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1 Introduction

Heavy-ion collisions at high energies allow the study of strongly interacting matter under

extreme conditions. Calculations based on Quantum-Chromo-Dynamics (QCD) on the

lattice indicate that the hot and dense medium created in these collisions behaves like

a strongly coupled Quark-Gluon Plasma (QGP) [1–4]. Heavy quarks are an important

probe for the properties of this state of matter, since they are produced via hard partonic

collisions at a very early stage and thus experience the complete evolution of the system.

Quarkonium states, i.e. bound states of a heavy quark and anti-quark such as the J/ψ meson

(cc̄ state) are of particular interest. It was predicted that the J/ψ formation is suppressed

in a QGP due to the screening of the cc̄ potential in the presence of free colour charges [5].

Experimentally, a suppression of the inclusive J/ψ yield in heavy-ion collisions relative to

the corresponding yield in pp, scaled by the number of binary nucleon-nucleon collisions, has

been observed at the Super Proton Synchrotron (SPS) [6–8] and the Relativistic Heavy Ion

Collider (RHIC) [9, 10]. The level of suppression was found to be similar at SPS and RHIC,

despite the significantly different collision energy. More recently, the nuclear modification

of J/ψ was also measured for Pb-Pb collisions at the LHC [11–13]. While at high transverse

momentum (pT > 4 GeV/c) the suppression factor is at the same level as the one observed

at RHIC in the low pT region, a significant reduction of the suppression is measured

towards lower pT. This has been interpreted as the effect of an additional contribution

to J/ψ production at low pT, due to the combination of correlated or uncorrelated c and

c̄ quarks [14, 15]. This contribution becomes sizable at LHC energies, since the number

of cc̄ pairs is much higher than at lower energies. Assuming that a deconfined phase is

produced and that all the J/ψ are dissociated, this process happens at the chemical freeze-

out stage of the fireball evolution. This is the approach followed within the statistical

hadronization models described in refs. [16, 17]. Alternatively, J/ψ could be generated via

coalescence throughout the full evolution of the QGP phase, if their survival probability in
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this environment is large enough. This scenario has been implemented in several partonic

transport models [18, 19]. It was found that both approaches can provide a description of

the measured nuclear modification factors [12] and of the elliptic flow of inclusive J/ψ [20].

The production of open beauty hadrons is expected to be sensitive to the density of the

medium created in heavy-ion collisions due to the energy loss experienced by the parent

parton (a beauty quark) which hadronizes into the beauty hadron. This energy loss is

expected to occur via medium-induced gluon radiation [21, 22] and elastic collisional energy

loss processes [23–25] and it depends on the QCD Casimir coupling factor of the parton

(larger for gluons than for quarks) and on the parton mass [26–29]. Other mechanisms,

such as in-medium hadron formation and dissociation, can be envisaged as particularly

relevant for heavy-flavour hadrons due to their small formation times [30–32].

Inclusive J/ψ production is the sum of several contributions. In addition to the di-

rectly produced J/ψ, the decays of heavier charmonium states, such as the χc and ψ(2S),

also contribute to the inclusive J/ψ yield. These two sources (direct and charmonium de-

cays) are defined as prompt J/ψ, where the contribution from charmonium decays is about

35% as measured in pp collisions [33]. Since heavier charmonia are less strongly bound

than the J/ψ they should be more easily dissolved in a deconfined medium [34]. The J/ψ

suppression measured at the SPS is indeed compatible with the assumption that only the

excited states are dissolved and not the directly produced J/ψ [6, 7]. On top of the prompt

J/ψ production, there is an additional non-prompt contribution to the inclusive J/ψ at

high centre-of-mass energies, coming from the decay of beauty hadrons. Since these decays

proceed via weak interactions, the resulting J/ψ will originate from a decay vertex that is

displaced from the main interaction vertex. Their measurement provides a direct deter-

mination of the nuclear modification of beauty hadrons. By subtracting the non-prompt

contribution from the inclusive J/ψ yield one can also provide an unbiased information

on medium modification of prompt charmonia. The non-prompt J/ψ contribution at mid-

rapidity has already been measured in pp collisions at
√
s = 7 TeV by ATLAS [35], CMS [36]

and ALICE [37]. For Pb-Pb collisions at
√
sNN = 2.76 TeV CMS has also published prompt

and non-prompt J/ψ production results at mid-rapidity for pT > 6.5 GeV/c [13].

In this paper we present a differential measurement of the inclusive J/ψ production at

mid-rapidity in Pb-Pb collisions at
√
sNN = 2.76 TeV. The pT dependence of the nuclear

modification factor and the centrality dependence of the average transverse momentum of

J/ψ have been obtained, extending the set of results presented in [12]. A measurement of

the prompt and non-prompt contributions to the inclusive J/ψ production is also presented.

The nuclear modification factor of non-prompt J/ψ is determined down to pT = 1.5 GeV/c

and compared to model predictions.

2 Data analysis

A detailed description of the ALICE detector can be found in [38]. For the analysis pre-

sented here the detectors of the central barrel have been used, in particular the Inner

Tracking System (ITS) and the Time Projection Chamber (TPC). These detectors are

located inside a large solenoidal magnet with a field strength of 0.5 T. They allow the

– 2 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
1

measurement of J/ψ mesons via the dielectron decay channel in the central rapidity region

down to zero pT. The ITS [39] consists of six layers of silicon detectors surrounding the

beam pipe at radial positions between 3.9 cm and 43.0 cm. Its two innermost layers are

composed of Silicon Pixel Detectors (SPD), which provide the spatial resolution to separate

on a statistical basis the non-prompt J/ψ. The active volume of the TPC [40] covers the

range along the beam direction −250 < z < 250 cm relative to the Interaction Point (IP)

and extends in radial direction from 85 cm to 247 cm. It is the main tracking device in the

central barrel and is in addition used for particle identification via the measurement of the

specific ionization (dE/dx) in the detector gas.

Triggering and event characterization is performed via forward detectors, the V0 [41]

and two Zero Degree Calorimeters (ZDC) [42]. The V0 detectors consist of two scintillator

arrays positioned at z = −90 cm and z = +340 cm and cover the pseudo-rapidity ranges

−3.7 ≤ η ≤ −1.7 and 2.8 ≤ η ≤ 5.1. The ZDCs, each one consisting of two quartz fiber

sampling calorimeters, are placed at a distance of 114 m relative to the IP in both directions

along the beam axis and are used to detect spectator nucleons.

