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Abstract

Background

Analyzing high throughput genomics data is a complex and compute intensive task, gener-

ally requiring numerous software tools and large reference data sets, tied together in suc-

cessive stages of data transformation and visualisation. A computational platform enabling

best practice genomics analysis ideally meets a number of requirements, including: a wide

range of analysis and visualisation tools, closely linked to large user and reference data

sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a

flexible set of interfaces; highly available, scalable computational resources; and flexibility

and versatility in the use of these resources to meet demands and expertise of a variety of

users. Access to an appropriate computational platform can be a significant barrier to

researchers, as establishing such a platform requires a large upfront investment in hard-

ware, experience, and expertise.

Results

We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware

layer of machine images, cloud management tools, and online services that enable

researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully

configured bioinformatics tools, reference datasets and workflow and visualisation options.

The platform is flexible in that users can conduct analyses through web-based (Galaxy,

RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes

and data resources as required. Best-practice tutorials and protocols provide a path from

introductory training to practice. The GVL is available on the OpenStack-based Australian

Research Cloud (http://nectar.org.au) and the AmazonWeb Services cloud. The principles,

implementation and build process are designed to be cloud-agnostic.

PLOS ONE | DOI:10.1371/journal.pone.0140829 October 26, 2015 1 / 20

a11111

OPEN ACCESS

Citation: Afgan E, Sloggett C, Goonasekera N,
Makunin I, Benson D, Crowe M, et al. (2015)
Genomics Virtual Laboratory: A Practical
Bioinformatics Workbench for the Cloud. PLoS ONE
10(10): e0140829. doi:10.1371/journal.pone.0140829

Editor: Christophe Antoniewski, CNRS UMR7622 &
University Paris 6 Pierre-et-Marie-Curie, FRANCE

Received: May 21, 2015

Accepted: September 29, 2015

Published: October 26, 2015

Copyright: © 2015 Afgan et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was supported by a grant from
The National eResearch Collaboration Tools and
Resources project (NeCTAR; http://nectar.org.au).
NeCTAR is an Australian Government Super Science
project, financed by the Education Investment Fund.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript..

Competing Interests: The authors have declared
that no competing interests exist.

http://nectar.org.au
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0140829&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://nectar.org.au


Conclusions

This paper provides a blueprint for the design and implementation of a cloud-based Geno-

mics Virtual Laboratory. We discuss scope, design considerations and technical and logisti-

cal constraints, and explore the value added to the research community through the suite of

services and resources provided by our implementation.

Introduction

What is the problem?
Modern genome research is a data-intensive form of discovery, encompassing the generation,
analysis and interpretation of increasingly large amounts of experimental data against catalogs
of public genomic knowledge in complex multi-stage workflows [1]. New algorithm and tool
development continues at a rapid pace to keep up with new ‘omic’ technologies [2], particularly
sequencing. There are many visualisation options for exploring experimental data and public
genomic catalogs (e.g. UCSC Genome Browser [3], GBrowse [4], IGV [5]). Analysis workflow
platforms such as Galaxy [6], Yabi [7], Chipster [8], Mobyle [9], or GenePattern [10] (to name
a few) allow biologists with little expertise in programming to develop analysis workflows and
launch tasks on High Throughput Computing (HTC) clusters.

However, the reality is that the necessary tools, platforms and data services for best practice
genomics are generally complicated to install and customize, require significant computational
and storage resources, and typically involve a high level of ongoing maintenance to keep the
software, data and hardware up-to-date. It is also the case that a single workflow platform,
however comprehensive, is rarely sufficient for all the steps of a real-world analysis. This is
because analyses often involve analyst decisions based on feedback from visualisation and eval-
uation of processing steps, requiring a combination of various analysis, data-munging and
visualisation tools to carry out an end-to-end analysis. This in turn requires expertise in soft-
ware development, system administration, hardware and networking, as well as access to hard-
ware resources, all of which can be a barrier for widespread adoption of genomics by domain
researchers.

The consequences of these circumstances are significant:

• Reproducibility of genomics analyses is generally poor [11], in part because analysis environ-
ments are hard to replicate [12];

• Tools and platforms that are able to provide best practice approaches are often complex, rely-
ing on technical familiarity with complicated compute environments [13];

• Even for researchers with relevant technical skills and knowledge, managing software and
data resources is often a significant time burden [14];

• Skills training and education is often disconnected from practice, often because of the analy-
sis environment constraints [15];

• Accessing sufficient computation resources is challenging with current data sets, and this is
compounded by the trend to larger experimental data; for instance, moving from exome to
genome scale analysis is a significant scalability problem in backend compute [16];

• Data management and movement is a technical challenge that affects the speed and accessi-
bility of analysis [17]. Again, this is compounded by the trend towards larger data sets.
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We argue that lack of widespread access to an appropriate environment for conducting
best-practice analysis is a significant obstruction to reproducible, high quality research in the
genomics community; and further, transitioning from training to practice places non-trivial
technical and conceptual demands on researchers. Public analysis platforms, such as Galaxy,
provide solutions to some of these issues (particularly accessibility), but are generally handi-
capped by rapid growth in per-user demand for compute resources and data storage, and the
enforced constraints on flexibility that are a requirement of a centrally managed resource.

