
Harnessing CUDA Dynamic Parallelism
for the Solution of Sparse Linear Systems

José ALIAGA , a,1 Davor DAVIDOVIĆ b, Joaquín PÉREZ a, and
Enrique S. QUINTANA-ORTÍ a,

a Dpto. Ingeniería Ciencia de Computadores, Universidad Jaume I, Castellón (Spain)
b Institut Rud̄er Bošković, Centar za Informatiku i Računarstvo - CIR, Zagreb (Croatia)

Abstract. We leverage CUDA dynamic parallelism to reduce execution time while
significantly reducing energy consumption of the Conjugate Gradient (CG) method
for the iterative solution of sparse linear systems on graphics processing units
(GPUs). Our new implementation of this solver is launched from the CPU in the
form of a single “parent” CUDA kernel, which invokes other “child” CUDA ker-
nels. The CPU can then continue with other work while the execution of the solver
proceeds asynchronously on the GPU, or block until the execution is completed.
Our experiments on a server equipped with an Intel Core i7-3770K CPU and an
NVIDIA “Kepler” K20c GPU illustrate the benefits of the new CG solver.

Keywords. Graphics processing units (GPUs), CUDA dynamic parallelism, sparse
linear systems, iterative solvers, high performance, energy efficiency

Introduction

The discretization of partial differential equations (PDEs) often leads to large-scale lin-
ear systems of the form Ax = b, where the coefficient matrix A ∈ Rn×n is sparse, b ∈ Rn

contains the independent terms, and x ∈ Rn is the sought-after solution. For many prob-
lems (especially those associated with 3-D models), the size and complexity of these sys-
tems have turned iterative projection methods, based on Krylov subspaces, into a highly
competitive approach compared with direct methods [1].

The Conjugate Gradient (CG) method is one of the most efficient Krylov subspace-
based algorithms for the solution of sparse linear systems when the coefficient matrix is
symmetric positive definite (s.p.d.) [1]. Furthermore, the structure and numerical kernels
arising in this iterative solver are representative of a wide variety of efficient solvers for
other specialized types of sparse linear systems.

When the target platform is a heterogeneous server consisting of a multicore pro-
cessor plus a graphics processing unit (GPU), a conventional implementation of the CG
method completely relies on the GPU for the computations, and leaves the general-
purpose multicore processor (CPU) in charge of controlling the GPU only. The reason is
that this type of iterative solvers is composed of fine-grain kernels, which exhibit a low
ratio between computation and data accesses (in general, O(1)). In this scenario, com-

1Corresponding Author: Dpto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I, 12.071–
Castellón (Spain); E-mail: aliaga@icc.uji.es.

municating data via a slow PCI-e bus mostly blurs the benefits of a CPU-GPU collabora-
tion. In addition, in [2] we demonstrated the negative effect of CPU-GPU synchroniza-
tion when the body of the iterative loop in the CG solver is implemented via calls to the
GPU kernels, e.g. in CUBLAS/cuSPARSE. The cause is that, in such implementation,
the CPU thread in control of the GPU repeatedly invokes fine-grain CUDA kernels of
low cost and short duration, resulting in continuous stream of kernel calls that prevents
the CPU from entering an energy-efficient C-state.

Our solution to alleviate these performance and energy overheads in [2] was to fuse
(i.e. merge) CUDA kernels in order to decrease their number, thus reducing the volume of
CPU-GPU synchronizations. The main contribution of this paper lies in the investigation
of dynamic parallelism (DP) [3], as a complementary/alternative technique to achieve the
same effect with a more reduced programming effort. Concretely, this work provides a
practical demonstration of the benefits of DP on a solver like the CG method, representa-
tive of many other sparse linear system solvers as well as, in general, fine-grain computa-
tions. Our experimental evaluation of this algorithm on a platform equipped with an Intel
Xeon processor and an NVIDIA “Kepler” GPU reports savings in both execution time
and energy consumption, respectively of 3.65% and 14.23% on average, for a collection
of problems.