The results presented in this article are based on data samples collected during the

Pb-Pb data taking periods of the LHC in the years 2010 and 2011. In the case of the

2011 data sample the Minimum Bias (MB) Level-0 (L0) trigger condition was defined by

the coincidence of signals in both V0 detectors along with a valid bunch crossing trigger.

For the 2010 data sample, in addition, the detection of at least two hits in the ITS was

required. Both MB trigger definitions lead to trigger efficiencies larger than 95% for in-

elastic Pb-Pb collisions. Electromagnetic interactions were rejected by the Level-1 (L1)

trigger, which required a minimum energy deposition in the ZDC by spectator neutrons.

The beam-induced background was further reduced during the offline analysis by selecting

events according to the relative timing of signals in V0 and ZDC. The offline centrality

selection is done using the sum of the two V0 signal amplitudes. By fitting the corre-

sponding distribution with the results of Glauber model simulations, the average number

of participants 〈Npart〉 and the average nuclear overlap function 〈TAA〉 = 〈Ncoll〉/σinelNN for a

given centrality class can be determined as described in [43]. Here, 〈Ncoll〉 is the average

number of binary nucleon-nucleon collisions and σinelNN the inelastic nucleon-nucleon cross

section. The numerical values for 〈Npart〉, 〈Ncoll〉, and 〈TAA〉 are tabulated in [12].

The 2010 data sample consists of 1.5 × 107 events, taken with the corresponding MB

trigger. The 2011 event sample was enriched with central and semi-central Pb-Pb collisions

by using thresholds on the V0 multiplicity at the L0 trigger. From the latter data set we

analyzed 1.9× 107 central (0–10% of the centrality distribution) and 1.7× 107 semi-central

(10–50%) events. The summed 2010 and 2011 data samples correspond to an integrated

luminosity of Lint = 26.4± 0.3(stat.)+2.1
−1.7(syst.) µb−1 [12].

2.1 Inclusive J/ψ

J/ψ candidates are reconstructed by combining opposite-sign (OS) pairs of elec-

tron/positron candidates and calculating their invariant mass mee. These candidates are

selected from tracks reconstructed in the ITS and the TPC by employing the set of quality

criteria described in [12, 44]. In order to reject the background from photon conversions
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in the detector material, tracks are required to have a hit in one of the SPD layers. In

addition, at least 70 out of a maximum of 159 space points reconstructed in the TPC must

be assigned to a given track, which also needs to fulfill a quality criterion of the track fit

(χ2/ndf < 4). The tracks are required to be in the range |η| < 0.8, where the tracking and

particle identification performance of the TPC is optimal, and to have pT > 0.85 GeV/c to

improve the signal-to-background ratio in the J/ψ mass region.

Electron candidates are selected by requiring that the dE/dx measurement in the TPC

lies within a band [−1σ,+3σ] around the momentum-dependent parameterization of the

expected signal, where σ is the phase space dependent dE/dx resolution (details can be

found in [45]). The selection is asymmetric in order to minimize the contribution from

pions. To further suppress the hadron contamination, tracks that are compatible within

±4σ with the proton expectation are rejected. A side effect of this cut is that tracks below

pT = 1 GeV/c are effectively removed.

Measurement of the inclusive J/ψ yield. The J/ψ signal counts NJ/ψ are obtained

from the number of entries in the background subtracted invariant mass distributions in

the range 2.92 < mee < 3.16 GeV/c2. The uncorrelated background is evaluated with a

mixed event (ME) technique. In order to achieve a good description of the background

only electrons and positrons from events with similar properties in terms of centrality,

primary vertex position, and event plane angle are combined. The ME distributions are

scaled to the same event (SE) distributions in the mass ranges 1.5 < mee < 2.5 GeV/c2

and 3.2 < mee < 4.2 GeV/c2, so that the J/ψ signal region is excluded. The normalization

area contains the ψ(2S) signal, but its contribution is negligible and can therefore be

safely ignored. Also, contributions from the tail of the J/ψ signal shape to this mass

interval are below the percent level and will thus not significantly affect the normalization.

Figure 1 shows a comparison of the SE and ME invariant mass distributions for the 0–40%

most central Pb-Pb collisions for electron-positron pairs at mid-rapidity (|y| < 0.8) in

two pT intervals: 0–2.5 GeV/c and 2.5–6 GeV/c. The agreement between the SE and

ME distributions outside the signal region is very good and allows signal extraction with

significances larger than eight.

The J/ψ yield per MB event in a given pT interval, YJ/ψ, is obtained as

YJ/ψ(pT) =
NJ/ψ(pT)

BRee Nevts 〈A× ε〉(pT)
. (2.1)

Here BRee is the branching ratio for the decay J/ψ → e+e−, Nevts the number of events,

and 〈A× ε〉 the phase space dependent product of acceptance A and reconstruction effi-

ciency ε. The latter is calculated from Monte Carlo (MC) simulations as the ratio between

the number of reconstructed and generated MC J/ψ, which are assumed to be unpolar-

ized. In pp collisions at
√
s = 7 TeV the J/ψ polarization has been measured and was

found to be compatible with zero at mid-rapidity (pT > 10 GeV/c) and forward rapidity

(pT > 2 GeV/c) [46–48]. In heavy-ion collisions no measurement exists, but J/ψ mesons

produced from the recombination of charm quarks in the medium are expected to be un-
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Figure 1. The invariant mass distributions of inclusive J/ψ at mid-rapidity (|y| < 0.8) for

Pb-Pb collisions (0–40% most central) at
√
s
NN

= 2.76 TeV. The left panels show the interval

0 < pT < 2.5 GeV/c and the right ones 2.5 < pT < 6 GeV/c. The upper panels display the opposite

sign distributions together with the result of the mixed event procedure. In the lower panels the

background subtracted distributions are shown and compared to the simulated line shape. Also,

the signal-to-background ratio S/B and the significance of the signal are given.

polarized.1 The MC events used for the calculation of 〈A× ε〉 are constructed by adding

to background events, generated with the HIJING model [49], J/ψ mesons decaying into

e+e− pairs, whose phase space distribution is obtained from extrapolations of other mea-

surements [50], taking into account shadowing effects as parameterized in EKS98 [51]. The

dielectron decay is simulated with the EvtGen [52] package, using the PHOTOS model [53]

to describe the influence of final state radiation. This choice, together with the simulation

of bremsstrahlung in the detector material, is mandatory for a proper description of the

low mass tail in the measured J/ψ mass distribution and ensures that the fraction of the

signal outside of the mee integration window is properly accounted for in the correction

〈A× ε〉. The propagation of the simulated particles is done by GEANT3 [54] and a full

simulation of the detector response is performed. The same reconstruction procedure and

cuts are applied to MC events and to real data. The quality of the simulation is illustrated

by the good agreement of the background-subtracted invariant mass distributions with the

1The impact of the polarization on the acceptance was studied for extreme polarization scenarios in [44].
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MC simulation of the J/ψ signal shape, after normalizing it to the same integral as the

measured signal (see figure 1).

