
ar
X

iv
:0

91
2.

41
98

v2
  [

nu
cl

-e
x]

  1
9 

M
ay

 2
01

0

Search for the QCD critical point in nuclear collisions at the

CERN SPS

T. Anticic,22 B. Baatar,8 D. Barna,4 J. Bartke,6 L. Betev,10 H. Bia lkowska,19

C. Blume,9 B. Boimska,19 M. Botje,1 J. Bracinik,3 P. Bunčić,10 V. Cerny,3
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Abstract

Pion production in nuclear collisions at the SPS is investigated with the aim to search, in a

restricted domain of the phase diagram, for power-laws in the behavior of correlations which are

compatible with critical QCD. We have analyzed interactions of nuclei of different size (p+p, C+C,

Si+Si, Pb+Pb) at 158A GeV adopting, as appropriate observables, scaled factorial moments in a

search for intermittent fluctuations in transverse dimensions. The analysis is performed for π+π−

pairs with invariant mass very close to the two-pion threshold. In this sector one may capture

critical fluctuations of the sigma component in a hadronic medium, even if the σ-meson has no well

defined vacuum state. It turns out that for the Pb+Pb system the proposed analysis technique

cannot be applied without entering the invariant mass region with strong Coulomb correlations.

As a result the treatment becomes inconclusive in this case. Our results for the other systems

indicate the presence of power-law fluctuations in the freeze-out state of Si+Si approaching in size

the prediction of critical QCD.

∗Deceased.
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I. INTRODUCTION

The experiments with nuclei at the CERN SPS are dedicated to the search for evidence

of a deconfined state of quarks and gluons at high temperatures, separated from conventional

hadronic matter by a critical line in the two-dimensional phase diagram (µB, T ). Close to

this line significant fluctuations associated with the quark-hadron phase transition occur. In

principle the experimental study of these fluctuations becomes feasible in a class of nuclear

collisions whose reaction volume freezes out in this area. The underlying theory of strongly

interacting matter (QCD) suggests that, across the critical line, the phase transition is of

first order, at least for large values of µB, whereas at zero chemical potential (µB = 0) the

transition becomes a smooth crossover [1]. This picture implies that there is a point in the

phase diagram, located at nonzero baryonic density, where the first-order transition line stops

(endpoint). On the basis of general considerations this endpoint is characterized by a second-

order phase transition and it becomes a distinct property of strongly interacting matter

(QCD critical endpoint). The related critical phenomena give rise to density fluctuations

which obey appropriate power-laws, specified by the critical exponents of this transition

[1, 2]. This critical endpoint of QCD matter is the remnant of the chiral phase transition,

and its existence becomes the fact that light quarks acquire a small but nonzero mass which

breaks chiral symmetry of strong interactions explicitly [1].

Quantitatively, the power-laws of QCD matter at criticality describe the density fluc-

tuations of zero mass σ-particles produced abundantly in a nuclear collision at the critical

point [1, 2]. In particular, critical fluctuations of the σ-field ((δσ)2 ≈ 〈σ2〉) in the trans-

verse configuration plane, with respect to the beam axis, are characterized by a power-law

at large distances of the form [2]: (δσ)2 ∼ |~x⊥|
dF−2 where dF = 2(δ − 1)/(δ + 1) and δ is

the isothermal critical exponent of hot QCD matter (δ ≈ 5). Any experimental attempt to

verify this power-law as a signature of the QCD critical point must rely on the corresponding

effect in momentum space in analogy to conventional matter at criticality, where a similar

power-law in configuration space leads to the spectacular observable effect of critical opales-

cence [3] in momentum space (scattering of long wavelength light). In fact, the correlator in

momentum space 〈n~p n~p+~k〉 associated with the occupation number of sigmas in transverse

momentum states, obeys in the case of critical QCD matter a power-law for small |~k| of
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the form 〈n~p n~p+~k〉 ∼ |~k|−dF which reflects the critical nature of density fluctuations (of

sigmas) in configuration space. The singularity in the limit |~k| → 0 of the correlator and the

associated intermittency pattern provide the basic observables in the search for measurable

effects related to the critical behavior of QCD.

The sigma states in this approach are identified with π+π− pairs of invariant mass

distributed near the two-pion threshold according to a spectral enhancement of the form

ρσ(mπ+π−) ∼
(

1 − 4m2
π

m2

π+π−

)−1/2

[4]. In this restricted domain of the phase space the π+π−

system has the quantum numbers of the sigma field (I = J = 0), whereas the singularity of

ρσ(mπ+π−) at threshold is related to partial restoration of chiral symmetry [4] as we approach

the critical point in a hadronic medium (finite temperature and baryon density). With this

prescription one expects, by studying the behavior of π+π− pairs (near threshold) in the

freeze-out states of nuclear collisions, to be able to capture the properties of the sigma field

(order parameter) at the critical point. It is of interest to note that the spectral function

of sigma in a thermal environment and near the two-pion threshold is based on general

principles (partial restoration of chiral symmetry) and is not affected by the controversial

issue of σ-meson (a broad resonance) in vacuum (T = 0, ρB = 0) which remains an open

question in hadronic physics [4, 5].

