplitude is usually much simpler than
what one would expect from the diagrams themselves  large
cancellations between different diagrams  the question: are these
laborious calculations really necessary?

In general, the reduction methods are analytically oriented,
avoiding numerical calculation as long as possible. However, to get
the cross section, one must numerically integrate the square of the
amplitude over the kinematical phase space.
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The numerical approach to one-loop amplitudes

The main problem of any numerical attempt at calculating
diagrams/amplitudes are singularities.

UV/IR divergent contributions have to be subtracted before the
numerical integration.

The remaining singularities, coming from the vanishing of the
propagators, are integrable but cause numerical instabilities if not
treated properly.
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The numerical approach: existing methods

The contour deformation method (Soper et al., Weinzierl et
al.) displaces the integration path into the complex plane
`→ ˜̀ = `+ iκ(`), avoiding the singularities.

Pros: numerical stability; direct 4D Monte Carlo integration,
regardless of the number of external particles.
Cons: one diagram at a time; the exact contour shape is highly
process dependent; works best with massless propagators.

The extrapolation method (de Doncker et al.) regulates the
integrable singularities by keeping the iε prescription finite,
then numerically calculates M(ε) and extrapolates to M(0).

Pros: numerical stability for finite ε; integration over Feynman
parameters - finite integration domain.
Cons: one diagram at a time; # of integrations = # of
external particles; high integration precision needed for
subsequent extrapolation.
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The numerical approach: a proposed method (I.)

We propose a completely numerical method that

calculates the sum of diagrams, i.e. the complete amplitude,
at once

integrates directly over the 4D loop-momenta

uses a process-independent way of avoiding the integrable
singularities by combining the contour deformation approach
with the finite iε approach

can handle massive propagators with ease
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The numerical approach: a proposed method (II.)

The starting point of our approach is the expression for the
complete amplitude in the form

iM =

∫
d4`

(2π)4

∑
diagrams

N (`)∏n
k=1

(
(`− rk)2 −m2

k + iε
) ,

where

N (`) is some well behaved function which we do not have to
specify in details

rk is the relative momentum between the two external lines

mk is the mass of the propagator

If the complete amplitude is UV/IR divergent, we assume the
appropriate subtraction has been made.
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The numerical approach: a proposed method (III.)

The position of the integrable singularities of a particular
propagator is determined by the condition

`0 = `k± ≡ rk0 ±
√

(~̀− ~rk)2 + m2
k − iε

Im `0

Re `0

rk0 +mk

`k+(~̀)

−iε

`k−(~̀) rk0 −mk

iε

~̀= ~rk

|~̀| → ∞
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The numerical approach: a proposed method (IV.)

The singularities of the complete amplitude integrand lie on the
same lines

Im `0

Re `0

R+

R−

In general, the integration path is pinched between the singularity
lines  no contour deformation is possible at the level of the
amplitude integrand.

10 / 38



Introduction The standard approach to one-loop amplitudes The numerical approach to one-loop amplitudes Results

The numerical approach: a proposed method (V.)

Idea: separate the two contributions to the amplitude as follows

iM = iMUV + iMIR,

with

iMUV =

∫
|~̀|≥Λ

d4`

(2π)4

∑
diagrams

N (`)∏n
k=1

(
(`− rk)2 −m2

k + iε
)

iMIR =

∫
|~̀|≤Λ

d4`

(2π)4

∑
diagrams

N (`)∏n
k=1

(
(`− rk)2 −m2

k + iε
)

where Λ is some conveniently chosen scale.
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The numerical approach: a proposed method (VI.)

If we choose Λ ' 2
√
s, we can perform the Wick rotation on the

UV part of the amplitude.

Im `0

Re `0

IR

−II
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The numerical approach: a proposed method (VII.)

The transformed integral for the UV part of the amplitude is

MUV =

∫∫∫
|~̀|>2

√
s

d3`

(2π)3

∫ +∞

−∞

d`0

2π

∑
diagrams

N (`)

D(`)

∣∣∣∣
`=(i`0,~̀)

and it

avoids the singularity lines

can be calculated with ε = 0

has Euclidean metric

monotonically vanishes as `→∞
can be numerically integrated by quadratures
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The numerical approach: a proposed method (VIII.)