The analysis has been performed in two slightly different centrality intervals (0–40%

and 0–50%), where the larger one is used for the extraction of non-prompt J/ψ which

requires a higher statistics than the inclusive measurement. Also, the pT intervals have

been optimized for the different analyses. It was checked that the results for inclusive J/ψ

obtained with the two centrality binnings are in good agreement.

Determination of the pp reference for RAA. From the corrected J/ψ yield YJ/ψ(pT)

the nuclear modification factor RAA(pT) is calculated as

RAA(pT) =
YJ/ψ(pT)

〈TAA〉 σppJ/ψ(pT)
. (2.2)

Since no differential J/ψ measurement at mid-rapidity at low pT is available for pp collisions

at
√
s = 2.76 TeV [55], the reference needed for the construction of RAA is based on an

interpolation of the mid-rapidity measurements by PHENIX at
√
s = 0.2 TeV [56], CDF

at
√
s = 1.96 TeV [57], and ALICE at

√
s = 7 TeV [55]. The interpolated pT distribution

is obtained by fitting the following parameterization to the available data sets [50]

1

dσ/dy

d2σ

dzTdy
= c

zT
(1 + a2z2T)n

. (2.3)

Here, zT is defined as pT/〈pT〉, a = Γ(3/2) Γ(n − 3/2)/Γ(n − 1), and c = 2(n − 1) a,

where n is the only free fit parameter. The value for 〈pT〉 (calculated in the pT range

0–10 GeV/c) at
√
s = 2.76 TeV, which is needed to translate this parameterization into

dσ/dpT, is determined by interpolating between the existing 〈pT〉 measurements for pp

and pp̄ collisions [55–57]. This interpolation is done using various functional forms for the√
s dependence to determine the systematic uncertainty. For the absolute normalization

of the parametrized spectrum, the same interpolated value dσ/dy = 4.25 ± 0.28(stat.) ±
0.43(syst.) µb as in [12] is used.

The main sources of systematic uncertainties for the pT dependent RAA of inclusive J/ψ

are the signal reconstruction procedure, the MC input kinematics, the uncertainties on the

interpolated pp reference and on the nuclear overlap function. The corresponding values

are summarized in table 1. While the first two components are uncorrelated between

the pT intervals (type II), the uncertainty due to the nuclear overlap function is fully

correlated (type I). The pp reference on the other hand introduces both uncorrelated and

correlated contributions. To determine the uncertainty related to the signal reconstruction,

the normalization range of the ME background and the size and positions of the mee bins

have been varied. All track and electron selection criteria, such as the electron inclusion

cut and the SPD hit requirement, have been relaxed and/or tightened in order to test the

stability of the result, as was performed in [12]. The value of the systematic uncertainty

is determined as the standard deviation of the distribution of all results obtained with

the listed variations. The evaluation of the uncertainties associated with the MC input

kinematics is also described in [12], while the uncertainty of the pp reference is estimated
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Figure 2. The average transverse momentum 〈pT〉 of e+e− pairs, measured for the pT range 0–

10 GeV/c, as a function of the invariant mass mee in centrality selected Pb-Pb collisions at
√
s
NN

=

2.76 TeV. The shown uncertainties are statistical only. The background 〈pT〉 distributions and the

total fit results are also shown superimposed to the data points.

from the differences between the cross-section values obtained with the fitting procedure

based on eq. (2.3) and the measured values used for the fit at the various energies.

Determination of 〈pT〉 and 〈p2T〉. Since the collected Pb-Pb statistics would allow the

extraction of the J/ψ yield in a few pT intervals only, the average transverse momentum

〈pT〉 is determined by a fit to the distribution of the 〈pT〉 of e+e− pairs as a function of

mee. When building such a distribution, the individual e+e− pairs are weighted by the

inverse of their acceptance times efficiency (A× ε)−1, assuming that they come from the

decay of a J/ψ. The resulting 〈pT〉 distributions are fitted by the expression

〈pT〉meas =
1

S(mee) +B(mee)

[
S(mee) 〈pT〉J/ψ +B(mee) 〈pT〉Bkg

]
. (2.4)

Both factors S and B depend on mee and correspond to the distribution of the J/ψ signal

and of the background. For S the same background subtracted signal distribution S(mee)

is used as for the extraction of the yield (see lower panels of figure 1), while the background

B is generated from the ME sample, as B(mee) = cB BME(mee). The normalization factor

is determined by fitting cBBME(mee) to the corresponding mee distribution of e+e− pairs in

the regions 1.5 < mee < 2.5 GeV/c2 and 3.2 < mee < 4.2 GeV/c2, thus excluding the signal

region. For the sum S(mee)+B(mee) in the denominator of eq. (2.4), the measured OS pair

mee distribution is used. The 〈pT〉Bkg, defined as the 〈pT〉 of the combinatorial background

pairs, is also calculated from the ME sample. This analysis is performed in three different

centrality intervals: 0–10%, 10–40%, and 40–90%. Figure 2 shows the measured 〈pT〉 of

the e+e− pairs in the pT range 0–10 GeV/c together with the results of the fit procedure.

In addition, with an equivalent method, the mean square transverse momentum 〈p2T〉 is

also calculated for the same centrality intervals.

