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Abstract
Observations of exotic structures in the J/ p channel, which we refer to as
charmonium-pentaquark states, in ⇤0

b

! J/ K

�
p decays are presented. The data

sample corresponds to an integrated luminosity of 3 fb�1 acquired with the LHCb
detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body
final-state reproduces the two-body mass and angular distributions. To obtain a
satisfactory fit of the structures seen in the J/ p mass spectrum, it is necessary
to include two Breit-Wigner amplitudes that each describe a resonant state. The
significance of each of these resonances is more than 9 standard deviations. One has
a mass of 4380± 8± 29 MeV and a width of 205± 18± 86 MeV, while the second is
narrower, with a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19 MeV.
The preferred J

P assignments are of opposite parity, with one state having spin 3/2
and the other 5/2.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

1Authors are listed at the end of this Letter.
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The decay was studied.  Why?

Introduction and summary

The prospect of hadrons with more than the minimal quark content (qq or qqq) was
proposed by Gell-Mann in 1964 [1] and Zweig [2], followed by a quantitative model for two
quarks plus two antiquarks developed by Ja↵e in 1976 [3]. The idea was expanded upon [4]
to include baryons composed of four quarks plus one antiquark; the name pentaquark was
coined by Lipkin [5]. Past claimed observations of pentaquark states have been shown to
be spurious [6], although there is at least one viable tetraquark candidate, the Z(4430)+

observed in B

0 !  

0
K

�
⇡

+ decays [7–9], implying that the existence of pentaquark baryon
states would not be surprising. States that decay into charmonium may have particularly
distinctive signatures [10].

Large yields of ⇤0
b

! J/ K

�
p decays are available at LHCb and have been used for

the precise measurement of the ⇤0
b

lifetime [11]. (In this Letter mention of a particular
mode implies use of its charge conjugate as well.) This decay can proceed by the diagram
shown in Fig. 1(a), and is expected to be dominated by ⇤⇤ ! K

�
p resonances, as are

evident in our data shown in Fig. 2(a). It could also have exotic contributions, as indicated
by the diagram in Fig. 1(b), that could result in resonant structures in the J/ p mass
spectrum shown in Fig. 2(b).

Figure 1: Feynman diagrams for (a) ⇤0
b

! J/ ⇤

⇤ and (b) ⇤0
b

! P

+
c

K

� decay.
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Figure 2: Invariant mass of (a) K

�
p and (b) J/ p combinations from ⇤

0
b

! J/ K

�
p decays.

The solid (red) curve is the expectation from phase space. The background has been subtracted.
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Partial wave analysis by LHCb

Re A  
-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.1

 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

LHCb

(4450)cP

(a)

 
15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

(4380)cP

(b)

Pc Re APc

Im
 A

P c

Figure 9: Fitted values of the real and imaginary parts of the amplitudes for the baseline (3/2�,
5/2+) fit for a) the P

c

(4450)+ state and b) the P

c

(4380)+ state, each divided into six m

J/ p

bins
of equal width between ��0 and +�0 shown in the Argand diagrams as connected points with
error bars (m

J/ p

increases counterclockwise). The solid (red) curves are the predictions from
the Breit-Wigner formula for the same mass ranges with M0 (�0) of 4450 (39) MeV and 4380
(205) MeV, respectively, with the phases and magnitudes at the resonance masses set to the
average values between the two points around M0. The phase convention sets B0, 12

= (1, 0) for

⇤(1520). Systematic uncertainties are not included.

These structures cannot be accounted for by reflections from J/ ⇤

⇤ resonances or other
known sources. Interpreted as resonant states they must have minimal quark content of
ccuud, and would therefore be called charmonium-pentaquark states. The lighter state
P

c

(4380)+ has a mass of 4380± 8± 29 MeV and a width of 205± 18± 86 MeV, while the
heavier state P

c

(4450)+ has a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19
MeV. A model-independent representation of the P

c

(4450)+ contribution in the fit shows
a phase change in amplitude consistent with that of a resonance. The parities of the two
states are opposite with the preferred spins being 3/2 for one state and 5/2 for the other.
The higher mass state has a fit fraction of (4.1± 0.5± 1.1)%, and the lower mass state of
(8.4± 0.7± 4.2)%, of the total ⇤0

b

! J/ K

�
p sample.

We express our gratitude to our colleagues in the CERN accelerator departments for
the excellent performance of the LHC. We thank the technical and administrative sta↵
at the LHCb institutes. We acknowledge support from CERN and from the national
agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3
(France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The
Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO
(Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United
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Weak points of the analysis:

 K- p channel is enriched by hyperon resonances - danger of kinematical reflections!

The lower mass (wide) penta can be revealed only in complicated PWA.

Table 1: The ⇤

⇤ resonances used in the di↵erent fits. Parameters are taken from the PDG [12].
We take 5/2� for the J

P of the ⇤(2585). The number of LS couplings is also listed for both
the “reduced” and “extended” models. To fix overall phase and magnitude conventions, which
otherwise are arbitrary, we set B0, 12

= (1, 0) for ⇤(1520). A zero entry means the state is excluded

from the fit.

State J

P

M0 (MeV) �0 (MeV) # Reduced # Extended

⇤(1405) 1/2� 1405.1+1.3
�1.0 50.5± 2.0 3 4

⇤(1520) 3/2� 1519.5± 1.0 15.6± 1.0 5 6
⇤(1600) 1/2+ 1600 150 3 4
⇤(1670) 1/2� 1670 35 3 4
⇤(1690) 3/2� 1690 60 5 6
⇤(1800) 1/2� 1800 300 4 4
⇤(1810) 1/2+ 1810 150 3 4
⇤(1820) 5/2+ 1820 80 1 6
⇤(1830) 5/2� 1830 95 1 6
⇤(1890) 3/2+ 1890 100 3 6
⇤(2100) 7/2� 2100 200 1 6
⇤(2110) 5/2+ 2110 200 1 6
⇤(2350) 9/2+ 2350 150 0 6
⇤(2585) ? ⇡2585 200 0 6
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Figure 6: Results for (a) m
Kp

and (b) m
J/ p

for the extended ⇤

⇤ model fit without P+
c

states.
The data are shown as (black) squares with error bars, while the (red) circles show the results of
the fit. The error bars on the points showing the fit results are due to simulation statistics.
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Figure 9: Fitted values of the real and imaginary parts of the amplitudes for the baseline (3/2�,
5/2+) fit for a) the P

c

(4450)+ state and b) the P

c

(4380)+ state, each divided into six m

J/ p

bins
of equal width between ��0 and +�0 shown in the Argand diagrams as connected points with
error bars (m

J/ p

increases counterclockwise). The solid (red) curves are the predictions from
the Breit-Wigner formula for the same mass ranges with M0 (�0) of 4450 (39) MeV and 4380
(205) MeV, respectively, with the phases and magnitudes at the resonance masses set to the
average values between the two points around M0. The phase convention sets B0, 12

= (1, 0) for

⇤(1520). Systematic uncertainties are not included.

These structures cannot be accounted for by reflections from J/ ⇤

⇤ resonances or other
known sources. Interpreted as resonant states they must have minimal quark content of
ccuud, and would therefore be called charmonium-pentaquark states. The lighter state
P

c

(4380)+ has a mass of 4380± 8± 29 MeV and a width of 205± 18± 86 MeV, while the
heavier state P

c

(4450)+ has a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19
MeV. A model-independent representation of the P

c

(4450)+ contribution in the fit shows
a phase change in amplitude consistent with that of a resonance. The parities of the two
states are opposite with the preferred spins being 3/2 for one state and 5/2 for the other.
The higher mass state has a fit fraction of (4.1± 0.5± 1.1)%, and the lower mass state of
(8.4± 0.7± 4.2)%, of the total ⇤0

b

! J/ K

�
p sample.

