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The BTZ black hole geometry is probed with a noncommutative scalar field which obeys the 𝜅-Minkowski algebra. The entropy of
the BTZ black hole is calculated using the brick wall method. The contribution of the noncommutativity to the black hole entropy
is explicitly evaluated up to the first order in the deformation parameter. We also argue that such a correction to the black hole
entropy can be interpreted as arising from the renormalization of the Newton’s constant due to the effects of the noncommutativity.

1. Introduction

Attempts to construct a quantum theory of gravity have
a long history. At a macroscopic level, Einstein’s theory of
general relativity describes gravity in terms of spacetime
geometry. It is therefore natural to expect that a quantum
theory of gravity would lead to the modification of the
classical spacetime structure and that the description of
spacetime as a smooth manifold may no longer be valid at
the Planck scale. Indeed, one of the approaches to quantum
gravity takes this route and the spacetime is assumed to
be noncommutative (NC) at the microscopic level [1]. Such
an assumption is not ad hoc, since general relativity and
Heisenberg’s uncertainty principle together imply that the
spacetime has a noncommutative structure [2, 3]. With this
motivation, different types of noncommutative space-times
and their implications to physical models have been analyzed
in recent times [4, 5].

Study of black hole physics plays an important role in
exploring various quantum aspects of gravity. Even though
black holes arose from the solutions of classical general
relativity, many insights on the problem of semiclassical or
quantum description of gravity were obtained from the study
of field theories in black hole backgrounds. In particular,
the aspect of black hole entropy and related thermodynamic

properties [6–10] have been extensively studied in various
frameworks including string theory [11, 12], loop gravity [13],
conformal field theory [14–16], and some related approaches
[17, 18]. In the same spirit, there have been various attempts
to construct noncommutative theories of gravity, noncom-
mutative black hole solutions, and noncommutative quantum
cosmology [19–30]. In particular, it has been shown that the
noncommutative version of the BTZ black hole is described
by a 𝜅-deformed algebra [31, 32]. Similar 𝜅-deformed algebras
have been found in the noncommutative description of Kerr
black holes [33] and certain noncommutative versions of
cosmology [22]. It thus appears that there is a certain element
of universality in the appearance of the 𝜅-deformed algebras,
as they occur in the noncommutative (NC) descriptions of
various types of classical geometries. It is therefore interesting
to study the properties of black holes in the framework of 𝜅-
deformed noncommutative systems.

The 𝜅-deformed Minkowski spacetime is defined by the
algebra

[𝑥𝜇, 𝑥]] = 𝑖 (𝑎𝜇𝑥] − 𝑎]𝑥𝜇) . (1)

Here, 𝑎𝜇 have dimensions of length andwe choose 𝑎0 = 1/𝜅 ≡
𝑎 and 𝑎𝑖 = 0 in the later part of this paper. Note that the rhs
of 𝜅-algebra is not a constant and is more general than that of
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the Moyal algebra. The symmetry algebra of this spacetime
is known as 𝜅-Poincaré-Hopf algebra [34]. Various aspects
of this Hopf algebra have been studied in [35–39]. Each
realization of the 𝜅-algebra leads to a star product which can
be used to construct the twisted coproduct, which ensures the
invariance under twisted diffeomorphisms. Klein-Gordon
theory in the 𝜅-deformed spacetime was constructed [40, 41]
and it was shown that the underlying Hopf algebra structure
leads to twisted statistics [42, 43]. The changes due to this
twisted statistics of Klein-Gordon field near the vicinity
of black hole were analyzed in [44]. The modification to
Unruh effect due to 𝜅-deformation of the spacetime was
studied in [45, 46]. Implication of the 𝜅-deformation on
electrodynamics was investigated in [47, 48], and deformed
geodesic equation was obtained in [49]. In these papers,
the approach adopted was to map the coordinates of the 𝜅-
deformed spacetime to that of commutative spacetime and
using this map, functions of noncommutative coordinates
were expressed in terms of commutative coordinates and
their derivatives, as a perturbative expansion in powers of the
deformation parameter. In these works, different realizations
of mappings between noncommutative and commutative
coordinates were used. This was done by embedding the 𝜅-
Minkowski spacetime algebra into Heisenberg algebra [50,
51]. In this paper, we study the change in the entropy of the
BTZ black hole due to the 𝜅-deformation of the spacetime.
This is done by analyzing the 𝜅-deformed Klein-Gordon field
theory in the BTZ black hole background.

In [6, 7], a parallel between properties of black holes
and thermodynamic variables in 3 + 1 dimensions was
obtained. By analyzing quantum field theory in the black
hole background, Hawking showed that black holes emit
thermal radiation and further the area law of black holes
was derived [8]. Using these results and applying well known
notions of quantummechanics, ’t Hooft had shown that there
is a divergence in the allowed energy levels of a quantum
mechanical particle near the black hole horizon. But the
gravitational effects close to the horizon of the black hole
would modify the particle wave functions near the vicinity
of the horizon and thus it is possible that these divergences
would be removed. This had been modeled in [10] by
introducing a cut-off in the number of allowed energy levels
of the quantum field near the horizon of the black hole. This
approach of introducing a brick wall cut-off method has also
been employed in dimensions other than 3 + 1 [52, 53], in
order to calculate the thermodynamic quantities of interest.
It was shown that the cut-off depends only on the black hole
horizon in 3 + 1 dimensions while it depends on the mass of
the black hole as well as themass of the quantumfield in other
dimensions [52]. It was also shown that the divergence in the
entropy per unit area of a Klein-Gordon field propagating in
the black hole background can be absorbed by renormalizing
the gravitational constant [54, 55].

In [56], ’t Hooft’s approach of brick wall method was
employed to calculate the entropy of BTZ black hole. The
BTZ black hole is a solution to gravity in 2 + 1 dimensions
[57]. Gravity in 2 + 1 dimensions has no propagating degrees
of freedom like the 1 + 1 dimensional models [58] and
thus provides a good testing ground for analyzing various

aspects of quantum gravity and black hole physics. In [56],
entropy of a scalar theory in the background of BTZ metric
was calculated using the brick wall cut-off, with appropriate
choice of cut-off parameter, in the background of rotating as
well as stationary BTZ black hole metrics. It was shown that
the entropy in both cases is related to the perimeter of theBTZ
black hole. Further, this cut-off is independent of the mass
and angular momentum of the BTZ black hole.