In the remaining IR part of the amplitude, the singularities are
localized and we can close the contour with an infinite semicircle
and employ the Cauchy’s residue theorem to analytically integrate
over `0.

Re `0

Im `0
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The numerical approach: a proposed method (IX.)

After the `0 integration, the remaining integral for the IR part of
the amplitude is

MIR(ε) =

∫∫∫
|~̀|<2

√
s

d3`

(2π)3

∑
diagrams

n∑
k=1

N (`)

Dk(`)

∣∣∣∣
`=(`k−,~̀)

and it

is a 3D integral with finite integration domain

has to be calculated with ε > 0 in order to have numerical
stability

is suitable for an adaptive Monte Carlo integration
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The numerical approach: a proposed method (X.)

To summarize, in order to calculate the one-loop amplitude
completely numerically, we

integrate the sum of all diagrams over the 4D loop-momenta
keeping the iε finite

introduce the scale Λ separating the UV and the IR part of
the amplitude

perform Wick rotation on the UV part of the amplitude, put
ε→ 0 and integrate by quadratures

use residue theorem in the IR part of the amplitude and
perform a 3D Monte Carlo integration with finite ε

calculate MIR(ε) for different ε and extrapolate the result for
ε→ 0
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Implementation of the method

We apply our method to calculate the N-scalar and N-photon
amplitudes for various masses of the loop propagators.

For the IR part of the amplitude, we use 106 Monte Carlo points
for the complete amplitude and aim for a precision of 10−2.

We vary the ε in the range ε/s ∈ [10−4, 10−2].

We fit the MIR(ε) to a 2/1 Pade approximant a0+a1ε+a2ε
2

1+b1ε
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Results: N-scalar amplitudes

A general 2ϕ→ (N − 2)ϕ amplitude consists of (N − 1)! diagrams
shown below

p1

`− r1

p2

`− r2

p3

`− r3

p4

pn

`

We take the external fields ϕ to be massless, while we give the
internal fields φ mass m.

18 / 38



Introduction The standard approach to one-loop amplitudes The numerical approach to one-loop amplitudes Results

Results: 4-scalar amplitudes (I.)
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Results: 4-scalar amplitudes (II.)
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Results: 4-scalar amplitudes (III.)
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Results: 5-scalar amplitudes
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Results: 6-scalar amplitudes
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Results: N-photon amplitudes

A general 2γ → (N − 2)γ amplitude consists of (N − 1)! diagrams
shown below

p1

`− r1

p2

`− r2

p3

`− r3

p4

pn

`

The fermion mass is taken to be m.
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Results: 4-photon amplitudes −−++ (I.)
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Results: 4-photon amplitudes −−++ (II.)
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Results: 4-photon amplitudes −−++ (III.)
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Results: 4-photon amplitudes −+++ (I.)
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Results: 4-photon amplitudes −+++ (II.)
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Results: 4-photon amplitudes −+++ (III.)
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Results: 4-photon amplitudes + + ++ (I.)
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Results: 4-photon amplitudes + + ++ (II.)
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Results: 4-photon amplitudes + + ++ (III.)
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Results: 5-photon amplitudes

Due to Furry’s theorem, the odd-N-photon amplitudes have to
vanish.

In our approach we can verify this by checking that

MUV = − lim
ε→0
MIR(ε)

This is much more efficient than having to numerically integrate
the whole amplitude to zero.

Our calculations are in full agreement with Furry’s theorem.
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Results: 6-photon amplitudes

For the 6-photon case, we calculate the massless amplitudes which
were analytically calculated by Mastrolia et al.
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Discussion: scattering of integration points and
extrapolation
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Conclusions

We have devised a completely numerical approach to one-loop
amplitudes.

Our method combines previously developed contour
deformation and extrapolation methods.

The method is very general and process-independent.

All the results shown were generated by a mere 106 Monte
Carlo points per amplitude.

The method was implemented in Mathematica using
NIntegrate.

The question remains: How far could a more serious
implementation take us?
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Conclusions

Thanks for the attention!
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