We express our gratitude to our colleagues in the CERN accelerator departments for
the excellent performance of the LHC. We thank the technical and administrative sta↵
at the LHCb institutes. We acknowledge support from CERN and from the national
agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3
(France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The
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Introduction and summary

The prospect of hadrons with more than the minimal quark content (qq or qqq) was
proposed by Gell-Mann in 1964 [1] and Zweig [2], followed by a quantitative model for two
quarks plus two antiquarks developed by Ja↵e in 1976 [3]. The idea was expanded upon [4]
to include baryons composed of four quarks plus one antiquark; the name pentaquark was
coined by Lipkin [5]. Past claimed observations of pentaquark states have been shown to
be spurious [6], although there is at least one viable tetraquark candidate, the Z(4430)+

observed in B

0 !  

0
K

�
⇡

+ decays [7–9], implying that the existence of pentaquark baryon
states would not be surprising. States that decay into charmonium may have particularly
distinctive signatures [10].

Large yields of ⇤0
b

! J/ K

�
p decays are available at LHCb and have been used for

the precise measurement of the ⇤0
b

lifetime [11]. (In this Letter mention of a particular
mode implies use of its charge conjugate as well.) This decay can proceed by the diagram
shown in Fig. 1(a), and is expected to be dominated by ⇤⇤ ! K

�
p resonances, as are

evident in our data shown in Fig. 2(a). It could also have exotic contributions, as indicated
by the diagram in Fig. 1(b), that could result in resonant structures in the J/ p mass
spectrum shown in Fig. 2(b).

Figure 1: Feynman diagrams for (a) ⇤0
b

! J/ ⇤

⇤ and (b) ⇤0
b

! P
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c

K

� decay.
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The solid (red) curve is the expectation from phase space. The background has been subtracted.
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Weak points of the analysis:

 K- p channel is enriched by hyperon resonances - danger of kinematical reflections!

The lower mass (wide) penta can be revealed only in complicated PWA.

Table 1: The ⇤

⇤ resonances used in the di↵erent fits. Parameters are taken from the PDG [12].
We take 5/2� for the J

P of the ⇤(2585). The number of LS couplings is also listed for both
the “reduced” and “extended” models. To fix overall phase and magnitude conventions, which
otherwise are arbitrary, we set B0, 12

= (1, 0) for ⇤(1520). A zero entry means the state is excluded

from the fit.
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5/2+) fit for a) the P
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(4450)+ state and b) the P
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(4380)+ state, each divided into six m

J/ p

bins
of equal width between ��0 and +�0 shown in the Argand diagrams as connected points with
error bars (m

J/ p

increases counterclockwise). The solid (red) curves are the predictions from
the Breit-Wigner formula for the same mass ranges with M0 (�0) of 4450 (39) MeV and 4380
(205) MeV, respectively, with the phases and magnitudes at the resonance masses set to the
average values between the two points around M0. The phase convention sets B0, 12

= (1, 0) for

⇤(1520). Systematic uncertainties are not included.

These structures cannot be accounted for by reflections from J/ ⇤

⇤ resonances or other
known sources. Interpreted as resonant states they must have minimal quark content of
ccuud, and would therefore be called charmonium-pentaquark states. The lighter state
P

c

(4380)+ has a mass of 4380± 8± 29 MeV and a width of 205± 18± 86 MeV, while the
heavier state P

c

(4450)+ has a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19
MeV. A model-independent representation of the P

c

(4450)+ contribution in the fit shows
a phase change in amplitude consistent with that of a resonance. The parities of the two
states are opposite with the preferred spins being 3/2 for one state and 5/2 for the other.
The higher mass state has a fit fraction of (4.1± 0.5± 1.1)%, and the lower mass state of
(8.4± 0.7± 4.2)%, of the total ⇤0
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! J/ K

�
p sample.

We express our gratitude to our colleagues in the CERN accelerator departments for
the excellent performance of the LHC. We thank the technical and administrative sta↵
at the LHCb institutes. We acknowledge support from CERN and from the national
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What is the nature of these pentaquark states?

 Charm quarks are far (about 1fm) from each other: molecula, diquarks

 Charm quarks are close (order 1/Mc): hadrocharmonium

 Peaks are threshold effects
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Suggestion by R. Chen et al. [Phys.Rev.Lett. 115 (2015) 13, 132002] 

Light (and wide) penta:

Heavy (and narrow) penta:
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Binding mechanism ?
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Molecula

Idea: to bind by one-pion exchange:
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cutoffs are fitted to get correct masses for penta. The results:
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Molecula - problems
In model of Chen et al the potential looks like:

⇤
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1-pion exchange tale

short range core = effect of the cutoff

Binding is due to very strong short-range core !!! Cutoff effect!

Molecula size = 0.3 fm !!!
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Molecula - general problem
J/ + p

⇠ | (0)|2

Pc

D

q

-q

k

-k

q-k

Σ

J /Ψ

*

D*

N

D⇤

t

�
P

c

!J/ N =
g 2
⌃D

⇤
N

g 2
J/ D⇤

D

⇤

4⇡

M⌃

M
P

c

M
J/ 

|k || (0)|2

[M2
D

⇤ � (M⌃ �M
N

)2]2
|⌅|2

Main general problem of molecula picture is small J/ + p
⇠ | (0)|2

Pc

D

q

-q

k

-k

q-k

Σ

J /Ψ

*

D*

N

D⇤

t

�
P

c

!J/ N =
g 2
⌃D

⇤
N

g 2
J/ D⇤

D

⇤

4⇡

M⌃

M
P

c

M
J/ 

|k || (0)|2

[M2
D

⇤ � (M⌃ �M
N

)2]2
|⌅|2

partial decay width

Exchange by heavy D-meson in t-channel
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at the best tens of KeV !
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LHCb structures as  threshold effects

Y (3940) Z(3930)X(3940)

ωJ/ψ
DD̄

DD̄∗

❄
❄

❄

❅❅❘
ππJ/ψ

❅❅❘
ππψ′

❄
π±ψ′

Z±(4430)
4320 ÷ 4360

❄

$

❅
❅

❅
❅

❅
❅❅❘

◆

✢✢✌

✾✢☛

❂

JPC : 0−+ 1+− 1−− 0++ 1++ 2++ ?

ηc

η′c

hc

J/ψ

ψ′

χc0

χc1

χc2

ψ(3770)

X(3872)

ψ(4040)

ψ(4170)

Y (4260)

γ
γ

γ

γγγγ

γ

ππ
η

π0

π0

γ

✡
✡

✡
✡✢

π+π−J/ψ
π+π−π0J/ψ

DD̄

DD̄∗

DsD̄s

D∗D̄∗

DsD̄∗
s

D∗
sD̄

∗
s

3.0

3.5

4.0

M GeV

❄
ππJ/ψ
ηJ/ψ

Figure 1: The known charmonium and charmonium-related resonances and some transitions
between them. Also are shown (dotted lines) the thresholds for various pairs of charmed
mesons.

the total angular momentum J , which defines the spin of the state viewed as a particle. As usual, the
total angular momentum is given by the vector sum of the orbital and the spin momenta: J⃗ = L⃗ + S⃗.
Likewise, the total spin S is determined by the vector sum of the quark and antiquark spins: S⃗ = s⃗c+ s⃗c̄.
Clearly, S takes the values 0 and 1, thus splitting the four possible spin states of the pair into a singlet
and a triplet. Furthermore, the excitation of the radial motion of the cc̄ pair results in a spectrum
of levels with the same L, S and J , and differing by the “radial” quantum excitation number nr with
nr = 0 corresponding to the lowest state in this spectrum. It is therefore customary to encode the values
of these quantum numbers for each state of charmonium in the form of the symbol (nr + 1)(2S+1)LJ .
The combination 2S + 1 conveniently indicates the spin multiplicity, while following the tradition from
atomic physics the values of L, L = 0, 1, 2, 3, . . . are written as S, P, D, F, . . .. In this notation the lowest
state with L = 0, S = 0 and (necessarily) J = 0 is represented as 11S0 (ηc resonance) while the first
excited state with the same quantum numbers is 21S0 (η′c).