DP is a recent technology introduced recently in the CUDA programming model,
and is available for NVIDIA devices with compute capability 3.5 or higher. With DP, a
child CUDA kernel can be called from within a parent CUDA kernel and then optionally
synchronized on the completion of that child CUDA kernel. Some research on DP pur-
sue the implementation of clustering and graph algorithms on GPUs [4,5,6], and a more
complete analysis of unstructured applications on GPUs appears in [7]. This technology
is also included as a compiler technique [8] to handle nested parallelism in GPU appli-
cations. DP is also used to avoid deadlocks in intra-GPU synchronization, reducing the
energy consumption of the system [9].

The rest of the paper is structured as follows. In section 1 we briefly review the CG
method and the fusion-based approach proposed in our earlier work. In section 2 we
present the changes required to a standard implementation of the CG solver in order to
efficiently exploit DP. In section 3 we evaluate the dynamic(-parallel) implementation of
the new solver, and in section 4 we summarize the insights gained from our study.

1. Fusions in the CG method

1.1. Overview

Figure 1 offers an algorithmic description of the CG solver. Concerning the computa-
tional effort of the method, in practice the cost of the iteration loop is dominated by the
sparse matrix-vector multiplication (SPMV) involving A. In particular, given a sparse
matrix A with nz nonzero entries, the cost of the SPMV in O1 is roughly 2nz floating-
point arithmetic operations (flops), while the vector operations in the loop body (O2, O3,
O4, O5 and O8) require O(n) flops each.

The dependencies between the operations in the body of the iterative loop of the CG
method dictate a partial order for their execution. Specifically, at the (j+1)-th iteration,

Initialize r0, p0,x0,σ0,τ0; j := 0
while (τ j > τmax) Loop for iterative CG solver

v j := Ap j O1. SPMV
α j := σ j/pT

j v j O2. DOT

x j+1 := x j +α j p j O3. AXPY

r j+1 := r j−α jv j O4. AXPY

ζ j := rT
j+1r j+1 O5. DOT product

β j := ζ j/σ j O6. Scalar op
σ j+1 := ζ j O7. Scalar op
p j+1 := z j +β j p j O8. XPAY (AXPY-like)
τ j+1 :=‖ r j+1 ‖2=

√
ζ j O9. Vector 2-norm (in practice, sqrt)

j := j+1
endwhile

Figure 1. Algorithmic formulation of the CG method. In general, we use Greek letters for scalars, lowercase
for vectors and uppercase for matrices. Here, τmax is an upper bound on the relative residual for the computed
approximation to the solution.

. . .→ O8→
(j+1)-th iteration

O1→ O2→ O4→ O5→ O6→ O7→ O9→ O1→ . . .

must be computed in that order, but O3 and O8 can be computed any time once O2 and
O6 are respectively available.

1.2. Merging kernels in CG

In [2], we exploited that two CUDA kernels related by a RAW (read-after-write) depen-
dency [10], dictated by a vector v that is an output of/input to the first/second kernel,
can be merged if (i) both kernels apply the same mapping of threads to the elements of
v shared (exchanged) via registers; (ii) both kernels apply the same mapping of thread
blocks to the vector elements shared (exchanged) via shared memory; and (iii) a global
barrier is not necessary between the two kernels.

In addition, in [2] we developed a tailored implementation of the kernel DOT that
consisted of two stages, say DOTM

ini and DOTM
fin, so that the first stage can be efficiently

merged with a prior dependent kernel. In particular, the first stage was implemented as a
GPU kernel which performs the costly element-wise products and subsequent reduction
within a thread block, producing a partial result in the form of a temporary vector with
one entry per block. This was followed by a routine DOTM

fin which completed the opera-
tion by repeatedly reducing the contents of this vector into a single scalar via a sequence
of calls to GPU kernels; see [2] for details.