The systematic uncertainties of the 〈pT〉 measurement for inclusive J/ψ are mainly

determined by the signal extraction, the stability of track and electron selection criteria

and the fit procedure (see table 2). While the first two components are not correlated

between the different centrality intervals (type II), the systematic uncertainty intrinsic to

the fit procedure can affect the data points in a correlated way (type I). The uncertainties
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pT range (GeV/c)

0–40% 0–50%

Source 0–2.5 2.5–6 0–1.5 1.5–4.5 4.5–10 Type

Signal reconstruction 10.9 11.0 22.6 8.5 10.0 II

MC input kinematics 3.2 5.9 1.5 4.7 5.3 II

Nuclear overlap function 〈TAA〉 3.2 3.2 3.8 3.8 3.8 I

pp reference
12.1 12.1 12.1 12.1 12.1 I

4.5 4.9 5.0 4.3 10.1 II

Total
12.6 12.6 12.7 12.7 12.7 I

12.3 13.5 23.2 10.6 15.2 II

Table 1. The correlated (type I) and uncorrelated (type II) systematic uncertainties (in percent)

on the measurement of the nuclear modification factor RAA of inclusive J/ψ for several pT intervals

in Pb-Pb collisions (0–40% and 0–50% most central) at
√
s
NN

= 2.76 TeV.

Centrality

Source 0–10% 10–40% 40–90% type

Signal extraction 2.0 1.6 4.5 II

Track selection 3.1 3.9 13.7 II

Stability of the fit procedure (from MC) 2.0 2.0 2.0 I

Total
2.0 2.0 2.0 I

3.7 4.2 14.4 II

Table 2. The correlated (type I) and uncorrelated (type II) systematic uncertainties (in percent)

on the measurement of the average transverse momentum 〈pT〉 of inclusive J/ψ in three centrality

intervals in Pb-Pb collisions at
√
s
NN

= 2.76 TeV.

related to the signal extraction have been evaluated by varying the normalization range

of the ME background, the size and positions of the mee bins, the fit region and by using

in addition to the ME background a linear function for the background description. In

addition, the stability of the fit procedure was tested by modifying the approach, e.g. by

using in the fit the direct sum of S and B, instead of the OS pair mee distribution, or by

using a fit function for B, instead of ME. It was also verified by applying the above described

method to MC events, which were constructed by combining signal with background events

with a realistic S/B ratio. It turned out that the procedure allows to recover the 〈pT〉 of the

simulated J/ψ mesons within a 2% difference. This value is assumed as correlated (type I)

uncertainty. Finally, the uncertainty in the signal-to-background ratio is propagated into

the statistical uncertainty of the 〈pT〉J/ψ.

2.2 Non-prompt J/ψ

The candidate selection for the non-prompt J/ψ analysis includes, in addition to the pre-

viously described criteria, the condition that at least one of the two decay tracks has a hit

in the first SPD layer, in order to enhance the resolution of secondary vertices.
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The non-prompt J/ψ fraction has been determined using an unbinned two-dimensional

log-likelihood fit described in detail in [37], which is performed by maximizing the quantity

lnL =

N∑
ln [fSig · FSig(x) ·MSig(mee) + (1− fSig) · FBkg(x) ·MBkg(mee)] , (2.5)

where N is the total number of OS candidates in the range 2.2 < mee < 4 GeV/c2 and x is

the pseudo-proper decay length of the candidate

x =
c (~L · ~pT/pT)mJ/ψ

pT
. (2.6)

Here ~L is the vector pointing from the primary vertex to the J/ψ decay vertex and mJ/ψ

the mass of the J/ψ taken from [58]. FSig(x) and FBkg(x) (MSig(mee) and MBkg(mee)) are

Probability Density Functions (p.d.f.) describing the pseudo-proper decay length (invariant

mass) distribution for signal and background candidates, respectively. FSig(x) is defined as

FSig(x) = f ′B · FB(x) + (1− f ′B) · Fprompt(x) , (2.7)

where Fprompt(x) and FB(x) are the p.d.f. for prompt and non-prompt J/ψ, respectively,

and f ′B is the fraction of reconstructed J/ψ coming from beauty hadron decays

f ′B =
NJ/ψ←hB

NJ/ψ←hB +Nprompt
. (2.8)

A correction due to different average 〈A× ε〉 values, in a given pT interval, for prompt

and non-prompt J/ψ, is necessary to obtain from f ′B the fraction of produced non-prompt

J/ψ, fB

fB =

(
1 +

1− f ′B
f ′B

〈A× ε〉B
〈A× ε〉prompt

)−1
. (2.9)

The various ingredients for the determination of fB are described in the following:

Monte Carlo pT distributions and polarization assumptions. Assuming both

prompt and non-prompt J/ψ to be unpolarized, at a given pT their acceptance times

efficiency values 〈A× ε〉 are the same. However, the pT distributions of prompt and non-

prompt J/ψ can be different, resulting in different average 〈A× ε〉 computed over a pT
range of finite size. Different hypotheses for the kinematical (pT) distributions of both

prompt and non-prompt J/ψ are considered, i.e. including or excluding shadowing or sup-

pression effects as, e.g., those predicted in references [59–61] for non-prompt J/ψ. Due to

the weak pT dependence of 〈A× ε〉, the resulting uncertainty on fB is small, being ∼ 5%

at low pT and ∼ 3% in the highest pT bin, and is independent of centrality.

At a given pT, prompt and non-prompt J/ψ can have different polarization and there-

fore a different acceptance. However, the polarization of J/ψ from b-hadron decays is ex-

pected to be small due to the averaging effect caused by the admixture of various exclusive

B→ J/ψ+X decay channels. Indeed, in more elementary colliding systems, the sizable po-

larization, which is observed when the polarization axis refers to the B-meson direction [62],
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is strongly smeared when calculated with respect to the direction of the daughter J/ψ [63],

as observed by CDF [64]. The central values of the fraction of non-prompt J/ψ are eval-

uated with eq. (2.9) assuming unpolarized prompt J/ψ and a polarization of non-prompt

J/ψ as predicted by EVTGEN [52]. The assumption of a null polarization for non-prompt

J/ψ results in a relative decrease of fB by only 1% at high pT (4.5–10 GeV/c) and 3%

at low pT (1.5–4.5 GeV/c). The relative variations of fB expected in extreme scenarios

for the polarization of prompt J/ψ was studied in [44]. The uncertainties related to the

polarization of prompt and non-prompt J/ψ are are not further propagated to the results.

P.d.f. for prompt J/ψ: Fprompt(x). The x distribution Fprompt(x) for prompt J/ψ,

which decay at the primary vertex, coincides with the resolution function R(x), which de-

scribes the accuracy by which x can be reconstructed. It also enters in the p.d.f. describing

the x distributions of non-prompt J/ψ, FB(x), and of the background candidates, FBkg(x).

