
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 193.198.162.14

This content was downloaded on 28/04/2016 at 12:56

Please note that terms and conditions apply.

Multiscale approaches to protein-mediated interactions between membranes—relating

microscopic and macroscopic dynamics in radially growing adhesions

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 083016

(http://iopscience.iop.org/1367-2630/17/8/083016)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/8
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 083016 doi:10.1088/1367-2630/17/8/083016

PAPER

Multiscale approaches to protein-mediated interactions between
membranes—relating microscopic andmacroscopic dynamics in
radially growing adhesions

TimoBihr1,2, Udo Seifert2 andAna-Suncǎna Smith1,3
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Abstract
Macromolecular complexation leading to coupling of two ormore cellularmembranes is a crucial
step in a number of biological functions of the cell.While othermechanismsmay also play a role,
adhesion always involves thefluctuations of deformablemembranes, the diffusion of proteins and the
molecular binding and unbinding. Because these stochastic processes couple over amultitude of time
and length scales, theoreticalmodeling ofmembrane adhesion has been amajor challenge.Herewe
present an effectiveMonteCarlo schemewithinwhich the effects of themembrane are integrated into
local rates formolecular recognition. The latter step in theMonte Carlo approach enables us to
simulate the nucleation and growth of adhesion domainswithin a systemof the size of a cell for tens of
secondswithout loss of accuracy, as shown by comparison to 106 timesmore expensive Langevin
simulations. To perform this validation, the Langevin approachwas augmented to simulate diffusion
of proteins explicitly, together with reaction kinetics andmembrane dynamics.We use theMonte
Carlo scheme to gain deeper insight to the experimentally observed radial growth ofmicron sized
adhesion domains, and connect the effective rate withwhich the domain is growing to the underlying
microscopic events.We thus demonstrate that our technique yields detailed information about
protein transport and complexation inmembranes, which is a fundamental step toward under-
standing evenmore complexmembrane interactions in the cellular context.

1. Introduction

At the origin ofmany biological phenomena is cell adhesion promoted by the formation ofmacromolecular
ensembles. Despite intensive research over the last two decades [1–13] and the pressing biological significance
[14–18], the growth of these structures inmembranes is still poorly understood. Formation of adhesions
involves a number of stochastic events occurring on different length and timescales. Theminimal system
involves protein diffusion and formation of bonds, which occurs on characteristic times of 10 105 2−− − s. These
two processes couple to fastmembrane fluctuations (10 109 6−− − s). Several length scales are also involved—
fromnanometer separations necessary formolecular recognition to themicron-sized objects that are being
grown.Moreover,molecular complexation inducesmembrane deformations which in turn promotes long-
range cooperative effects. If all these elements are considered, difficulties inmodeling the dynamics ofmacro-
molecular scaffolding come as no surprise.

Early attempts tomodel the formation ofmacromolecular structures were related to interactions of protein-
decoratedmembranes with underlying substrates containing the appropriate binding partners in the adhesion
process. Thereby, analogies with classical theories of growth (Stefan problem and kinetically limited
aggregation)were explored [19–22].Other approaches focused on the role of themembranefluctuations
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[23, 24]. Furthermore, a number of scaling lawswere suggested after the analysis of the relationship between the
various involved stochastic processes[25].However, only limited experimental confirmation has been obtained
to support these arguments [26, 27].

Later efforts concentrated on the construction of accurate simulation schemes that treat themembrane
fluctuations explicitly. First, dynamics of domain formationwas studied byMonte Carlo approaches where
furthermore the diffusionwas treated by a randomwalk and complexation of proteins was explored through
Metropolis rates [5, 28, 29]. Concomitantly, Langevin simulations [4, 30–33]were developed. In earlier
attempts[4, 30, 31], binding and unbindingwas not considered, while later efforts involved rates that are
functions of the instantaneousmembrane profile [32, 33]. The problemwith all thesemethods is that only
micron-sized systems could be studied for about amillisecond. Consequently, long time-scale dynamics
associatedwith the formation of largermacromolecular structures, such as radially growing domains and
diffusion-limited aggregation, remained out of reach. To address these biologically relevant issues, significant
efforts went toward developing coarse-grained simulationmethods. This resulted inmapping the problemonto
lattice gas and Ising-likemodels [34–38], which is, however, accurate only in a limited range of parameters.

Here we build on the experience in coarse-graining the dynamics of nucleation ofmacromolecular
complexes inmembranes [39].We solve the problemof coupling time and length scales by constructing an
effectiveMonte Carlo simulation scheme, for whichwe demonstrate applicability in a very broad range of
parameters. The stepping stone for our approach is the realization that there is a clear separation of time scales
betweenmembrane fluctuations and protein binding and diffusion. This allows us to fully circumvent
simulating themembrane, by incorporating its influence into effective rates for the (de)complexation of
proteins.We validate our scheme against explicit Langevin simulations [33], which themselves were shown to
agree verywell with experiments in the context of the nucleation [40] and themorphology of adhesion domains
[32]. In order tomake this comparison easier, wefirst present the underlying theoreticalmodel, its direct
implementation into the augmented Langevin scheme and, then, the upscaling and the construction of the
effectiveMonte Carlo scheme. Furthermore, we demonstrate the potential of theMonte Carlo scheme by
simulating radially growing domains containing up to 105 ligand–receptor bonds over several seconds, as
observed in analogous experiments. This allows us to explore themembrane associated processes with very high
precision, and to provide deeper understanding of the overall dynamics.

2.Model

Ourmodel system (see figure 1) consists of a flexiblemembrane that is positioned above a solid substrate.
Receptors on the substrate can formbondswith ligands, embedded in themembrane. Even though the receptors
fluctuate in height, they stay normal to the solid substrate. The receptors are placed on a regular square grid and
are immobile in the current context. The ligands can diffuse within themembrane until a bond is formed and
therefore themembrane is locally pulled towards the substrate.More elaborate versions of ourmodel allow for
both binders to bemobile and coupled to different reservoirs, simulating afinite vesicle, or an infinite bilayer.
Furthermore, binder species with different properties can be simultaneously introduced.