The value of L determines the parity (P ) for each of the states: P = (−1)L+1, while L and S com-

4
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⇤0b ⇤0b

�c1

K�
p p

J/ 

p p
�c1 J/ 

K�
⇤⇤

(a) (b)

Figure 1: Two-point and three-point loops for the mechanism of the �c1 p ! J/ p rescattering
in the decay ⇤0

b ! K�J/ p .

via the mediation of the W -boson. After integrating out the o↵-shell mediators, one arrives at
two e↵ective operators for the b ! cc̄s transition:

O
1

= [c̄↵�µ(1� �
5

)c↵][s̄��µ(1� �
5

)b� ], O
2

= [c̄↵�µ(1� �
5

)c� ][s̄��µ(1� �
5

)b↵] , (2)

where one-loop QCD corrections have been taken into account to form O
1

. Here, ↵,� are color
indices, and they should be set to be the same in O

2

in order to form a color-singlet charmonium
state. The quark fields, [c̄�µ(1��

5

)c], will directly generate the charmonium state. A charmonium
with JPC = 1�� like the J/ is produced by the vector current, while the axial-vector current
tends to produce the �c1 with JPC = 1++ and the ⌘c state with JPC = 0+�. Since the vector
and axial-vector currents have the same strength in the weak operators, one would expect the
production rates for the J/ and �c1 are of the same order in b quark decays. Corrections to this
expectation come from higher-order QCD contributions but are sub-leading [40]. In fact, such an
expectation is supported by the B meson decay data [2]:

B(B+ ! J/ K+) = (10.27± 0.31)⇥ 10�4, B(B+ ! �c1K
+) = (4.79± 0.23)⇥ 10�4. (3)

Having made these general observations, we return to the discussion of the ⇤0

b decays measured
by LHCb. We will first focus on the two-point loop diagram whose singularity is a branch point at
the �c1 p threshold on the real axis of the complex s plane, where and in the following

p
s denotes

the invariant mass of the J/ p or �c1 p system. It manifests itself as a cusp at the threshold if the
�c1 p is in an S-wave. For higher partial waves, the threshold behavior of the amplitude is more
smooth and a cusp becomes evident in derivatives of the amplitude with respect to s. Since we
are only interested in the near-threshold region, both of the �c1 and the proton are nonrelativistic.
Thus, the amplitude for Fig. 1 (a) is proportional to the nonrelativistic two-point loop integral

G
⇤

(E) =

Z
d3q

(2⇡)3
~q 2 f

⇤

(~q 2)

E �m
1

�m
2

� ~q 2/(2µ)
, (4)

where m
1,2 denote the masses of the intermediate states in the loop, µ is the reduced mass and E

is the total energy. Here, we consider the case for the P -wave �c1 p which has quantum numbers
compatible with the possibilities of the Pc(4450) reported by the LHCb Collaboration, though
one should be conservative to take these determinations for granted as none of the singularities
discussed here was taken into account in the LHCb amplitude analysis. If we take a Gaussian
form factor, f

⇤

(~q 2) = exp
��2~q 2/⇤2

�
, to regularize the loop integral, the analytic expression for

the loop integral is then given by

G
⇤
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(2⇡)3/2

✓
k2 +

⇤2

4

◆
+

µk3

2⇡
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"
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⇤

!
� i

#
, (5)

with k =
p
2µ(E �m

1

�m
2

+ i✏), and the imaginary error function erfi(z) = (2/
p
⇡)
R z
0

et
2

dt. A
better regularization method should be applied in the future, but for our present study such an
approach is fine.

3

LHCb structures as a threshold effects
Guo, Meissner,Wang, Yang, arXiv:1507.0495

Value is fitted to LHCb peak at 4450 MeV

Huge value was obtained! It seems in contradiction with QCD multipole expansion !
In QCD that coupling is proportional to                which is computable (axial anomaly)
and turned out to be small!

hN 0|GG̃|Ni
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Our approach (M. Eides, V. Petrov +M.V.P.)
Main idea - to what decays = consist of 

Small size charmonium “seats” inside the proton surrounded
by light quarks

Small size charmonium interacts with light degrees of freedom
via 2-gluon exchange (Voloshin, Shifman et a.):
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Chromoelectric
field. Its source are light
quarks and gluons in the 
proton
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⇥µ⌫ is the total (quarks+gluons) energy momentum tensor, ⇥(G)
µ⌫ its gluon part
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Small size charmonium as a probe of energy-momentum density in 
the proton

gs is normalized at the proton size. In the instanton vacuum
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For gluon EMT we use , where is the momentum fraction 

carried by gluons in the proton
⇠ ⇡ 0.4⇥(G)

00 = ⇠⇥00
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We work here in the heavy quark mass and in the limit Nc ! 1. In these limits the
quarkonium and the nucleon are non-relativistic. Therefore the e↵ective Lagrangian (7)
can be considered in the static limit. In this limit the e↵ective Lagrangian (7) induces a
static potential between the nucleon and a quarkonium state:

V (~x) = �1

2
↵

"

⇠g

2

sT00

(~x) +
8⇡2

b

T

µ
µ (~x)

#

, (8)

where we use Eq. (5). The static energy momentum tensor Tµ⌫(~x) can be expressed in
terms of the energy density ⇢E(~x) and the spatial distribution of the pressure p(~x) [17].
Using the results of [17], we can express the e↵ective potential (8) as follows:

V (~x) = �4⇡2

b

↵
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"

1 + ⇠

bg

2

s

8⇡2

#

� 3p(~x)

!

, (9)

E↵ective potential eq. (9) has a simple interpretation. A point-like quarkonium serves
as a “device” which scans the energy density and the distribution of pressure inside the
nucleon.

Taking into account the normalization of the energy density:
R
d

3

x⇢E(~x) = MN and
the stability condition:

R
d

3

xp(~x) = 0 we obtain the overall normalization of the e↵ective
potential between a quarkonium and the nucleon (9):
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where ⇠ is a fraction of total mass of the nucleon which is carried by gluons (at a low
renormalization point). The factor

⌫ = 1 + ⇠

bg

2

s

8⇡2

(11)

was estimated in Ref. [16] as ⇠ 1.45 � 1.6. From the experience with the theory of the
instanton vacuum and �QSM model we obtain for the nucleon close value of ⌫ ⇡ 1.5.
Now if we know the energy density and the distribution of the pressure inside the nucleon
the potential (9) depends only on chromo-electric polarazibility ↵. The energy density
⇢E(~x) and distribution of the pressure were computed in �QSM in Ref. [18]. Calculations
involved exact quark levels in the pion mean field (including Dirac sea) and solution of
the self-consistent equations of motion for the mean field. Therefore the scale given by
eq. (10) is automatically satisfied as in the self-consistent calculation the normalization
condition for the energy density and the stability condition for the pressure are hold due
to the equations of motion [18].

3 Mass of nucleon- (2S) bound state

Now the form of the quarkonium-nucleon interaction potential (9) is fixed by the self-
consistent mean-field calculation of Ref. [18], its overall strength is fixed by the values

4
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where we use Eq. (5). The static energy momentum tensor Tµ⌫(~x) can be expressed in
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E↵ective potential eq. (9) has a simple interpretation. A point-like quarkonium serves
as a “device” which scans the energy density and the distribution of pressure inside the
nucleon.

Taking into account the normalization of the energy density:
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where ⇠ is a fraction of total mass of the nucleon which is carried by gluons (at a low
renormalization point). The factor
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was estimated in Ref. [16] as ⇠ 1.45 � 1.6. From the experience with the theory of the
instanton vacuum and �QSM model we obtain for the nucleon close value of ⌫ ⇡ 1.5.
Now if we know the energy density and the distribution of the pressure inside the nucleon
the potential (9) depends only on chromo-electric polarazibility ↵. The energy density
⇢E(~x) and distribution of the pressure were computed in �QSM in Ref. [18]. Calculations
involved exact quark levels in the pion mean field (including Dirac sea) and solution of
the self-consistent equations of motion for the mean field. Therefore the scale given by
eq. (10) is automatically satisfied as in the self-consistent calculation the normalization
condition for the energy density and the stability condition for the pressure are hold due
to the equations of motion [18].