What is the solution?
A ‘virtual laboratory’ environment to support genomic researchers that would meet a number
of criteria, ideally providing:

1. Reproducibility: through workflows and stable underlying analysis platform;

2. Accessibility: through ease of gaining access to and using the platform;

3. Flexibility: by imposing as few constraints as possible in the types of analysis and the meth-
ods that may be implemented, supported via a user-controlled environment;

4. Performance: through scalability and highly available compute resources;

5. Consistency: a common platform from training to best practice;

6. Capability: through pre-population with best practice tools and reference datasets.

The objective of building such an environment is to make a platform
embodying each of these characteristics widely available to a diverse
range of users, facilitating widespread best practice training and analysis
for genomics.
This is, of course, not a trivial objective to achieve, as each of these criteria has significant
design and technical implications:

Reproducible genomics requires, at a minimum, a way of accessing the same tools and ref-
erence datasets used in an analysis, combined with a comprehensive record of the steps taken
in that analysis in the form of a workflow, in sufficient detail to reliably produce the same out-
come from the same input data, assuming a deterministic analysis [18]. At the most basic level
reproducibility can be achieved with shell scripting and documentation, but issues in ease of
use, maintenance and genuine reproducibility are well-known [19], [20]. This has catalysed a
number of efforts in developing platforms for reproducible scientific analysis through struc-
tured workflows, including Galaxy, Yabi, Chipster, GenePattern and numerous commercial
products (e.g., Igor [21], BaseSpace (https://basespace.illumina.com/), Globus Genomics [22]).
An environment supporting reproducible genomics requires at least a workflow platform and a
system for ensuring stability of the underlying software and data [23].

We would define an accessible environment as one that is:

1. Simple to invoke or obtain access to (low cost of entry)

2. Simple to communicate with (easy to connect, low latency)

3. Simple to interact with, requiring minimal training in order to use effectively (intuitive)

Simplifying access to an analysis environment, then, requires the provider to furnish an
intuitive platform that requires minimal client-side configuration—ideally, a web browser—
and, further, does not require significant preparation or resources to invoke. In other words,
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the ideal accessible environment is one which a new user can immediately connect to and start
using for training or data analysis. In many ways, public analysis services such as the Galaxy
Main server (https://usegalaxy.org) and GenePattern (http://genepattern.broadinstitute.org)
provide exactly this experience, and taken in isolation, meet the challenge of reproducible and
accessible analysis extremely well.

However, managed services, while highly accessible, cannot provide great flexibility, which
we would define as the freedom to both configure an environment and access that environment
through a variety of means. Maximising flexibility implies user-level administrative control
(e.g., configuring data, tools and, potentially, the supporting operating system directly), which
is not generally possible in a centrally managed service. Hence, flexibility is in some ways the
natural enemy of a managed service.

Building an analysis environment that guarantees good performance for a wide user base is
especially challenging. In the case of a managed service for genomics, the more successful the
service is in attracting users, the more likely it is that performance will suffer due to the number
of users, particularly as those users explore larger data sets through a wider range of analysis
options [24]. Good performance on a per-user basis is a combination of available resources,
user access to those resources, underlying infrastructure limits and bottlenecks (for instance,
disk I/O), and the inherent scalability of the environment. We would argue that performance
in the context of a widely available, flexible genomics environment requires high-availability,
scalable back-end compute resources. We will discuss performance design principles and
implications in more detail in a later section, as this is a particularly challenging but critical
characteristic of an environment that aims to support large genomics data analysis.

Providing a consistent experience from training to practice is a combination of (at least)
accessibility, performance, and flexibility. Ideally an analysis environment would be accessible
for new users, with training materials that follow best practice protocols delivered in an intui-
tive way, leading to seamless scale-up for analysis of real data sets using the same interaction
paradigm and maintaining good performance.

As users become more sophisticated in genomics analysis, they often move from a single
intuitive analysis platform (such as Galaxy) to multiple platforms (R, command line, custom
scripts) that provide more capability and flexibility (generally at the expense of simplicity).
Therefore, a design principle for a general genomics environment should be for that environ-
ment to be able to be used for training (implying at least an accessible platform), but able to
scale in flexibility by adding more options for interaction (such as command line and/or pro-
grammatic interfaces), and scale computationally to provide the performance for real data anal-
ysis. For all levels of the environment, we would provide high capability through access to best
practice tools and availability of reference datasets, and ideally linked to low latency visualisa-
tion and data interpretation services.

Table 1 summarises the above discussion and captures core implications for each category
of a powerful genomics laboratory.

Wide Availability
Designing a flexible, accessible, reproducible, high-performing environment to be widely avail-
able to a large, potentially geographically dispersed audience, places serious demands on sys-
tem design and architecture. One useful interpretation of ‘widely available’ is that the
environment has a low cost of entry as a whole—that is, minimal preparations and resources
are required before obtaining access to an analysis environment that is genuinely useful. The
more obstructions that are placed before a user can start doing analysis, the less available the
environment can claim to be. For example, managed public web services have a very low cost
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of entry and are certainly widely available. In order to make a more flexible, high performing
environment widely available for open ended data analysis, we need to enable a user to quickly
and intuitively build or deploy an environment that uses infrastructure resources that are rela-
tively simple for the user to obtain.