Figure 1. In themodel, thefluctuatingmembrane carriesmobile ligands, which bind to immobile receptors placed equidistantly on
the surface (characteristic spacing d). The formation of bonds is associatedwith the deformation of the receptor and themembrane,
the latter being subject to a nonspecific harmonic potential with aminimumat h0.
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2.1. Themembrane
Themembrane is described as a thin sheet with an energy given by theHelfrich–Hamiltionian [41]

h h h hr r r r[ ( )] d
2

( ( ))
2

( ) . (1)M
A

2 2
0

2
⎜ ⎟
⎛
⎝ ⎡⎣ ⎤⎦ ⎞

⎠∫ κ Δ γ= + −

Specifically, the lipid bilayer is parametrized in theMonge gauge, where the height h r( ) is given as a function of
the position r of themembrane above the substrate (figure 1). A list of the variables and parameters in
equation (1) can be found in tables 1 and 2. Specifically, thefirst term in equation (1) is the deformation energy
of themembrane, that is itself a product of the bending rigidity κ and the localmean curvature of themembrane.

While the specific proteinmolecules embedded in the cell wall (ormembrane) are usually considered to be
responsible for cell adhesion, over the past two decades a realization emerged that the cellmembrane itself, being
afloppy sheet, adds another unavoidable, yet not fully understood, interactionwith the opposing surface it binds
to. Although this interaction does not depend at all on any specific proteins, it can have amajor impact on the
protein-mediated adhesion and can be viewed as amechanism that controls the binding affinity to the cell-
adhesionmolecules [42]. Such steric interactions [43] typicallymaintain the twomembranes at relatively large
separations h0, which can bemodeled by introducing a nonspecific harmonic potential of a strength γwith the
minimumat h0 [33, 44, 45]. The strength of this potential depends directly on the average intensity ofmembrane
fluctuations that are themselves regulated by the tension in amembrane but also by numerous other factors such
as the thickness and the composition of the glycocalyx. In themimetic systems, this contribution is dominated
by continuous interactions between themembrane and the substrate, such as gravity, polymer-repulsion, or
Van-der-Waals forces [44, 46]. The strength of this potential can be obtained experimentally by the analysis of
membrane fluctuations [47, 48].

Table 1.Variables and parameters of ourHelfrich–Hamiltionian (see
equations (1) and (2)).

Quantity Meaning Unit

a Lattice constant 10 nm

h r( ) Membrane profile a

l0 Rest length of the bond/receptor a

α Width of interaction potential a

ri Position of bond i a

h0 Minimumof the interaction

potential

a

A Area of the simulation box a2

k TB Thermal energy at 300 K 4.14 10 J21× −

κ Bending rigidity k TB

bϵ Binding enthalpy k TB

γ Curvature of the interaction

potential

k T aB
4

λ Stiffness of the bond/receptor k T aB
2

N t( )b Number of bonds —

Table 2.Parameters used in the simulations.

Parameter Values in simulation units Values in SI units

a − 10 nm

h0 a8 80 nm

α a1 10 nm

l0 a4 40 nm

d a8 80 nm

lρ a1 64 2− 1.5625 10 nm4 2× − −

A a4096 2 0.4096 m2μ
bϵ k T5 to 10 B 2.12 10 to 4.14 10 J20 20× ×

κ k T10 B 4.14 10 J20×
γ k T a3.125 10 B

3 4× − 1.3 10 J nm27 4× − −

λ k T a0.75 to 5 B
2 3.1 10 to 2.1 10 J nm23 22 2× ×− − −

η k T a2.4 10 sB
7 3× − − 1 mPa s

k0 2 10 to 5 10 s4 5 1× × − 2 10 to 5 10 s4 5 1× × −

D 5 10 to 5 10 a s3 5 2 1× × − 5 10 to 5 10 nm s5 7 2 1× × −
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2.2. The bonds
Weassume that the receptors are thermalized springs with stiffness λ and rest length l0. This leads to the
following expression for the energy of the Nb bonds in themembrane

( )h h lr r r r[ ( )] ( )
2

( ) . (2)B

N

bi

i 1

0
2

b ⎡
⎣⎢

⎤
⎦⎥∑δ λ ϵ= − − −

=



Here, bϵ accounts for the bond enthalpy gain for forming a bond and r r( )iδ − is theDirac-Delta function for
the positions ri of the bonds.

For a given instantaneousmembrane profile h tr( , ), each bond fulfills a local detailed balance condition for
the transitions between the bound and unbound state, determined by the rates k h tr( ( , ))off and k h tr( ( , ))on as

( )( )k h t

k h t
h t l

r

r
r

( ( , ))

( ( , ))
exp

2
,

1

2
ln

2
. (3)b

off

on 0
2 2⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

λ ϵ λα
π

= − − −

Here, α is the range of the interaction potential of the ligand–receptor bond and for simplicity, we set
k T( ) 1B

1β = ≡− . Equation (3) depends on the stretching energy of the bond (first term in the exponent), the
binding affinity (second term) and an entropic contribution (last term)which describes the suppression of
fluctuations if a receptor is bound to a ligand. This entropic contribution lowers the effective binding affinity
[46], and has to be incorporated if the fluctuations of the receptor are not considered explicitly. The exact form
of this term (see appendix B) emerges from the assumption that the structuralfluctuations of free receptors
occur on a faster time scale than the time scale of themembrane dynamics. This assumption is justified as the
dynamics of the receptor is determined by thermal excitations of its secondary structure.

This local detailed balance condition (equation (3)) can be associatedwith the free energy gain for forming a
bond [39], andwill govern the stochastic binding and unbinding even if the thermodynamic equilibriumwith
respect to ligand–receptor binding has not been reached yet.

Inspired by [8, 49, 50], we set the rate k h tr( ( , ))on to form a bond proportional to the probability of the
binders being in the binding rangeα and the intrinsic reaction rate k0. This naturally depends on the
fluctuations, and the barrier for the forward process in the exponent

{ }( )( )k h t k h t lr r( ( , ))
2

exp
2

, . (4)on
0

2

0

2⎡
⎣⎢

⎤
⎦⎥

λα
π

λ α= − − −

From this local on-rate and the detailed balance condition the local, off-rate can be determined readily

( )( )k h t k h t lr r( ( , )) exp[ ] exp ,
2

. (5)b
off

0 0

2⎡
⎣⎢

⎤
⎦⎥ϵ λ α λα= − − −

We show the reaction rates equations (4) and (5) infigure 2. The association rate adopts the formof a
Gaussianwith awidth inversely proportional to the stiffness of the receptor. Themaximal association rate is
obtained at l0 α+ , which is at the outer edge of the potential well associatedwith an unperturbed receptor. The
off-rate increases exponentially with the distance between the receptor and the ligand. Interestingly, if the ligand
is in themiddle of the binding region (l 20 α+ ), the stiffness of the receptor does not affect the breaking of the
bond (the bond is not stressed).