The determination of R(x) is based on the same MC data sample as used for the inclusive

J/ψ analysis (see section 2.1). The systematic uncertainty on R(x) was estimated with a

MC approach by propagating the maximum observed discrepancies of the track parame-

ters (space and momentum variables) between data and MC to the x variable [45, 65, 66]

and was found to be at most 10%. To propagate this systematic uncertainty to the final

results the fits are repeated after modifying in the log-likelihood function the resolution to

(1/(1 + δ))×R (x/(1 + δ)). In this expression δ parameterizes the relative variation of the

RMS of the resolution function and is varied between −10% and +10%. The systematic

uncertainty due to the resolution function is smaller in the highest pT bin, because of the

better resolution in the x variable and the higher values of the signal-to-background ratio.

P.d.f. for non-prompt J/ψ: FB(x). The shape of the x distribution of non-prompt

J/ψ is estimated by using PYTHIA 6.4.21 [67] in the Perugia-0 tune [68] to generate beauty

hadrons at
√
s = 2.76 TeV, and the EvtGen package [52] to describe their decays. The sys-

tematic uncertainty related to this shape is estimated by assuming a softer pT distribution

for the non-prompt J/ψ which is obtained by adding the suppression effects as predicted

in [61] and a harder one taken from the same PYTHIA event generator at
√
s = 7 TeV

instead of 2.76 TeV. The resulting systematic uncertainty is within 3–4%.

P.d.f. for the background: FBkg(x). The main difference of the analysis presented in

this section, with respect to previous work on pp collisions [37], concerns the description

of FBkg(x). In this analysis such a function includes an extra symmetric exponential tail

(∝ e−|x|/λsym) [57] and depends on the invariant mass and the pT of the dielectron pair. It

is determined, for each centrality class, by a fit to the data in three pT regions (1.5–3, 3–4.5,

4.5–10 GeV/c) and in four invariant mass regions on the side-bands of the J/ψ mass peak

(2.2–2.6, 2.6–2.8, 3.16–3.5, 3.5–4 GeV/c2, labelled with the indices 1, 2, 3 and 4, respec-

tively), for a total of 3 × 4 combinations. The background function in the invariant mass

region 2.8–3.16 GeV/c2 and in each of the three pT ranges are obtained by an interpolation

procedure as the weighted combination of the p.d.f. determined in the other four invariant

mass regions. The weights are chosen inversely proportional to the absolute difference (or

its square) between the mean of the invariant mass distribution in the given mass interval
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and that in the interpolated region

FBkginterp(x) =
4∑
i=1

wi FBkgi(x); wi ∝ |〈mee〉i − 〈mee〉interp|−n (n = 1 or 2). (2.10)

Optionally, only the two adjacent mass regions can be considered in the interpolation

procedure, corresponding to the condition w1 = w4 = 0. The central value of fB has been

determined as the average of the values obtained with the different assumptions (n = 1 or

n = 2, with or without the condition w1 = w4 = 0). The RMS of the distributions of the

relative variations obtained for fB is used to define the systematic uncertainty. It becomes

larger for central events and in the lowest pT interval, where the signal-to-background ratio

S/B is lower. This approach allows to cope with the much lower S/B ratio in Pb-Pb than

in pp collisions.

P.d.f. for the invariant mass distribution of the signal: MSig(mee). The shape

of the invariant mass distribution for the signal is determined by the same MC simulations

described in section 2.1. The influence of detector material budget is studied with dedicated

MC simulations, where the material budget is varied within its uncertainty (±6%) [69]. The

resulting contribution to the systematic uncertainty on fB slightly increases for central

events, and ranges from 2 to 4%.

P.d.f. for the invariant mass distribution of the background: MBkg(mee). The

shape of the invariant mass distribution for the background candidates is determined from

ME pairs. The related systematic uncertainty on fB is evaluated using the like-sign distri-

bution, instead of the ME one. The uncertainty increases at higher centrality and in the

lowest pT interval due to the decrease of the S/B ratio.

As an example in figure 3 the projections of the best fit function for n = 1 and w1 =

w4 = 0 are shown superimposed to the invariant mass (upper panel) and x (lower panel)

distributions of the candidates in the centrality range 10–50% for 1.5 < pT < 10 GeV/c.

A summary of the systematic uncertainties on the determination of the non-prompt

J/ψ fraction is provided in table 3 for the three centrality intervals in the integrated pT
range and, in the two pT ranges where the results will be given, for the most central

collisions (0–10%).

The value of fB is determined in two pT bins (1.5–4.5 and 4.5–10 GeV/c) for the 0–

50% centrality range and in three centrality classes (0–10%, 10–40% and 40–90%) for 1.5 <

pT < 10 GeV/c. The fB measurements are then combined with the nuclear modification

factors of inclusive J/ψ to get the non-prompt and prompt J/ψ RAA

R
non−prompt J/ψ
AA =

fPb−PbB

fppB

R
incl. J/ψ
AA , R

prompt J/ψ
AA =

1− fPb−PbB

1− fppB

R
incl. J/ψ
AA . (2.11)

pp interpolation. The value of fB in pp collision at
√
s = 2.76 TeV, fppB , is needed to

compute the RAA for prompt and non-prompt J/ψ mesons, see eq. (2.11). It is determined

by an interpolation procedure. Therefore, a fit is performed to the existing measurements of
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Figure 3. The invariant mass (upper panel) and pseudo-proper decay length (lower panel)

distributions for e+e− pairs with pT > 1.5 GeV/c in Pb-Pb collisions in the centrality interval 10–

50% at
√
s
NN

= 2.76 TeV. The projections of the maximum likelihood fit used to extract fB are

superimposed to the data.

fB as a function of pT in mid-rapidity pp collisions at
√
s = 7 TeV (ALICE [37], ATLAS [35]

and CMS [70]). The function used to fit the data is chosen as

fmodel
B (pT) =

dσFONLL

J/ψ←hB
dpT

/
dσphenom.