To that end, resources underpinning the analysis environment must be low-cost, scalable,
and available to the user; to provide flexibility and performance, the user must have some con-
trol of these resources. A prominent infrastructure paradigm that fits these requirements is
cloud computing [25]. Cloud computing has demonstrated its suitability for providing highly
available, accessible computational infrastructure suitable for data analysis [26], [27]. In the
cloud model, one rents computing resources in the form of virtual machines on an as-needed
basis, from a pool of resources that is large enough to guarantee high availability, and therefore
good scalability.

Further, providing an environment for a large audience over a large geographic region
means that network bandwidth may become an important factor in getting data to and from
the environment, as bandwidth often correlates with distance from a service [28]. Thus in prac-
tice, making a flexible, high performance environment largely depends on availability of low-
cost, infrastructure that is relatively close in terms of latency/bandwidth. Cloud computing
often addresses this requirement through regional geographic hubs.

Cloud Computing Solutions for Genomics
Cloud resources have become quite popular in the form of public clouds (e.g., Amazon Web
Services (AWS), HP Cloud, Google Compute Engine) where one pays only for the resources
consumed. These resources are provisioned as ‘bare bones’machines that need to be carefully
tailored for use in genomics. This includes procuring the required resources, installing and
configuring the necessary software, and populating it with appropriate data—all tasks that are
time consuming and require significant technical expertise. Consequently, a range of cloud
management software applications have been developed that tailor cloud resources to fulfill a
functional role in bioinformatics. In addition to these dedicated, cloud-aware, applications, a
number of platforms or virtual laboratories have also been developed that aggregate the func-
tionality of many applications. Galaxy on the Cloud [29] offers a preconfigured Galaxy applica-
tion in a cloud environment. More generally, Globus Galaxies [30] offers a general purpose
platform for deploying software-as-a-service solutions in the cloud based on Galaxy. Addi-
tional platforms that focus on Big Data solutions and use of the MapReduce model include

Table 1. A summary of the criteria that would define a general genomics workbench environment, and suggested implications on technical
requirements.

Criteria Design implication Technical implication

Accessible Minimal client-side requirements Web based tool and management interfaces; easy start-up.

Reproducible Workflow support + software & tool management
process

Reusable, exportable workflows + automated process for deploying
environment components.

Performance User-managed scaling of compute resources; high
availability resources at back end

Cloud-based architecture + interface for managing resources.

Flexible User configurable, user administrable, command line
access

Per-user instances accessible through web and command line; user-
administrable environment.

Consistent Single platform from training to analysis with layered
interfaces

Tutorials and guides for training using best practice tools; protocols outlining
real-world analysis steps.

Capable Pre-populated with suite of tools for common use cases
+ required reference data + visualisation options

Comprehensive pre-configured tools and data; range of analysis interfaces;
automated build process to implement and test complex underlying images;
low latency local visualisation options.

doi:10.1371/journal.pone.0140829.t001
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Cloudgene [31] and Eoulsan [32]. See Calabrese and Cannataro [33] for a more details over-
view of the existing cloud-aware applications and platforms.

Over the past few years, there has been an increasing trend towards cloud resources also
becoming available as research infrastructures, for example the Open Science Data Cloud in
the US, EGI Federated Cloud in the EU, and NeCTAR Research Cloud in Australia. These pro-
vide alternatives to the public clouds by offering centralized access to clouds for researchers
and projects, generally with merit-based allocation as opposed to direct financial expense to
the researcher. NeCTAR, for example, offers access to an OpenStack-based Research Cloud
(http://nectar.org.au/research-cloud) where any researcher in Australia can access limited vir-
tual machines and storage, and apply for larger allocations of both.

These national compute infrastructures provide readily available virtual hardware, with the
opportunity to address the scalability issue both at the personal level (as a researcher can
request temporary resources as required) and at the community level (as each research group
can apply their own merit-allocated CPU and storage quota, rather than overburdening a cen-
tralised server). The advent of research-oriented cloud computing has created an opportunity
to build support for bioinformatics analyses on these highly available national infrastructures
and public clouds.

Results and Discussion

Designing the Genomics Virtual Laboratory
In this section we provide a template for designing and building a genomics analysis environ-
ment based on a cloud-aware workbench of genomics tools platforms.

In response to the described circumstances, we developed the Genomics Virtual Laboratory
(GVL). The GVL is designed to be a comprehensive genomics analysis environment supporting
accessible best practice genomics for as wide a community of researchers as possible; this phi-
losophy directs the design and implementation of the GVL to a great extent, as accessibility,
flexibility, performance and wide availability are principal drivers. In practice, the GVL is a
combination of scalable compute infrastructure, workflow platforms, genomics utilities,
and community resources.

The primary objective of the GVL is to enable researchers to spawn and/or access automati-
cally configured and highly available genomics analysis tools and platforms as a versatile work-
bench. Workbench instances may be centrally-managed servers or standalone and dedicated
cloud-based versions. Either option is scalable and comes pre-populated with field-tested and
best-of-breed software solutions in genomics, increasing reproducibility and usefulness of the
solution. The aim is to offer a true genomics workbench suitable for bioinformatics data analy-
sis for users with a variety of needs.