In this work an experimental search for the QCD critical point is performed along

these lines in the freeze-out environment of nuclear collisions at the CERN SPS. The inves-

tigation is based on the NA49 measurements of multipion production in central collisions

at 158A GeV in a series of systems of different sizes (p+p, C+C, Si+Si, Pb+Pb). The

motivation for this search comes from theoretical studies suggesting that the QCD critical

point is likely to be within reach at the SPS energies [6]. Moreover, the anomalies in the

energy dependence of hadron production reported recently [7] indicate that a first-order

quark-hadron phase transition starts in central Pb+Pb collisions at beam energies around

30A GeV [8]. As a consequence, the second-order critical endpoint is likely to be located in

a region of lower baryon chemical potential which, presumably, can be reached by varying

the system size with energies close to the highest SPS energy (158A GeV).
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The observables in this search are chosen to be sensitive to the power-laws of the

correlation functions which are valid at the critical point of QCD matter. To this end

we follow the proposal in ref. [2] where two-dimensional scaled factorial moments of order

p, Fp(M), defined in small transverse momentum 2D cells δS (δS ∼ M−2 where M2 is

the number of cells), are suggested as the most suitable observables in the sigma mode

(π+π− pairs) near the two-pion threshold. In accordance with our previous discussion, the

counterpart in momentum space of the QCD critical power-law in configuration space is the

phenomenon of intermittency [9] with a linear spectrum of indices (critical intermittency):

Fp(M) ∼ M2φ2(p−1) (M ≫ 1), φ2 = (δ − 1)/(δ + 1), directly observable in the reconstructed

sector of sigmas [2].

In section II we describe the experiment and the pion data sets obtained by imposing

appropriate event and track cuts. In section III the method of analysis is explained with

emphasis on the reconstruction of the σ-sector near the two-pion threshold. In particular it

is shown that the elimination of the combinatorial background from the correlation of pion

pairs (π+π−) can be achieved to a large extent by a suitable subtraction of the factorial

moments of mixed events [2]. In addition Coulomb correlated π+π− pairs are excluded

by imposing appropriate kinematical cuts in the invariant mass. In section IV we apply

this method to data sets from p+p, C+C, Si+Si, Pb+Pb collisions at 158A GeV and

perform a systematic search for a power-law behavior of factorial moments in the sigma

mode. Moreover, a study is made of the compatibility of the results with the predicted

behavior of critical QCD matter. A comparison is also performed with conventional Monte

Carlo (HIJING) and critical Monte Carlo (CMC) predictions. Finally, in section V our

findings are summarized and discussed together with the limitations of the method and the

prospects for further investigations in current and future experiments concerning the QCD

critical point.
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II. EXPERIMENTAL SETUP AND PION PRODUCTION DATA AT THE SPS

The NA49 experimental setup [10] is shown in Fig. 1. The main detectors of the ex-

periment are four large-volume time projection chambers (TPCs). Two of these, the vertex

TPCs (VTPC-1 and VTPC-2), are located in the magnetic field of two superconducting

dipole magnets. This allows separation of positively and negatively charged tracks and a

measurement of the particle momenta. The other two TPCs (MTPC-L and MTPC-R),

positioned downstream of the magnets, are optimized for precise measurement of the

ionization energy loss dE/dx which is used for the determination of the particle masses.

Additional information on the particle masses is provided by two time-of-flight (TOF)

detector arrays which are placed behind the MTPCs. The centrality of the collisions is

determined by a calorimeter (VCAL) which measures the energy of the projectile spectators.

To cover only the spectator region the geometrical acceptance of the VCAL was adjusted

by a proper setting of a collimator (COLL) [10, 11]. The beam position detectors (BPD-1,

BPD-2, and BPD-3) are used to determine the x and y coordinates of each beam particle

at the target. Alternatively, the main vertex position is reconstructed as the common

intersection point of reconstructed tracks. A detailed description of the NA49 setup and

tracking software can be found in ref. [10].

MTPC- L

MTPC- R

TOF-R1

TOF-R2

VTPC2

RCAL COLL VCAL

VTPC1

BEAM

      MAGNETS
 SUPER CONDUCTING

TOF-L1

TOF-L2

 0  5  10 m

T

FIG. 1: The NA49 experimental setup.

The targets are C (561 mg/cm2), Si (1170 mg/cm2) disks and a Pb (224 mg/cm2) foil

for ion collisions and a liquid hydrogen cylinder (length 20 cm) for proton interactions.

They are positioned about 80 cm upstream from VTPC-1. A total of 33689 C+C, 17053
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Si+Si, 30000 Pb+Pb and 408708 p+p events after all necessary rejections with respect

to beam charge and vertex position were selected from 1998, 1998, 1996 and 1998 run

periods, respectively. For the Si+Si and C+C systems all of the 10% most central events

were used. The Pb+Pb events analyzed here were selected as the 5 % most central ones.

Further selection cuts were applied at the track level. In order to reject double tracks or

partially reconstructed tracks a requirement is set on the number of reconstructed points

in the TPCs between 20 and 235 and a ratio of reconstructed over potential points above

0.5. Tracks were selected in a momentum band of 3 − 50 GeV/c in order to allow pion

identification by using dE/dx information recorded in the TPC. A cut of 1 sigma around

the momentum dependent pion peak of the dE/dx distribution was applied, reducing the

residual background of other particle types to a very low level (less than 0.3%). This con-

tamination probability is estimated through the overlap of the tails of the kaon and baryon

dE/dx distributions with the 1 sigma region around the peak of the pion dE/dx distribution.