In this paper, we probe the geometry of a BTZ black
hole using a 𝜅-deformed noncommutative scalar field as
a simple probe. Using the realization of the map used in
[48, 49], we obtain the thermodynamic properties of the
BTZ black hole in 𝜅-deformed spacetime, by analyzing the
𝜅-deformed Klein-Gordon field in the background of the
BTZ black hole. Following [10, 56], we calculate the entropy
of the BTZ black hole in the 𝜅-deformed spacetime by
analyzing the 𝜅-deformedKlein-Gordon field theory near the
vicinity of the black hole horizon. Using the ideas developed
in [37, 38, 40, 48, 49], we first obtain the Klein-Gordon
theory in the 2 + 1 dimensional 𝜅-deformed spacetime.
Starting with the action of this model in the 𝜅-deformed
BTZ background, we calculate the free energy and entropy,
semiclassically using the brick wall cut-off. We restrict our
attention here only to the case of nonrotating BTZ black hole.
We start with the Klein-Gordon theory in the 𝜅-deformed
BTZ background, keeping terms up to leading order in the
deformation parameter. The corresponding action is shown
to have higher derivative terms. Using the methods of higher
derivative theories, we obtain the equations of motion for
the scalar theory, which is valid up to the first order in the
deformation parameter. Using the WKB method, we then
calculate the energy eigenvalues of the scalar field quanta.
Using this, we calculate the free energy and entropy of
the system where we use the brick wall cut-off. We obtain
the modification to the entropy due to the 𝜅-deformation,
valid up to first order in the deformation parameter 𝑎.
This modification can be interpreted as renormalization of
Newton’s constant 𝐺. Noncommutativity in its most general
form is introduced and presented in the Appendix. There
we use a commutator between NC curved coordinates 𝑋𝜇
and momenta �̂�𝜇 to define the NC metric. As a next step we
define the general NC action.We also find the corresponding
generalized equations of motion. They are valid for a generic
NC scalar field ̂𝜙 on a generic NC curved spacetime 𝑔𝜇]. The
procedure carried out in Section 2 is actually a special case
(A ̸= 0 andB = 0) of this general procedure. We emphasize
that in Section 2 we used for simplicity BTZ as a toy model
and that the procedure presented in the Appendix and its
special case of Section 2 are valid for a general metric 𝑔𝜇].

This paper is organized as follows. In the next section, we
discuss the construction of the action describing 𝜅-deformed
scalar theory with nontrivial metric background. Here, we
use the ⋆-product for defining the action for 𝜅-deformed
scalar theory. We also derive the corresponding equations
of motion in this section. A more general construction is
discussed in the Appendix. In Section 3, we investigate 𝜅-
deformed scalar theory in the background of BTZ black hole.
We calculate the entropy of the BTZ black hole using brick
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wall cut-off method. Further, we show that the modification
of the entropy of the black hole due to noncommutativity
of the spacetime can be absorbed by renormalizing the
Newton’s constant. We present our concluding remarks and
discussions in Section 4. In the Appendix, we present the
general construction of the action describing scalar theory in
the 𝜅-deformed spacetime with nontrivial curvature.

2. NC Scalar Field in Curved Spacetime

In this section we investigate 𝜅-deformed scalar field in clas-
sical curved background. In the undeformed (commutative)
spacetime, the action for scalar (Klein-Gordon (KG)) field is
given by

S0 = ∫𝑑
4
𝑥√−𝑔 (𝑔

𝜇]
𝜕𝜇𝜙𝜕]𝜙 − 𝑚

2
𝜙
2
− 𝜉𝑅𝜙

2
) (2)

and the corresponding equation of motion is

1

√−𝑔

𝜕𝜇 (√−𝑔𝑔
𝜇]
𝜕]𝜙) + 𝑚

2
𝜙 + 𝜉𝑅𝜙 = 0, (3)

where𝑚 is the mass of the field, 𝜉 is a parameter, and 𝑅 is the
Ricci scalar. Here we study the generalization of (2) and (3) to
NC spacetime, more specifically to 𝜅-Minkowski spacetime.

The most natural (and easiest) way to do this is to
promote the pointwise multiplication to a star multiplication
in (2), that is, 𝑓(𝑥)𝑔(𝑥) → 𝑓(𝑥) ⋆ 𝑔(𝑥). There exists
an isomorphism between NC algebra ̂A, generated by non-
commutative coordinates 𝑥𝜇, and star algebraA⋆, generated
by commutative coordinates 𝑥𝜇, but with ⋆ as the algebra
multiplication. Star product between any two elements 𝑓(𝑥)
and 𝑔(𝑥) inA⋆ is defined as

𝑓 (𝑥) ⋆ 𝑔 (𝑥) =
̂
𝑓 (𝑥) 𝑔 (𝑥) ⊳ 1, (4)

where ̂𝑓(𝑥) and 𝑔(𝑥) are elements of ̂A, and the action ⊳:
H → A is defined by

𝑥𝜇 ⊳ 𝑓 (𝑥) = 𝑥𝜇𝑓 (𝑥) , 𝑝𝜇 ⊳ 𝑓 (𝑥) = 𝑖

𝜕𝑓

𝜕𝑥
𝜇
. (5)

Here, 𝑥𝜇 and 𝑝𝜇 are generators of the Heisenberg algebra H
satisfying the relations,

[𝑥𝜇, 𝑥]] = [𝑝𝜇, 𝑝]] = 0, [𝑝𝜇, 𝑥]] = 𝑖𝜂𝜇], (6)

where 𝜂𝜇] = diag(+, −, −, −) (see [51] for details on the
connection between realizations, Heisenberg algebra, and
star product). For simplicity we consider the case where𝑚 =
𝜉 = 0. Thus, we postulate the following NC action ̂S for the
scalar theory in the 𝜅-Minkowski spacetime

̂S = ∫𝑑
4
𝑥√−𝑔𝑔

𝜇]
(𝜕𝜇𝜙 ⋆ 𝜕]𝜙)

= ∫𝑑
4
𝑥√−𝑔𝑔

𝜇]
(𝜕𝜇
̂
𝜙𝜕]
̂
𝜙 ⊳ 1) .

(7)

Note that the gravity is treated here as classical, that is,
the metric 𝑔𝜇] in the above is undeformed (the procedure

undertaken in this section is actually a special case (A ̸= 0

and B = 0), as described at the end of the Appendix). This
special case consists of taking the limit of small curvatures
((A.6) → 𝑔𝜇] = 𝑔𝜇] + 𝑂(𝑎 ⋅ 𝜕𝑔)) and of keeping only terms
linear in the deformation parameter 𝑎𝜇. This means that in
this section we investigate NC field ̂𝜙 on the generic classical
background 𝑔𝜇]. Hence, in the current section we take this
as our starting point when deriving (17) and (19), since our
aim is to investigate the leading corrections to the entropy
of BTZ, originating in noncommutativity. We emphasize that
for simplicity we use here BTZ as a toy model and that the
procedure presented here (as well as the procedure presented
in the Appendix, which is more general one) is valid for a
general metric 𝑔𝜇]. In the case of 𝜅-Minkowski spacetime
we can use “theory of realizations” (see [51] and references
therein) and expand these star products as the power series
in the deformation parameter 𝑎𝜇.