Figure 2 illustrates the fusions that were derived in our previous work for the CG
solver when SPMV is based on the CSR scalar or ELL formats [11]. The node col-
ors distinguish between three different operation types: SPMV, DOT and AXPY-like
(AXPY/XPAY). As argued earlier, each DOT operation (O2 and O5) is divided into two
stages (a or b, corresponding respectively to kernel DOTM

ini and routine DOTM
fin) in order

to facilitate the fusion of the first one with a previous kernel. The fusions are encircled by
thick lines and designate three macro-kernels: {O1-O2a}, {O3-O4-O5a}, {O5b-O6-
O7-O9}; plus two single-node (macro-)kernels: {O2b} and {O8}. The arrowless lines
connect independent kernels (e.g., O3 and O4) and the arrows identify dependencies
inside macro-kernels (e.g., from O1 to O2a) and between them (e.g., from {O1-O2a}

O1 O2a O2b O3 O4 O5a O5b O8O(6+7+9)

Figure 2. Fusions for the CG solver with SPMV based on the scalar CSR or ELL format.

to {O2b}). When SPMV employs the CSR vector format [11] the fusion graph differs
from that in Figure 2 in that O1 and O2a cannot be merged.

This specialized formulation of the CG solver merged multiple numerical opera-
tions, reducing the number of synchronizations and data transfers, in turn yielding a more
efficient hardware utilization. The experimental evaluation with a varied benchmark of
linear systems from the University of Florida Matrix Collection and the 3D Laplace prob-
lem, using a server equipped with an Intel Core i7-3770K processor and an NVIDIA
GeForce GTX480 GPU, revealed remarkable CPU energy savings and minor improve-
ments on runtime, with respect to a plain implementation of the CG method based on the
use of CUBLAS kernels and the CUDA polling synchronization mode.

2. Exploiting DP to Enhance CG

In principle, kernel fusion and DP are orthogonal techniques that can be applied inde-
pendently or in combination. As described next, our dynamic version of CG integrates
specialized implementations of DOT, AXPY and XPAY, which are more efficient than their
“fusible” counterparts previously developed for the merge version.

2.1. Two-stage dynamic DOT

Our previous implementation of DOT divided this operation into two stages, DOTM
ini and

DOTM
fin, with the former one implemented as a CUDA kernel and the second being a rou-

tine that consists of a loop which invoked a CUDA kernel per iteration. The problem
with this approach is that, if integrated with DP, DOTM

fin involves a sequence of nested
calls to CUDA kernels from inside the GPU and, in practice, incurs a large overhead. In
order to avoid this negative effect, we redesigned DOT as a two-stage procedure, DOTD

ini
and DOTD

fin, but with each stage implemented as a single CUDA kernel. One main differ-
ence between DOTD

ini and DOTM
ini is that the former cannot be merged with other kernels.

However, we note that the “dynamic” version of the first stage is intended to be used in
combination with DP and, therefore, reducing the number of kernels is no longer a strong
urge (though it may still be convenient).

Figures 3 and 4 illustrate the implementation of the GPU kernels DOTD
ini and DOTD

fin,
respectively. There, n specifies the length of the vectors, x and y are the vectors involved
in the reduction. The first kernel is invoked as

DOT_D_ini <<NumBlk, BlkSize, sizeof(float)*BlkSize>> (n, x, y, valpha);

and reduces the two vectors into NumBlk=256 partial results, stored upon completion in
valpha. We note that, for performance reasons, this kernel spawns GrdSize = NumBlk
· BlkSize= 256 ·192 threads, and each thread, processes two entries (one at threadId
and a second at threadId+BlkSize) per iteration and per chunk of 2·GrdSize elements