Figure 2. Local reaction binding (left) and unbinding (right) rates equations (4) and (5) shown as function of themembrane height.
Other parameters were set as in table 2, except for the binding energy ( 0bϵ = ).
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2.3.Diffusion
Due to themembrane fluidity, themolecules within the bilayer diffuse on its surface [51]. Even though there
may be an influence of themembrane elasticity on the diffusion of embedded proteins (for example by the
curvature that a protein induces in themembrane [32, 52–54]), these effects seem to be small for experimental
relevant parameters [53]. Therefore, we simulate themobility of binders by a randomwalk, whereby two
proteins interact laterally by a hard-core potential. The time step of the randomwalk is given by

a

D4
, (6)d

2

τ =

with the diffusion constantD. In the current work, only the ligands embedded in themembrane of the vesicle are
allowed to diffuse. However, it is straightforward to extend the simulation scheme to situations inwhich both
binders retain lateralmobility and explore the surface of themembrane. The lattermay befinite as in the case of
vesicles and cells. These situations are simulated using periodic boundary conditions on the level of the system,
with a selected area in the center of the simulation box representing the area of contact between two cells or the
cell/vesicle and the substrate. Consequently, the formation of bonds can take place only within this region, and
the remainder of the systemwill be depleted from the binders due to the accumulation in the zone of contact.

Binders can be also embedded in bilayers, which provides a constant chemical potential. For simulations of
interactionswith vesicles, a contact zone is defined, and the periodic boundary conditions are imposed for the
bilayer grid. However, tomaintain the constant chemical potential (constant concentration of binders in the
bulk), entering and exiting of a binder from the contact zone is associatedwith placing or removing a binder
from a randomposition outside the contact zone.

3. Langevin simulation scheme

3.1. Equation ofmotion for themembrane
In this scheme, themembrane shape (see figure 3) is determined explicitly in every time step. Thereby, the
system is propagated in time bymeans of the Langevin equation in Fourier space (see e.g. [4, 32]) derived from
the equations (1) and (2)

{

( )

( ( ) )

( ) ( )

h t

t
k h t Ah

h t l

k
k k

r k r k

( , )
( ) ,

, exp i · ( ). (7)
i

N t

i i

k
4

,0 0

1

( )

0

b ⎪

⎪

⎡⎣ ⎤⎦
⎫
⎬
⎭∑

Λ κ γ δ

λ ξ

∂
∂

= − + −

+ − − +
=

Here, k( )Λ is theOseen tensor, describing the hydrodynamic interaction betweenmembrane and surrounding
fluid,Nb(t) is the number of bonds of the current bond configuration andA is the area of themembrane in the
simulation. The stochastic force k( )ξ in the Langevin equation above is set by the temperature of the
surrounding fluid. Thereby, theOseen tensor is connected to the stochastic force by the fluctuation-dissipation
theorem

k Tk k k k k( ) ( ) 2 ( ) ( ). (8)Bξ ξ Λ δ〈 ′ 〉 = + ′

Figure 3. Snapshot of a simulation run. The grey receptor can formbonds with the orange ligands embedded in thefluctuating
membrane (blue). The ligands can diffuse freely within in themembrane, whereas the receptors are immobilized and placed on a
square grid.
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The definition of the Fourier transformation of the Langevin equation is given by

h h h
A

hk r k r r r k r k( ) d exp( i · ) ( ); ( )
1

exp (i · ) ( ). (9)
A

k

2∫ ∑= − =

In general, it was shown that theOseen tensor depends on the geometry of themembrane [55].However, this
dependence is veryweak formembranes far away from the substrate and only relevant for the four largestmodes
of themembrane for the parameters used in the simulations. Such a choice neglects theHelfrich interaction of
themembranewith the planar surface [43, 56]. The latter effect should be small for binding of proteins of a size
of 20–40 nmwhen themembrane fluctuates with amplitudes of less than 15 nm,which seems to be the relevant
range [9, 57, 58].

Thus, we use theOseen tensor for a freemembrane

k
k( )

1

4
, (10)Λ

η
=

where η is the viscosity of the surrounding fluid. TheOseen tensor for the k 0= mode diverges. Following [4],
theOseen tensor for thismode is set to

A
k( )

3

8
. (11)Λ

πη
=

The Langevin-equation (7) is solved numerically with the help of the Euler–Maruyama scheme (see for example
[59]). The time step in this scheme has to be set below the smallest time scale of themembrane

( )k
k

k

4
, (12)max

max

max
4

τ
η

κ γ
=

+

which is the typical relaxation time of themodewith the largest k in the simulation (k a2 4 nmmax
1π= ≈ − )

and is on the order of 10−9 s.

3.2. Simulation scheme
The simulation is performed following the algorithm shown on the left infigure 4. Thefirst step initializes the
system. This involves the thermal equilibration of a freemembrane obtained by executing 106 steps in the time
loop explained belowwithout the reactions and binder diffusion. After that, the ligands are placed randomly on
their lattice, and the receptors are put on a grid of the second lattice.

The second step is the initialization of the time loop, where the step accounts for the shortest characteristic
membrane time scale ( t k( )maxΔ τ≡ ). Every time step involves (i) the calculation of the force on themembrane
induced by the formed bonds in real space; (ii) the transformation of this force to the Fourier space; and (iii) the
determination of bending and unspecific forces in Fourier space (first term in equation (7)). The sumof this
forces is input to the Euler–Maruyama step, withinwhich themembrane profile is updated in Fourier space and
transformed back to real space. This back-transformation is a prerequisite for the execution of the association
and dissociation step.Here, the binding probabilities are obtained from the equations (4) and (5), inwhich the
height of themembrane and the time step of the simulation are required. As the time scale of the reactions is
much larger than the typical time scale of themembrane, these probabilities are rather small.

Finally, themobile ligands need to be displaced to one of the neighboring unoccupied sites. In principle, the
diffusion of binders is characterized by the time step given by equation (6), inwhich case the probability to jump
in any directionwould be 1 4. However, as the time scale of the diffusion is typically several orders ofmagnitude
larger than the step of the time loop (i.e. k( )D maxτ τ≫ ), the probability of a jump is rescaled to

( )
p

k

4
. (13)

D

maxτ

τ
=

This new probability guarantees the correct diffusive behaviour of the ligands. Herewe note that this
implementation decouples the simulation of diffusion from the simulation of themembrane. As a result, the
ligand shape and the coupling of diffusion to themembrane curvature is not considered, in contrast to earlier
works [52, 53, 60].However, in the context of adhesion, the curvature coupling is a small effect, justifying this
approximation.