To explicitly construct the action given in (7), we first
need to obtain the ⋆-product defined in (4). With this in
mind, we start with the 𝜅-Minkowski space defined by

[𝑥𝜇, 𝑥]] = 𝑖 (𝑎𝜇𝑥] − 𝑎]𝑥𝜇) . (8)

Operators 𝑥𝜇 can be realized in terms of the operators 𝑥𝜇 and
𝑝𝜇 (= 𝑖𝜕𝜇) [48, 49, 51] defined in the commutative spacetime
as

𝑥𝜇 = 𝑥𝛼𝜑
𝛼

𝜇
(𝑝) . (9)

Demanding consistency of this realizationwith (8) shows that
𝜑
𝛼

𝜇
(𝑝)must satisfy the following conditions:

𝜕𝜑
𝛼

𝜇

𝜕𝑝
𝛽
𝜑
𝛽

] −
𝜕𝜑
𝛼

]

𝜕𝑝
𝛽
𝜑
𝛽

𝜇
= 𝑎𝜇𝜑

𝛼

] − 𝑎]𝜑
𝛼

𝜇
. (10)

We solve (10) up to the first order in deformation parameter
𝑎 and get

𝜑
𝛼

𝜇
= 𝛿
𝛼

𝜇
[1 + 𝛼 (𝑎 ⋅ 𝑝)] + 𝛽𝑎

𝛼
𝑝𝜇 + 𝛾𝑝

𝛼
𝑎𝜇, 𝛼, 𝛽, 𝛾 ∈ R,

(11)

where the parameters appearing in the realization, namely, 𝛼,
𝛽, and 𝛾 have to satisfy the constraint

𝛾 − 𝛼 = 1, 𝛽 ∈ R. (12)

This solution exhausts all possible covariant realizations up
to the first order in deformation parameter 𝑎. The realization
for an arbitrary element of̂A, that is, ̂𝑓, is given by (see also
[49])

̂
𝑓 = 𝑓 (𝑥) + 𝛼(𝑥 ⋅

𝜕𝑓

𝜕𝑥

) (𝑎 ⋅ 𝑝) + 𝛽 (𝑎 ⋅ 𝑥) (

𝜕𝑓

𝜕𝑥

⋅ 𝑝)

+ 𝛾(𝑎 ⋅

𝜕𝑓

𝜕𝑥

) (𝑥 ⋅ 𝑝)

(13)
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which, up to the first order in 𝑎, for the star product (4) yields

𝑓 (𝑥) ⋆ 𝑔 (𝑥) = 𝑓 (𝑥) 𝑔 (𝑥) + 𝑖𝛼 (𝑥 ⋅

𝜕𝑓

𝜕𝑥

)(𝑎 ⋅

𝜕𝑔

𝜕𝑥

)

+ 𝑖𝛽 (𝑎 ⋅ 𝑥) (

𝜕𝑓

𝜕𝑥

⋅

𝜕𝑔

𝜕𝑥

)

+ 𝑖𝛾 (𝑎 ⋅

𝜕𝑓

𝜕𝑥

)(𝑥 ⋅

𝜕𝑔

𝜕𝑥

) .

(14)

Setting 𝑓 = 𝑔 = 𝜕𝜙 in (7) and (14), we expand the action up
to the first order in the deformation parameter 𝑎𝜇 as

̂S = S0 + ∫𝑑
4
𝑥√−𝑔𝑔

𝜇]

× [𝑖𝛼𝑥
𝜎 𝜕
2
𝜙

𝜕𝑥
𝜎
𝜕𝑥
𝜇
𝑎
𝛽
+ 𝑖𝛽 (𝑎 ⋅ 𝑥)

𝜕
2
𝜙

𝜕𝑥𝛽𝜕𝑥
𝜇

+ 𝑖𝛾

𝜕
2
𝜙

𝜕𝑥𝛼𝜕𝑥
𝜇
𝑎𝛼𝑥
𝛽
] (𝜕𝛽𝜕]𝜙) .

(15)

By defining

A
𝛼𝛽𝛾𝛿

= 𝑖√−𝑔𝑔
𝛽𝛿
(𝛼𝑥
𝛼
𝑎
𝛾
+ 𝛽 (𝑎 ⋅ 𝑥) 𝜂

𝛼𝛾
+ 𝛾𝑎
𝛼
𝑥
𝛾
) , (16)

we rewrite the above action in a more compact form as

̂S = S0 + ∫𝑑
4
𝑥(A

𝛼𝛽𝛾𝛿 𝜕
2
𝜙

𝜕𝑥
𝛼
𝜕𝑥
𝛽

𝜕
2
𝜙

𝜕𝑥
𝛾
𝜕𝑥
𝛿
) . (17)

Starting from the noncommutative scalar theory
described by the above action we derive equations of motion
for the field 𝜙. Notice that the action in (17) has terms
involving higher derivatives of the scalar field; that is, our
Lagrangian is L = L(𝜙, 𝜕𝜙, 𝜕2𝜙, 𝑥) and hence Euler-
Lagrange equations will be more general as in the case of
higher derivative theories. Thus the Euler-Lagrange equation
relevant here is

𝜕𝜇

𝛿L

𝛿 (𝜕𝜇𝜙)

− 𝜕𝜇𝜕]
𝛿L

𝛿 (𝜕𝜇𝜕]𝜙)
=

𝛿L

𝛿𝜙

. (18)

Using this we find the Euler-Lagrange equation following
from (17) explicitly as

𝜕𝜎 (√−𝑔𝑔
𝜎]
𝜕]𝜙)

= 𝜕𝛼𝜕𝛽 (A
𝛼𝛽𝛾𝛿
𝜕𝛾𝜕𝛿𝜙) + 𝜕𝛾𝜕𝛿 (A

𝛼𝛽𝛾𝛿
𝜕𝛼𝜕𝛽𝜙)

−

1

2

∑

𝛼

𝜕𝛼𝜕𝛼 (A
𝛼𝛼𝛾𝛿
𝜕𝛾𝜕𝛿𝜙 +A

𝛾𝛿𝛼𝛼
𝜕𝛾𝜕𝛿𝜙) .