1 _ _ g l o b a l _ _ v o i d DOT_D_ini(i n t n, f l o a t *x, f l o a t *y, f l o a t *valpha) {
2 e x t e r n _ _ s h a r e d _ _ f l o a t vtmp [];
3
4 // Each thread loads two elements from each chunk
5 // from global to shared memory
6 u n s i g n e d i n t tid = threadIdx.x;
7 u n s i g n e d i n t NumBlk = gridDim.x; // = 256
8 u n s i g n e d i n t BlkSize = blockDim.x; // = 192
9 u n s i g n e d i n t Chunk = 2 * NumBlk * BlkSize;

10 u n s i g n e d i n t i = blockIdx.x * (2 * BlkSize) + tid;
11 v o l a t i l e f l o a t *vtmp2 = vtmp;
12
13 // Reduce from n to NumBlk * BlkSize elements. Each thread
14 // operates with two elements of each chunk
15 vtmp[tid] = 0;
16 w h i l e (i < n) {
17 vtmp[tid] += x[i] * y[i];
18 vtmp[tid] += (i+BlkSize < n) ? (x[i+BlkSize] * y[i+BlkSize]): 0;
19 i += Chunk;
20 }
21 _ _ s y n c t h r e a d s ();
22
23 // Reduce from BlkSize =192 elements to 96, 48, 24, 12, 6, 3 and 1
24 i f (tid < 96) { vtmp[tid] += vtmp[tid + 96]; } _ _ s y n c t h r e a d s ();
25 i f (tid < 48) { vtmp[tid] += vtmp[tid + 48]; } _ _ s y n c t h r e a d s ();
26 i f (tid < 24) {
27 vtmp2[tid] += vtmp2[tid + 24]; vtmp2[tid] += vtmp2[tid + 12];
28 vtmp2[tid] += vtmp2[tid + 6]; vtmp2[tid] += vtmp2[tid + 3];
29 }
30
31 // Write result for this block to global mem
32 i f (tid == 0) valpha[blockIdx.x] = vtmp [0] + vtmp [1] + vtmp [2];
33 }

Figure 3. Implementation of kernel DOTD
ini.

of the vectors, yielding a coalesced access to their entries; see Figure 5. The subsequent
invocation to kernel

DOT_D_fin <<NumBlk2, BlkSize2, sizeof(float)*BlkSize2>> (valpha);

then produces the sought-after scalar result into the first component of this vector. The
grid and block dimensions NumBlk = 256, BlkSize = 192, NumBlk2 = 1, BlkSize2 =
NumBlk = 256 passed for the kernel launches were experimentally determined, except
for BlkSize which was set to the number of CUDA cores per SMX (streaming multi-
processor).

2.2. Two-stage dynamic AXPY/XPAY

For performance reasons, the AXPY and XPAY have been also reorganized in the dynamic
version of CG so that each CUDA thread operates with a pair of elements of each vectors.
Figure 6 offers the code for the former, with the second operation being implemented in
an analogous manner. There, n specifies the length of the vectors, x and y are the vectors
involved in the operation, and alpha is the scalar. The call to this kernel is done as

1 _ _ g l o b a l _ _ v o i d DOT_D_fin(f l o a t *valpha) {
2 e x t e r n _ _ s h a r e d _ _ f l o a t vtmp [];
3
4 // Each thread loads one element from global to shared mem
5 u n s i g n e d i n t tid = threadIdx.x;
6 v o l a t i l e f l o a t *vtmp2 = vtmp;
7
8 vtmp[tid] = valpha[tid]; _ _ s y n c t h r e a d s ();
9

10 // Reduce from 256 elements to 128, 64, 32, 16, 8, 2 and 1
11 i f (tid < 128) { vtmp[tid] += vtmp[tid + 128]; } _ _ s y n c t h r e a d s ();
12 i f (tid < 64) { vtmp[tid] += vtmp[tid + 64]; } _ _ s y n c t h r e a d s ();
13 i f (tid < 32) {
14 vtmp2[tid] += vtmp2[tid + 32]; vtmp2[tid] += vtmp2[tid + 16];
15 vtmp2[tid] += vtmp2[tid + 8]; vtmp2[tid] += vtmp2[tid + 4];
16 vtmp2[tid] += vtmp2[tid + 2]; vtmp2[tid] += vtmp2[tid + 1];
17 }
18
19 // Write result for this block to global mem
20 i f (tid == 0) valpha[blockIdx.x] = *vtmp;
21 }

Figure 4. Implementation of kernel DOTD
fin.