The design principle for the GVL has been to attempt to meet each of the design criteria—
accessibility, reproducibility, flexibility, performance, capability and consistency—using exist-
ing software as much as possible. There are already very mature genomics workflow platforms
providing accessibility and reproducibility, for instance; likewise, sophisticated platforms for
flexible programmatic and statistical approaches to analysis and visualisation. With that in
mind, a number of design choices were made on the functional software components of the
GVL. These are summarised in Table 2, while individual solutions are described in more detail
under Using the Genomics Virtual Laboratory.

The choice of the components were based on a number of factors, including platform func-
tionality, platform maturity, community uptake and complementarity (e.g. Galaxy is focussed
on bioinformatics workflows and easy access to tools; IPython Notebook [34] on program-
matic analyses; RStudio Server (http://www.rstudio.org/) on statistical analyses; UCSC genome
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browser is perhaps the most popular genome browser). In the case of a decision on manage-
ment middleware for deploying the platforms, CloudMan [35] has been demonstrably success-
ful in providing cloud-based genomics workflow platforms based on Galaxy [29] and was
therefore the software of choice for this role. Additionally, local expertise was a factor in the
final design decisions of the GVL workbench (e.g., tutorials).

Also considered in designing the GVL were the advantages of different sections of the com-
munity. As a scalable, extensive and customisable framework, the GVL primarily caters to the
individual genomics researchers and small labs—it offers a simple, quick and reliable method
for obtaining access to a scalable environment for genomics analysis and visualisation. It allows
complete control over self-deployed instances and easy access to common data resources, such
as indexed genomes, which can otherwise be problematic and time consuming to obtain.
Finally, it offers substantial resources for learning new analysis methods.

Next, the GVL caters to the broader bioinformatics community—it provides a low-cost-of-
entry target platform for collaborative genomics analysis and data sharing that is based on a
common platform. The ability to customize the platform further facilitates its use for tool
development and distribution. These features together also make the GVL a good environment
for developing training materials and curricula, and for teaching. Because it is based on tools
that intrinsically enable a reusable record of any analysis (e.g., Galaxy, IPython Notebook), the
GVL also encourages reproducible research.

Finally, the GVL appeals to research infrastructure bodies and research institutions because
it promotes democratized access to large scale, complex genomics analysis infrastructure. It
focuses on simple and cost effective scaling (both in breadth and depth) of national computa-
tional infrastructure by delivering accessible and powerful solution to genomics researchers.

Using the Genomics Virtual Laboratory
In this section we describe the resulting functionality of the GVL from a user perspective—
that of an ordinary end-user carrying out research or training, and that of a developer or a
researcher building new tools and infrastructure.

Table 2. Summary of specific technical solutions used to meet the design requirements of the GVL.

Criteria Technical implication Technical solution

Accessible Web-based tool and management
interfaces; easy start-up

Galaxy; RStudio Server; IPython Notebook;
in-browser remote desktop; CloudMan;
Cloud cluster launcher; integrated GVL
Dashboard

Reproducible Reusable, exportable workflows
+ automated process for deploying
environment components

Galaxy; IPython Notebook; GVL build
process; CloudMan

Performance Cloud-based architecture + interface for
managing resources

CloudMan (with Slurm job manager)

Flexible Per-user instances accessible through web
and command line; user-administrable
environment

CloudMan; SSH access; GVL command
line utilities; Galaxy web-based admin
+ Galaxy Toolshed integration

Consistent Tutorials and guides for training using best
practice tools; protocols outlining real-world
analysis steps.

Tutorials; established workflows, protocols

Capable Extensive pre-configured genomics software
tools and data; range of analysis interfaces;
automated build process to implement and
test complex underlying components; low
latency local visualisation options

GVL build process; managed services,
including local UCSC browser; shared
reference datasets

doi:10.1371/journal.pone.0140829.t002
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Using the GVL as a researcher. From the users’ perspective, the GVL comprises three main
parts: the cloud-launchable GVL workbench, always-on managed services, and community
resources.

Cloud-launchable instances: these are based on the GVL machine image, and can be easily
launched and configured via a launcher web application (Fig 1). Each launched instance runs
the following services:

• The GVL Dashboard: provides easy access to all the services and their status—this is the
default landing page for all self-launched GVL instances (Fig 2);

• CloudMan: used to manage cloud services associated with an instance, such as compute and
storage. This includes the ability to scale the instance by adding worker nodes, turning each
GVL instance into a virtual cluster-on-the-cloud;

• Galaxy: is a popular web-enabled platform for reproducible bioinformatics analysis, which is
capable of deploying jobs over the cluster-on-the-cloud. Researchers can customise Galaxy
via the Galaxy Toolshed [36] and Galaxy Data Managers [37];

• RStudio Server: a web-based platform for statistical analysis using R;

• IPython Notebook: a web-based platform for programmatic analysis using Python;

• VNC Remote Desktop: a web-based remote desktop interface to the Linux operating system
(Ubuntu);

• An underlying Linux environment with full ssh access and administrative control. This
includes access to command-line bioinformatics tools and reference data that comes prein-
stalled on the system (i.e., all the tools installed via Galaxy).