III. OPTIMAL RECONSTRUCTION OF THE π+π−
CRITICAL SECTOR USING

CMC SIMULATIONS

The guideline for the development of an efficient algorithm for the reconstruction of

the sigma sector and its density fluctuations is obtained through the analysis of events

generated by the Critical Monte-Carlo (CMC) code [2]. The sigma sector of the CMC

events is characterized by self-similar density fluctuations corresponding to a fractal set with

dimension Df = 2/3 in transverse momentum space. These fluctuations are not transferred

to the daughter pions directly due to decay kinematics. Using the fact that the critical

sigma sector as well as its geometrical properties are known in the CMC events one has a

measure for the efficiency of a reconstruction algorithm using the observed momenta of pions

of opposite charge (π+, π−). In such a scheme the direct observation of the critical sigmas

is not possible as they are hidden in a large background of π+π− pairs, formed from pions

originating from two different sigmas. However even if the sigma itself is not observable its

self-similar fluctuations in the isoscalar sector of pions can be revealed by using a suitable

algorithm which is developed and extensively described in [2]. Its basic steps are summarized

in the following:
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1. For each event in a given data set, consisting of identified positive and negative pions,

all possible pairs π+π− with invariant mass in a small kinematical window of size

∆ǫ = ǫ2 − ǫ1 above the two-pion threshold are formed:

(2mπ + ǫ1)
2 ≤ (pπ+ + pπ−)2 ≤ (2mπ + ǫ2)

2 (1)

with ǫi ≪ 2mπ, i = 1, 2. The sum of the momenta of π+ and π−, constituting a

pair, determines the momentum of the corresponding dipion: ~pππ = ~pπ+ + ~pπ−. The

parameters ǫ1, ǫ2 in eq. (1) can be used to displace the kinematical window of analysis

along the dipion invariant-mass axis as well as to modify its size. Such a displacement

can be useful in order to avoid the presence of Coulomb correlations in the considered

data set. In fact if ǫ1 fulfils the constraint ǫ1
>
∼ 5 MeV (Qinv

>
∼ 53 MeV) the domain of

Coulomb correlated π+π− pairs is excluded from the considered kinematical window

in the reconstructed dipion sector [12]. After this filtering procedure, only π+π− pairs

satisfying the condition (1) are retained for further analysis.

2. The pion pairs produced from the previous step are used to analyze the density fluctua-

tions in the isoscalar sector, employing as a suitable tool the 2D transverse momentum

factorial moments [9]:

Fp(M) =

〈
1

M2

M2
∑

i=1

ni(ni − 1)..(ni − p + 1)〉

〈
1

M2

M2
∑

i=1

ni〉
p

(2)

with M2 the number of cells in transverse momentum space and ni the number of

reconstructed dipions in the i-th cell. A power-law dependence F2 ∼ (M2)s2 for

large M (s2 is the corresponding intermittency exponent) indicates the presence of

self-similar fluctuations in transverse momenta. However before judging the power-

law behavior of the factorial moments one has to eliminate the effect of non-critical

dipions present in the events (step 1) as a result of combinatorial background (see step

3).

3. The second factorial moment calculated in step 2 is built by the density-density cor-

relation between any two dipions (π+π−) consisting both of critical sigmas (critical

dipions) and non-critical dipions. The dominant background in F2(M) consists of
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density-density correlations between two non-critical dipions and must be subtracted

in order to reveal the self-similar correlations between two critical dipions, if they exist.

Practically, to achieve this subtraction we assume that the number of dipions ni in

the i-th transverse momentum space cell occurring in (2) is decomposed in signal nσ,i

(critical sigmas) and background nb,i (non-critical dipions) which are (approximately)

statistically independent:

ni = nσ,i + nb,i

〈ni(ni − 1)〉 = 〈nσ,i(nσ,i − 1)〉 + 〈nb,i(nb,i − 1)〉 + 2〈nσ,inb,i〉

〈nσ,inb,i〉 ≈ 〈nσ,i〉〈nb,i〉 (3)

Inserting (3) in (2) and assuming further that the background is efficiently simulated

by mixed events we obtain the following formula for the subtracted factorial moment

∆F2:

∆F2(M) = F2(M) − x2
MF

(m)
2 (M) − 2xM(1 − xM) ; xM =

〈n(m)〉M
〈n〉M

(4)

where F
(m)
2 (M) is the second factorial moment in transverse momentum space cal-

culated using dipions originating from mixed events while 〈n〉M and 〈n(m)〉M are the

mean numbers of reconstructed dipions in a cell obtained from data and mixed events,

respectively. In ∆F2 a large part of the non-critical dipions are expected to be elim-

inated and the fluctuations carried by the critical π+π− pairs can be revealed to a

large extent. Therefore in the following analysis we will exclusively use the correlator

(4) in our search for critical fluctuations. For the simulated CMC events or for an

A + A system freezing out exactly at the critical point, ∆F2 is expected to possess

a power-law behavior: ∆F2 ∼ (M2)φ2 with the critical index φ2 = 2/3 determined

by the universality class of the transition [2]. It must be noted that the effect we

are looking for is associated with small momentum scales. Therefore we perform the

intermittency analysis using for the number of cells the condition M2 ≥ 2000. In

this way we avoid in real data the influence of possible structures at large momentum

scales on the determination of the critical index φ2. In practice φ2 is obtained through

a power-law fit of ∆F2 while the quality parameters χ2 and R2 are used to verify
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its validity1. The resulting values χ2/dof < 1 (dof = number of degrees of freedom)

and R2 approaching 1 indicate that the dependence of ∆F2 on M2 is consistent with

a power-law behavior. The proposed subtraction method is an approximate one, its

validity is discussed below based on the results of the Critical Monte Carlo.

4. It is known in the literature that the intermittency exponents are sensitive to the

multiplicity of the analyzed events [14]. As a consequence, in order to compare the

results of intermittency analysis in systems having different sizes A, and therefore

different charged pion multiplicity, we have to remove this bias. This is achieved if the

mean multiplicity of reconstructed dipions is as closely as possible the same for the

various systems. To this end one should tune appropriately the size of the kinematical

window in (1). One can show [2] that when the mean number of reconstructed dipions

decreases the relative weight of critical to non-critical dipions in the reconstructed

events increases. However, decreasing the multiplicity in general worsens the statistics

and an optimization with respect to the choice of ∆ǫ = ǫ2 − ǫ1 in (1) is in order

depending on the particular data set considered. This optimization procedure has

also to take into account the limited experimental invariant-mass resolution δm which

restricts the kinematical window ∆ǫ accordingly (∆ǫ > δm).