3 Mass of nucleon- (2S) bound state

Now the form of the quarkonium-nucleon interaction potential (9) is fixed by the self-
consistent mean-field calculation of Ref. [18], its overall strength is fixed by the values
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total energy = nucleon mass

We work here in the heavy quark mass and in the limit Nc ! 1. In these limits the
quarkonium and the nucleon are non-relativistic. Therefore the e↵ective Lagrangian (7)
can be considered in the static limit. In this limit the e↵ective Lagrangian (7) induces a
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where we use Eq. (5). The static energy momentum tensor Tµ⌫(~x) can be expressed in
terms of the energy density ⇢E(~x) and the spatial distribution of the pressure p(~x) [17].
Using the results of [17], we can express the e↵ective potential (8) as follows:
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E↵ective potential eq. (9) has a simple interpretation. A point-like quarkonium serves
as a “device” which scans the energy density and the distribution of pressure inside the
nucleon.

Taking into account the normalization of the energy density:
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the stability condition:
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where ⇠ is a fraction of total mass of the nucleon which is carried by gluons (at a low
renormalization point). The factor
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was estimated in Ref. [16] as ⇠ 1.45 � 1.6. From the experience with the theory of the
instanton vacuum and �QSM model we obtain for the nucleon close value of ⌫ ⇡ 1.5.
Now if we know the energy density and the distribution of the pressure inside the nucleon
the potential (9) depends only on chromo-electric polarazibility ↵. The energy density
⇢E(~x) and distribution of the pressure were computed in �QSM in Ref. [18]. Calculations
involved exact quark levels in the pion mean field (including Dirac sea) and solution of
the self-consistent equations of motion for the mean field. Therefore the scale given by
eq. (10) is automatically satisfied as in the self-consistent calculation the normalization
condition for the energy density and the stability condition for the pressure are hold due
to the equations of motion [18].

3 Mass of nucleon- (2S) bound state

Now the form of the quarkonium-nucleon interaction potential (9) is fixed by the self-
consistent mean-field calculation of Ref. [18], its overall strength is fixed by the values
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Normalization is known (upto value of chromoelectric polarizability)!
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Effective proton-charmonium potential at all distances

At large distances the chiral perturbation theory can be applied:

that the size of quarkonium is not small enough in comparison with the size of the nucleon.

In such case we will need to consider higher order terms in the QCD multipole expansion in

order to improve description of the quarkonium-nucleon interaction.

The overall normalization of the effective potential

∫

d3xV (x) = −α
4π2

b

(
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g2s

)

MN

(

1 + ξ
bg2s
8π2

)

(7)

is determined by the total energy of the nucleon
∫

d3xρE(x) = MN and the stability con-

dition
∫

d3xp(x) = 0. The factor ν = 1 + ξ(bg2s/8π
2) is model dependent. An estimate of

this factor for the pion in [18] produced ν ∼ 1.45− 1.6. In the theory of instanton vacuum

and the χQSM model the strong coupling constant freezes at the size of the nucleon with

the value about αs = g2s/4π ∼ 0.5. Using this coupling constant we obtain ν ∼ 1.5 for the

nucleon, that is close to the pion result in [18].

The large distance behavior of the potential in eq. (6) is determined by the leading term in

the asymptotic expansion of the pion mean field in the nucleon. This term can be calculated

in a model-independent way and in the chiral limit (mπ = 0) the potential at large distances

has the form

V (x) ∼ −α
27(1 + ν)

16b

g2A
F 2
π |x|6

. (8)

Here gA ≈ 1.23 is the nucleon axial charge, and Fπ ≈ 93 MeV is the pion decay constant.

The local energy density ρE(x) and pressure p(x) were computed in the χQSM in [19].

Calculations involved the exact quark levels in the pion mean field (including the Dirac sea)

and solution of the self-consistent equations of motion for the mean field. In this approach

the normalization condition for the potential in eq. (7) is satisfied automatically since the

normalization condition for the energy density and the stability condition for the pressure

hold in the self-consistent calculation due to the equations of motion.

III. MASS OF NUCLEON-ψ(2S) BOUND STATE

We have found the nonrelativistic quarkonium-nucleon interaction potential in terms of

the local nucleon energy density and pressure and chromoelectric polarizability α. The form

of this potential in eq. (6) is determined by results of the self-consistent mean-field calculation
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Energy density and pressure in N were computed in ChQSM (Goeke, Schweitzer, M.V.P)

Now everything is more or less known up to overall scale given by chromoelectric 
polarizability
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Figure 1: The known charmonium and charmonium-related resonances and some transitions
between them. Also are shown (dotted lines) the thresholds for various pairs of charmed
mesons.

the total angular momentum J , which defines the spin of the state viewed as a particle. As usual, the
total angular momentum is given by the vector sum of the orbital and the spin momenta: J⃗ = L⃗ + S⃗.
Likewise, the total spin S is determined by the vector sum of the quark and antiquark spins: S⃗ = s⃗c+ s⃗c̄.
Clearly, S takes the values 0 and 1, thus splitting the four possible spin states of the pair into a singlet
and a triplet. Furthermore, the excitation of the radial motion of the cc̄ pair results in a spectrum
of levels with the same L, S and J , and differing by the “radial” quantum excitation number nr with
nr = 0 corresponding to the lowest state in this spectrum. It is therefore customary to encode the values
of these quantum numbers for each state of charmonium in the form of the symbol (nr + 1)(2S+1)LJ .
The combination 2S + 1 conveniently indicates the spin multiplicity, while following the tradition from
atomic physics the values of L, L = 0, 1, 2, 3, . . . are written as S, P, D, F, . . .. In this notation the lowest
state with L = 0, S = 0 and (necessarily) J = 0 is represented as 11S0 (ηc resonance) while the first
excited state with the same quantum numbers is 21S0 (η′c).

The value of L determines the parity (P ) for each of the states: P = (−1)L+1, while L and S com-

4
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JP =
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Chromoelectric polarizability

If one treats a charmonium as an non-relativistic Coulomb system, the polarizability
can be computed (M. Peskin ’76)

where E is the chromoelectric gluon field (with the coupling constant absorbed), and α is

the chromoelectric polarizability.

As we already mentioned the chromoelectric polarizabilities of charmonium states are

not known now, except in the case of very heavy quarks. For such quarks one can consider

quarkonium as a Coulombic system and polarizability admits perturbative calculation in

the framework of the 1/Nc expansion [8]. After calculations we obtain polarizability for an

arbitrary quarkonium nS energy level

α(nS) =
16πn2

3g2N2
c

cna
3
0, (2)

where c1 = 7/4, c2 = 251/8, cn(n ≥ 3) = (5/16)n2(7n2− 3), a0 = 16π/(g2Ncmq) is the Bohr

radius of nonrelativistic quarkonium, and g is the coupling constant normalized at the size

of quarkonium. The nondiagonal (2S → 1S) chromoelectric polarizability turns out to be

α(2S → 1S) = −
51200

√
2π

1287g2N2
c

a30. (3)

Other transitional polarizabilities can be calculated in the same way.

We use the Coulombic values for polarizabilities as an order of magnitude estimates of

their scale and characteristic features but we will not rely heavily on their numerical values.

For the numerical estimates we assume that J/ψ and ψ′ may be considered as nonrelativistic

Coulomb bound states. Fitting the energy levels we extract the Bohr radius and obtain

polarizabilities1

α(1S) ≈ 0.2 GeV−3, α(2S) ≈ 12 GeV−3, α(2S → 1S) ≈ −0.6 GeV−3. (4)

Transitional polarizability |α(2S → 1S)| ≈ 2 GeV−3 was extracted from the phenomeno-

logical analysis of the ψ′ → J/ψππ transitions [7]. There is a rather significant discrepancy

between the perturbative result above and this value. It could be explained by the non-

coulombic nature of quarkonium. We expect that calculations with a more realistic potential

would lead to a better agreement with the phenomenological value of polarizability.

1 The result may vary slightly depending on how one treats large Nc limit.
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Rapid increase with principal quantum number n !!!

