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Abstract The ALICE Collaboration at the LHC has mea-
sured the J/ψ and ψ ′ photoproduction at mid-rapidity in
ultra-peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV.

The charmonium is identified via its leptonic decay for
events where the hadronic activity is required to be mini-
mal. The analysis is based on an event sample correspond-
ing to an integrated luminosity of about 23 µb−1. The
cross section for coherent and incoherent J/ψ production
in the rapidity interval −0.9 < y < 0.9, are dσ coh

J/ψ/dy =
2.38+0.34

−0.24(sta + sys) mb and dσ inc
J/ψ/dy = 0.98+0.19

−0.17(sta +
sys) mb, respectively. The results are compared to theoret-
ical models for J/ψ production and the coherent cross sec-
tion is found to be in good agreement with those models in-
corporating moderate nuclear gluon shadowing at Bjorken-
x around 10−3, such as EPS09 parametrization. In addition
the cross section for the process γ γ → e+e− has been mea-
sured and found to be in agreement with models implement-
ing QED at leading order.

1 Introduction

The strong electromagnetic fields generated by heavy ions
at the LHC provide an opportunity to study photonuclear
interactions in ultra-peripheral collisions (UPC), where the
impact parameter may be several tens of femtometres and
no hadronic interactions occur. The photon flux is propor-
tional to the square of the nucleus charge, so the photon flux
in lead beams is enhanced by nearly four orders of mag-
nitude compared to proton beams. The strong photon flux
leads to large cross sections for a variety of photonuclear
and two-photon interactions. The physics of ultra-peripheral
collisions is described in Refs. [1, 2]. Exclusive vector me-
son photoproduction, where a vector meson is produced in
an event with no other final state particles, is of particular
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interest, since it provides a measure of the nuclear gluon dis-
tribution at low Bjorken-x.

Exclusive production of charmonium in photon–proton
interactions at HERA, γ + p → J/ψ(ψ ′) + p, has been suc-
cessfully modelled in perturbative QCD in terms of the ex-
change of two gluons with no net-colour transfer [3]. Exclu-
sive vector meson production at mid-rapidity in heavy-ion
collisions has previously been studied at RHIC [4, 5]. The
exclusive photoproduction can be either coherent, where the
photon couples coherently to almost all the nucleons, or in-
coherent, where the photon couples to a single nucleon. Co-
herent production is characterized by low transverse mo-
mentum of vector mesons (〈pT〉 ≈ 60 MeV/c) where the
nucleus normally does not break up by the J/ψ production.
However, the exchange of additional photons may lead to the
nucleus break-up, estimated by the simulation models at the
level of 20–30 % of the events. Incoherent production, cor-
responding to quasi-elastic scattering off a single nucleon, is
characterized by a somewhat higher transverse momentum
(〈pT〉 ≈ 500 MeV/c). In this case the nucleus interacting
with the photon breaks up, but, apart from single nucleons
or nuclear fragments in the very forward region, no other
particles are produced.

Recently the ALICE Collaboration published the first
results on the photoproduction of J/ψ in ultra-peripheral
Pb–Pb collisions at the LHC [6]. This first measurement
was performed in the rapidity region −3.6 < y < −2.6
and allows us to constrain the nuclear gluon distribution
at Bjorken-x ≈ 10−2. In this paper, results from the AL-
ICE experiment on exclusive photoproduction of J/ψ and
ψ ′ mesons at mid-rapidity in ultra-peripheral Pb–Pb col-
lisions at

√
sNN = 2.76 TeV are presented. The measure-

ment at mid-rapidity allows the exploration of the region
x = (MJ/ψ/

√
sNN) exp(±y) ≈ 10−3, where at present the

uncertainty in the nuclear gluon shadowing distribution is
rather large [7]. This analysis is focused both on coherently
and incoherently produced J/ψ mesons. The measured cross
section is compared to model predictions [8–13].
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Two-photon production of di-lepton pairs in heavy-ion
interactions is also of great interest, as it probes Quantum
Electrodynamics in the regime of strong fields. This process
is sensitive to the effect produced by the strong fields of the
nuclei. The coupling Z

√
α is large, so higher-order terms

may become important. Predictions exist where these terms
are found to lead to a reduction in the cross section by up
to 30 % [14, 15]. Other calculations have found agreement
with leading-order calculations for muon pairs and electron
pairs with invariant masses much larger than two times the
electron mass [16]. Measurements at LHC energies can pro-
vide useful insights to assess these effects. In this paper we
present the study of the γ γ → e+e− process. The results
are compared with predictions by models neglecting higher-
order effects discussed above.