In the current simulations, the ligands are immobilized after they form a bondwith a receptor, whichmeans
that only free ligands diffuse. This restriction ismotivated by the experimental observation that the bonds
change position only if they are subject to a significant lateral force [61]. After the diffusion has been resolved, a
new iteration in the time loop is started, or the simulation is terminated.

Computationally, most time in this simulation scheme is consumed by fast Fourier transformations of the
membrane profile and the forces, which scale like N Nlog( ), (N is the number of considered lattice points), and
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not linearly like other operations (diffusion and reaction kinetics). Furthermore, the time step has to be chosen
very small to accurately describe the time evolution of themembrane, and a large number of replicasmust be
produced to obtain a statistically sound representation of the system. These are themain reasonswhichmake
this simulation scheme computationally very expensive allowing only for length scales of up to1 m2μ to be

simulated for up to10 s1− .

Figure 4. Simulation schemes. Left side: Langevin scheme. Themembrane is simulated explicitly. However, computational expensive
Fourier transformations have to be performed. Right side: effectiveMonte Carlo scheme. The binding kinetics is simulatedwith the
effective reaction rates (18) and circumventing the explicit treatment of themembrane.
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4. EffectiveMonteCarlo simulation

4.1. Effective rates
The difficulties that arise with Langevin simulations could be circumvented if the explicit treatment of the
membrane could be avoided.We achieve this goal in an effectiveMonte Carlo schemewhich is based on the
recently acquired understanding of the effects of themembrane on the formation of bonds [39, 46, 48]. This
scheme relies on the fact that the typical time scale of themembrane fluctuations depends on the viscosity η of
the surrounding fluid

q

q

q4 2
2 10 s. (14)mem

0

0
4

0 5τ
η

κ γ

η
γ

=
+

= ≃ × −

Here, q ( )0
1 4γ κ= is the inverse lateral correlation length for amembranewithout tension.

Importantly, even the slowestmodes are significantly faster than the reaction kinetics for ligand–receptor
binding (the fastest avidin-biotin inmembranes was reported to take place at 10 s3 1∼ − [40, 42]), while other
pairs are found at 10 s2 1∼ − [8, 42]. Consequently, themembrane fluctuations can be regarded as equilibrated
withfixedmean shape as long as the configuration of bonds interacting with themembrane remains unchanged.
During this time, thefluctuatingmembrane, andwith it the ligands, sample the entire probability distribution of
distances between ligands and receptors. In the following, we denote the height distribution at the considered
binding site r before the bond has formed by p h( )r , and the height distribution after a bound ligand–receptor

pair is formed by p h( )b . Here h r is the height at a binding site before a bond is established and hb is the height
after a bond is established. The distribution of the latter is nontrivial if the receptor or the bond itselfmaintains
some flexibility.

Thefirst and the secondmoment of these typically Gaussian distributions (equations (15) and (16)) can be
calculated explicitly [46] yielding themean height h s and thefluctuation amplitude sσ of themembrane at the
binding site for an arbitrary bond configuration.Here the superscript s denotes the state at the binding site,
which can be either a free receptor (s = r) or an existing bond (s = b). Specifically, we calculate a functional
integral over allmembrane profiles weighted by their Boltzmann factor (see appendix A for technical details). As
result, we obtain themean height

( )

( ) ( )
h h

l G q

q G q
r r

r r r

r r r r r
( ) ¯ ( )

4
( ) kei

8
16

kei ( ) kei
(15)s

ij ij

ij ij

i

i j

0
1

0

2 0
1

0

π

κγ
π

〈 〉 ≡ =
− ∑ ∣ − ∣

+ ∑ ∣ − ∣ ∣ − ∣

−

−

and thefluctuation amplitude

( )
( ) ( )

h h

q G q

r r r

r r r r r

( ) ( ) ( )

8
16kei ( ) kei

. (16)

s
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iji j

2 2 2

0
1

0

2

1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑

σ

κγ
π

〈 〉 − 〈 〉 ≡

= +
∣ − ∣ ∣ − ∣− −

The sum runs over all pairs of bonds in themembrane at the positions ri and rj, while xkei( ) is theKelvin
function [62]. The elements of the couplingmatrix G r( )ij are the effects of the existing bonds on the shape and
fluctuations at the arbitrary position r, whereby themembranemediated interaction between the bonds are
comprised in the off-diagonal elements (see equation (A.9) for the explicit formof thematrix).

The average shape and thefluctuation amplitude of amembrane containing a small cluster of bonds are
shown in the top panels offigure 5. At large distances from the cluster, themembrane is on average flat since it
resides andfluctuates in theminimumof the nonspecific potential. Because of a relatively high concentration of
bondswithin the cluster themembrane is likewiseflat on average, butmuch closer to the substrate. At the same
time, itsfluctuations are strongly suppressed.However, the shape and fluctuations of themembrane are
significantly different in the vicinity of the bonds at the edge and in the center of the cluster.

We use the two height distribution functions to average the Bell–Dembo rates (equation (4) and (5)) at the
position of a free or a bound receptor giving rise to effective binding and unbinding rates

( ) ( )
( ) ( )K h p h k h

K h p h k h

d

d . (17)

r r r

b b b

on on

off off

∫
∫

≡

≡

Appropriately inserting equations (4), (5), (15), and (16) into the the above expression, and evaluating the
integrals yields
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In thismanner, the effective rates describing the association and the dissociation of a bond depends on the exact
position of a bond, and the time dependent configuration of all bonds in the system. Examples of such rates for
one bond configuration can be seen in bottompanels offigure 5. Obviously, the rates reflect the average shape
andfluctuationswithin themembrane (top panels), which are the result of the bond configuration around the
respective binding site. The dissociation rate of a bond at the rim is up to two orders ofmagnitude larger than for
a bond deepwithin the domain (see figure 5). This is due to the stabilization effects of the neighboring bonds,
which share the deformation load and cooperatively suppress thefluctuations. On the other hand, the
association rate is the largest near the bond domain and exponentially decreases on the length scale of the lateral
correlation lengthwith increasing distance to the domain.

To summarize, cooperative effects between bonds and binding sites are induced by the deformation of the
membrane in the vicinity of the bond and the changes inmembranefluctuations. In the absence of cooperative
effects, the rates are constant at every binding site (see figure 3, [39] for additional details), because the
deformation is either not reaching thefirst neighbors (very softmembranes) or themembrane does not deform
at all (receptors significantlymore flexible than themembrane). However, if the formation of a bond induces
changes in themembrane, the effect is relatively short range.