(19)

3. 𝜅-Deformed Scalar Theory in the
BTZ Background

So far our analysis was carried out for a general curved
spacetime metric 𝑔𝜇](𝑥). Since NC effects are related to
Planck scale physics, we expect that the spacetime of black

holes is a natural arena for studying NC theories. Having this
in mind we use the BTZ metric [57, 59] explicitly in (17) and
use the 𝜅-deformed scalar field to probe the BTZ geometry in
order to infer new features that the noncommutativity brings
into the black hole physics. The BTZ black hole is described
by the metric

𝑔𝜇] = (

𝑟
2

𝑙
2
− 8𝐺𝑀 0 0

0 −

1

𝑟
2
/𝑙
2
− 8𝐺𝑀

0

0 0 −𝑟
2

), (20)

where we have taken the angular momentum to be zero;
that is, 𝐽 = 0. As said earlier, we consider NC field
̂
𝜙 on the undeformed background 𝑔𝜇] (we use the above
metric in (16) and (17) and also choose 𝑎𝜇 = (𝑎, 0⃗) in
what follows). Even with these simplifying assumptions, the
equations of motion are still nontrivial and thus we are forced
to use further, physically motivated approximations.The first
approximation that we take is the long wavelength limit,
where we keep terms in the equations of motion that are
of the lowest order in derivatives (𝜕𝜙 ≫ 𝜕

2
𝜙, 𝜕
3
𝜙, 𝜕
4
𝜙).

In this approximation the terms dependent on 𝛼 and 𝛾 do
not contribute since they are proportional to 𝜕(2,3,4)𝜙, and
only terms proportional to 𝜕𝜙 survive. Thus, only terms
depending on 𝛽 give rise to NC contributions. Note here that
only realizations characterized with parameter 𝛽 contribute
in the lowest order in the long wavelength approximation.
The choice of realization corresponds to the choice of the
vacuum of the theory and this should be fixed by experiment
in principle. For example, 𝛽 = 1 corresponds to the natural
realization (classical basis [51]). The equation of motion is
still complicated, so we solve it using WKB approximation
and obtain the spectrum. We use the ansatz 𝜙(𝑟, 𝜃, 𝑡) =
𝑅(𝑟)𝑒
−𝑖𝜔𝑡
𝑒
𝑖𝑚𝜃, as long as𝑀 ≫ 1, and keep terms up to first

order in the deformation parameter 𝑎. Taking all the above
into account, we get the radial equation as

𝑟 (8𝐺𝑀 −

𝑟
2

𝑙
2
)

𝜕
2
𝑅

𝜕𝑟
2
+ (8𝐺𝑀 −

3𝑟
2

𝑙
2
)

𝜕𝑅

𝜕𝑟

+ (

𝑚
2

𝑟

− 𝜔
2 𝑟

𝑟
2
/𝑙
2
− 8𝐺𝑀

− 𝑎𝛽𝜔

8𝑟

𝑙
2

3𝑟
2
/2𝑙
2
− 8𝐺𝑀

𝑟
2
/𝑙
2
− 8𝐺𝑀

)𝑅 = 0

(21)

which will be the cornerstone of the whole subsequent
analyzes, presented in this paper.

3.1. Brick Wall Model and the Entropy. The calculation of
entropy of the black holes using “brick wall model” was
introduced in [10] for the general case and in [56] for the BTZ
case. We are following the same line of arguments as [10, 56]
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and consequently find from (21) that the 𝑟-dependent radial
wave number has the following form:

𝑘
2
(𝑟, 𝑚, 𝜔) = −

𝑚
2

𝑟
2
(𝑟
2
/𝑙
2
− 8𝐺𝑀)

+ 𝜔
2 1

(𝑟
2
/𝑙
2
− 8𝐺𝑀)

2

+ 𝑎𝛽𝜔

8

𝑙
2

3𝑟
2
/2𝑙
2
− 8𝐺𝑀

(𝑟
2
/𝑙
2
− 8𝐺𝑀)

2
,

(22)

where we used the ansatz 𝑅(𝑟) = 𝑒
𝑖 ∫ 𝑘(𝑟)d𝑟 and WKB

approximation. According to the semiclassical quantization
rule, the radial wave number is quantized as

𝜋𝑛 = ∫

𝐿

𝑟
+
+ℎ

𝑘 (𝑟, 𝑚, 𝜔) 𝑑𝑟, (23)

where the quantum number 𝑛 > 0, 𝑚 should be fixed such
that 𝑘(𝑟,𝑚, 𝜔) is real, and ℎ and 𝐿 are ultraviolet and infrared
regulators, respectively (in the subsequent calculation for free
energy and entropy we take the limit 𝐿 → ∞ and set ℎ ≈ 0
and we keep only the most divergent terms in ℎ.). The total
number ] of solutions with energy not exceeding 𝜔 is given
by

] =
𝑚
0

∑

−𝑚
0

𝑛 = ∫

𝑚
0

−𝑚
0

𝑑𝑚𝑛 =

1

𝜋

∫

𝑚
0

−𝑚
0

𝑑𝑚∫

𝐿

𝑟
+
+ℎ

𝑘 (𝑟,𝑚, 𝜔) 𝑑𝑟.

(24)

The free energy at inverse temperature 𝛽𝑇 of the black hole is

𝑒
−𝛽
𝑇
𝐹
= ∑

]
𝑒
−𝛽
𝑇
𝐸
= ∏

]

1

1 − 𝑒
−𝛽
𝑇
𝐸

𝛽𝑇𝐹 = ∑

]
ln (1 − 𝑒−𝛽𝑇𝐸)

= ∫𝑑] ln (1 − 𝑒−𝛽𝑇𝐸)

= −∫

∞

0

𝑑𝐸

𝛽𝑇] (𝐸)
𝑒
𝛽
𝑇
𝐸
− 1

.

(25)

For this, we find the free energy 𝐹 as

𝐹 = −

1

𝜋

∫

∞

0

𝑑𝜔

𝑒
𝛽
𝑇
𝜔
− 1

∫

𝐿

𝑟
+
+ℎ

𝑑𝑟∫

𝑚
0

−𝑚
0

𝑑𝑚𝑘 (𝑟,𝑚, 𝜔) . (26)

After carrying out the integrations and keeping the most
divergent terms in ℎ, we have

𝐹 = −

𝑙
5/2

(8𝐺𝑀)
1/4

𝜁 (3)

𝛽
3

𝑇

1

√2ℎ

− 2𝑎𝛽

(8𝐺𝑀)
3/4
√𝑙

√2ℎ

𝜁 (2)

𝛽
2

𝑇

, (27)

which is the exact result in the sense of theWKBmethod and
𝜁 is the Euler-Riemann zeta function.