2 Detector description

The ALICE experiment consists of a central barrel placed in
a large solenoid magnet (B = 0.5 T), covering the pseudo-
rapidity region |η| < 0.9, and a muon spectrometer at for-
ward rapidity, covering the range −4.0 < η < −2.5 [17].
In this analysis the following detectors of the central barrel
have been used. The Silicon Pixel Detector (SPD) makes
up the two innermost layers of the ALICE Inner Track-
ing System (ITS), covering extended pseudorapidity ranges
|η| < 2 and |η| < 1.4, for the inner (radius 3.9 cm) and
outer (average radius 7.6 cm) layers, respectively. It is a fine
granularity detector, having about 107 pixels, and can be
used for triggering purposes. The Time Projection Cham-
ber (TPC) is used for tracking and for particle identifica-
tion. A 100 kV central electrode separates the two drift
volumes, providing an electric field for electron drift, and
the two end-plates, at |z| = 250 cm, are instrumented with
Multi-Wire-Proportional-Chambers (MWPCs) with 560 000
readout pads, allowing high precision track measurements
in the transverse plane. The z coordinate is given by the
drift time in the TPC electric field. The TPC acceptance cov-
ers the pseudorapidity region |η| < 0.9. Ionization measure-
ments made along track clusters are used for particle iden-
tification [18]. Beyond the TPC, the Time-of-Flight detec-
tor (TOF) is a large cylindrical barrel of Multigap Resistive
Plate Chambers (MRPCs) with about 150 000 readout chan-
nels, giving very high precision timing for tracks travers-
ing it. Its pseudorapidity coverage matches that of the TPC.
Used in combination with the tracking system, the TOF de-
tector can be used for charged particle identification up to
about 2.5 GeV/c (pions and kaons) and 4 GeV/c (protons).
Still further out from the interaction region, the Electromag-
netic Calorimeter (EMCAL) is a Pb-scintillator sampling
calorimeter at a distance of ≈4.5 metres from the beam line,
covering an opening acceptance in the range |η| ≤ 0.7 and

Δφ = 100◦ in azimuth. It has 20.1 radiation lengths and con-
sists of 11 520 towers.

The analysis presented below also makes use of two for-
ward detectors. The VZERO counters consist of two arrays
of 32 scintillator tiles each, covering the range 2.8 < η < 5.1
(VZERO-A, on the opposite side of the muon arm) and
−3.7 < η < −1.7 (VZERO-C, on the same side as the
muon arm) and positioned respectively at z = 340 cm and
z = −90 cm from the interaction point. The Forward Multi-
plicity Detector (FMD) consists of Si-strip sensors with a to-
tal of 51 240 active detection elements, arranged in five rings
perpendicular to the beam direction, covering the pseudora-
pidity ranges −3.4 < η < −1.7 (FMD-3) and 1.7 < η < 5.1
(FMD-1 and FMD-2), a similar coverage to that of the
VZERO detector. Finally, two sets of hadronic Zero Degree
Calorimeters (ZDC) are located at 116 m on either side of
the interaction point. The ZDCs detect neutrons emitted in
the very forward region (|η| > 8.7), such as neutrons pro-
duced by electromagnetic dissociation [19] (see Sect. 3).

3 Data analysis

3.1 Event selection

The present analysis is based on a sample of events col-
lected during the 2011 Pb–Pb data-taking, selected with a
dedicated barrel ultra-peripheral collision trigger (BUPC),
set up to select events containing two tracks in an other-
wise empty detector. Events from two-photon production
(γ γ → μ+μ−, e+e−) or from photonuclear vector meson
production are selected by this trigger with the following
characteristics:

(i) at least two hits in the SPD detector;
(ii) a number of fired pad-OR (Non) in the TOF detec-

tor [20] in the range 2 ≤ Non ≤ 6, with at least two
of them with a difference in azimuth, Δφ, in the range
150◦ ≤ Δφ ≤ 180◦;

(iii) no hits in the VZERO-A and no hits in the VZERO-C
detectors.

A total of about 6.5×106 events were selected by the BUPC
trigger.