AXPY_D <<NumBlk3, BlkSize3/2>> (n, alpha, x, y);

with NumBlk3=dn/BlkSize3e and BlkSize3 = 256. The same values are also used for
the dynamic implementation of XPAY.

Finally, our dynamic CG solver merges O3 and O4 into a single macro-kernel. cre-
ating another macro-kernel with the scalar operations (O6, O7 and O9) and the second
stage of the last DOT (O5b)

3. Experimental Evaluation

We next expose the performance and energy of the dynamic CG solver compared with
our previous implementations [2]. For this purpose, we employ several sparse matrices
from the University of Florida Matrix Collection (UFMC)2 and a difference discretiza-
tion of the 3D Laplace problem; see Table 1. For all cases, the solution vector was chosen
to have all entries equal 1, and the independent vector was set to b = Ax. The iterative
solvers were initialized with the starting guess x0 = 0. All experiments were done using
IEEE single precision arithmetic. While the use of double precision arithmetic is in gen-
eral mandatory for the solution of sparse linear systems, the use of mixed single/double-
precision in combination with iterative refinement leads to improved execution time and
energy consumption when the target platform is a GPU accelerator.

The target architecture is a Linux server (CentOS release 6.2 with kernel 2.6.32 with
CUDA v5.5.0) equipped with a single Intel Core i7-3770K CPU (3.5 GHz, four cores)
and 16 Gbytes of DDR3 RAM, connected via a PCI-e 2.0 bus to an NVIDIA “Kepler”

2http://www.cise.ufl.edu/research/sparse/matrices/

Figure 5. Implementation of DOTD
ini.

1 _ _ g l o b a l _ _ v o i d AXPY_D(i n t n, f l o a t *alpha , f l o a t *x, f l o a t *y) {
2 u n s i g n e d i n t NumBlk = gridDim.x;
3 u n s i g n e d i n t BlkSize = blockDim.x;
4 u n s i g n e d i n t i = blockIdx.x * (2 * BlkSize) + threadIdx.x;
5 u n s i g n e d i n t Chunk = 2 * NumBlk * BlkSize;
6
7 w h i l e (i < n) {
8 y[i] += *alfa * x[i];
9 i f (i + BlkSize < n) y[i + BlkSize] += *alfa * x[i + BlkSize];

10 i += Chunk;
11 }
12 }

Figure 6. Implementation of kernel AXPYD.

K20c GPU (compute capability 3.5, 706 MHz, 2,496 CUDA cores) with 5 GB of DDR5
RAM integrated into the accelerator board. Power was collected using a National Instru-
ments data acquisition system, composed of the NI9205 module and the NIcDAQ-9178
chassis, and plugged to the lines that connect the power supply unit with motherboard
and GPU.

Our experimental evaluation included four implementations of the CG solver:

• CUBLASL is a plain version that relies on CUBLAS kernels from the legacy pro-
gramming interface of this library, combined with ad-hoc implementations of
SPMV. In this version, one or more scalars may be transferred between the main
memory and the GPU memory address space each time a kernel is invoked and/or

Matrix Acronym nz n nz/n

BMWCRA1_1 bmw 10,641,602 148,770 71.53
CRANKSEG_2 crank 14,148,858 63,838 221.63
F1 F1 26,837,113 343,791 78.06
INLINE_1 inline 38,816,170 503,712 77.06
LDOOR ldoor 42,493,817 952,203 44.62
AUDIKW_1 audi 77,651,847 943,645 82.28
A252 A252 111,640,032 16,003,001 6.94

Table 1. Description and properties of the test matrices from the UFMC and the 3D Laplace problem.