Managed services: these are services hosted by the GVL project that are readily available to
anyone:

• Galaxy Tutorial instance: a managed Galaxy tutorial server (called Galaxy-tut; available at
galaxy-tut.genome.edu.au) tailored for training and interactive learning with all the tools
required to run GVL Tutorials. This server can be freely used by any researcher for training
purposes, including running GVL tutorials and workshops;

• Galaxy Research instance: a managed Galaxy server for real-world research analyses (called
Galaxy-QLD; available at galaxy-qld.genome.edu.au) that offers a broad spectrum of tools
and generous storage quotas (currently 1TB);

• A local mirror of the UCSC genome browser (available on the Australian Research Cloud at
ucsc.genome.edu.au) and associated visualisation services for fast access to hosted data;

• Shared reference datasets, such as reference genomes and indices, that are automatically
made available to any launched GVL instance as a read-only networked file system.

Community resources and support in the form of comprehensive online teaching materi-
als around common genomics experimental analyses, supported with a mechanism of deliver-
ing those to the bioinformatics community:

• GVL Tutorials: introduce important bioinformatics analysis techniques to new users. These
tutorials are self-contained and can be self-driven or used in a workshop setting. For the
most part, they make use of Galaxy for its excellent learning environment, and can be run on
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Fig 1. The GVL launch process for starting self-launched instances of the GVL workbench. (a) A user initiates the launch process via the launch
service (launch.genome.edu.au) by providing their cloud credentials to the launcher application and (b) within a few minutes is able to access the
management interface (CloudMan) on the deployed instance of the workbench. (c) After workbench services have started, the researcher can use the
applications as desired (e.g., Galaxy).

doi:10.1371/journal.pone.0140829.g001

Fig 2. A screenshot of the GVL Dashboard. The GVL Dashboard is a portal running on every GVL instance. It lists all of the available services, their status,
and offers a direct link to access those.

doi:10.1371/journal.pone.0140829.g002
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a training instance such as Galaxy-tut, or on a self-launched instance. Developed tutorials are
based on common best practices or published methods (e.g., Trapnell et al. [38]);

• GVL Protocols: are field-tested procedural methods in the design and implementation of a
bioinformatics analysis, which, in comparison to Tutorials, provide less detailed instructions
on each step, but more advice on analysis options and best-practice principles. Protocols
include a general overview of the problem and a skeleton for an analysis but do not specify
exact tools, parameters, or sample data. Consequently, they are seen as a roadmap for an
analysis that should be extended or modified to accommodate the needs of a particular
research analysis;

• Galaxy-enabled tools built by the GVL team: developed tools are available through the main
Galaxy Toolshed and come pre-installed on any launched GVL instance. Many tools are
used in GVL Tutorials and Protocols;

• Email-based helpdesk support for all components of the GVL.

These resources are presented to users as three broad categories, LEARN, USE and GET,
which may be familiar to Galaxy users from http://galaxyproject.org/:

• USE—make use of managed services, including Galaxy servers and the UCSC genome
browser;

• GET—get your own analysis platform using cloud infrastructure, with full administrative
control and additional power-user utilities. This option allows a user to transition smoothly
from training to research—a user-launched GVL instance provides a research environment
consistent with the USE and LEARN environments, but allows researchers full control for
further customisation (Fig 1);

• LEARN—learn bioinformatics analysis using GVL Tutorials, running them either on the
Galaxy-Tut server or on a user's own instance. More advanced users can make use of GVL
Protocols.

Currently, the GVL is implemented and available on the Australian Research Cloud as well
as the Amazon Web Services (Sydney region). In addition, managed services (i.e., USE—run-
ning on the Research Cloud) and products (i.e., LEARN) are freely available to anyone. The
self-launched instances (i.e., GET) are available to the Australian researchers and groups that
have an allocation on the Research Cloud or anyone with AmazonWeb Services credentials.
All of the GVL services are linked from the GVL main webpage: https://genome.edu.au.

Leveraging the GVL as a developer. From the technical development perspective, the GVL
comprises:

• A set of machine images, cloud resource components, and source code repositories contain-
ing the functional elements of the workbench: Galaxy, IPython Notebook, RStudio, bioinfor-
matics toolkit;

• A sophisticated cloud infrastructure and application management system (i.e., CloudMan)
to:

• Enable users to launch/deploy a new instance of the workbench;

• Manage workbench services and resources as required; and

• Scale the backend cloud infrastructure to match performance requirements, by building a
cluster-on-the-cloud with Slurm [39] as the job manager.
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• Access to a shared file system containing large reference data; this file system is geographi-
cally replicated via GlusterFS file system (http://www.gluster.org/) and any launched instance
can connect to it in read-only mode;

• An automated process for generating machine images and other cloud components that are
pre-populated with the latest tools. The build process is based on a set of Ansible roles
(http://www.ansible.com/) that are publicly available as a set of open source scripts (https://
bitbucket.org/gvl/gvl-image-playbook). The GVL build process is compatible with multiple
clouds and can be used to replicate the GVL environment by anyone (for documentation on
how to do this, see the mentioned source code repository). Ansible roles are not used by ordi-
nary end-users, who make use of a pre-built image to launch their GVL instance. However,
they are useful for developing new images or deploying to new cloud environments.