5. The critical sigmas, as explained in the introduction, are expected to have an invariant-

mass distribution peaked at the two-pion threshold. Since the number of critical sig-

mas within the kinematical domain (1) is crucial for the efficient reconstruction of

the power-law discussed above, one has to look for an interval with enhanced content

in critical sigmas, scanning for this purpose an extended kinematical range of dipion

invariant mass. This is achieved by varying ǫ1 in eq. (1). In order to suppress the in-

fluence of other hadronic resonances one should restrict the position of the kinematical

window to a narrow region just above the two-pion threshold. A safe choice would be,

for example, ǫ2 ≤ 70 MeV [15].

1 The coefficient of determination R2 is defined through [13]:

R2 =
(< yỹ > − < y >< ỹ >)2

(< y2 > − < y >2)(< ỹ2 > − < ỹ >2)

where y are the experimentally observed values for a given observable Y while ỹ are the corresponding

values of the fitting function.
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The efficiency of the above algorithm can be tested by applying it to data sets

consisting of CMC critical events. In this case, the observable pionic sector is produced

through the decay of the critical sigmas, generated by the CMC code, into pions. At

this point we need to incorporate in the Critical Monte Carlo, along with the universal

power-laws, the fact that the σ-activity just above the two-pion threshold is associated

with the partial restoration of chiral symmetry as the system approaches the critical point

[4]. In particular the π+π− invariant-mass distribution follows a characteristic spectral

enhancement in the σ-mode [4] at the 2mπ threshold, ρσ(mπ+π−) ∼
(

1 − 4m2
π

m2

π+π−

)−1/2

which

plays a crucial role in the reconstruction of self consistent critical σ-correlations in our

treatment.

In Fig. 2(a-d) we illustrate how the above spectrum leads to the reconstruction of

the critical index φ2 in the immediate neighborhood of the 2mπ threshold. It is seen that

although the spike in the invariant-mass spectrum of the sima (Fig. 2a) is not observable in

the reconstructed dipion sector (Fig. 2b), owing to combinatorics and finite statistics, the

fluctuations of the underlying critical sigmas can be revealed by intermittency analysis in

transverse momentum space, if the invariant-mass window of the reconstructed π+π− pairs is

chosen to be located close to the 2mπ threshold (Fig. 2c,d). In Fig. 2c we present the second

factorial moments F2 (full circles) and F
(m)
2 (open circles) in transverse momentum space of

reconstructed dipions in the case of optimal reconstruction of critical fluctuations using in

(1) the kinematical window [280, 280.6] MeV. The mean multiplicity of reconstructed dipions

in this interval is 1.6. The subtracted moment ∆F2 is shown in Fig. 2d. The solid line is the

result of the power-law fit. The reconstruction of the critical fluctuations measured through

φ2 leads to the theoretically predicted value (φ2 = 0.67 ± 0.01) with R2 = 1 (χ2 ≈ 0.4).

We have also explored how the results of the analysis change as we get off the optimal

scenario by changing the location or the size of the dipion invariant-mass window used

in the reconstruction as well as by contaminating the ensemble of pions originating from

the decay of critical sigmas with pions produced from a random source. The results of

this analysis are shown in Fig. 3(a-d). More specifically in Fig. 3a we show the decrease
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FIG. 2: (a) The spectral density of sigmas at the critical point according to ref. [4] and (b)

the corresponding dipion invariant-mass distribution resulting from reconstruction using simulated

CMC events. In (c) we show the second factorial moments F2 (full circles) and F
(m)
2 (open circles)

in transverse momentum space of the CMC dipion sector using dipions with invariant mass in the

kinematical window [280, 280.6] MeV (optimal reconstruction of critical fluctuations) and in (d)

we show the corresponding subtracted moment ∆F2. The solid line is the result of the power-law

fit leading to φ2 = 0.67 ± 0.01.

of the φ2 value as well as the reduction of the quality of the corresponding power-law fit

(increasing error bars), when the location of the kinematical window used in the analysis

is placed at increasing distance from the two-pion threshold. Each window used in Fig. 3a

has an appropriate size, varying in the range [0.6, 1] MeV, so that the corresponding mean
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number of pions is 〈nπ+π−〉∆ǫ ≈ 2. For the decay of the sigmas into pions the spectral

density shown in Fig. 2a is used. The vertical solid line at 285 MeV is drawn to indicate the

dipion invariant mass value below which the Coulomb correlations are strong. In Fig. 3b

we show the correlator ∆F2(M) for the dipion invariant mass window [285, 286] MeV in

double logarithmic scale. The dashed line indicates the associated linear fit used for the

estimation of φ2. To determine the dependence of the results of the fluctuation analysis on

the size of the kinematical window we have calculated φ2 employing in the reconstruction

dipion invariant-mass windows [280 MeV,280 MeV +∆ǫ] with increasing size ∆ǫ. The exact

profile of this dependence is expected to be sensitive to the mean multiplicity of initial

critical sigmas which decay into pions forming the ensemble of CMC events. When the

mean number of initial sigmas gets smaller, the corresponding combinatorial background

(non-critical dipions) decreases as well. Since the number of non-critical dipions 〈nb〉

depends quadratically on the mean number of decaying sigmas 〈nσ〉 the relative weight

〈nσ〉
〈nb〉

increases for decreasing 〈nσ〉. This behavior is illustrated in Fig. 3c where the

dependence of φ2 on ∆ǫ is displayed for two ensembles of CMC events differing in the mean

multiplicity of initial critical sigmas (〈nσ〉 ≈ 31 (full circles) and 〈nσ〉 ≈ 18 (stars)). For

both sets φ2 decreases with increasing ∆ǫ, however when 〈nσ〉 is smaller the decrease is

significantly slower. It must be noted that the quality of the power-law fits remains very

good (R2 ≈ 0.98) even for ∆ǫ ≈ 50 MeV and therefore the associated errors δφ2 are small.