CUDA mode Implementation Time Energy
Min Max Avg. Min Max Avg.

Polling

CUBLASL 0.00 0.00 0.00 0.00 0.00 0.00
CUDA 0.08 0.41 0.21 0.23 7.94 1.79
MERGE -0.89 -3.07 -1.71 -1.42 5.03 0.62
DYNAMIC -1.54 -4.76 -3.65 -1.17 -3.32 -2.58

Blocking

CUBLASL 0.62 12.88 7.15 -3.30 -13.48 -10.85
CUDA 0.78 9.39 4.74 -4.45 -12.62 -10.70
MERGE -0.59 -1.70 -1.06 -8.31 -13.96 -12.47
DYNAMIC -1.54 -4.71 -3.65 -13.73 -14.50 -14.23

Table 2. Minimum, maximum and average variations (in %) of execution time and energy consumption for
CG with respect to the baseline.

its execution is completed.
• CUDA replaces the CUBLAS (vector) kernels in the previous version by our ad-

hoc implementations.
• MERGE applies the fusions described in Section 1, including the two-stage DOTM

ini
+DOTM

fin.
• DYNAMIC exploits DP including the two-stage dynamic implementations of DOT,

AXPY and XPAY introduced in Section 2 and merging O3 and O4 into a single
macro-kernel.

Furthermore, we execute these configurations under the CUDA polling and blocking
synchronization modes. We evaluated three different implementations of SPMV, scalar
CSR, vector CSR and ELL [11], but only report results for the second one (vector CSR)
which was experimentally determined to be the best option for most of the matrix cases.

Figure 7 reports the time and energy variations of the CUDA, MERGE and DYNAMIC
versions of the CG solver with respect to CUBLASL executed in the CUDA polling syn-
chronization mode (baseline case) for each matrix case. Table 2 summarizes these re-
sults via minimum, maximum and average numbers (with the former two corresponding
to the largest and smallest in absolute value).

Let us analyze first the CUBLASL implementation executed in blocking mode. Com-
pared with the same routine executed in polling mode (i.e, the baseline case), we observe
an appealing reduction of the energy consumption, -10.85% on average, though it comes
at the cost of a noticeable increase in the execution time, around 7.15% on average. The
CUDA version of the solver executed in polling mode incurs a very small overhead in ex-
ecution time with respect to the baseline (0.21% on average) and a slightly larger one in

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n
w

.r.
t.

C
U

B
LA

S
L

po
lli

ng
 (i

n
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n
w

.r.
t.

C
U

B
LA

S
L

po
lli

ng
 (i

n
%

)

-15

-10

-5

0

5

10
CG Energy Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n
w

.r.
t.

C
U

B
LA

S
L

po
lli

ng
 (i

n
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n
w

.r.
t.

C
U

B
LA

S
L

po
lli

ng
 (i

n
%

)

-15

-10

-5

0

5

10
CG Energy Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

Figure 7. Variations (in %) of execution time and energy consumption of the CG solver (left and right, respec-
tively) with respect to the baseline.

energy (1.79% on average). Moreover, when executed in blocking mode, the CUBLASL
and CUDA implementations offer a close behavior, with a considerable increase in exe-
cution time that neutralizes the benefits of the notable reduction in energy. The MERGE

variant of the solver combines the speed of a polling execution with the energy efficiency
of a blocking one. In particular, this variant executed in blocking mode slightly reduces
the average execution time (by -1.06%) while extracting much of the energy advantages
of this mode (reduction of -12.47% on average). Finally, the DYNAMIC implementation
outperforms all other variants, including MERGE, obtaining the largest reduction in both
time and energy (respectively, -3.65% and -14.23% on average). In addition, the DY-
NAMIC version of the solver does not require the complex reorganization of the code
entailed by the MERGE case.