J/ψ

dpT
, (2.12)

which is the ratio of the differential cross section for non-prompt J/ψ obtained by an

implementation of pQCD calculations at fixed order with next-to leading-log resummation

(FONLL) [71] to that for inclusive J/ψ, parameterized by the phenomenological function

defined in eq. (2.3). A similar fit is then performed to the CDF results [57] in pp̄ collisions

at
√
s = 1.96 TeV. Finally, the fppB (pT) value at

√
s = 2.76 TeV is determined by an

energy interpolation, which gives fppB = 0.122 ± 0.010 in the integrated pT range 1.5–
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1.5 < pT < 10 GeV/c Centr. 0–10% Type

Source Centr. Centr. Centr. pT pT
0–10% 10–40% 40–90% 1.5–4.5 GeV/c 4.5–10 GeV/c

Resolution function 23 15 10 28 12 I

P.d.f. for non-prompt J/ψ 4 3 3 4 3 I

P.d.f. for the background 22 15 5 23 19 II

MC pT distribution 5 5 5 5 3 I

P.d.f. for the invariant mass of signal 5 3 2 5 3 I

P.d.f. for the invariant mass of background 7 5 3 7 5 II

Total 34 23 13 38 24

Table 3. Systematic uncertainties (in percent) on the measurement of the fraction fB of J/ψ

from the decay of beauty hadrons, for different centrality intervals in the transverse momentum

range 1.5 < pT < 10 GeV/c, and in the two pT intervals for the most central collisions. The

contributions which are fully correlated between the different centrality classes are denoted as type

I, the uncorrelated ones as type II.

10 GeV/c. The quoted uncertainty includes: (i) a component from the fit procedure, which

depends on the uncertainties of both data and FONLL predictions; (ii) the systematic

uncertainty due to the energy interpolation, which has been estimated by considering

different functional forms of the
√
s dependency (linear, exponential and power law); (iii)

an additional systematic uncertainty, which has been obtained by repeating the whole

fitting procedure after excluding, one at a time, the data samples used for the fB fit in pp

collisions at
√
s = 7 TeV.

3 Results

Figure 4 shows the 〈pT〉 of inclusive J/ψ for the three analyzed centrality intervals. The

numerical values for 〈pT〉 are summarized in table 4. As a reference, the 〈pT〉 in pp collisions

at the same centre-of-mass energy, as determined by the interpolation method described in

section 2.1, is also presented. The 〈pT〉 for Pb-Pb collisions is significantly smaller than that

for pp collisions. Such a behaviour is not observed at smaller centre-of-mass energies (see

left panel of figure 4), for which no significant system size dependence of 〈pT〉 is seen. This

might indicate the onset of processes which either deplete the high pT region or enhance

the J/ψ production at low pT in heavy-ion collisions at the LHC. The latter effect would

be expected as a consequence of a significant contribution from cc̄ coalescence.

It has been suggested [77] that the observable rAA = 〈p2T〉AA/〈p2T〉pp should be particu-

larly sensitive to medium modifications affecting the J/ψ transverse momentum distribu-

tions. The measured 〈p2T〉 values for Pb-Pb collisions at
√
sNN = 2.76 TeV are summarized

in table 4. The corresponding rAA values as a function of 〈Npart〉 are shown in figure 5

and are found to be significantly below unity. This is in contrast to results from lower

centre-of-mass energies, where either values consistent with unity (PHENIX at
√
sNN =

0.2 TeV [9, 72]) or around 1.5 (NA50 at
√
sNN = 17.3 GeV [73]) were obtained (see left

panel of figure 5). The measured 〈Npart〉 dependences of 〈pT〉 and rAA are compared with

a transport model for inclusive J/ψ by Zhao et al. [75, 76] in the right panels of figures 4

and 5. This model includes regeneration and dissociation processes, based on in-medium

– 13 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
1

Figure 4. The average transverse momentum 〈pT〉 of inclusive J/ψ measured at mid-rapidity

(|y| < 0.8) in centrality selected Pb-Pb collisions (filled circles) and pp collisions (open circles) at
√
s
NN

= 2.76 TeV as a function of the number of participants 〈Npart〉. The uncorrelated systematic

uncertainties (type II) are depicted by the open boxes. Left panel: a comparison to results obtained

by the PHENIX collaboration for Au-Au and Cu-Cu collisions at
√
s
NN

= 0.2 TeV [9, 72] (open

and filled diamonds) and by the NA50 collaboration for Pb-Pb collisions at
√
s
NN

= 17.3 GeV [73]

(crosses). The 〈pT〉 values are calculated for NA50 and PHENIX in the pT interval 0–5 GeV/c, while

for ALICE the pT interval is 0–10 GeV/c. Right panel: 〈pT〉 is compared to theory predictions by

Zhou et al. [74] and Zhao et al. [75, 76] for the pT interval 0–10 GeV/c.

Centrality 〈pT〉 (GeV/c) 〈p2T〉 (GeV 2/c2)

0–10% 2.23± 0.10± 0.08 5.50± 0.58± 0.25

10–40% 2.01± 0.12± 0.08 4.97± 0.65± 0.34

40–90% 2.02± 0.19± 0.29 5.15± 1.05± 1.23

pp 2.54± 0.02± 0.01 9.07± 0.15± 0.07

Table 4. The numerical values of 〈pT〉 and 〈p2T〉 calculated in the range 0 < pT < 10 GeV/c for

the three analyzed centrality intervals in Pb-Pb collisions (the first uncertainty is the statistical

and the second is the uncorrelated systematic (type II), the correlated uncertainty has a value of

2%, see table 2). The values for pp collisions obtained by the interpolation procedure are given as

a reference.

J/ψ spectral functions, throughout the evolution of a thermally expanding fireball. It also

incorporates nuclear shadowing by reducing the input charm cross section by a factor of

up to 1/3, with a centrality dependence as estimated in [78]. There is a fair agreement

between our 〈pT〉 results and the model calculation, while the rAA is not described by this

prediction. Our 〈pT〉 and rAA results are also compared with the calculations by Zhou

et al. [74]. These calculations are also based on a transport approach and incorporate

dissociation and regeneration of J/ψ and heavier charmonia, as well as nuclear shadowing
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Figure 5. The ratio rAA = 〈p2T〉AA/〈p2T〉pp in the pT interval 0–10 GeV/c for inclusive J/ψ mea-

sured at mid-rapidity (|y| < 0.8) in centrality selected Pb-Pb collisions (filled circles) at
√
s
NN

=

2.76 TeV as a function of the number of participants 〈Npart〉. The uncorrelated systematic uncer-

tainties (type II) are depicted by the open boxes, while correlated uncertainty (type I) is shown as

the filled box at unity. Left panel: a comparison to results obtained by the PHENIX collaboration

for Au-Au and Cu-Cu collisions at
√
s
NN

= 0.2 TeV [9, 72] (filled diamonds) and by the NA50

collaboration for Pb-Pb collisions at
√
s
NN

= 17.3 GeV [73] (crosses). The PHENIX and NA50

rAA values are calculated in the pT interval 0–5 GeV/c. Right panel: rAA is compared to theory

predictions by Zhou et al. [74] and Zhao et al. [75, 76] for the pT interval 0–10 GeV/c.

according to EKS98 [51]. While the most central data point is matched by the prediction,

it does not describe the evolution of rAA towards peripheral collisions. It must be noted

that our results from Pb-Pb collisions at forward rapidity [79] exhibit a continuous decrease

of 〈pT〉 and rAA from peripheral towards central events and are thus closer to the theory

predictions, while the behaviour of mid-rapidity Pb-Pb results is more compatible with a

flat 〈Npart〉 dependence.