4.2. Simulation scheme
Wecannow construct aMonte Carlo simulation of the adhesion process inwhich only the reaction kinetics and
the diffusion of bindersmust be treated explicitly. Thereby, the effective rates for breaking or forming a bond at
the given sitemust be determined for each site in every time step. This in turns requires inverting the coupling
matrix containing all bonds, for every site in every step. In order tomake the simulation fast, we assume that only
thefirst two sets of neighboring bonds affect the rates on a particular (un)binding site (figure 6). Consequently,
only the configuration of bonds in the immediate environment is taken into account in the calculation of the

Figure 5.Membrane profile (top, left),fluctuations (top, right), effective off-rates (bottom, left) and effective on-rates (bottom, right)
for a given bond configuration (white bonds and black free binding sites). The bond stiffness λ is set to infinity and the binding affinity

bϵ to zero for simplicity. The remaining parameters can be found in table 2.
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effective rates. Since this environment consists only of 9 sites, all possible configurations can be explored a priori,
and their respective rates used to create a lookup table. This restriction to the next-nearest neighbours is justified
because the binding rates decay very fast with increasing distance between the bonds.

Aflow chart of theMonte Carlo scheme is shown on the right panel of figure 4. To initialize the system, all
ligands and receptors are positioned on their respective grids as in the Langevin simulations (randomand
ordered distributions are possible). Furthermore, the characteristic time steps are determined. The time step of
the simulation is given by the characteristic diffusion–time DΔτ (equation (6)). The time step for the reaction

kinetics is set to be t nB DΔ Δτ= , where n is the smallest integer satisfying the inequality K n 1D
on offΔτ < .

Fromhere the probabilities for binding and unbinding are calculated as K tB
on offΔ , and stored in a lookup table.

The simulation step starts with the reaction loopwhich consists of n iterations. In each iteration, for every
binding site (i) the bond configuration is determined, (ii) the appropriate rate is retrieved from the lookup table,
(iii) association or dissociation is attempted, and (iv) the bond configuration is updated. Following the reaction
loop, each binder attempts tomove to a neighboring site in a samemanner as in the Langevin scheme. This
completes the simulation step and the system is propagated in time until the program is terminated.While the
program allows for the diffusion of both binder types, the following discussionwill be restricted to the case when
the receptors are immobilized.

The advantage of theMonte Carlo scheme is that it allows for a larger time step and avoids fast Fourier
transformations limiting the Langevin code. This allows us to simulate length scales of several tens of
micrometers and time scales of several secondswith the resolution of about 100 nmand 10−5 s, which is
necessary to understand biological processes.

5. Validation of theMonteCarlo scheme

In order to evaluate the applicability of the effective rates, we perform an extensive comparison of the results of
the Langevin andMonte Carlo simulations. For this purpose, all parameters, the system size, and the statistics of
data acquisition in the two approaches is identical and nofit parameters are used in the following discussion.

We explore a verywide range of parameters: from soft to rather stiff receptors, binding affinities from the
unstable to the enthalpy dominated adhesion, fast and slow diffusion of ligands (equivalent to changing the
attempt reaction frequency).

5.1. Early stages of domain formation–nucleation dynamics
Wefirst focus on the simulation of rare events such as is the nucleation of adhesion domains. The number of
bonds in such a domain can be calculated explicitly within the capillary approximation [39]. Once this number
is estimatedwe perform about 2000 simulationswith eachmethod to generate the distribution of nucleation
times (figure 7). Specifically, each simulation is set to start from an equilibrated boxwith zero bonds.When a
cluster of bonds of critical size is formed anywhere in the system, the simulation is interrupted, and the time
necessary to achieve this domain size is recorded. As shown infigure 7, very good correspondence of the coarse-
grained and the higher-level simulation approach is obtained for the entire distribution of nucleation times. This
agreement could have been anticipated from the successful comparison of Langevin simulationswith the

Figure 6.Example for a possible bond configuration two (left) or three (right) bonds (red squares). The association (left) or
dissociation (right) rate at the considered binding site (center square) is determined by identifying the bond configurations (red)
around the binding site and retrieving the appropriate reaction rate from the lookup table. This is done for all binding sites during one
iteration.
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analyticmodel for the nucleation dynamics of a single seed, based on a simplified version of the here used
effective rates [39]. The current,more accurate approach fully validates the concept of the effective rates and
enables studies of the early stages of the adhesion process in the regimes that are either not accessible to analytic
modeling or are extremely demanding from the computational point of view. Examples of such regimes, which
can be now addressedwith ease, are fast nucleation, competitive growth ofmultiple seeds, or diffusion limited
nucleation.

5.2. Full dynamics
Encouraged by our results reproducing the nucleation dynamics, we validate theMonte Carlo scheme by
reproducing the results of the higher level scheme for the full dynamic adhesion process, i.e. nucleation, growth
and saturation to equilibrium.More specifically, for each set of parameters we perform 200 runs over whichwe
average the dynamic process. This level of accuracywas found previously to produce converged results for the
Langevin scheme in thermal equilibrium [32, 33].

Wefirst explore the correspondence of the two schemeswhen the diffusion of ligands is fast
(D 5 10 nm s7 2 1= × − ), for soft,moderately stiff, and stiff receptors (figure 8). In each graph, the number of
bonds as a function of time is presented for three different binding affinities (the smallest being at the phase
transition to the unstable adhesion dominated by unbinding, two intermediate affinities, and one large affinity
where the unbinding is negligible). In general, wefind that the two approaches show very similar dynamics,
irrespective of the choice of parameters.

Somewhat larger deviations (up to 15%) are observed at the phase boundary ( k T6.79b Bϵ = ) between the
‘stable’ and ‘unstable’ adhesion.Here, stable adhesion denotes a state with an equilibriumnumber of bonds that
is always larger than zero, whereas in the ‘unstable’ state themembrane occasionally unbinds and the number of
bonds spontaneously drops to zero [33]. In this regime, the simulations aremore sensitive to the size of the
micro-environment, unlike in the rest of the phase spacewhere considering the first two sets of nearest

Figure 7.Distribution of nucleation times. The effective scheme, the Langevin scheme and the analyticalmodel produce the same
distribution of nucleation times (withoutfitting parameter). The analytical curve is determined from the equation (6) in Bihr et al
[39]. The intrinsic binding affinity for protein binding is set to k T6.56b Bϵ = , while the diffusion constant is D 5 m s2 1μ= . All
simulations were performed in a simulation box of 640 nm 640 nm× with the densities of receptors and ligands of

1.5625 10 nmr l
4 2ρ ρ= = × − − . The intrinsic binding ratewas set to k 10 s0

5 1= − , and the receptors aremodeled as springs of stiffness

k T2 10 nmB
2 2λ = × − − .