Now we can evaluate the entropy for the NC massless
scalar field using the relation 𝑆 = 𝛽2

𝑇
(𝜕𝐹/𝜕𝛽𝑇). Thus we get

𝑆 = 3

𝑙
5/2

(8𝐺𝑀)
1/4

𝜁 (3)

𝛽
2

𝑇

1

√2ℎ

+ 4𝑎𝛽

(8𝐺𝑀)
3/4
√𝑙

√2ℎ

𝜁 (2)

𝛽𝑇

= 𝑆0 (1 +

4

3

𝑎𝛽

8𝐺𝑀

𝑙
2

𝜁 (2)

𝜁 (3)

𝛽𝑇) ,

(28)

where 𝑆0 is the undeformed entropy for BTZ at the Hawking
temperature 𝛽𝑇 = 2𝜋𝑙

2
/𝑟+. This entropy is equivalent to the

Beckenstein-Hawking entropy 𝑆0 = 𝐴/4𝐺 = 2𝜋𝑟+/4𝐺. We
use this equivalence to fix the cut-off ℎ as

ℎ =

9𝐺
2
𝜁
2
(3)√8𝐺𝑀

8𝑙𝜋
6

. (29)

In other words we choose ℎ so that the entropy satisfies the
area (perimeter) law, as was done in [10].

The above result can be used to obtain renormalization
of the Newton’s constant, which is plausible due to quantum
effects at the Planck scale [54, 55], where noncommutative
effects are expected to be important. Let the Newton’s con-
stant at the Planck scale be denoted by𝐺∗. Assuming that the
black hole area law is satisfiedwith the renormalizedNewton’s
constant 𝐺∗, we get

𝑆 =

𝐴

4𝐺
∗
. (30)

This leads to the renormalized Newton’s constant 𝐺∗ defined
by

1

𝐺
∗
=

1

𝐺

(1 +

8

3

𝑎𝛽𝜋

𝑙

𝜁 (2)

𝜁 (3)

√8𝐺𝑀) . (31)

Note that𝐺∗ depends on the mass𝑀 apart from𝐺 and 𝑎 and
reduces to 𝐺 when the noncommutative parameter 𝑎 = 0.

That the final result nevertheless reproduces the area
law (30) does not look very surprising, since, indeed, the
area law appears to be robust and is reproduced in various
modifications (invariant or not under the local Lorentz
transformations) of the field propagation (see, e.g., [60]).

4. Final Remarks

In this paper we have used a 𝜅-Minkowski type noncom-
mutative scalar field as a probe to study the BTZ black hole
geometry. Using the brick wall method of [10], we have
obtained the noncommutative corrections to the entropy of
BTZ black holes. Our results reduce to the ones known in
the literature for the pure BTZ black hole [56] when the
noncommutative parameter 𝑎 is set to zero, as required.

Noncommutative effects are expected to be important
at the Planck scale. It has been suggested that the Newton’s
constant may be renormalized due to quantum effects at
the Planck scale [54, 55]. Within our framework, we have
calculated the noncommutative correction to the Newton’s
constant up to the first order in the noncommutative defor-
mation parameter.

In this paper we have found the correction to the area law
dependent on the NC parameter. This correction scales with
the Beckenstein-Hawking entropy 𝑆BH (we denote it with 𝑆0.).
This is unlike the situationwhich occurs in [17], where, to first
order in the deformation, the noncommutative correction to
the entropy has two contributions, with only one among them
scaling with the Beckenstein-Hawking entropy. Moreover,
this contribution that is proportional to 𝑆BH has the negative
sign, while the sign in our result depends on the 𝑎𝛽. This
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means that the effect of noncommutativity in [17] is to reduce
the number of microstates and lower the entropy and in our
case noncommutativity depending on the sign of 𝑎𝛽 will
increase/decrease the number of microstates and entropy.

As it stands, our result apparently depends on the param-
eter 𝛽, which in turn characterizes the realization of a given
noncommutative algebra (it is interesting to note that in the
so-called left covariant realization (see [51] and references
therein), which corresponds to Poincaré-Weyl symmetry, we
have that𝛽 = 0whichmeans that there is noNC contribution
to the entropy in the leading order of the long-wavelength
limit. In that case we should take even higher derivative
terms into consideration, which would make the subsequent
analysis much more involved.). Hence a natural question
is what is the significance of the parameter 𝛽. For the 𝜅-
Minkowski space it has been clarified that to each realization
there exists a particular operator ordering prescription, star
product, coalgebraic structure, and a Drinfeld twist operator
[40, 61–64]. All these connections are realized through the
one-one correspondences. In other words, the choice of
the parameter 𝛽 is in one to one correspondence with the
choice of the star product [40], which affects the physical
consequences. It may be noted that even for Moyal spaces,
the physics depends on the choicewhether theMoyal product
or the Voros product is used in the analysis and they lead
to physically distinct predictions [65]. Thus the parameter 𝛽,
through its relation to the star product, affects the physical
predictions directly and empirical observations can be used
to put bounds on it [64].

The system we considered can equally be viewed as two
subsystems separated by the boundary area, with black hole
horizon taking the role of the boundary. Then one can assign
the reduced density matrix to each of the two subregions.
This can be done by separately tracing the starting density
matrix either with respect to the degrees of freedom of the
first subregion or with respect to the degrees of freedom of
the second subregion. Furthermore, if the system is to be
described by a pure state, then the reduced density matrices
of both subregions lead to the same entropy, which can be
identified with the entanglement entropy [66]. Consequently
the entanglement entropies of both subsystems are equal. In
other words, the entropy of the black hole is equal to the
entropy of scalar field modes propagating in and out of the
black hole horizon and this is what we have calculated.

In the framework of AdS/CFT correspondence, there
are arguments [67, 68] pointing toward the entanglement
entropy as being a probe for testing the nonlocal char-
acteristics of the theory considered. Related to AdS/CFT,
two parameters, which are dual to each other, need to be
specified. These are correspondingly the distance in the bulk
𝑙 and CFT energy scale parameter 𝑢. Their mutual relation
(UV/IR dispersion) determines the local/nonlocal nature of
the theory, with Heisenberg-like relation 𝑙 ∼ 1/𝑢 being the
footprint of the locality, at least in the theories where the
conformal symmetry is preserved.