A user-deployed GVL instance provides a Linux environment pre-populated with common
programming languages and bioinformatics libraries, as well as with popular analysis plat-
forms. A GVL instance also comes with a preconfigured database server (PostgreSQL), cluster
management system (Slurm), and with CloudMan, which is capable of adding and removing
worker nodes from the virtual cluster, managing various storage options, and managing GVL
services. This environment provides developers and bioinformaticians with a convenient plat-
form for tool development and testing, both command-line and Galaxy-based. The choice of
type of machine instance and the cluster-on-the-cloud scalability features also provides an
excellent environment for tool benchmarking and scalability testing.

The open build system of the GVL, and the general applicability of the cluster-on-the-cloud
and service management model, make the GVL a good starting point for the development of
other cloud-based research environments. Labs or developers can thus take the core GVL and
customise it or extend it to meet their particular needs. This capability has already been
exploited within the GVL project itself: genomics researchers often work in a specific sub-
domain, each of which requires specific set of tools. Using the GVL's flexible build system, we
are developing specialised "flavours" of the GVL workbench suitable for particular uses. The
following flavours are currently under development and more are planned (in addition, com-
munity-contributed flavours are welcomed):

• Full: a complete toolset deployed by the GVL

• Tutorial: a set of tools used by the GVL tutorials

• Microbial: a toolset focused on microbial data analysis

The available flavours are selectable for self-launched instances via the Launcher app.

End-to-end usage scenario
Thus far we have described the GVL in terms of its components. In this section we describe an
end-to-end usage scenario, illustrating how the GVL can support a user from training through
to full analyses.

In our experience, a relatively complex but commonly requested analysis is RNA-seq based
differential gene expression analysis (DGE). This use-case consists of a number of processing
steps, and has a variety of tools options, published guides for best practice, and visualisation
requirements that again can be met with myriad options. Aspects of this use-case are well
established and can be implemented as runnable workflows; other aspects require researcher or
analyst input for interpretation. In this scenario, we envision a biologist, or a bioinformatician
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new to RNA-seq analysis, who wishes to learn how to conduct such analyses well and to apply
them to their own data.

Differential gene expression analysis aims to discover genes whose expression level varies
under the experimental conditions of interest [38]. RNA-seq has been shown to allow high
technical accuracy for such analyses relative to older microarray-based methods [40]. Due to
the constraints imposed by the large number of genes in most organisms, and the relatively
small number of samples that can feasibly be included in most studies, increasingly sophisti-
cated statistical methods have been developed to take advantage of observed statistical proper-
ties of gene expression [41,42]. These methods may be available to researchers as command-
line tools or as libraries for programmatic analysis, particularly in R [43]. Both popular com-
mand-line tools, and R libraries, have been made available through Galaxy. These tools are also
available via the GVL command-line and GVL RStudio, with the latter allowing maximum
flexibility in developing more complex analyses.

In this scenario, we restrict ourselves to differential analysis of gene expression, and do not
discuss the many other types of analysis that may be carried out with RNA-seq data. A typical
RNA-seq DGE analysis consists of the following steps:

1. Begin with RNA-seq data from a high-throughput sequencing experiment, usually in the
form of FASTQ files. Currently, a typical amount of data for this analysis is on the order of
20 million reads per sample, where current read lengths are likely to be 100-150bp, giving 2-
3GB of raw data per sample. Usually, in order to perform a statistically robust analysis, mul-
tiple samples from each experimental condition are required, giving data on the order of
~10-15GB.

2. Align sequence reads to reference genome. This step can be carried out using well-estab-
lished tools, but is compute and I/O intensive.

3. Count aligned reads against gene model to produce table of gene feature counts per sample.

4. Statistically test for differential expression of gene features between groups of samples. This
step may be carried out using relatively simple methods or more advanced statistical
approaches. More advanced approaches allow researchers to handle complex experimental
designs.

5. In many cases, the project will involve further analysis, such as pathway or gene set enrich-
ment analysis, to help interpret the significance of the differentially expressed genes.

In this scenario, the GVL allows a novice to go through the following processes:

1. The researcher learns the concepts of RNA-seq differential analysis through the GVL Intro-
ductory RNA-seq tutorial (https://genome.edu.au/wiki/Learn), which guides them step-by-
step through the workflow and concepts. This tutorial takes researchers from the original
read sequences, through read alignment, read-counting, and basic statistical analysis.
Researchers can make use of the managed Galaxy-tut service (https://galaxy-tut.edu.au/) to
work through this tutorial. Alternatively, researchers may launch their own personal
instance to use for these tutorials (see Fig 1). For this step researchers may also wish to take
advantage of introductory RNA-seq workshops run by the institutions supporting the GVL
project, or the Galaxy Training Network (https://wiki.galaxyproject.org/Teach/GTN). These
are usually one-day, hands-on workshops that include an introduction to launching an
instance on the cloud, an introduction to using the Galaxy platform, and the Introductory
RNA-seq tutorial.
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2. The researcher applies these analysis techniques to their own data. This analysis is enough
to give preliminary results on real data, and concrete understanding of the method. For this
step the researcher may use either the same personal instance as in Step (1), or a larger man-
aged service. If the project is particularly large and merits its own compute allocation,
researchers will be able to obtain Research Cloud quota from the NeCTAR Research Cloud
and launch larger cloud instances.