4. Concluding Remarks

We have presented a CUDA implementation of the CG method for the solution of sparse
linear systems that exploits DP as means to produce a more energy efficient solution.
With this new implementation, the CPU invokes a single “parent” CUDA kernel in order
to launch the CG solver on the GPU, and can then proceed asynchronously to perform
other work or be simply put to sleep via the CUDA blocking synchronization mode and
the CPU C-states. The GPU is then in charge of executing the complete solver, with the
parent kernel calling other “child” CUDA kernels to perform specific parts of the job.
In order to improve efficiency, we have redesigned the implementation of the key vector
operations arising in CG, concretely the dot product and axpy-like operations, into two-
stage CUDA kernels. This is particular important for the former operation in order to

avoid that the exploitation of DP results in a hierarchy of “nested” invocations to other
CUDA kernels (i.e., a multilevel structure of parents and children).

The experimentation on a platform with a recent Intel Core i7-3770K CPU and
an NVIDIA “Kepler” K20c GPU reports the superiority of the dynamic CG solver,
which outperforms our previous fusion-based implementation, in both execution time
and energy consumption. From the programming point of view, the dynamic version
also presents the important advantage of being more modular, as it does not require the
major reorganization of CG, via kernel fusions, that were entailed by the fusion-based
implementation.

We have applied similar techniques to iterative solvers based on BiCG and
BiCGStab, as well as variants of these and CG that include a simple, Jacobi-based pre-
conditioner, with similar benefits on performance and energy efficiency. The gains that
can be obtained with DP heavily depend on the granularity of the CUDA kernels and,
as the complexity of the preconditioner grows, we can expect that the positive impact of
DP decreases.

Acknowledgments

This research has been supported by EU under projects EU FP7 318793 (Exa2Green),
EU FEDER, the COST Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS), and the project TIN2011-23283 of the Ministerio de Economía y
Competitividad.

References

[1] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.
[2] J. I. Aliaga, J. Pérez, E. S. Quintana-Ortí, and H. Anzt. Reformulated Conjugate Gradient for the Energy-

Aware Solution of Linear Systems on GPUs. In 42nd Int. Conference on Parallel Processing (ICPP),
pages 320–329, 2013.

[3] NVIDIA Coorporation. Dynamic parallelism in CUDA. http://developer.download.nvidia.
com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in\
_CUDA.pdf, February 2015.

[4] Jeffrey DiMarco and Michela Taufer. Performance impact of dynamic parallelism on different clustering
algorithms. volume 8752, pages 87520E–87520E–8, 2013.

[5] Fei Wang, Jianqiang Dong, and Bo Yuan. Graph-based substructure pattern mining using cuda dynamic
parallelism. In IDEAL-2013, volume 8206 of Lecture Notes in Computer Science, pages 342–349.
Springer Berlin Heidelberg, 2013.

[6] Jianqiang Dong, Fei Wang, and Bo Yuan. Accelerating birch for clustering large scale streaming data
using cuda dynamic parallelism. In IDEAL-2013, volume 8206 of Lecture Notes in Computer Science,
pages 409–416. Springer Berlin Heidelberg, 2013.

[7] Jin Wang and Sudhakar Yalamanchili. Characterization and analysis of dynamic parallelism in unstruc-
tured gpu applications. In 2014 IEEE International Symposium on Workload Characterization, 2014.

[8] Yi Yang, Chao Li, and Huiyang Zhou. Cuda-np: Realizing nested thread-level parallelism in gpgpu
applications. Journal of Computer Science and Technology, 30(1):3–19, 2015.

[9] L. Oden, B. Klenk, and H. Froning. Energy-efficient stencil computations on distributed gpus using
dynamic parallelism and gpu-controlled communication. In Energy Efficient Supercomputing Workshop
(E2SC), 2014, pages 31–40, 2014.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Pub., San Francisco, 2003.

[11] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, NVIDIA Corp., December 2008.