Figure 8.Time evolution of the number of bonds for k T7.5 10 nmB
3 2λ = × − − and k 1.6 10 s0

5 1= × − (left),
k T2 10 nmB

2 2λ = × − − and k 10 s0
5 1= − (middle) and k T5 10 nmB

2 2λ = × − − and k 6.1 10 s0
4 1= × − (right) (remaining

parameters see table 2).We compare the effective scheme (full lines) with the Langevin scheme (dotted lines).
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neighbors produces results which are very similar, andmore accurate than considering larger neighborhoods
with up to 20 sites.

Very similar results are obtained for slowdiffusion of ligands (figure 9), where the adhesion dynamics is
shown for three receptor rigidities, at an intermediate binding affinity. Equally good, quantitative agreement is
obtained for all affinities above the transition energy (data not shown). These results validate convincingly the
concept of effective rates, and establish theMonte Carlo approach as a reliable and versatilemethod for the
simulation of proteinmediatedmembrane interactions.

It should be noted that different effectiveMonte Carlo schemes, based on the integration ofmembrane
fluctuations in theHamiltonianwere successful in comparisonwith the Langevin simulation [37], with the time
scale of reactions being a free fitting parameter. However, the accuracy of that scheme relied on themagnitude of
the effective cooperativity parameter χ to bemuch smaller than one. This dimensionless parameter evaluates the
fluctuations of the unboundmembranewith respect to thefluctuations of free receptors

8
. (19)χ λ

κγ
≡

The accuracy of the current scheme does not depend on the effective cooperativity parameter, which for the
systems shown infigure 9 range from0.53, for the softest receptors, to 3.54, for the stiff receptors. Actually, the
regime of large effective cooperativity parameters seems to be very important in the context of experiments with
cells or vesicles [63].

6. Simulations of radially growing domains

One of the basicmechanisms for the growth of adhesion domains is their radial expansion froma stable nucleus.
As observed both in the cellular and cell-mimetic context, with different ligand–receptor pairs, such growth
occurs naturally inmembranes where the characteristic nucleation time is small compared to the dynamics of
the domain expansion, and is common in situations where one of the binding partners is immobilized [61, 64].
Particularly well-studied are radially growing domains in ligand-decorated vesicles binding on a substrate
functionalizedwith receptors [19, 42, 65]. In these systems, radial growthwas used for the determination of the
effective binding rate of various ligand–receptor pairs. This rate was found to depend significantly on the
properties of themembrane due to strong correlations between the bonds [42].

The analysis of the growth dynamics [19, 20, 22] reveals that the growth of the domain is diffusion limited
and the area of the domain increases linearly in time if the concentrations of ligands is smaller than the
concentration of receptors [21, 42]. Otherwise, the growth is reaction limited, and the area grows quadratically.
Treating the growth dynamics as a diffusion-reaction problem, the diffusion constant of ligands, and the
effective binding constant was extracted from the data [19].However, very little is known about the relation of
suchmacroscopicmeasurements with the underlyingmicroscopic binding and unbinding events, as well as
proteinmotions in themembrane.

Unfortunately, the limited size of systems that can be studiedwith the Langevin schememakes this approach
unsuited for the analysis of the radial growth process. Nevertheless, using a large number of replicas to
reconstruct the representative dynamics, effective affinity, as well as the growth patterns could be identified in
the reaction limited case [32]. However, the issue of the system size is particularly acute for diffusion limited
processes, when a depletion zone around the growing domain forms, and extends faster than the domain itself
[19–21, 42]. This regime, aswell as the continuous dynamics in the reaction limited case can only be obtained
with the effectiveMonte Carlo approach developed here. As it will be shown in this section, such a study should

Figure 9. Simulation curves (full lines for effective scheme, dotted lines for Langevin scheme) for different values of
k T(8 ) ( 7.26b Bχ λ κγ ϵ= = and D 5 10 nm s5 2 1= × − ), remaining parameters as infigure 8.
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clarify how the cooperative effects transmitted by themembrane affect themicroscopic rates and the overall
dynamics.

6.1. Simulation details
Weperform a series ofMonte Carlo simulations, wherewe use two opposing square grids of a size of
40.96 × 40.96 μm2 in the diffusion limited case and of 10.24 × 10.24 μm2 in the reaction limited case (typical
sizes of a giant unilamellar vesicle). Thefirst grid carries 2.5 105× receptors (soft or stiff), immobilized on a
lattice. To simulate diffusion or reaction limited growth, the second grid is decorated by randomly placing
5× 104 diffusing ligands or placing immobile ligands above the receptors, respectively. These concentrations, as
well as the other parameters are strongly inspired by the analogous experimental realizations of the system [42].
Specifically, the height of themembrane (h l 55 nm0 0− = ), curvature of the nonspecific potential

( k T a3.125 10 B
3 4γ = × − ), bending rigidity of themembrane ( k T10 Bκ = ), binding affinity ( k T10b Bϵ = ),

intrinsic reaction attempt frequency (k 10 s0
5 1= − ) and the diffusion constant (D = 5 μm2s−1) is chosen such

that the nucleation of domains and the unbinding of bonds are rare. Furthermore, we investigate the reaction
and diffusion limited growth regimes for stiff ( k T a5 B

2λ = ) and soft receptors ( k T a2 B
2λ = )mimicking

bulky cell adhesion receptors and glycoprotein receptors, respectively.

6.2. Reaction limited growth
For ligand densities larger than the receptor density, we expect a quadratic growth of the domain area [19, 42, 65]
containingNb uniformly distributed bonds

( )N t K a t( ) . (20)b R l
on 2 4 2 2π ρ=

Here, lρ is the initial density of ligands and KR
on is the effective rate at the rim. This expression explicitly takes

into account the two-dimensional nature of the growth process.
The results of ourMonte Carlo approach (blue full lines infigures 10(c) and (d) confirm that the growth of

the domain is, quadratic as expected. This is confirmed by the very good agreement of the data whichwe fit by
equation (20), shown infigure 10with dashed orange lines. The observed processes show that growth is faster for
stiff (KR

on = 3.7 × 104 s−1) than for soft (KR
on = 2.0 × 104 s−1) receptors, presumably because of stronger

correlations between bonds. Clear deviations from the quadratic behavior take placewhen the finite size effects
start to play a role and the domain begins to cover thewhole simulation box.