Numerically:
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polarizabilities1

α(1S) ≈ 0.2 GeV−3, α(2S) ≈ 12 GeV−3, α(2S → 1S) ≈ −0.6 GeV−3. (4)

Transitional polarizability |α(2S → 1S)| ≈ 2 GeV−3 was extracted from the phenomeno-

logical analysis of the ψ′ → J/ψππ transitions [7]. There is a rather significant discrepancy

between the perturbative result above and this value. It could be explained by the non-

coulombic nature of quarkonium. We expect that calculations with a more realistic potential

would lead to a better agreement with the phenomenological value of polarizability.

1 The result may vary slightly depending on how one treats large Nc limit.
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Transitional polarizability can be extracted from the decay
with the result (M. Voloshin’06)

 (2S) ! J/ + ⇡ + ⇡

It seems charmonia are not good Coulomb systems! Let us use Coulomb values only as 
a guide.

where E is the chromoelectric gluon field (with the coupling constant absorbed), and α is

the chromoelectric polarizability.

As we already mentioned the chromoelectric polarizabilities of charmonium states are

not known now, except in the case of very heavy quarks. For such quarks one can consider

quarkonium as a Coulombic system and polarizability admits perturbative calculation in

the framework of the 1/Nc expansion [8]. After calculations we obtain polarizability for an

arbitrary quarkonium nS energy level

α(nS) =
16πn2

3g2N2
c

cna
3
0, (2)

where c1 = 7/4, c2 = 251/8, cn(n ≥ 3) = (5/16)n2(7n2− 3), a0 = 16π/(g2Ncmq) is the Bohr

radius of nonrelativistic quarkonium, and g is the coupling constant normalized at the size

of quarkonium. The nondiagonal (2S → 1S) chromoelectric polarizability turns out to be

α(2S → 1S) = −
51200

√
2π

1287g2N2
c

a30. (3)

Other transitional polarizabilities can be calculated in the same way.

We use the Coulombic values for polarizabilities as an order of magnitude estimates of

their scale and characteristic features but we will not rely heavily on their numerical values.

For the numerical estimates we assume that J/ψ and ψ′ may be considered as nonrelativistic

Coulomb bound states. Fitting the energy levels we extract the Bohr radius and obtain

polarizabilities1

α(1S) ≈ 0.2 GeV−3, α(2S) ≈ 12 GeV−3, α(2S → 1S) ≈ −0.6 GeV−3. (4)

Transitional polarizability |α(2S → 1S)| ≈ 2 GeV−3 was extracted from the phenomeno-

logical analysis of the ψ′ → J/ψππ transitions [7]. There is a rather significant discrepancy

between the perturbative result above and this value. It could be explained by the non-

coulombic nature of quarkonium. We expect that calculations with a more realistic potential

would lead to a better agreement with the phenomenological value of polarizability.

1 The result may vary slightly depending on how one treats large Nc limit.
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Possible proton-charmonium bound states
Effective potential is attractive. Its form is fixed. The overall strength is given by the polarizability.

Let us see at which polarizability bound states and what kind are possible. 
Schroedinger eq:

where Sj is the quarkonium spin, α and mq are the same chromoelectric polarizability

and the heavy quark mass as above, and only the nucleon matrix element of the product of

chromoelectric and chromomagnetic fields requires calculation. We see that the quarkonium-

nucleon spin-spin interaction is suppressed by the heavy quark mass ∼ 1/mq, therefore in the

leading order of the heavy quarks expansion the (1/2)− and (3/2)− states are degenerate. A

semiquantitative estimate of this splitting produces a small value in the range of 5−10 MeV.

Therefore we predict that there are actually two almost degenerate pentaquark states with

JP = (1/2)− and JP = (3/2)− at the position of the observed pentaquark at MpJ/ψ =

4450 MeV. It would be very interesting if the LHCb collaboration could check this hypothesis

in their partial wave analysis.

IV. THE PARTIAL WIDTH OF THE NUCLEON-ψ(2S) BOUND STATE

Let us calculate the partial decay width of the pentaquark to J/ψ + N . To this end we

consider J/ψ scattering off the nucleon as a nonrelativistic two-channel problem

(

−
∇2

2µ1
+ V11(r)−E

)

Ψ1 + V12(r)Ψ2 = 0,

(

−
∇2

2µ2
+ V22(r)−E +∆

)

Ψ2 + V12(r)Ψ1 = 0.

(12)

Here µ1 and µ2 are the reduced masses of J/ψ+N and ψ′+N respectively, E is the energy in

the center of mass frame (E = p2/2µ1, where p is the relative momentum), ∆ = Mψ′−MJ/ψ,

and the potentials V11(r), V22(r), Vψ′,J/ψ are defined in eq. (9).

Due to the non-zero transition potential Vψ′,J/ψ the pentaquark arises as a resonance in

the J/ψN scattering channel described by the standard Breit-Wigner formula. We will find

the width of the resonance from this resonance scattering amplitude.

The transition potential Vψ′,J/ψ is small and we solve the scattering problem in eq. (12)

using perturbation theory. In the leading approximation the wave function Ψ1(x) is just an

incoming plane wave eiq·x where q is the center-of-mass momentum before scattering. Due

to the coupling Vψ′,J/ψ between the channels this plane wave leaks in the second channel

where it induces the wave function

Ψ2(x) = −
∫

d3x′G2(x,x
′)V12(x

′)eiq·x
′

. (13)

9

in [19], its overall strength is fixed by the values of the chromoelectric polarizabilities of

quarkonia. Notice that this potential is universal, interaction of any quarkonium state with

the nucleon is described by a potential with one and the same functional form, only the

overall normalization depends on the quarkonium energy levels. Even the potentials that

describe nondiagonal transitions between the quarkonium states have the same form. The

quarkonium-nucleon potentials for the two lowest charmonium states have the form

V22(r) ≡ V (r), V11(r) =
α(1S)

α(2S)
V (r), V12(r) =

α(2S → 1S)

α(2S)
V (r), (9)

where V (r) is the potential in eq. (6) with α = α(2S), and other potentials are scaled by the

ratios of the respective chromoelectric polarizabilities. With the values of polarizabilities

from eq. (4), the potentials V11(r), V12(r) are small in comparison with the potential V (r).

The potential V12(r) describes the transition J/ψ → ψ′ off the nucleon.

Possible bound states in the channels J/ψN and ψ′N are solutions of the Schrödinger

equation

(

−
∇2

2µ
+ V (r)− E

)

Ψb = 0, (10)

where µ is the reduced mass in the respective channel and the potential is defined in eq. (6).

Due to the poor knowledge of the chromoelectric polarizability α we can vary it in a relatively

wide region.

Solving the eigenvalue problem in eq. (10) we found that:

1. A bound state arises when the chromoelectric polarizability reaches the critical value

α = 5.6 GeV−3. Comparing this value with the Coulomb values in eq. (4) we see that

J/ψ does not form a bound state with the nucleon. For the excited charmonia states

ψ(2S), ψ(3S), etc. the critical value of α is far below the expected chromoelectric

polarizabilities of the excited charmonia. Therefore, they seem to form bound states

with the mean-field nucleon. Below we will consider the bound state(s) of ψ(2S),

higher excited charmonia will be considered elsewhere.

2. A bound state with the orbital momentum l = 0 and with the binding energy Eb =

−176 MeV (corresponding to the position of the P+
c (4450) pentaquark) is formed at

α(2S) = 17.2 GeV−3. There are no other bound states in this case.

7

We work here in the heavy quark mass and in the limit Nc ! 1. In these limits the
quarkonium and the nucleon are non-relativistic. Therefore the e↵ective Lagrangian (7)
can be considered in the static limit. In this limit the e↵ective Lagrangian (7) induces a
static potential between the nucleon and a quarkonium state:

V (~x) = �1

2
↵

"

⇠g

2

sT00

(~x) +
8⇡2

b

T

µ
µ (~x)

#

, (8)

where we use Eq. (5). The static energy momentum tensor Tµ⌫(~x) can be expressed in
terms of the energy density ⇢E(~x) and the spatial distribution of the pressure p(~x) [17].
Using the results of [17], we can express the e↵ective potential (8) as follows:

V (~x) = �4⇡2

b

↵

 

⇢E(~x)

"

1 + ⇠

bg

2

s

8⇡2

#

� 3p(~x)

!