Finally, we have examined the influence of random pions not originating from the decay of

critical sigmas on the obtained φ2 value. In Fig. 3d we present the results for φ2, calculated

at threshold using the dipion invariant-mass window [280, 281] MeV, as a function of the

percentage of random pions per event in the considered ensemble. We observe that the

variation of φ2 is relatively slow and beyond 80% φ2 drops rapidly to zero. In the same

figure it is shown that up to 20% background, the obtained critical index remains at the

level of the QCD prediction. This last observation indicates also the limitations of the

proposed subtraction method based on the correlator ∆F2 (eq. 4). Finally it is of interest

to note that in the actual system of π+π− pairs at threshold, weakly correlated pions of

opposite charge originate mainly from the I = 2 (isotensor) channel and form a negligible

background of the sigma component [5, 15]. As a result we expect a small percentage of

uncorrelated (weakly correlated) pions as we approach the critical point. This admixture,

however, does not affect the extraction of the critical index φ2 from the experimental data

13



(Fig. 3d).

In our calculations we have used an ensemble of 15000 CMC events with mean critical

sigma multiplicity 〈nσ〉 ≈ 31 leading after the decay to 〈π+〉 ≈ 20 with the exception of the

analysis shown in Fig. 3c where we have used in addition an ensemble of 15000 CMC events

with mean critical sigma multiplicity 〈nσ〉 ≈ 18. A conclusion drawn from this study is

that moving the π+π−-mass interval away from the mass of the critical sigma enhancement

or increasing its size clearly decreases the fitted value of φ2. This behavior is attributed

to the increasing contributions from combinatorial pair background. In addition the φ2-

value decreases and the quality of the power-law fit is reduced, if the pion sector is highly

contaminated by random pions.

It is of interest to note here that, when the distance of the freeze-out state from the

critical point increases, the spike in Fig. 2a is transformed to a smooth maximum located

at an increasing distance away from the two-pion threshold [4]. Our experience from the

analysis of CMC data suggests that, in this case, the results of the fluctuation analysis in the

reconstructed dipion sector should be characterized by three effects signaling the departure

from the critical point:

• A decrease of the maximum φ2 value,

• a displacement of the location of this maximum to invariant-mass values greater than

the two-pion threshold and

• a reduction of the quality of the power-law fits of ∆F2 (larger χ2/dof , smaller R2).

The CMC data do not incorporate Coulomb correlations between charged pions and

therefore no lower limit in the value of ǫ1 in (1) is necessary. However, in the analysis of a

real system one has to take the constraint ǫ1 ≥ 5 MeV into account. Based on the results of

the sigma reconstruction in the CMC events (Fig. 3a), we expect that the signature of the

critical sigma correlations is a global maximum in φ2 as a function of mπ+π− the location

of which tends towards 2mπ with its value approaching the QCD prediction φ2 = 2/3. In

the search for this maximum one has also to verify the quality of the power-law behavior.

Having as a guide the experience gained by the reconstruction of the critical sigma sector in
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FIG. 3: The results of an analysis of simulated CMC events are presented. In (a) we show the φ2

values calculated using non-overlapping dipion invariant-mass windows (with 〈nπ+π−〉 ≈ 2) located

at an increasing distance from the two-pion threshold. The vertical line at 285 MeV indicates the

upper limit of the dipion invariant mass region affected by Coulomb correlations. In (b) is shown

the log-log plot of the correlator ∆F2(M) for CMC events, calculated in the invariant-mass window

[285, 286] MeV. The dashed line indicates the result of the linear fit in the rangeM2 ∈ [2000, 22500].

In (c) we show the dependence of φ2 on ∆ǫ using for the analysis dipion invariant-mass windows

[280 MeV,280 MeV +∆ǫ] with ∆ǫ increasing from 1 MeV to 50 MeV. Two different ensembles of

CMC events with 〈nσ〉 ≈ 31 (full circles) and 〈nσ〉 ≈ 18 (stars) have been analyzed. Finally in (d)

we plot the φ2 value at threshold calculated using an ensemble of 15000 CMC events contaminated

with random pions, as a function of their percentage.
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the CMC events, we will present in the next section the results of a similar analysis applied

to the four SPS data sets described previously.

IV. RESULTS OF THE DATA ANALYSIS AT THE SPS

The algorithm described in section III can be directly applied to the A+A data sets

(A = p, C, Si, Pb) measured at 158A GeV. The results of this analysis are presented

step-by-step in the following. For each system A we first determine the size ∆ǫ of the

kinematical window in (1) in order to achieve an optimal mean multiplicity of dipions in

the considered domain allowing at the same time for sufficient statistics. It turns out that

〈nπ+π−〉∆ǫ ≈ 4 is a good choice leading to small statistical fluctuations in the calculated φ2

values for the C+C and Si+Si systems. To achieve this multiplicity in the p+p system one

has to choose a large mππ mass window. On the other hand, to obtain this multiplicity

value in the Pb+Pb system one has to decrease ∆ǫ below the experimental invariant-mass

resolution δǫ of the NA49 detector. This is seen in Fig. 4 where the functions ∆ǫ(mπ+π−)

for 〈nπ+π−〉∆ǫ = 4 are presented for the systems C+C (crosses), Si+Si (full circles)

and Pb+Pb (open triangles). In the same plot the solid line displays the experimental

invariant-mass resolution δǫ as a function of the dipion invariant mass mπ+π− assuming

constant momentum transfer resolution δQ ≈ 5 MeV (where Q =
√

−(pπ+ − pπ−)2 for a

pair of oppositely charged pions).