The authors of [67] have analysed two particular theories
(little string theory (LST)) and noncommutative Yang-Mills
(NC YM)) and, by using their AdS/CFT description, have
encountered a type of phase transition in the sense that when

the characteristic size 𝑙 of the region considered falls well
below the critical nonlocality length 𝑙𝑐, the area law becomes
superseded by the volume law. In the case of LST, when
calculating the entropy of the region of size 𝑙, they were able
to identify two regions. In the first region (UV region), which
is for 𝑙much smaller than the critical size 𝑙𝑐, they have found
the volume entropy law (cubic in 𝑙 or alternatively linear in 𝑙
if expressed in terms of the entropy density). In this region
the AdS parameter 𝑙 does not scale with 𝑢, meaning that 𝑙
is independent of 𝑢 and the underlying theory is nonlocal.
In the second region (IR region), that is, for large 𝑙, that is,
𝑙 ≫ 𝑙𝑐 and small 𝑢, the entropy follows the area law and
the UV/IR dispersion is of the Heisenberg type 𝑙 ∼ 1/𝑢,
indicating the locality of the underlying theory in this region
[67]. Moreover, in the context of NC YM the UV/IR mixing
strongly affects the critical length scale 𝑙𝑐 that is governing
the area/volume law transition [67]. In this way entanglement
entropy selects between locality and nonlocality according to
whether it follows area or volume law.

In our model the characteristic size of the region consid-
ered enters the entropy through the BTZ radius 𝑟+, which
in turn enters the formula for entropy through the inverse
temperature 𝛽𝑇. However, our result for the entropy has
the same form for any 𝑟+; that is, it does not depend on
the characteristic size of the black hole. In this sense, while
reproducing the area law, we did not come across such type
of phase transition as mentioned above. Nevertheless, the
analysis presented so far naturally raises the question as to
why the critical value should not also exist for 𝑟+ of BTZ. Of
course, we could speculate that some additional effects enter
the story as 𝑟+ approaches smaller/greater values and this
would certainly be an interesting question to pursue further.

At the end, we briefly comment that we are using kappa
type of deformation for which UV/IR mixing is not very
well understood, certainly not as good as for Moyal case, and
hence the direct comparison between the two is not easy.The
illumination of the role UV/IR mixing has in the context of
kappa-deformation and its comparison with the Moyal case
would be a possible future area of work. Furthermore, in the
brick wall type calculations that we carried here, the terms
dependent on the infrared cut-off are scaled away and only
themost divergent term as a function of the brick wall cut-off
is retained.That is what has been done here also and hence we
do not see any infrared dependence. We can also argue that
according to the arguments of [67], our underlying theory is
local due to entropy which follows the area law.

We have used BTZ spacetime as a model for the black
hole. Note that the BTZ metric appears in the discussion
of near-horizon geometry of a large class of black holes
[11]. Similarly, the 𝜅-Minkowski type of noncommutativity
that has been used here appears in the noncommutative
description of several black hole geometries. Thus it is
plausible that our results have a certain amount of universality
which makes it relevant for a wider class of geometries.

Appendix

NC Scalar Field in NC Curved Spacetime

In the absence of true NC of quantum gravity theory, we
have been forced to limit our analyses to the 𝜅-deformations
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of fields and treat the gravity classically. However, in [49],
authors have analyzed the most general equations of motion
for particles in 𝜅-deformed curved space. In this setting, that
is, “Feynman approach,” the commutator between coordi-
nates𝑋𝜇 andmomenta �̂�] can be interpreted as theNCmetric

[𝑋𝜇, �̂�]] ≡ −𝑖𝑔𝜇]

= −𝑖𝑔𝛼𝛽 (𝑦) (𝑝
𝛽 𝜕𝜑
𝛼

]

𝜕𝑝
𝜎
𝜑
𝜎

𝜇
+ 𝜑
𝛼

]𝜑
𝛽

𝜇
) ,

(A.1)

where

𝑔𝜇] (𝑦) = 𝑔𝜇] (𝑥) + 𝛾(𝑥 ⋅
𝜕𝑔𝜇]

𝜕𝑥

) (𝑎 ⋅ 𝑝)

+ 𝛼(𝑎 ⋅

𝜕𝑔𝜇]

𝜕𝑥

) (𝑥 ⋅ 𝑝) + 𝛽 (𝑥 ⋅ 𝑎) (

𝜕𝑔𝜇]

𝜕𝑥

⋅ 𝑝) .

(A.2)

Equation (A.1) enables us to analyze 𝜅-deformations ofmetric
also. This way we can postulate the following NC covariant
action (e.g., in the less complicated case of NC space called
Moyal space which is defined by [𝑥𝜇, 𝑥]] = 𝑖Θ𝜇], tensor
Θ𝜇] is treated as a constant tensor. In this approach (see
[19–22, 69] and references therein), the symmetries are
of general relativity, i.e., the diffeomorphism symmetry is
formulated in the language of Hopf algebras, which provide a
mathematical framework suitable for studying quantization
of Lie groups and Lie algebras. A gravity theory is then
constructed in such a way that it transforms covariantly
under the deformed diffeomorphisms, which automatically
lead to noncommutative geometry. Here it is important to
introduce the notion of star product, twisted symmetries
and twist operator, and their mutual relations. The construc-
tion outlined in this Appendix (as well as its special case
treated in Section 2) is covariant with respect to twisted
diffeomorphisms. We further emphasize that it is possible to
construct the corresponding twist operator (along the line of
[51], where it is shown that for every realization there is a
corresponding twist operator leading to a unique associative
star product) underlying the construction presented in this
Appendix and which ensures the general covariance of the
starting action. Here we have started from the star product
and its realization. However, we could equally well start
from the twist and then, using the twisted diffeomorphism,
obtain the same equations of motion. The main advantage
in using the star product is that the action written in terms
of it is automatically covariant under the action of deformed
symmetries. Of course in the limit 𝑎𝜇 → 0, the star product
reduces to commutative multiplication and we recover the
usual notion of covariance.) ̂S for the NC scalar theory in
the 𝜅-deformed spacetime with nontrivial metric as

̂S = ∫𝑑
4
𝑥√−𝑔 (𝑔

𝜇]
⋆ 𝜕𝜇𝜙 ⋆ 𝜕]𝜙)

= ∫𝑑
4
𝑥√−𝑔 (𝑔

𝜇]
𝜕𝜇
̂
𝜙𝜕]
̂
𝜙 ⊳ 1) .