The RAA of inclusive J/ψ in three pT intervals is shown in figure 6 along with the

results by the CMS collaboration for the interval 6.5 < pT < 30 GeV/c [13], both in 0–40%

most central Pb-Pb collisions. The corresponding numerical values are 0.82± 0.11(stat.)±
0.10(syst.) for the interval 0 < pT < 2.5 GeV/c and 0.58 ± 0.06(stat.) ± 0.08(syst.) for

2.5 < pT < 6 GeV/c, where the systematic uncertainties quoted here are the uncorrelated

(type II) ones, as listed in table 1. The data point for 4.5 < pT < 10 GeV/c corresponds

to the RAA value given in table 5 (centrality range 0–50%). Table 5 also contains the RAA

values for prompt J/ψ, which are numerically identical to the ones for inclusive J/ψ. The

inclusive RAA values below pT = 6 GeV/c are significantly higher than those measured at

higher pT, corresponding to a decrease of RAA with increasing pT, while the high pT data

point is close to the CMS measurement. This pT dependence is similar to the one observed

at forward rapidity [12], and is in clear contrast to the pT dependence measured at lower
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Figure 6. The nuclear modification factor RAA of inclusive J/ψ, measured at mid-rapidity

(|y| < 0.8) in Pb-Pb collisions (0–40% most central) at
√
s
NN

= 2.76 TeV, as a function of transverse

momentum pT. The filled symbols are placed at the measured pT for the given interval. Since for

the data point in 4.5 < pT < 10 GeV/c (open symbol, 0–50% most central) 〈pT〉 is not available due

to the limited statistics, it is plotted at the centre of the pT interval. The uncorrelated systematic

uncertainties (type II) are depicted by the open boxes, while the correlated uncertainties (type I)

are shown as the filled boxes at unity. The data are compared to corresponding results by PHENIX

for Au-Au collisions (0–40% most central) at
√
s
NN

= 0.2 TeV [9], by CMS for Pb-Pb collisions

(0–40% most central) at
√
s
NN

= 2.76 TeV [13], and to predictions by the model of Zhou et al. [74]

and Zhao et al. [75, 76].

centre-of-mass energies by the PHENIX collaboration for
√
sNN = 0.2 TeV [9]. Figure 6

also shows the model predictions by Zhou et al. [74]. The value of the predicted RAA is

systematically below the measurement and exhibits a pT dependence similar to the one in

the data. The prediction by Zhao et al. [75, 76] is close to our result. In both models,

the rise of RAA towards pT = 0 is due to the dominant contribution from J/ψ regeneration

via coalescence.

The fraction of non-prompt J/ψ in the pT range 1.5–10 GeV/c is shown as a function

of the number of participants for the centrality intervals 40–90% (〈Npart〉 = 38), 10–40%

(〈Npart〉 = 192), and 0–10% (〈Npart〉 = 356) in the left panel of figure 7. Within uncertain-

ties, no centrality dependence is observed. The pT dependence of fB (centrality: 0–50%)

is shown in the right panel of figure 7 and compared with the measurements by CMS in

the centrality interval 0–100% and pT > 6.5 GeV/c (for the numerical values see table 5).

Our results at low transverse momenta extend the CMS measurements in Pb-Pb collisions

towards lower pT. Also shown are results at mid-rapidity in pp at
√
s = 7 TeV (ALICE [37],

ATLAS [35] and CMS [70]) and in pp̄ collisions at
√
s = 1.96 TeV (CDF [57]). Considering

the ALICE and CMS results in Pb-Pb collisions together, a similar pT dependence as in pp

– 16 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
1

Figure 7. The fraction of J/ψ from beauty hadron decays fB at mid-rapidity measured in the

pT interval 1.5 < pT < 10 GeV/c for centrality selected Pb-Pb collisions at
√
s
NN

= 2.76 TeV (left).

The pT dependence of fB at mid-rapidity for Pb-Pb (
√
s
NN

= 2.76 TeV, |yJ/ψ| < 0.8) and pp (
√
s =

7 TeV, |yJ/ψ| < 0.9) [37] collisions is compared with measurements by CDF (|yJ/ψ| < 0.6) [57],

ATLAS (|yJ/ψ| < 0.75) [35], and CMS (|yJ/ψ| < 0.9) [13, 70] (right).

pT(GeV/c) fB(%) RAA(inclusive J/ψ) RAA(prompt J/ψ) RAA(non-prompt J/ψ)

0.0–1.5 – 0.89±0.20±0.21 – –

1.5–4.5 10.7±4.8±2.5 0.76±0.09±0.08 0.76±0.10±0.08 0.73±0.34±0.20

4.5–10.0 17.0±6.1±2.2 0.38±0.07±0.06 0.38±0.07±0.06 0.37±0.15±0.09

Table 5. The numerical values on the fraction of J/ψ from beauty hadron decays fB at mid-

rapidity and the nuclear modification factors RAA of inclusive, prompt and non-prompt J/ψ for

Pb-Pb collisions at
√
s = 2.76 TeV. These results correspond to the centrality interval 0–50%. The

first uncertainty is statistical and the second uncorrelated systematic (type II).

is observed. However, this similarity could be coincidental, being due to a compensation of

the medium effects on the prompt component (J/ψ dissociation and recombination) and

on the non-prompt part (b-quark energy loss).