It is obvious that the analysis is meaningful only as long as ∆ǫ(mππ) is larger than

δǫ(mππ). This constraint does not affect the C+C system, while it restricts the region of

analysis for Si+Si to the domain [285, 320] MeV. For the Pb+Pb system it is impossible to

satisfy the constraint ∆ǫ > δǫ for 〈nπ+π−〉∆ǫ ≈ 4. Thus, in this case one can only use ∆ǫ

values which are larger than δǫ.

The fluctuation analysis of the four SPS systems can be summarized as follows:

• For the p+p system we have considered a single mππ mass window with ǫ1 = 5 MeV

and ∆ǫ = 290 MeV (much larger than δǫ) leading to 〈nπ+π−〉∆ǫ ≈ 4. The index φ2
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FIG. 4: The functions ∆ǫ(mππ) corresponding to 〈nπ+π−〉∆ǫ ≈ 4 for the systems C+C (crosses),

Si+Si (full circles) and Pb+Pb (open triangles). For comparison the line δǫ(mππ) corresponding

to the NA49 experimental resolution of the momentum transfer δQ ≈ 5 MeV is also shown.

is found to be close to zero with R2 ≈ 0 indicating the absence of power-law sigma

correlations in the considered kinematical region.

• In C+C data the region [285, 350] MeV has been covered using non-overlapping mass

intervals of varying size in order to achieve 〈nπ+π−〉∆ǫ ≈ 4 within each interval and the

corresponding φ2 is calculated. In order to scan completely the considered kinematical

region we have used three different sets of non-overlapping invariant-mass intervals

differing in the starting ǫ1 value: ǫ1 = 5 MeV (set 1), ǫ1 = 15 MeV (set 2) and

ǫ1 = 25 MeV (set 3). It turns out that also in the C+C system the calculated index

φ2 is around zero becoming also slightly negative in some invariant-mass intervals (see

Fig. 6a). The dependence on the location of the invariant-mass window used in the

analysis is weak and the quality of the power-law fits poor (R2 → 0, see Fig. 6c). No

obvious maximum of φ2 occurs in the considered region. In fact for C+C it is possible
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to perform the intermittency analysis using smaller invariant-mass intervals in order

to approach the condition of optimal multiplicity 〈nπ+π−〉∆ǫ ≈ 2 for the suppression of

the combinatorial background [2]. We have performed also this analysis in the region

[285, 320] MeV and the results remained practically unchanged. The largest value of φ2

was found to be φ2 = 0.02±0.02 in the interval [285, 290] MeV with R2 ≈ 0.01. Thus,

the C+C system shows no signature of critical transverse momentum fluctuations in

the sigma-sector according to our analysis.

• For the Si+Si system the dipion invariant-mass region ([285, 320] MeV) is covered

using non-overlapping intervals of varying size, as in the case of C+C, in order to

achieve 〈nπ+π−〉∆ǫ ≈ 4. Similarly to the C+C case we use three different sets of

invariant-mass intervals differing in the initial ǫ1 value in order to achieve a complete

scan of the aforementioned kinematical region: ǫ1 = 5 MeV (set 1), ǫ1 = 7 MeV (set

2) and ǫ1 = 8.5 MeV (set 3). A clear maximum of φ2 at mπ+π− ≈ 302 MeV is here

observed (see Fig. 6b,d) leading to φ2,max ≈ 0.33±0.04 (χ2/dof ≈ 0.3 and R2 ≈ 0.71).

Thus, Si+Si shows properties characterizing a system freezing out at a relatively small

distance from the critical point such that remnants of critical fluctuations are present in

the transverse momenta of the produced pions. In fact the location of the maximum

is close to the two-pion threshold, its value φ2,max is large and the quality of the

corresponding power-law fit, measured through R2, is good.

• Finally, the analysis of the Pb+Pb system has been restricted to the interval

[285, 286] MeV using ∆ǫ = 1 MeV for ǫ1 = 5 MeV leading to 〈nπ+π−〉∆ǫ ≈ 20. The

corresponding experimental resolution of the dipion invariant mass in this region is

δǫ ≈ 0.93 MeV. The critical index φ2 is found vanishingly small (φ2 ≈ 0.04) with a fit

error of δφ2 ≈ 0.02, and R2 ≈ 0.07. In order to clarify the role of high multiplicity

near threshold we have performed a CMC simulation using an ensemble of 1500

events with 〈nσ〉 ≈ 250 in two intervals of the invariant mass:

(a) at the 2mπ threshold where the singularity of the σ-enhancement prevails, taking

〈nπ+π−〉 ≈ 29 in the mπ+π− window [280, 280.6] MeV. We found a pattern close to the

critical one with φ2 = 0.47 ± 0.01, R2 = 1.00 which is robust against changes of the

average multiplicity 〈nπ+π−〉 and
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(b) in the nearby mπ+π− interval [285, 285.3] MeV where the actual analysis of the

experimental data for Pb+Pb was performed, taking 〈nπ+π−〉∆ǫ ≈ 38. We found a

non-critical pattern with φ2 ≈ 0.07 ± 0.01, comparable to the value measured in the

above analysis for Pb+Pb. This drastic change in the CMC result is due to the high

multiplicity of non-critical π+π−pairs in windows of invariant mass at a distance from

the singularity (σ-enhancement) at threshold. However, the correlator ∆F2 of the

CMC system remains close to a power-law (R2 ≈ 0.93) in contrast to the situation in

Pb+Pb (R2 ≈ 0). The conclusion drawn from this study using CMC events is that in

large systems the reconstruction of critical fluctuations in the dipion sector seems not

possible with our method.