(A.3)

In the case of 𝜅-Minkowski spacetime we can use “theory
of realizations” (see [51] and references therein) and expand
these star products as power series in the deformation
parameter 𝑎𝜇. Note that in the above we leave the volume 𝑑4𝑥
undeformed [70]. Using the ̂𝜙 and 𝑔𝜇] (see [49] for details)
valid up to first order in the deformation parameter,

̂
𝜙 = 𝜙 (𝑥) + 𝛼(𝑥 ⋅

𝜕𝜙

𝜕𝑥

) (𝑎 ⋅ 𝑝) + 𝛽 (𝑎 ⋅ 𝑥) (

𝜕𝜙

𝜕𝑥

⋅ 𝑝)

+ 𝛾(𝑎 ⋅

𝜕𝜙

𝜕𝑥

) (𝑥 ⋅ 𝑝) ,

(A.4)

𝑔𝜇] = 𝑔𝜇] (𝑦) + 2𝛼𝑔𝜇] (𝑎 ⋅ 𝑝) + 𝛼𝑔]𝛽𝑎𝜇𝑝
𝛽

+ 𝛽 (𝜂𝜇]𝑔𝛼𝛽𝑎
𝛼
𝑝
𝛽
+ 𝑔]𝛽𝑎

𝛽
𝑝𝜇 + 𝑔𝜇𝛼𝑎

𝛼
𝑝])

+ 𝛾 (𝑔𝜇𝛽𝑎]𝑝
𝛽
+ 𝑔]𝛽𝑝

𝛽
𝑎𝜇 + 𝑔𝜇𝛼𝑝

𝛼
𝑎]) ,

(A.5)

respectively, we now expand the action (valid up to the first
order in the deformation parameter 𝑎𝜇). Rewriting the above
equations in a more compact form as

𝑔𝜇] = 𝑔𝜇] + 𝑖𝑎𝛼𝐺
𝛼𝛽

𝜇] (𝑥) 𝜕𝛽 ≡ 𝑔𝜇] + 𝛿 (𝑔𝜇]) ,

𝛿 (𝑔𝜇]) ⊳ 1 = 0,

𝜕𝜇
̂
𝜙 = 𝜕𝜇𝜙 + 𝑖𝑎𝛼𝜑

𝛼𝛽

𝜇
(𝑥) 𝜕𝛽 ≡ 𝜕𝜇𝜙 + 𝛿 (𝜕𝜇𝜙) ,

𝛿 (𝜕𝜇𝜙) ⊳ 1 = 0,

(A.6)

we expand the action in (A.3) keeping terms up to the first
order in deformation parameter. Thus we find

̂S = ∫𝑑
4
𝑥√−𝑔 (𝑔𝜇] + 𝛿 (𝑔𝜇])) (𝜕𝜇𝜙 + 𝛿 (𝜕𝜇𝜙))

× (𝜕]𝜙 + 𝛿 (𝜕]𝜙)) ⊳ 1

= ∫𝑑
4
𝑥√−𝑔 (𝑔𝜇] + 𝛿 (𝑔𝜇]))

× (𝜕𝜇𝜙𝜕]𝜙 + 𝛿 (𝜕𝜇𝜙) 𝜕]𝜙) ⊳ 1

= ∫𝑑
4
𝑥√−𝑔 (𝑔𝜇] + 𝛿 (𝑔𝜇]))

× (𝜕𝜇𝜙𝜕]𝜙 + [𝛿 (𝜕𝜇𝜙) , 𝜕]𝜙]) ⊳ 1

= ∫𝑑
4
𝑥√−𝑔 (𝑔

𝜇]
𝜕𝜇𝜙𝜕]𝜙 + 𝑔

𝜇]
[𝛿 (𝜕𝜇𝜙) , 𝜕]𝜙]

+ [𝛿 (𝑔𝜇]) , 𝜕𝜇𝜙𝜕]𝜙]) + 𝑂 (𝑎
2
)

≡ S0 + 𝑎S

.

(A.7)

By using the following set of relations (note that in ((A.2)–
(A.9)) the ⋅ product is with respect to 𝜂𝜇], so we also have
𝑔
]
𝜇
≡ 𝑔𝜇𝛼𝜂

𝛼𝛽),

𝛿 (𝜕𝜇𝜙) = 𝑖𝑎𝛼𝜑
𝛼𝛽

𝜇
(𝑥) 𝜕𝛽, (A.8a)
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with

𝜑
𝛼𝛽

𝜇
(𝑥) = 𝛼(𝑥 ⋅

𝜕
2
𝜙

𝜕𝑥𝜕𝑥
𝜇
)𝜂
𝛼𝛽
+ 𝛽𝑥
𝛼 𝜕
2
𝜙

𝜕𝑥𝛽𝜕𝑥
𝜇

+ 𝛾

𝜕
2
𝜙

𝜕𝑥𝛼𝜕𝑥
𝜇
𝑥
𝛽
,

(A.8b)

𝛿 (𝑔𝜇]) = 𝑖𝑎𝛼𝐺
𝛼𝛽

𝜇] (𝑥) 𝜕𝛽, (A.8c)

with

𝐺
𝛼𝛽

𝜇] (𝑥) = 𝛾(𝑥 ⋅
𝜕𝑔𝜇]

𝜕𝑥

) 𝜂
𝛼𝛽
+ 𝛼

𝜕𝑔𝜇]

𝜕𝑥𝛼

𝑥
𝛽
+ 𝛽𝑥
𝛼
𝜕𝑔𝜇]

𝜕𝑥𝛽

+ 2𝛼𝑔𝜇]𝜂
𝛼𝛽
+ 𝛼𝑔
𝛽

] 𝛿
𝛼

𝜇

+ 𝛽 (𝜂𝜇]𝑔
𝛽

𝛼
+ 𝑔]𝛼𝛿

𝛽

𝜇
+ 𝑔𝜇𝛼𝛿

𝛽

] )

+ 𝛾 (𝑔
𝛽

𝜇
𝛿
𝛼

] + 𝑔
𝛽

] 𝛿
𝛼

𝜇
+ 𝑔
𝛽

𝜇
𝛿
𝛼

] ) ,

(A.8d)

we obtain the expression for the action in (A.7) as

̂S = S0 + ∫𝑑
4
𝑥√−𝑔

× {𝑔
𝜇]
[𝑖𝛼𝑥
𝜎 𝜕
2
𝜙

𝜕𝑥
𝜎
𝜕𝑥
𝜇
𝑎
𝛽
+ 𝑖𝛽 (𝑎 ⋅ 𝑥)