In order to relate the rates extracted from the fit to themicroscopic rates whichwere actually used to grow
the domains, we construct bubble charts for binding and unbinding rates (figures 10(e)–(h)), which are
classified by the number of neighbors. Afixed number of neighbors can be organized in several different
configurations around the receptor of interest, which results in themultiple bubbles for each number of
neighbors. In the bubble charts, the area of the bubble is associatedwith the occurrence of a particular rate in the
simulation.

Interestingly, the effective rate KR
on corresponds verywell to the average rate recorded in the simulation.

Actually, for the stiff bonds the average rate at the rim, obtained by averaging all rates formingwith up tofive
neighbors K̄ on, is K̄ on = 3.7 × 104 s−1, and for soft bonds K̄ on = 2.5 × 104 s−1. Rates for the formation of bonds
with three tofive bonds in the neighborhood aremost commonly observed (largest bubbles), which is consistent
with the formation of new bonds at the edge of the domain. The rates for the formation of bondswith six or
more neighbors are considered to be the results of events from rebinding within the domain, in agreementwith
the large number of dissociation events with seven and eight neighbors (figures 10(g) and (h)).

The analysis ofmicroscopic rates in the bubble plots shows that the binding rates have a tendency to increase
up tofive neighbors. This happens because the formation of additional bonds, in principle, reduces the distance
between the receptor and the ligand at the position of the binding site. The rates for forming the bondwith 3–5
neighbors are significantly larger for stiff receptors, which is the source of the difference in the speed of the
overall growth process of the domain. The reason for this difference is that for stiff receptors, themembrane
approaches closer to the substrate than for soft receptors, which themselves deformwhile forming a bond,
leaving themembrane at a larger height. Rates for forming a bondwith 6–8 neighbors decrease with increasing
the number of adjacent bonds. This effect ismore significant for stiff receptors, because thefluctuations in the
membrane are suppressed to a larger extent, andwhile the distance from the receptor is relatively small, stronger
thermalmembrane excitation is necessary to bring the ligand into the reaction zone of the receptor. The
unbinding rates occur less frequently. Themost commonunbinding rate is the onewith eight adjacent bonds,
which is clearly associatedwith unbindingwithin the domain. The unbinding rates decrease exponentially as a
function of the number of neighbors, for both stiff and soft receptors, showing the stabilization effects that
binding in the surrounding has on the respective bonds.
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6.3.Diffusion limited growth
For ligand densities lower than the receptor density, the growth is diffusion limited (figure 11), and depends only
implicitly on the effective reaction rates through the density of ligands and bonds at the edge of the domain. In
otherwords, the growth explicitly depends only on the diffusion constant, and the area of the growing domainA
(t) is given by [19, 21]

A t Dt( ) 4 . (21)2πα=

In this equation,α is a dimensionless speed factor (in contrast to earlier sectionswhere it was thewidth of the
interaction potential between the binders), which is, in two dimensions, determined from the implicit equation
[21]

( ) ( )exp Ei . (22)l e

b

2 2 2
ρ ρ

ρ
α α α

−
=

Figure 10. Simulation results of the reaction limited radial growth for stiff receptors (left panels) and soft receptors (right panels). The
first row (a), (b) shows snapshots of the growing domain as a function of timewhereas the second row (c), (d) shows the number of
bonds in the domain as a function of time. In the third (e), (f) and the fourth row (g), (h), we present bubble charts of the binding and
unbinding rates depending on the number of neighboring bonds during the growth phase. The area of the bubbles represents the
number of reactions with charts.
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Here, eρ is the density of ligands at the edge of the domain and Ei x( ) is the so-called exponential integral [62].
This relation is obtained from the binder conservation at the rim of the domain and the respective solution of the
diffusion equation (see Shenoy and Freund [21] for details).

We numerically solve equation (22) using the densities of bonds and ligands at the edge of the domain
evaluated from the radially averaged density profiles.We obtain 0.34α = for stiff receptors and 0.27α = for
soft receptors. The difference in the speed factors emerges from the somewhat larger density of ligands at the rim
of a domainwith soft receptors in the simulation. This difference is due to the smaller binding rates at the rim of
the domainwith soft receptors. Using these speed factors, we can calculate the expected diffusion constant from
the linearfit (orange dashed lines infigure 11). Specifically, we obtain a diffusion constant of 4.8 ± 0.6 μm2 s−1

for the large bond stiffness, and 5.2 ± 0.7 μm2 s−1 for the low bond stiffness (right columnoffigure 11). The
error is due to the error of the bond density bρ and the density at the rim eρ . The relative error of the values of the
diffusion constant comparedwith the diffusion constant of the simulation (5.0 μm2 s−1) is 4%which is within
the accuracy of the fits. This confirms our initial hypothesis that in this density regime the diffusion limited
growth is well accounted by themeanfield approach.

6.4. Remarks in the experimental context
The obtained results from the simulations of the growth of ligand–receptor domains show that it is, in principle,
possible to relatemacroscopicmeasurements with the underlyingmicroscopic processes. Fromdiffusion
limited processes we can extract the diffusion constantwith excellent accuracy, which is also accessible from
experimental data. However, as noted before [42], issuesmay arise if the crossover to the saturation of the
growth curve due to thefinite size of the vesicle or cell occurs relatively quickly and the vesicle runs out of free
binders. Furthermore, it is possible to relate themean reaction rate to themicroscopic events.

The above presented analysis allows us to validate theMonte Carlo simulations, and in addition to showhow
the parameters characteristic for themeanfieldmodelling relate to themicroscopic stochastic processes of
binding and diffusion.However, the behaviour described in this section is characteristic only in particular limits,
whereas different growth laws are valid in different parts of the phase space. For example, if ligand–receptor
bonds already formduring the formation of the initial contact zone between the vesicle and the substrate, the
dynamics has a different scaling behaviour [66]. Themethods presented herein are a necessary prerequisite for
the systematic study of the growth laws andwill enable deeper understanding of the domain development in the
regimeswhich are not accessible to analyticmodelling.