3. The researcher learns more advanced DGE techniques and concepts through the GVL
Advanced RNA-seq tutorial (https://genome.edu.au/wiki/Learn). This tutorial applies alter-
native and more advanced statistical analysis packages. These approaches can still be
accessed via the Galaxy interface via, for instance, a Galaxy wrapper around a standard
edgeR-based analysis [44]. In most cases, at this point the researcher is in a position to
obtain publication-quality results on their data.

4. Researchers may optionally move to RStudio or IPython Notebook on their GVL instance
to produce more flexible visualisations of their results, or as a means to access downstream
analysis tools appropriate to the project.

In some cases the experimental design may be particularly complex and require advanced
understanding of the statistical issues involved. In such cases, there is no real substitute for sta-
tistical expertise, and the researcher or a collaborator on the project should have this. In this
case our researcher can move to their GVL instance's RStudio platform in Step (3), which gives
them a more advanced and flexible set of statistical tools. It is possible to carry out computa-
tionally-intensive steps (alignment of reads) in Galaxy or via the command-line, and then
access the resulting gene counts in RStudio. Most popular Bioconductor libraries for DGE anal-
ysis are pre-installed into R on GVL instances.

The results output from any of these analyses can be stored in persistent cloud storage and/
or downloaded for further use in other tools. The researcher can shut down their instance and
use CloudMan functionality to re-initialise the same environment at a later date, or to share
the complete workbench specification with other researchers [45].

The analysis steps themselves along with the data can be stored and published as a Galaxy
History. In the case of a more advanced analysis, the steps can be stored and published as an R
or R-markdown script [46], or an IPython Notebook document. All of these exported analyses
have the potential to be imported into another GVL instance and re-run, providing excellent
reproducibility. The full web and command-line access to the GVL platform means that the
researcher and their collaborators are free to move onto any advanced methods appropriate to
their project.

Conclusions and Future Work
Driven by a landscape of rapidly evolving data-generating technologies, the field of genomics
has quickly grown into a demanding domain requiring a complex ecosystem of tools, technolo-
gies, computers, and data—all honed to support multi-step pipelines using dozens of tools and
dealing with gigabytes of data. The reality is that processing research-sized genomic data
requires a comprehensive data analysis workbench (Fig 3). This in turn inflicts a high level of
maintenance overhead and required technical expertise on the data analysis process, which is a
barrier to entry for biology-focused researchers.

The GVL has been established to reduce this barrier by improving understanding and acces-
sibility of bioinformatics tools, backed by accessible, scalable and robust computational infra-
structure. The GVL provides a set of well-rounded services that are accepted throughout the
community and supports activities ranging from teaching and training to end-to-end research
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analysis, making it applicable as a bioinformatics workbench and a computational platform
not only in technical terms but also in terms of a community that it supports. Services unified
by the project supply a much-needed locus of tools and technologies allowing researchers to
more easily and readily explore the data analysis space. GVL’s services are simple to access via
the project’s website (genome.edu.au).

Ultimately, the GVL represents a blueprint for deploying virtual laboratories, even for
domains other than genomics: it defines the components required to establish a virtual labora-
tory, technologies to embody these components, and use-cases to deliver a purposeful product.
It supports the notion of Science-as-a-Service [47] and can be used as a validated, exemplar
method in the future. The GVL's design pattern and build system are currently being exploited
to deploy the GVL onto other cloud stacks, and to develop customised "flavours" of the GVL
for specific research sub-domains.

Methods

Building the Genomics Virtual Laboratory
In this section we describe the broad technical details of how the GVL is built.

The GVL is implemented by composing a carefully selected set of state-of-the-art software
that has seen wide adoption and demonstrated utility in the space of bioinformatics data analy-
sis. Much of the effort in building the GVL workbench has been a very significant technical
effort in developing architectural approaches to aggregate and automate the process for gener-
ating the functional services of the workbench, and developing and extending sophisticated
management software that allows users to first deploy and then scale and manage the resources
and services underpinning the workbench. The developed components were created to be reus-
able, the outcome being that the GVL workbench can be replicated on any compatible cloud.
Parts of the workbench stack are also sufficiently generic to be repurposable in contexts other
than a genomics workbench (e.g., CloudMan as a generic cluster-in-the-cloud).

Architecturally, the GVL is composed of three broad layers: the Cloud as the base layer that
offers resource capacity; the middle layer that provides resource management, structure and

Fig 3. An evolution of the data analysis solutions for genomics. Initially, standalone and purpose-specific tools were most prevalent. As the complexity
of analyses grew, new platforms formed that aggregate many standalone tools and support different types of computational infrastructures to offer more
versatile functionality. The GVL represents another step in this evolution where it aggregates a large number of the best-of-breed software and technologies
available today.

doi:10.1371/journal.pone.0140829.g003
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control over the cloud resources; and the application layer that contains the tools, utilities and
data in an accessible form (Fig 4).

In the context of the GVL implemented in Australia, the GVL relies on the NeCTAR
Research Cloud as the base layer. The GVL image is also available for launch on the AWS
Cloud, in the Sydney region. Cloud resources provide a uniform and readily available compute
infrastructure. Technologies underpinning the GVL were designed to be cloud-agnostic and
rely features common to a set of Infrastructure-as-a-Service clouds [48] (also see below). Com-
bined with the automated build process, this approach makes it feasible to deploy the GVL on
a range of clouds available around the world.