, (9)

E↵ective potential eq. (9) has a simple interpretation. A point-like quarkonium serves
as a “device” which scans the energy density and the distribution of pressure inside the
nucleon.

Taking into account the normalization of the energy density:
R
d

3

x⇢E(~x) = MN and
the stability condition:

R
d

3

xp(~x) = 0 we obtain the overall normalization of the e↵ective
potential between a quarkonium and the nucleon (9):

Z
d

3

xV (~x) = �↵4⇡
2

b

MN

"

1 + ⇠

bg

2

s

8⇡2

#

(10)

where ⇠ is a fraction of total mass of the nucleon which is carried by gluons (at a low
renormalization point). The factor

⌫ = 1 + ⇠

bg

2

s

8⇡2

(11)

was estimated in Ref. [16] as ⇠ 1.45 � 1.6. From the experience with the theory of the
instanton vacuum and �QSM model we obtain for the nucleon close value of ⌫ ⇡ 1.5.
Now if we know the energy density and the distribution of the pressure inside the nucleon
the potential (9) depends only on chromo-electric polarazibility ↵. The energy density
⇢E(~x) and distribution of the pressure were computed in �QSM in Ref. [18]. Calculations
involved exact quark levels in the pion mean field (including Dirac sea) and solution of
the self-consistent equations of motion for the mean field. Therefore the scale given by
eq. (10) is automatically satisfied as in the self-consistent calculation the normalization
condition for the energy density and the stability condition for the pressure are hold due
to the equations of motion [18].

3 Mass of nucleon- (2S) bound state

Now the form of the quarkonium-nucleon interaction potential (9) is fixed by the self-
consistent mean-field calculation of Ref. [18], its overall strength is fixed by the values

4

↵ = ↵(2S)
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Possible proton-charmonium bound states

J/ 

J/ �QSM
r
U(r)

↵(1S) = 17.5, ↵
Coulomb

= 11.6

↵(2S) ⇡ 22.5

Position of the level depends of the value of the polarizability

 The level appears first in S-wave at 

The level corresponding upper penta (E=-176 MeV)
    appears in S-wave at

The level corresponding lower penta (E=-246 MeV)
    appears in S-wave at

  

in [19], its overall strength is fixed by the values of the chromoelectric polarizabilities of

quarkonia. Notice that this potential is universal, interaction of any quarkonium state with

the nucleon is described by a potential with one and the same functional form, only the

overall normalization depends on the quarkonium energy levels. Even the potentials that

describe nondiagonal transitions between the quarkonium states have the same form. The

quarkonium-nucleon potentials for the two lowest charmonium states have the form

V22(r) ≡ V (r), V11(r) =
α(1S)

α(2S)
V (r), V12(r) =

α(2S → 1S)

α(2S)
V (r), (9)

where V (r) is the potential in eq. (6) with α = α(2S), and other potentials are scaled by the

ratios of the respective chromoelectric polarizabilities. With the values of polarizabilities

from eq. (4), the potentials V11(r), V12(r) are small in comparison with the potential V (r).

The potential V12(r) describes the transition J/ψ → ψ′ off the nucleon.

Possible bound states in the channels J/ψN and ψ′N are solutions of the Schrödinger

equation

(

−
∇2

2µ
+ V (r)− E

)

Ψb = 0, (10)

where µ is the reduced mass in the respective channel and the potential is defined in eq. (6).

Due to the poor knowledge of the chromoelectric polarizability α we can vary it in a relatively

wide region.

Solving the eigenvalue problem in eq. (10) we found that:

1. A bound state arises when the chromoelectric polarizability reaches the critical value

α = 5.6 GeV−3. Comparing this value with the Coulomb values in eq. (4) we see that

J/ψ does not form a bound state with the nucleon. For the excited charmonia states

ψ(2S), ψ(3S), etc. the critical value of α is far below the expected chromoelectric

polarizabilities of the excited charmonia. Therefore, they seem to form bound states

with the mean-field nucleon. Below we will consider the bound state(s) of ψ(2S),

higher excited charmonia will be considered elsewhere.

2. A bound state with the orbital momentum l = 0 and with the binding energy Eb =

−176 MeV (corresponding to the position of the P+
c (4450) pentaquark) is formed at

α(2S) = 17.2 GeV−3. There are no other bound states in this case.

7

↵ = 17.2 GeV �3

↵ = 20.2 GeV �3

Compare (for guidence) with the Coulomb values of the polarizabilities:

where E is the chromoelectric gluon field (with the coupling constant absorbed), and α is

the chromoelectric polarizability.

As we already mentioned the chromoelectric polarizabilities of charmonium states are

not known now, except in the case of very heavy quarks. For such quarks one can consider

quarkonium as a Coulombic system and polarizability admits perturbative calculation in

the framework of the 1/Nc expansion [8]. After calculations we obtain polarizability for an

arbitrary quarkonium nS energy level

α(nS) =
16πn2

3g2N2
c

cna
3
0, (2)

where c1 = 7/4, c2 = 251/8, cn(n ≥ 3) = (5/16)n2(7n2− 3), a0 = 16π/(g2Ncmq) is the Bohr

radius of nonrelativistic quarkonium, and g is the coupling constant normalized at the size

of quarkonium. The nondiagonal (2S → 1S) chromoelectric polarizability turns out to be

α(2S → 1S) = −
51200

√
2π

1287g2N2
c

a30. (3)

Other transitional polarizabilities can be calculated in the same way.

We use the Coulombic values for polarizabilities as an order of magnitude estimates of

their scale and characteristic features but we will not rely heavily on their numerical values.

For the numerical estimates we assume that J/ψ and ψ′ may be considered as nonrelativistic

Coulomb bound states. Fitting the energy levels we extract the Bohr radius and obtain

polarizabilities1

α(1S) ≈ 0.2 GeV−3, α(2S) ≈ 12 GeV−3, α(2S → 1S) ≈ −0.6 GeV−3. (4)

Transitional polarizability |α(2S → 1S)| ≈ 2 GeV−3 was extracted from the phenomeno-

logical analysis of the ψ′ → J/ψππ transitions [7]. There is a rather significant discrepancy

between the perturbative result above and this value. It could be explained by the non-

coulombic nature of quarkonium. We expect that calculations with a more realistic potential

would lead to a better agreement with the phenomenological value of polarizability.

1 The result may vary slightly depending on how one treats large Nc limit.

4

J/ does not form a bound state!

does it! But only one bound state is possible! Which one lower (wide) or upper (narrow) 
penta? Let us consider the width of the bound state.

 (2S)

Thursday 24 March 16



Width of the proton-charmonium bound states

Scattering problem for coupled channel Schroedinger eqs:

where Sj is the quarkonium spin, α and mq are the same chromoelectric polarizability

and the heavy quark mass as above, and only the nucleon matrix element of the product of

chromoelectric and chromomagnetic fields requires calculation. We see that the quarkonium-

nucleon spin-spin interaction is suppressed by the heavy quark mass ∼ 1/mq, therefore in the

leading order of the heavy quarks expansion the (1/2)− and (3/2)− states are degenerate. A

semiquantitative estimate of this splitting produces a small value in the range of 5−10 MeV.

Therefore we predict that there are actually two almost degenerate pentaquark states with

JP = (1/2)− and JP = (3/2)− at the position of the observed pentaquark at MpJ/ψ =

4450 MeV. It would be very interesting if the LHCb collaboration could check this hypothesis

in their partial wave analysis.

IV. THE PARTIAL WIDTH OF THE NUCLEON-ψ(2S) BOUND STATE

Let us calculate the partial decay width of the pentaquark to J/ψ + N . To this end we

consider J/ψ scattering off the nucleon as a nonrelativistic two-channel problem

(

−
∇2

2µ1
+ V11(r)−E

)

Ψ1 + V12(r)Ψ2 = 0,

(

−
∇2

2µ2
+ V22(r)−E +∆

)

Ψ2 + V12(r)Ψ1 = 0.