In Figs. 5(a-d) we show the dipion (π+π− pairs) invariant-mass distributions with

a characteristic smooth maximum for all A+A systems we have analyzed. The maximum

of the distribution for C+C is located at mπ+π− ≈ 421 MeV while for Si+Si it lies at

mπ+π− ≈ 386 MeV. Apart from this slight displacement of the maximum of the dipion

invariant-mass distribution towards the two-pion threshold for Si+Si, the plots are similar to

that of Fig. 2b obtained from CMC events. As expected, the reconstructed invariant-mass

distribution alone cannot reveal the underlying activity of critical sigmas in the freeze-out

state. Obviously the study of fluctuations is a necessary tool for this purpose.

The detailed results of the search for critical fluctuations in the C+C and Si+Si

systems are presented in Figs. 6(a-d) and 7(a-f). In particular Fig. 6a shows φ2 for C+C in

the kinematical range [285, 350] MeV while Fig. 6b shows the corresponding plot for Si+Si

in the kinematical range [285, 320] MeV. One can clearly see the absence of power-law

fluctuations in C+C for the entire range of analysis and the formation of a pronounced

maximum with φ2,max ≈ 0.35 located at mπ+π− ≈ 302 MeV in Si+Si. The quality of the

power-law fits in this analysis is presented in Figs. 6c (for C+C system) and 6d (for Si+Si

system) where we plot the corresponding R2-values. It is seen that in the C+C system

there is no mπ+π− region where the correlator ∆F2(M) is close to a power-law since all the

R2-values are found to be small. On the other hand, in the Si+Si system there is a peak in

R2 at the same position as in φ2 (mπ+π− ≈ 302 MeV) with a value (R2
max ≈ 0.7) indicating
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FIG. 5: The invariant-mass distribution for π+π− pairs obtained from the (a) p+p, (b) C+C, (c)

Si+Si and (d) Pb+Pb NA49 data at maximum SPS energy.

that in this invariant-mass window the correlator is well described by a power-law. The form

of the factorial moments in transverse momentum space for Si+Si both for the real data

as well as for the mixed events at the maximum and at a distance (below or above) from

it are shown in the left column of Fig. 7. The corresponding correlator ∆F2 is presented in

the right column. In the region of the maximum one can clearly distinguish F2 of the data

from F2 of the mixed events. However, when the interval of analysis lies at a distance from

the maximum then the values of F2 for the data overlap with those of F2 for mixed events.

As a consequence the calculated value of φ2 decreases and the quality of the power-law

fits is significantly reduced. A possible dependence of the obtained results for φ2 on the
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set of mixed events used for the background subtraction is suppressed by averaging in all

the calculations of ∆F2 over 10 sets of mixed events generated using different sequences

of random numbers. In order to avoid systematic biases adequate 2-track and momentum

resolution are required. The effects of momentum resolution were investigated by smearing

the measured track momenta by the upper limit of the transverse momentum uncertainty

of ∆p
p2

≈ 7 · 10−4 (GeV/c)−1 and then recalculating the correlator ∆F2 in the mass window

[302.1, 305.1] MeV. No significant change of either ∆F2 or φ2 was observed. Possible effects

of limited 2-track resolution were investigated as follows. Distributions of average track

multiplicities (cell occupancies) in dependence of the cell number M2 were computed for

both real and mixed events. The ratio of these distributions was found to be independent

of M2. In particular there was no decrease at the largest M2 (smallest phase space cells)

used in the analysis demonstrating fully sufficient 2-track resolution.

In order to test the validity of the error attached by the fit to the value of φ2 we

subdivided the C+C and Si+Si data each into 4 subsets with almost equal number of

events. As uncertainty estimate of φ2 for the full data samples we take half the spread of

the φ2 values determined for the 4 independent sub-samples. It turns out that this estimate

is close to the error given by the fit for φ2 from the full data samples. We observe that the

worsening of the statistics has impact on the quality of the power-law fits but retains the

signature of the maximum in the Si+Si system.

For a complete presentation of the performed reconstruction analysis we show in

Fig. 8(a-d) the factorial moments of the four considered SPS systems. For Si+Si we show

the moment (full triangles) calculated in the dipion invariant-mass window for which φ2 is

maximized while for the C+C system we show the moment for the invariant mass window

located as close as possible to the two-pion threshold (mπ+π− ∈ [285, 314] MeV). In the

same plot we also display the second moments for the corresponding mixed events (open

triangles). In addition in Fig. 9(a-d) we give the subtracted moments ∆F2.

In Fig. 10 the dependence of φ2 on the size A of the considered system is illustrated.

The horizontal straight line at φ2 = 2/3 is drawn to indicate the critical QCD prediction [2].
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FIG. 6: The function φ2(mππ) (a) for the C+C system and (b) for the Si+Si system. The R2-values

of the corresponding power-law fits are displayed in (c) and (d) respectively. The errors here are

determined by the fit. The different symbols are used to indicate the three different sets of dipion

invariant-mass intervals used in the analysis as described in the text.

In addition we show the line φ2 = 0 to guide the eye. The shaded region in Fig. 10 indicates

the A-values for which the algorithm of reconstruction described in section III fails to

reveal, even partially, existing critical fluctuations without entering into the Coulomb region

(mπ+π− ≤ 285 MeV). The limiting value A = 82 is determined using CMC simulated events.