In figure 8 the nuclear modification factor for non-prompt J/ψ for 1.5 < pT <

4.5 GeV/c and 4.5 < pT < 10 GeV/c is shown together with the result by CMS for

6.5 < pT < 30 GeV/c [13] and with theoretical model predictions [30, 31, 59–61, 80–85].

One should note that the centrality ranges are not the same for ALICE (0–50%) and CMS

(0–20% and 20–100%). However, the results obtained by CMS for these two centrality bins

are compatible with each other, and also compatible with our measurement in the high

pT interval (4.5 < pT < 10 GeV/c). The model by Uphoff et al. [61] follows a partonic

transport approach based on the Boltzmann equation, which allows interactions among all

partons. It does not include radiative processes for heavy quarks. The calculation has been
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Figure 8. The nuclear modification factor RAA at mid-rapidity (|y| < 0.8) for non-prompt

J/ψ in Pb-Pb collisions at
√
s
NN

= 2.76 TeV as a function of transverse momentum pT. The

ALICE measurement corresponds to the 0–50% centrality range and to the pT intervals 1.5 <

pT < 4.5 GeV/c and 4.5 < pT < 10 GeV/c. The uncorrelated systematic uncertainties (type II) are

depicted by the open boxes, while the correlated uncertainties (type I) are shown as filled boxes

at unity. Results by CMS for higher pT in the centrality range 0–20% and 20–100% [13] are also

shown (the two points have been slightly displaced horizontally for better visibility). The data

are compared to theoretical predictions at mid-rapidity (see text for details). In the right panel,

the ALICE result in the pT interval 4.5 < pT < 10 GeV/c is compared to theoretical predictions

integrated over the same pT range.

performed for a fixed impact parameter b = 5 fm. In the model of Alberico et al. [59, 60] the

propagation of the heavy quarks in the medium is described by the relativistic Langevin

equation. The predicted pT dependence of RAA is strongly influenced by the choice of

transport coefficients. Two values are considered, either as provided by a perturbative

calculation (hard thermal loop approach) or extracted from lattice-QCD simulations. The

calculations have been provided for the centrality range 0–50%. A transport approach,

which is based on a strong-coupling scheme, is employed in the model of He et al. [80]. The

transport is implemented using non-perturbative interactions for heavy quarks and mesons

through the QGP, hadronization and hadronic phases of a nuclear collision. In particu-

lar, the elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic

T-matrix approach, by generating resonances close to the critical temperature that can in

turn recombine into B mesons, followed by hadronic diffusion using effective hadronic scat-

tering amplitudes. The hydrodynamic evolution of the system is quantitatively constrained

by the measured transverse momentum distributions and elliptic flow of light hadrons. Ra-

diative processes, which should improve the description at high pT, are not included in this

approach. The calculations have been performed in the centrality range 0–50%. The model

of Vitev et al. [30, 31] assumes the existence of open heavy flavour bound-state solutions

in the QGP in the vicinity of the critical temperature. A description of beauty quark

quenching is combined with B meson inelastic breakup processes. Furthermore, modified
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beauty parton distribution functions and beauty fragmentation functions in a co-moving

plasma are implemented in this calculation. The prediction is shown for a fixed centrality,

corresponding to 〈Npart〉 = 200, a value very close to the average number of participants in

the centrality range 0–50%. In the model, a sizable fraction of the suppression is ascribed to

the inelastic break-up processes (collisional dissociation), as can be deduced from figure 8

by comparing the full model prediction with and without the contribution of this specific

process. The model of Djordjevic [81], shown in figure 8 for the centrality range 0–50%,

uses a formalism that takes into account finite size dynamical QCD medium with finite

magnetic mass effects and running coupling. In the WHDG model [82] (centrality range

0–50%) the energy loss is computed using perturbative QCD and considering both elastic

and inelastic partonic collisions and path length fluctuations. The approach of Aichelin

et al. [83, 84] includes a contribution of radiative gluon emission in the interaction of heavy

quarks with light quarks, which are considered as dynamical scattering centers. In this

model the relative contribution to the energy loss by radiative processes, as compared to

collisional ones, is influenced by introducing a finite gluon mass. The results of the model

shown in figure 8, which are obtained for the centrality range 0–50%, correspond to either

a pure collisional scenario or a combination of collisional and radiative energy loss. Finally,

in the model of Horowitz and Gyulassy [85], also applied to the centrality interval 0–50%,

the string inspired AdS/CFT gravity-gauge theory correspondence [86, 87] is applied to the

case of heavy quark energy loss. In the right hand inset of figure 8, the ALICE RAA value,

integrated over the range 4.5 < pT < 10 GeV/c, is compared to theoretical predictions com-

puted in the same pT range. Most of the models predict a larger value of RAA than observed

in the measurement. However, more precise data are needed to discriminate among the

different models. The next LHC run will provide increased statistics for this measurement.

4 Conclusions

A study of J/ψ production at mid-rapidity in Pb-Pb collisions at
√
sNN = 2.76 TeV has

been presented. A reduction of the inclusive J/ψ 〈pT〉 is observed in Pb-Pb collisions in

comparison to pp. The ratio rAA = 〈p2T〉AA/〈p2T〉pp is found to be significantly below unity,

corresponding to a medium-induced change in the shape of the pT spectra. The nuclear

modification factor RAA depends on pT. It is around 0.8 for pT < 2.5 GeV/c and reaches,

at higher pT, almost the same level of suppression as observed at RHIC energies at low pT.

These observations might be indicative of a sizable contribution of charm quark coalescence

to the J/ψ production at low pT. Transport models including this additional component

are able to qualitatively describe the features seen in the data.

The fraction of J/ψ from beauty hadron decays is determined as a function of centrality

and pT. No significant centrality dependence is observed. By combining this measurement

with the inclusive J/ψ results the RAA of non-prompt J/ψ is obtained in the region 1.5 <

pT < 10 GeV/c, thus extending the coverage of CMS to the low pT region. The nuclear

modification in the region 4.5 < pT < 10 GeV/c is found to be stronger than predicted by

most of the models.
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J. Anielski54 , T. Antičić98 , F. Antinori108 , P. Antonioli105 , L. Aphecetche113 ,

H. Appelshäuser53 , S. Arcelli28 , N. Armesto17 , R. Arnaldi111 , I.C. Arsene22 , M. Arslandok53 ,

B. Audurier113 , A. Augustinus36 , R. Averbeck97 , M.D. Azmi19 , M. Bach43 , A. Badalà107 ,
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2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science

(CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
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