(12)

Here µ1 and µ2 are the reduced masses of J/ψ+N and ψ′+N respectively, E is the energy in

the center of mass frame (E = p2/2µ1, where p is the relative momentum), ∆ = Mψ′−MJ/ψ,

and the potentials V11(r), V22(r), Vψ′,J/ψ are defined in eq. (9).

Due to the non-zero transition potential Vψ′,J/ψ the pentaquark arises as a resonance in

the J/ψN scattering channel described by the standard Breit-Wigner formula. We will find

the width of the resonance from this resonance scattering amplitude.

The transition potential Vψ′,J/ψ is small and we solve the scattering problem in eq. (12)

using perturbation theory. In the leading approximation the wave function Ψ1(x) is just an

incoming plane wave eiq·x where q is the center-of-mass momentum before scattering. Due

to the coupling Vψ′,J/ψ between the channels this plane wave leaks in the second channel

where it induces the wave function

Ψ2(x) = −
∫

d3x′G2(x,x
′)V12(x

′)eiq·x
′

. (13)

9

Here

G2(x,x
′) =

〈

x

∣

∣

∣

∣

∣

1

−∇2

2µ2
− E +∆+ V − i0

∣

∣

∣

∣

∣

x′

〉

(14)

is the Green function of the Schrödinger equation forΨ2(x) (see eq. (10)). Near the resonance

it can be approximated by

G2(x,x
′) =

ψR(x)ψ∗
R(x

′)

ER − E
,

where ER is the resonance energy. The wave function Ψ2(x) in eq. (13) in its turn generates

correction to Ψ1(x). This correction has the from (see the first line in eq. (12))

δΨ1(x) =

∫

d3x′G1(x,x
′)V12(x

′)ψ∗
R(x

′)

∫

d3x′′V12(x′′)ψR(x′′)eiq·x
′′

ER −E
, (15)

where G1(x,x′) is the Green function of the free Schrödinger equation,

G1(x,x
′) = 2µ1

eiq|x−x
′|

4π|x− x′|
. (16)

Here q is the center of mass momentum corresponding to the resonance energy, |q| = q =
√
2µ1ER.

At large x → ∞ the wave function δΨ1(x) is just an outgoing spherical wave. Then the

wave function in the first channel at large x is a superposition of the incoming plane wave

and an outgoing spherical wave

Ψ1(x) + δΨ1(x) = eiq·x + f(θ)
eiqr

r
, (17)

where f(θ) is the scattering amplitude (θ is the scattering angle). The scattering amplitude

as determined by the wave function eq. (15) has a standard Breit-Wigner resonance form

f(θ) = −
2l + 1

q

Γ/2

E −ER
Pl(cos θ), (18)

where Γ is the partial decay width of the resonance into the N + J/ψ channel. Calculating

the width we obtain

Γ =

(

α(2S → 1S)

α(2S)

)2

(4µ1q)

∣

∣

∣

∣

∫ ∞

0

drr2Rl(r)V (r)jl(qr)

∣

∣

∣

∣

2

, (19)
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Result:

Important: everything is fixed!! Numerically:where Rl(r) is the radial wave function of the resonance normalized by the condition
∫

drr2RL(r) = 1, and jl(z) is the spherical Bessel function.

We obtain the partial decay width Γ(Pc(4450) → N + J/ψ) = 11.2 MeV using the

phenomenological value of polarizability α(2S → 1S) = 2 GeV−3 based on the analysis of

the ψ′ → J/ψππ transitions in [7]. We also made a rough estimate of the width of the

decay Pc → J/ψ + N + π, and it turns out to be even smaller than the partial width into

the J/ψ +N channel. The decays of the pentaquark into (anti)charmed meson + charmed

baryon should be strongly suppressed in the scenario above, since decays of the pentaquark

into open charm channels require exchange of a heavy D-meson in the t-channel and appear

to be small for this reason. Therefore the total width of the Pc pentaquark in our picture is

small – in the range of tens MeV, in excellent agreement with the experimentally observed

width Γexp = 39± 5± 19 MeV of the Pc(4450) pentaquark.

V. CONCLUSIONS AND OUTLOOK

We interpret the newly discovered pentaquark Pc(4450) as a bound state of ψ(2S) and

the nucleon. The binding is due to chromoelectric interaction between a small quarkonium

state and the nucleon. The nucleon is described in the framework of the mean-field picture

of light baryons in the χQSM model. Let us mention that the Θ+ pentaquark [20] and

the charmed pentaquark [21] were earlier predicted in the χQSM model. However, the

physical nature of those pentaquarks is completely different from the mechanism considered

here. The two main ingredients of the present discussion, small size of quarkonium and

quarkonium-nucleon interaction, played no role in those predictions.

We used the large-Nc limit and the heavy quark mass approximation, when charmonium

interacts with the local energy density and pressure of the nucleon. These nucleon char-

acteristics were calculated in the χQSM model in [19]. The strength of the charmonium

interaction with the nucleon mean-field is determined by the charmonium chromoelectric

polarizability α(2S). The charmonium-nucleon bound state arises at reasonable values of

α(2S), the chromoelectric polarizability can be adjusted is such way that the bound state

mass coincides with the position of either Pc(4380) or Pc(4450). Let us emphasize that only

one ψ(2S)-nucleon bound state arises in our approach. The possibility that the nucleon

binds with higher excited states of charmonia (ψ(3S), etc) will be considered elsewhere.

11

Excellent agreement with experimental width of upper (narrow) penta

where Rl(r) is the radial wave function of the resonance normalized by the condition
∫

drr2RL(r) = 1, and jl(z) is the spherical Bessel function.

We obtain the partial decay width Γ(Pc(4450) → N + J/ψ) = 11.2 MeV using the

phenomenological value of polarizability α(2S → 1S) = 2 GeV−3 based on the analysis of

the ψ′ → J/ψππ transitions in [7]. We also made a rough estimate of the width of the

decay Pc → J/ψ + N + π, and it turns out to be even smaller than the partial width into

the J/ψ +N channel. The decays of the pentaquark into (anti)charmed meson + charmed

baryon should be strongly suppressed in the scenario above, since decays of the pentaquark

into open charm channels require exchange of a heavy D-meson in the t-channel and appear

to be small for this reason. Therefore the total width of the Pc pentaquark in our picture is

small – in the range of tens MeV, in excellent agreement with the experimentally observed

width Γexp = 39± 5± 19 MeV of the Pc(4450) pentaquark.

V. CONCLUSIONS AND OUTLOOK

We interpret the newly discovered pentaquark Pc(4450) as a bound state of ψ(2S) and

the nucleon. The binding is due to chromoelectric interaction between a small quarkonium

state and the nucleon. The nucleon is described in the framework of the mean-field picture

of light baryons in the χQSM model. Let us mention that the Θ+ pentaquark [20] and

the charmed pentaquark [21] were earlier predicted in the χQSM model. However, the

physical nature of those pentaquarks is completely different from the mechanism considered

here. The two main ingredients of the present discussion, small size of quarkonium and

quarkonium-nucleon interaction, played no role in those predictions.

We used the large-Nc limit and the heavy quark mass approximation, when charmonium

interacts with the local energy density and pressure of the nucleon. These nucleon char-

acteristics were calculated in the χQSM model in [19]. The strength of the charmonium

interaction with the nucleon mean-field is determined by the charmonium chromoelectric

polarizability α(2S). The charmonium-nucleon bound state arises at reasonable values of

α(2S), the chromoelectric polarizability can be adjusted is such way that the bound state

mass coincides with the position of either Pc(4380) or Pc(4450). Let us emphasize that only

one ψ(2S)-nucleon bound state arises in our approach. The possibility that the nucleon

binds with higher excited states of charmonia (ψ(3S), etc) will be considered elsewhere.

11

Therefore we identify our bound state with 

where Rl(r) is the radial wave function of the resonance normalized by the condition
∫

drr2RL(r) = 1, and jl(z) is the spherical Bessel function.