As previously described, the errors are determined by the spread of the φ2 values calculated

after subdivision of the entire event ensemble in four equally large subsets. We do not include

in the plot the result for the Pb+Pb system since A > 82 and also because the actual mea-
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FIG. 7: The second factorial moment F2 for Si+Si data (solid squares) and the corresponding mixed

events (crosses) obtained by intermittency analysis in three different invariant-mass intervals: (a)

[296.4, 297.2] MeV, (b) [302.1, 305.1] MeV and (c) [312.7, 315.4] MeV. The corresponding subtracted

moments ∆F2 are shown in (d), (e) and (f), respectively.
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FIG. 8: The second factorial moment in transverse momentum space for: (a) p+p (window of

analysis [280, 570] MeV), (b) C+C (window of analysis [285, 314] MeV), (c) Si+Si (window of

analysis [300.9, 304] MeV) and (d) Pb+Pb (window of analysis [285, 286] MeV) systems. The

full triangles represent the moments of NA49 data while the open triangles the moments for the

corresponding mixed events.

surements, in this case, cannot fulfill the constraint of mean dipion multiplicity, 〈nπ+π−〉 ≈ 4.

Finally in Figs. 11a,b,c we present a comparison of ∆F2 for Si+Si (a) with the
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for: (a) p+p, (b) C+C, (c) Si+Si and (d) Pb+Pb systems.

corresponding moments in CMC (b) and HIJING (c). The analysis for HIJING was

made using the same detector acceptance and mππ mass windows as employed for the

NA49 data. The CMC result is obtained from the reconstruction analysis in the dipion

invariant-mass window [280, 280.6] MeV leading to a mean dipion multiplicity of 1.6 and

optimal reconstruction of critical fluctuations (φ2 = 0.67 ± 0.01 and R2 = 1). The quality

of the power-law fit and the slope for the NA49 data show a similar behavior with the

CMC events and deviate significantly from the behavior found for the HIJING data where

no reasonable power-law fit gets possible since the corresponding R2 value tends to zero

(φ2 = 0.02 ± 0.09 with R2 = 0.002). Contrary to Si+Si, the fluctuations in the C+C

NA49 system, as shown in Figs. 11d,e, are comparable with those in the HIJING events

(φ2 = −0.003 ± 0.03 with R2 = 0.01).
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of the size A. All three systems obey 〈nπ+π−〉 ≈ 4 in the corresponding window of analysis. The

upper horizontal line presents the theoretically expected value (2/3) for a system freezing out at

the QCD critical point while the lower horizontal line is at φ2 = 0. The shaded region indicates

the A-values for which the reconstruction algorithm of section III is not conclusive. The shown

error bars have been obtained by analyzing sub-samples (see text).

V. DISCUSSION AND CONCLUSIONS

In this work the behavior of pion pairs (π+π−) produced near the two-pion threshold

in nuclear collisions at the CERN SPS, is investigated. The motivation for such a study

originates from the fact that the above system (π+π−, mπ+π−

>
∼ 2mπ) has a strong

component in the σ-mode [4, 5] (scalar and isoscalar) and therefore it is sensitive to the

order parameter of the QCD critical point [1]. As a consequence, it develops unconventional

density fluctuations with a power-law behavior, characteristic of a second-order phase
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FIG. 11: The correlator ∆F2 corresponding to the best solution for Si+Si at 158A GeV using:

(a) NA49 data, (b) CMC generated events and (c) HIJING events. The dotted lines display the

corresponding linear fit in log-log scale. For comparison we also show representative results for

C+C at 158A GeV using: (d) NA49 data and (e) HIJING events.

transition, provided that the particle system produced in these collisions freezes out close

to the critical endpoint in the QCD phase diagram [1, 2]. Using critical events generated

by the CMC algorithm, it is shown that a global maximum of the suitably defined critical

index φ2 appears at a value approaching the QCD prediction (φ2 ≈ 2/3) when moving

towards the two-pion threshold. This behavior constitutes a signature for the existence of

the critical point and the partial restoration of chiral symmetry.
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To search for such a signature we have analyzed π+π− pairs from p+p, C+C, Si+Si

and Pb+Pb collisions at the maximum SPS energy of 158A GeV. We have chosen scaled

factorial moments of second order in the transverse momentum plane and in the σ-mode as

the basic observables in which the power-laws of critical QCD fluctuations can be revealed.

In particular the exponent φ2 of the power-law behavior in small domains of the momentum

space (intermittency) provides us with a signature of critical fluctuations when compared to

the QCD value: φ2 = 2/3. The results of our analysis are summarized as follows:

• Large power-law fluctuations, measured through the index φ2 of factorial moments are

developed in the system Si+Si at 158A GeV (φ2 ≈ 0.35) .

• The observed fluctuations may have unconventional origin as suggested by comparison

with the corresponding moments in HIJING and CMC.

• In Pb+Pb collisions, the high multiplicity of the produced pions combined with the

restrictions imposed by the necessity to exclude the Coulomb correlations and the

resolution of the experiment, decrease the sensitivity to the sigma fluctuations near

the two-pion threshold. Whether the vanishingly small value of φ2 found in this case

is due to the effect of high multiplicity or to a genuine non-critical nature of the freeze-

out state of the system, cannot be resolved without penetrating the Coulomb region

to reach the 2mπ threshold.

In conclusion, a sizable effect of π+π− pair fluctuations with critical characteristics was

found in Si+Si collisions at 158A GeV (the chemical freeze-out parameters extracted using

the hadron gas model [16] for this reaction are: µB ≈ 253 MeV, T ≈ 163 MeV). This effect

may be associated with the presence of the QCD critical point in the wider SPS region.

Complementary studies in the baryonic sector are necessary in order to clarify the picture

[17] and overcome the limitations and uncertainties still remaining in the reconstruction of

the critical σ-mode.

The overall outcome of this investigation combined with theoretical estimates [6], based

in particular on Lattice QCD at high temperature, suggest that an intensive experimental

search for the QCD critical point in the region of the phase diagram 180 MeV ≤ µB ≤
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400 MeV, 150 MeV ≤ T ≤ 170 MeV is of high interest. Such a program is proceeding both

at the CERN SPS [18] and BNL RHIC [19] and will hopefully strengthen the evidence for

the critical point.
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