The integrated luminosity was measured using a trig-
ger for the most central hadronic Pb–Pb collisions. The
cross section for this process was obtained with a van der
Meer scan [21], giving a cross section σ = 4.10+0.22

−0.13(sys) b
[22]. This gives an integrated luminosity for the BUPC
trigger sample, corrected for trigger live time, of Lint =
23.0+0.7

−1.2 µb−1. An alternative method based on using neu-
trons detected in the two ZDCs was also used. The ZDC
trigger condition required a signal in at least one of the two
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calorimeters, thus selecting single electromagnetic dissocia-
tion (EMD) as well as hadronic interactions. The cross sec-
tion for this trigger was also measured with a van der Meer
scan, giving a cross section σ = 371.4 ± 0.6(sta)±24

19(sys) b
[19]. The integrated luminosity obtained for the BUPC by
this method is consistent with the one quoted above within
3 %.

The following selection criteria were applied in the data
analysis:

(i) a number of reconstructed tracks 1 ≤ NTRK ≤ 10,
where a track is defined with loose criteria: more than
50 % of findable clusters in the TPC fiducial vol-
ume and at least 20 TPC clusters, matching with those
found in the ITS;

(ii) a reconstructed primary vertex;
(iii) only two good tracks passing tighter quality cuts: at

least 70 TPC clusters, at least 1 SPD cluster and re-
jection of tracks with a kink. Moreover the tracks ex-
trapolated to the reconstructed vertex should have a
distance of closest approach (DCA) in the longitu-
dinal beam direction DCAL ≤ 2 cm, and DCAT ≤
0.0182 + 0.0350/p1.01

T cm in the plane orthogonal to
the beam direction, where pT is in (GeV/c);

(iv) at least one of the two good tracks selected in (iii) with
pT ≥ 1 GeV/c; this cut reduces the background while
it does not affect the genuine leptons from J/ψ decay;

(v) the VZERO trigger required no signal within a time
window of 25 ns around the collision time in any of
the scintillator tiles of both VZERO-A and VZERO-C.
The time width of the trigger windows are limited
by the design of the VZERO front-end electronics
which is operated at the frequency of the LHC clock,
i.e. 40 MHz. In the offline analysis the event selection
criteria consisted in an absence of a reconstructed sig-
nal in any of the VZERO scintillator tiles. The time
windows in the offline analysis are enlarged to 40 ns
and 60 ns around the collision time in VZERO-A and
VZERO-C, respectively, and were chosen in order to
maximize the vetoing efficiency;

(vi) the dE/dx for the two tracks is compatible with that
of electrons or muons; Fig. 1 shows the TPC dE/dx

of the positive lepton candidate as a function of the
dE/dx of the negative lepton candidate, for J/ψ can-
didates in the invariant mass range 2.8 < Minv <

3.2 GeV/c2. It is worth noting that the TPC resolu-
tion does not allow to distinguish between muons and
charged pions;

(vii) the two tracks have same or opposite charges, depend-
ing on the analysis;

(viii) invariant mass 2.2 < Minv < 6 GeV/c2.

The analysis of the γ γ events is discussed in Sect. 5. In
the remaining of this section we will focus on J/ψ analysis.

Fig. 1 dE/dx of the positive lepton versus the negative one, as
measured by the TPC for J/ψ candidates in the ultra-peripheral
Pb–Pb collisions at

√
sNN = 2.76 TeV in the invariant mass range

2.8 < Minv < 3.2 GeV/c2 and −0.9 < η < 0.9. Muon pairs and elec-
tron pairs are clearly separated, with the latter showing higher dE/dx

values

Table 1 Summary of the applied data cuts (see text)

Selection Number of remaining
events

Triggered events 6,507,692

1 ≤ NTRK ≤ 10 2,311,056

Primary vertex 1,972,231

Two reconstructed tracks 436,720

max(p1
T,p2

T) > 1 GeV/c 46,324

VZERO offline 46,183

dE/dx consistent with electron (muon) 45,518

Opposite sign tracks 31,529

2.2 < Minv < 6.0 GeV/c2 4,542

The effect of the cuts on the statistics is listed in Table 1. In
addition to the requirements (i) to (viii), a first sample en-
riched with coherent events was selected by applying a cut
pT < 200 MeV/c for di-muons (pT < 300 MeV/c for di-
electrons). Photoproduction of vector mesons can occur in
interactions where additional photons are exchanged [23].
These additional photons can lead to break-up of one or both
nuclei. Since the energies of these photons are low, only
a few neutrons are emitted when the nuclei break up. The
exact upper limit on the number of emitted neutrons is not
known, but in this analysis a cut on the neutron ZDC sig-
nal corresponding to less than 6 neutrons on each side has
been applied. This cut reduces the statistics by 2.5 %, which
is considered as a source of systematic error +2.5 %

−0 % . After
applying all of these selections, 746 di-electron and 1301
di-muon coherent lepton-pair candidates remain. A second
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sample was enriched with incoherent events by applying a
cut pT > 200 MeV/c on di-muons (pT > 300 MeV/c on di-
electrons), giving 278 electron and 1748 muon incoherent
event candidates.