The middle layer is primarily handled by CloudMan, which, as part of the GVL, needed to
be extended to support clouds other than AWS [49]. As described throughout the text, Cloud-
Man creates a virtual cluster-in-the-cloud. The created cluster can behave as a traditional clus-
ter environment, permitting applications designed for cluster environments to be readily run.
Hence, no modification to the top level applications is necessary. The GVL management layer
also offers the launch service. This is a web application used to launch GVL instances. It initi-
ates the provisioning of the required cloud resources on any cloud supported by CloudMan
and it monitors the launch process. It was implemented in Django and the deployment process
has been automated as part of the GVL build process.

Finally, the application layer is composed from all the bioinformatics software making up
the GVL workbench; minimal changes were required by the GVL to the software in this layer.
Along with these minor changes, some "glue" components have been added to the application
layer to unify the user experience, in particular the GVL Dashboard (Fig 2 above). The GVL
Dashboard is a portal that runs on GVL instances and provides an overview of the state of all
application-level services running on the given instance. All of the software development per-
formed as part of the GVL has been released into the open-source domain (https://bitbucket.
org/gvl), with many of the contributions having been incorporated into the respective parent
projects.

The management layer is perhaps the aspect of the GVL with the most technical complexity,
and is described in more detail now: it is comprised of a number of system-level components,
including the virtual machine image, the tools file system and the indices file system. Fig 5 cap-
tures the architecture encapsulated by these components. These components are built using a
set of Ansible roles that automate the build process(https://bitbucket.org/gvl/gvl-image-
playbook). The architecture tying together all these individual components is what enables
scalable compute at the back end and fast access to large reference datasets, making the plat-
form of practical use for performing research-scale data analysis. This architecture is primarily
implemented through the CloudMan application.

• Themachine image represents a blueprint for the required operating system and the system
packages and libraries. The machine image also facilitates the GVL launch process (initiated
by the launch service) by allowing instance bootstrapping. Once a machine image is
launched, it is considered a live instance and the bootstrapping scripts contained within initi-
ate required runtime configuration that leads to an automatically configured cluster and a
data analysis platform. As well as the machine image itself, the scripts used to build this
image have been made available in the open-source domain.

• The tools file system contains the Galaxy application and the associated bioinformatics tools
and configurations. This file system has been implemented in two alternative versions: (1) as a
volume snapshot and (2) as a downloadable archive. For the volume snapshot, at instance
launch time, the volume snapshot is converted (by an API request to the cloud middleware)
into a volume that is then attached and mounted as a file system. The created volume is under
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the ownership of the tenancy (i.e., user) that created it and is persistent across cluster invoca-
tions. This means that the entire cluster with all installed applications, configurations and data
can safely be shut down during the period of inactivity and later started back up with all data
and configuration available in the same state as before cluster termination. This model

Fig 4. Three basic architectural layers composing the GVL workbench. The GVL leverages cloud
resource and is compatible with multiple cloud technologies. Through a set of cloud resource management
tools, the details of cloud resources are hidden enabling non-cloud aware applications to readily execute in
this environment.

doi:10.1371/journal.pone.0140829.g004

Fig 5. Architectural components of the GVL’smanagement layer. Each GVL instance is, at runtime, composed of a number of components that the GVL
provides: a virtual machine image, a volume snapshot or an archive of the tools file system, and a snapshot or a hosted instance of the indices file system.
Combined at runtime by CloudMan into a virtual cluster, the components enable a flexible and feature-full bioinformatics workbench.

doi:10.1371/journal.pone.0140829.g005
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requires the tenancy to have an appropriate volume allocation and for the volume snapshot to
be available in the same cloud availability zone that the cluster is launched in. Because not all
users have a volume allocation, we have also made the file system available as a downloadable
archive. At instance launch time, the archive is extracted onto the instance’s transient storage
with the same content as the volume-based file system. Currently, this file system is only a few
hundred megabytes in size and with the colocation and replication of the data across a cloud,
the time required to download and extract the archive is comparable to the time it takes to
complete the request to create a volume from a snapshot. This model makes it possible to cre-
ate an exact replica of the necessary file system in any cloud region using only transient
instance storage. Crucially important is to realize that, although it allows the GVL to be used
even by users who have no available volume storage, this model of launching GVL services is
not persistent across invocations and once a cluster is terminated, the data is gone.

• The indices file system contains formatted reference genome index data used by a variety of
bioinformatics tools (e.g., during mapping). The reference file system is updated with new ref-
erence genomes as requested by the users and is currently several hundred gigabytes in size.
To facilitate reuse of this valuable resource, as part of the GVL, we have made the file system
available in two formats: as a volume snapshot and as a high-performance shared file system.
This shared file system is a read-only, GlusterFS-based instance of the file system that
launched instances simply mount and use in read-only mode. Replicated over several zones of
the NeCTAR research cloud and hosted over an average of two dedicated virtual machines,
the service has shown remarkable availability and stability under load (during workshops, for
example). The reference data is kept separate from the data uploaded by users or the tool
installation and configuration data; such data is kept local to each instance, which ensures
only the person that launched the instance has access to it. Users who wish to add their own
reference data may add it in parallel to this data, or may make use of the volume snapshot
option to copy the entire reference data file system into their own storage allocation.
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