We obtain the partial decay width Γ(Pc(4450) → N + J/ψ) = 11.2 MeV using the

phenomenological value of polarizability α(2S → 1S) = 2 GeV−3 based on the analysis of

the ψ′ → J/ψππ transitions in [7]. We also made a rough estimate of the width of the

decay Pc → J/ψ + N + π, and it turns out to be even smaller than the partial width into

the J/ψ +N channel. The decays of the pentaquark into (anti)charmed meson + charmed

baryon should be strongly suppressed in the scenario above, since decays of the pentaquark

into open charm channels require exchange of a heavy D-meson in the t-channel and appear

to be small for this reason. Therefore the total width of the Pc pentaquark in our picture is

small – in the range of tens MeV, in excellent agreement with the experimentally observed

width Γexp = 39± 5± 19 MeV of the Pc(4450) pentaquark.

V. CONCLUSIONS AND OUTLOOK

We interpret the newly discovered pentaquark Pc(4450) as a bound state of ψ(2S) and

the nucleon. The binding is due to chromoelectric interaction between a small quarkonium

state and the nucleon. The nucleon is described in the framework of the mean-field picture

of light baryons in the χQSM model. Let us mention that the Θ+ pentaquark [20] and

the charmed pentaquark [21] were earlier predicted in the χQSM model. However, the

physical nature of those pentaquarks is completely different from the mechanism considered

here. The two main ingredients of the present discussion, small size of quarkonium and

quarkonium-nucleon interaction, played no role in those predictions.

We used the large-Nc limit and the heavy quark mass approximation, when charmonium

interacts with the local energy density and pressure of the nucleon. These nucleon char-

acteristics were calculated in the χQSM model in [19]. The strength of the charmonium

interaction with the nucleon mean-field is determined by the charmonium chromoelectric

polarizability α(2S). The charmonium-nucleon bound state arises at reasonable values of

α(2S), the chromoelectric polarizability can be adjusted is such way that the bound state

mass coincides with the position of either Pc(4380) or Pc(4450). Let us emphasize that only

one ψ(2S)-nucleon bound state arises in our approach. The possibility that the nucleon

binds with higher excited states of charmonia (ψ(3S), etc) will be considered elsewhere.

11
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We consider only partial decay width to J/ + p

What else?
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Exchange by heavy D-meson in t-channel
~0.1 MeV at best.

Width of the proton-charmonium bound states
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Quantum numbers

Bound state is in S-wave - there are two possibility to add 1/2-spin of proton to spin-1 of 
charmonium:

JP =
1

2

�
,
3

2

�

In leading order of the heavy quark mass expansion both states are degenerate in mass!

The degeneracy is lifted by hyperfine interaction: 

3. A bound state with the orbital momentum l = 0 and with the energy Eb = −246 MeV

(corresponding to the position of the P+
c (4380) pentaquark) is formed at α =

20.2 GeV−3. Again, there are no other bound states in this case. Hence, if try

to interpret P+
c (4380) as a bound state with Eb = −246 MeV, there would be no place

for heavier pentaquarks to be observed in the J/ψ +N channel.

4. At a bit larger value of polarizability α ≈ 22.4 a bound state with angular momentum

l = 1 arises for the first time. One could try to identify the light pentaquark with the

l = 0 bound state and the heavy pentaquark with the l = 1 bound state. The quantum

numbers of such pentaquarks would be (3/2)− and (5/2)+, what fits the experimental

data nicely. However, we consider this option to be absolutely excluded. The mass

difference of the states with l = 1 and l = 0 is about 300 MeV, not the observed

70 MeV. This large mass difference is due a relatively small size (around 0.8−0.9 fm)

of the nucleon. Respectively, the nucleon moment of inertia is small, and the energy

of its rotational excitations is about a few hundred MeV as it can be seen from N −∆

mass difference. Additionally, the scenario with two pentaquarks as the l = 0 and

l = 1 bound states cannot explain the widths of the observed pentaquarks.

We see that for reasonable values of the chromoelectric polarizability α(2S) the char-

monium ψ(2S) binds with the mean-field nucleon. Notice, however, that for a given value

of α(2S) only one bound level exists. It means that the picture we suggest here can de-

scribe only one of the LHCb pentaquarks. Experimentally Pc(4380) has a rather large width

205± 18± 86 MeV, whereas the Pc(4450) is rather narrow with the width 39± 5± 19 MeV.

We will see in next section that the nucleon-ψ(2S) bound state has a naturally narrow width

about a dozen MeV. Therefore, the interpretation of the nucleon-ψ(2S) bound state as the

LHCb Pc(4450) pentaquark seems to be more justified.

The nucleon-ψ(2S) bound state is formed in the S-wave, hence its quantum numbers can

be either JP = (1/2)− or JP = (3/2)−. The hyperfine splitting between the color singlet

states arises due to interference of the chromoelectric dipole E1 and the chromomagnetic

quadrupole M2 transitions and can be described by an effective Hamiltonian

Heff = −
α

4mq
Sj⟨N |[Ea

i (DiBj)
a + (DiBj)

aEa
i ]N⟩, (11)

8Note that polarizability is same, only QCD operator changes! This operator can be reduced (via 
axial anomaly) to known matrix element:

J/ 1
2

�

H
E

= �1

2
(t1 � t2), H

M

=
1

4m
c

S
j

r
i

(D
i

B
j

)a

H
e↵

= ↵
q
i

2m
c

< N 0|G eG |N > "
ijk

⇣
j

⇣
k

⇣ ↵

< N 0|G eG |N >=
32⇡2

12N
f

g (0)
a

(~S · ~q)

Numerical estimates give 10-15 MeV splitting
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In our picture

 P(4450) is the bound state of the proton and the charmonium

 The peak at 4450 MeV is the interplay of two almost degenerate
    resonances with quantum # 1/2- and 3/2- (at variance with LHCb PWA)

 What about bound states with other type of charmonia? Polarizabilities are
     increasing with principal quantum number and orbital momentum!

 (2S)
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Figure 1: The known charmonium and charmonium-related resonances and some transitions
between them. Also are shown (dotted lines) the thresholds for various pairs of charmed
mesons.

the total angular momentum J , which defines the spin of the state viewed as a particle. As usual, the
total angular momentum is given by the vector sum of the orbital and the spin momenta: J⃗ = L⃗ + S⃗.
Likewise, the total spin S is determined by the vector sum of the quark and antiquark spins: S⃗ = s⃗c+ s⃗c̄.
Clearly, S takes the values 0 and 1, thus splitting the four possible spin states of the pair into a singlet
and a triplet. Furthermore, the excitation of the radial motion of the cc̄ pair results in a spectrum
of levels with the same L, S and J , and differing by the “radial” quantum excitation number nr with
nr = 0 corresponding to the lowest state in this spectrum. It is therefore customary to encode the values
of these quantum numbers for each state of charmonium in the form of the symbol (nr + 1)(2S+1)LJ .
The combination 2S + 1 conveniently indicates the spin multiplicity, while following the tradition from
atomic physics the values of L, L = 0, 1, 2, 3, . . . are written as S, P, D, F, . . .. In this notation the lowest
state with L = 0, S = 0 and (necessarily) J = 0 is represented as 11S0 (ηc resonance) while the first
excited state with the same quantum numbers is 21S0 (η′c).

The value of L determines the parity (P ) for each of the states: P = (−1)L+1, while L and S com-

4

decays L
if

L=2 L=0 L=1
JP =

3

2

� L=1
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Pandora box?

 Small quarkonia almost do not disturbe inner baryon structure,
     therefore, if bound with proton, than bound to its various excitations:
     hyperons, Deltas, Nstars, etc (PDG volume 2 :))

 Each pentaquark is accompanied by almost degenerate (hyperfine splitted)
     partners of the same parity

Good news (no PDG v3 :)): it seems that bottomia do not bind to the nucleon --
    polarizabilities are too small! Good way to falsify our picture of LHCb pentaquarks!
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Hvala !
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