As described in reference [6], during the 2011 Pb–Pb
run the VZERO detector was optimized for the selection
of hadronic Pb–Pb collisions, with a threshold correspond-
ing to an energy deposit above that from a single minimum
ionizing particle. Since the VZERO was used as a veto in
the BUPC trigger, this setting could lead to an inefficiency
in background rejection. In about 30 % of the 2011 BUPC
data taking sample, the FMDs were read out too. Since these
detectors cover a pseudorapidity interval similar to that of
the VZEROs, we have used, offline, their information to
check for possible inefficiencies in the VZERO data. As ex-
pected, we found no hits in the FMD detector for the selected
BUPC events, confirming that the VZERO inefficiency is
very small.

A test on the electron and muon separation was applied to
those tracks crossing the EMCAL. For each track we evalu-
ated the ratio E/p between the energy released in the EM-
CAL and the reconstructed momentum; electrons lose their
total energy in the shower generated in the EMCAL and for
these a value E/p ≈ 1 is measured. Minimum ionizing par-
ticles lose only a small fraction of their energy in the EM-
CAL; in this case the measured E/p peaks in the region 0.1–
0.2, in good agreement with the expectation. The e/μ sepa-
ration was obtained by using two methods: (a) a sharp cut on
Fig. 1, where all the particles beyond the dotted line are con-
sidered as electrons, and (b) using the average of the elec-
tron (muon) dE/dx and considering as electrons (muons)
the particles within 3 sigma. The difference between the two
methods was used as an estimate of the systematic error (see
Table 2).

3.2 Acceptance and efficiency correction

The acceptance and efficiency of J/ψ reconstruction were
calculated using a large sample of coherent and incoherent
J/ψ events generated by STARLIGHT [24] and folded with
the detector Monte Carlo simulation. STARLIGHT simu-
lates photonuclear and two-photon interactions at hadron
colliders. The simulations for exclusive vector meson pro-
duction and two-photon interactions are based on the models
in [9] and [25], respectively.

A separate simulation was performed for each run, in or-
der to take into account the slight variations in run condi-
tions during the data taking. The product of the acceptance
and efficiency corrections (Acc × ε)J/ψ was calculated as
the ratio of the number of the simulated events that satisfy
all selections in Table 1 to the number of generated events
with the J/ψ in the rapidity interval −0.9 < y < 0.9. In ad-
dition, the reconstructed transverse momentum is required
to be pT < 200 MeV/c (pT > 200 MeV/c) for di-muons
and pT < 300 MeV/c (pT > 300 MeV/c) for di-electrons
in the coherent (incoherent) sample.

The average values for the combined acceptance and ef-
ficiency for J/ψ → e+e−(μ+μ−) were found to be 2.71
(4.57) % and 1.8 (3.19) % for coherent and incoherent
J/ψ , respectively. The STARLIGHT model predicts a de-
pendence of the J/ψ cross section on the rapidity, giving a
≈10 % variation over the rapidity range y = ±0.9. In or-
der to evaluate the systematic error on the acceptance com-
ing from the generator choice, we used a flat dependence
of dσJ/ψ/dy in the interval −0.9 < y < 0.9, as predicted
by other models (see Fig. 6). The relative differences in
(Acc × ε) between the methods were 2.5 (1.0) % for coher-
ent electrons (muons), and 6.5 (3.5) % for incoherent elec-
trons (muons), and are taken into account in the systematic

Table 2 Summary of the
contributions to the systematic
error for the J/ψ and γ γ cross
section measurement for
electrons (muons). The error for
the J/ψ signal extraction
includes the systematic error in
the fit of the invariant mass
spectrum and the systematic
errors on fD and fI (fC ), as
described in the text

Source Coherent Incoherent γ γ (low) γ γ (high)