𝜕
2
𝜙

𝜕𝑥𝛽𝜕𝑥
𝜇

+ 𝑖𝛾

𝜕
2
𝜙

𝜕𝑥𝛼𝜕𝑥
𝜇
𝑎𝛼𝑥
𝛽
] (𝜕𝜇𝜕]𝜙)

+ 𝑖𝑎𝛼𝐺
𝛼𝛽

𝜇] [
𝜕
2
𝜙

𝜕𝑥
𝛽
𝜕𝑥𝜇

𝜕𝜙

𝜕𝑥]
+

𝜕
2
𝜙

𝜕𝑥
𝛽
𝜕𝑥]

𝜕𝜙

𝜕𝑥𝜇

]} ,

(A.9)

which is valid up to first order in the deformation parameter.
Further, by defining

A
𝛼𝛽𝛾𝛿

= 𝑖√−𝑔𝑔
𝛽𝛿
(𝛼𝑥
𝛼
𝑎
𝛾
+ 𝛽 (𝑎 ⋅ 𝑥) 𝜂

𝛼𝛾
+ 𝛾𝑎
𝛼
𝑥
𝛾
) ,

(A.10a)

B
𝛽

𝜌𝜎
= 𝑖√−𝑔𝑎𝛼 (𝐺

𝛼𝛽

𝜌𝜎
+ 𝐺
𝛼𝛽

𝜎𝜌
) , (A.10b)

we rewrite the above action in a more compact form as

̂S = S0

+ ∫𝑑
4
𝑥

× (A
𝛼𝛽𝛾𝛿 𝜕

2
𝜙

𝜕𝑥
𝛼
𝜕𝑥
𝛽

𝜕
2
𝜙

𝜕𝑥
𝛾
𝜕𝑥
𝛿
+B
𝛼𝛽𝛾 𝜕

2
𝜙

𝜕𝑥
𝛼
𝜕𝑥
𝛽

𝜕𝜙

𝜕𝑥
𝛾
) .

(A.11)

Equation (A.11) represents the NC action for NC scalar
field in NC background expanded to the first order in the
deformation parameter 𝑎.

Starting from the noncommutative scalar field theory
described by the action (A.11), we derive equations of motion

for the field 𝜙. Note that the action in (A.11) has terms
involving higher derivatives of the scalar field; that is, our
Lagrangian is L = L(𝜙, 𝜕𝜙, 𝜕2𝜙, 𝑥). Hence, as earlier, we
derive the Euler-Lagrange equation as that in higher deriva-
tive theories.Thus the Euler-Lagrange equation relevant here
is

𝜕𝜇

𝛿L

𝛿 (𝜕𝜇𝜙)

− 𝜕𝜇𝜕]
𝛿L

𝛿 (𝜕𝜇𝜕]𝜙)
=

𝛿L

𝛿𝜙

. (A.12)

In order to calculate equations of motion we notice that

𝛿L

𝛿𝜙

= 0,

𝛿 (𝜕𝛼𝜙)

𝛿 (𝜕𝜇𝜙)

= 𝛿
𝜇

𝛼
,

𝛿 (𝜕𝛼𝜕𝛽𝜙)

𝛿 (𝜕𝜇𝜕]𝜙)
= 𝛿
𝜇

𝛼
𝛿
]
𝛽
+ 𝛿

]
𝛼
𝛿
𝜇

𝛽
− Θ
𝜇]
𝛼𝛽
,

(A.13a)

𝛿L

𝛿 (𝜕𝜎𝜙)

= 2√−𝑔𝑔
𝜎

] 𝜕
]
𝜙 +B

𝛼𝛽𝜎
(𝜕𝛼𝜕𝛽𝜙) , (A.13b)

𝛿L

𝛿 (𝜕𝜎𝜕𝜌𝜙)

= A
𝛼𝛽𝛾𝛿

[(𝛿
𝜎

𝛼
𝛿
𝜌

𝛽
+ 𝛿
𝜌

𝛼
𝛿
𝜎

𝛽
− Θ
𝜌𝜎

𝛼𝛽
) (𝜕𝛾𝜕𝛿𝜙)

+ (𝛿
𝜎

𝛾
𝛿
𝜌

𝛿
+ 𝛿
𝜌

𝛾
𝛿
𝜎

𝛿
− Θ
𝜌𝜎

𝛾𝛿
) (𝜕𝛼𝜕𝛽𝜙)]

+B
𝛼𝛽𝛾
(𝛿
𝜎

𝛼
𝛿
𝜌

𝛽
+ 𝛿
𝜌

𝛼
𝛿
𝜎

𝛽
− Θ
𝜌𝜎

𝛼𝛽
) (𝜕𝛾𝜙) .

(A.13c)

Using this (where we defined Θ𝜇]
𝛼𝛽
= 1 when 𝛼 = 𝛽 =

𝜇 = ] and Θ𝜇]
𝛼𝛽
= 0 otherwise) we find the Euler-Lagrangian

equation explicitly as

𝜕𝜎 (√−𝑔𝑔
𝜎]
𝜕]𝜙)

= 𝜕𝛼𝜕𝛽 (A
𝛼𝛽𝛾𝛿
𝜕𝛾𝜕𝛿𝜙) + 𝜕𝛾𝜕𝛿 (A

𝛼𝛽𝛾𝛿
𝜕𝛼𝜕𝛽𝜙)

+ 𝜕𝛼𝜕𝛽 (B
𝛼𝛽𝛾
𝜕𝛾𝜙) −

1

2

𝜕𝜎 (B
𝛼𝛽𝜎
𝜕𝛼𝜕𝛽𝜙)

−

1

2

∑

𝛼

𝜕𝛼𝜕𝛼 (A
𝛼𝛼𝛾𝛿
𝜕𝛾𝜕𝛿𝜙 +A

𝛾𝛿𝛼𝛼
𝜕𝛾𝜕𝛿𝜙 +B

𝛼𝛼𝛾
𝜕𝛾𝜙) .

(A.14)

Though (A.14) is in principle highly nontrivial, we can
separate the analysis in three different cases.

(i) NC field ̂𝜙 on undeformed background 𝑔𝜇]: in this
case we haveA ̸= 0,B = 0, whereA,B are defined
in (A.10a) and (A.10b).

(ii) Commutative field 𝜙 on deformed background 𝑔𝜇]:
A = 0,B ̸= 0,

(iii) NC field ̂𝜙 on deformed background 𝑔𝜇]:A ̸= 0,B ̸=

0.

We have analyzed the first situation in this paper. Other two
cases are presently under investigation and will be reported
elsewhere.
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