Figure 11. Simulation results of radial growth in the diffusion limited case. Top: snapshots of the growing domains. Bottom: growth
curves with linear fit indicating diffusion limited growth. Parameters like infigure 10 except for initial ligand density (only 0.4 106×
diffusing ligands).
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7. Conclusions

Wepresented two different approaches for simulating protein-mediated adhesion betweenmembranes. The
first simulation scheme considers the deformation and the fluctuations of themembrane explicitly, by evolving
themembrane profile with the help of a Langevin equation. The latter was derived from theHelfrich–
Hamiltonian and included the hydrodynamic interaction betweenmembrane and surrounding fluid. The
binding and unbinding of ligands and receptors ismodeled byDembo’s rates that are in detailed balancewith the
instantaneous shape of themembrane. Simpler variants of this scheme have been used successfully in earlier
studies to describe thermal equilibrium [33] and reaction limited dynamics [32].However, this scheme fails to
describe the dynamics on longer length scales as well as diffusion limited processes. The problem arises from the
fact that time step is as short as 10−9 s to correctly recover themembrane thermal excitations. Furthermore, the
calculation of themembrane profile requires the use of Fast Fourier Transformations which scale the simulation
timewith N Nlog( ), whereN is the number of consideredmembrane segments. As a result, onlymembrane
patches of about m2μ carrying about 1000 proteins can be simulated for about 0.1 seconds.

We overcome these constraints by constructing an effectiveMonte Carlo scheme. In this scheme, we coarse-
grain the adhesion dynamics by integrating the effects of themembrane into a set of effective reaction rates for
ligand–receptor (un)binding. These rates are derived by averagingDembo’s rates over themembrane height
fluctuations, whichwe do semi-analytically for an arbitrary bond configuration. This allows us to circumvent
the explicit treatment of themembrane, and use amuch larger time step in the simulation. Consequently, cell-
sized objects (10 m4 2μ ) carrying 106 proteins can be simulated for several tens of seconds with the resolution of
10 nmand 10 s6− . In this scheme, the simulation time scales linearly with the number of binders and the
simulation time is thus reduced by a factor of about 106 for the parameters used in this study compared to the
Langevin approach.

The current Langevin andMCapproaches do not account for the effects of the tension in themembrane
prior to adhesion.However, both simulation schemes can be easily adjusted to consider tension explicitly. For
membranes dominated by bending deformations and fluctuations, the in-depth analysis of the correspondence
between the Langevin andMonteCarlos simulations shows that the increased efficiency is achieved basically
without loss of accuracy. This result was confirmed from the nucleation of adhesion domains and the early stages
of growth to the asymptotic growth behavior and the saturation to an appropriate equilibrium state.

This very good performance allows a successful study of completely realistic scaffolding processes. As an
example, we performed an analysis for radially growing domains, which is one of themost common scenarios
for the development of adhesions.We demonstrate that themeasurables that can be extracted from the
macroscopic development of the domain can be related to underlyingmicroscopic stochastic processes, namely
the protein diffusion and the binding kinetics.

The simulations presented herein set a foundation for an in-depth analysis of protein transport and
complexation dynamics inmembranes, which is key to the understanding of the formation of functional
microdomains and rafts. Furthermore, processes which present slow convergence or require correlations and
signaling on the level of the entire cell are within the reach of accuratemodeling. Now that the adhesion on the
level of themembrane can be studied in great detail, the challenge becomes to couple themembrane to other cell
structures and processes, which is a direction for future development.
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AppendixA. Calculation of themembrane height distribution

Themembrane height distribution depends on the bond configuration of themembrane and aswell on the
position of the binding site as can be seen in the following equation. By definition

p h h p h h hr r r r r( ( )) [ ( )] [ ( )] ( ( ) ( )), (A.1)∫ δ= ′ ′ ′ −

wherewe have on the left side the probability distribution of the height p h r( ( )) at the binding site r, whereas on
the right side p h r[ ( )]′ is the probability for having amembrane profile h r( )′ . This probability depends on the
bond configuration (i.e. the positions ri of the ligand–receptor bonds). For simplicity, we set k T( ) 1B

1β ≡ ≡− .
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To evaluate the above integral, the Boltzmannweight for p h r[ ( )]′ determined by theHelfrich–Hamiltonian
equation (1) and (2) is plugged in and theDirac function is written in the Fourier representation, which gives
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Wenow apply successively Nb Hubbard–Stratonovich transformations, one for each bond term in the sumover
i. This produces Nb Gaussian integrals over auxiliary fields iϕ . Furthermore, wewrite h r( )′ in the Fourier
representation. As a result, we get
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Performing theGaussian integral over h q( )′ leads to
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In the following step, the termswithin the curly brackets of equation (A.4) are reorganized. After some sorting,
we obtain
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The sumover the Fouriermodes in the first line can be transformed to an integral
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where

q (A.7)0
1

4ζ γ
κ

≡ ≡−

is the inverse of the lateral correlation length. After the second equal sign, we use the definition of the Bessel
function. The resulting integral can be found in [62] (equation (6.537)4). The sum at the end of the second line
of equation (A.5) can be treated in the sameway. This results in

4
Please note that there is a typo.On the lhs in the nominator, it should be x instead of x2.

17

New J. Phys. 17 (2015) 083016 TBihr et al



( )

( )

p h
q

l h
q

r
r r

r
r r

( ( )) d d exp
1

2

kei

2

i exp
1

2 8
i ( )

kei

2
. (A.8)

j
j

jk
j

jk

M

k

j
j

j
j

j k

j

0

0

2 0

jk

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥

∫ ∫∏ ∑

∑ ∑

ν ϕ ϕ
δ
λ π κγ

ϕ

ϕ ν
κγ

ν ϕ
π κγ

∝ − −
∣ − ∣

+ − − +
∣ − ∣

≡

  

Performing theGaussian integrals in ν gives after some algebra
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Since the remaining integrals are againGaussian, onefinally gets
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As the probability distribution (A.10) is itself aGaussian distribution, again, the average height can be calculated
by completing the square in the exponent. Consequently, one obtains
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Thefluctuations are simply given by
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Appendix B. Entropic costs associatedwith binding of afluctuating binder

The partition function of a free fluctuating receptormodelled as a harmonic spring is

( )Z l l ld exp
2

2 , (B.1)R 0
2⎜ ⎟⎛

⎝
⎞
⎠∫ λ π λ= − − =

where l is the coordinate of the spring and l0 is the rest length. In the bound state, the receptor can explore only
thewidthα of the interaction potential. Hence the entropic term in the free energy difference between an
unbound and a bound receptor is

F
1

2
ln (2 ) ln ( )

1

2
ln

2
. (B.2)

2
⎜ ⎟⎛
⎝

⎞
⎠Δ π λ α π

λα
≈ − =

As such this contribution can be regarded as an entropic penalty for confining the receptor to the binding
pocket [46].
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