Luminosity +5 %
−3 %

+5 %
−3 %

+5 %
−3 %

+5 %
−3 %

Trigger dead time ±2.5 % ±2.5 % ±2.5 % ±2.5 %

Signal extraction +7 %
−6 %(+6 %

−5 %) +26.5 %
−12.5 %(+9 %

−8 %) ±1 % ±4 %

Trigger efficiency +3.8 %
−9.0 %

+3.8 %
−9.0 %

+3.8 %
−9.0 %

+3.8 %
−9.0 %

(Acc × ε) ±2.5 (±1) % ±6.5 (±3.5) % ±0.3 % ±0.5 %

γ γ → e+e− background +4 %
−0 %

+4 %
−0 %

+4 %
−0 %

+4 %
−0 %

e/μ separation ±2 % ±2 % ±1.7 % ±4 %

Branching ratio ±1 % ±1 % – –

Neutron number cut +2.5 %
−0 % – – –

Hadronic J/ψ – +0 %
−5 % (+0 %

−3 %) – –

Total +14.0 %
−9.6 % (+13.4 %

−8.8 % ) +29.4 %
−16.6 %(+14.5 %

−11.7 %) +10.8 %
−7.0 %

+12.0 %
−8.8 %
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error calculation. Transverse polarization is expected from
helicity conservation for a quasi-real photon. It is therefore
assumed in these calculations that the J/ψ is transversely
polarized, as found by previous experiments [26, 27]. The
trigger efficiency was measured relying on a data sample
collected in a dedicated run triggered by the ZDCs only.
We selected events with a topology having the BUPC con-
ditions, given at the beginning of Sect. 3.1. The resulting
trigger efficiency was compared with that obtained by the
Monte Carlo simulation, showing agreement within +3.8 %

−9.0 %.

3.3 Analysis of invariant mass spectrum

Figure 2 shows the invariant mass distribution for 2.2 <

Minv < 6.0 GeV/c2 for opposite-sign (OS) and like-sign
(LS) electron and muon pairs. A J/ψ peak is clearly visi-
ble in the four spectra, on top of a continuum coming from
γ γ → e+e−(μ+μ−) for the coherent enriched sample. The

continuum for the incoherent enriched sample for the muon
channel (bottom, left) is likely to come from misidentified
π+π− pairs. To extract the J/ψ yield, the number of OS
events in the interval 2.2 < Minv < 3.2 GeV/c2 for electrons
and 3.0 < Minv < 3.2 GeV/c2 for muons were considered.
In the mass intervals quoted above, 0 (3) LS electron(muon)-
pairs were found for coherent enriched events, while 8 (53)
LS pairs were found for incoherent enriched events. The cor-
responding number of OS pairs was 514 (365) for coher-
ent enriched sample and 143 (178) for incoherent enriched
events. The J/ψ yield was obtained by fitting the di-lepton
invariant mass spectrum with an exponential function to de-
scribe the underlying continuum, and a Crystal Ball function
[28] to extract the J/ψ signal. The Crystal Ball function tail
parameters (αCB and n) were left free for the coherent en-
riched sample, giving a good agreement with those obtained
by fitting the simulated data, and were fixed to values ob-
tained from simulations for the incoherent enriched one. The

Fig. 2 Invariant mass
distributions for ultra-peripheral
Pb–Pb collisions at√

sNN = 2.76 TeV and
−0.9 < y < 0.9 for events
satisfying the event selection in
Table 1, in the invariant mass
range 2.2 < Minv < 6 GeV/c2.
Coherent enriched sample (top)
and incoherent enriched sample
(bottom) for muons (left) and
electrons (right). Blue (red)
circles (triangles) are
opposite-sign (like-sign) pairs.
For like-sign pair the
penultimate cut in Table 1 is
replaced by the request of a
same-sign pair. No LS events
were found for coherent
di-electron events
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background found in the incoherent sample was taken into
account into the fit by using a fifth-order polynomial in ad-
dition to the Crystal Ball and an exponential function. This
contribution was normalized according to the experimental
LS pair spectrum (Fig. 2).

4 The J/ψ cross section

4.1 Coherent J/ψ cross section

The yield obtained for the coherent enriched sample (Fig. 2
top) is Nyield = 265 ± 40(sta) ± 12(sys) for the J/ψ →
e+e− channel and Nyield = 291 ± 18(sta) ± 4(sys) for the
J/ψ → μ+μ− channel. The systematic error on the yield is
obtained by varying the bin size and by replacing the ex-
ponential with a polynomial to fit the γ γ process. In ad-
dition, the Crystal Ball function parameters are obtained
by fitting a simulated sample made of J/ψ and γ γ event
cocktail and then used to fit the coherent enriched data
sample too. The difference in the yield obtained with the
two Crystal Ball fit procedures is included in the system-
atic error. As a result we obtain a +7 %

−6 % and +6 %
−5 % sys-

tematic error on the signal extraction for coherent elec-
trons and muons, respectively. For the coherent enriched
sample, the central mass (width calculated from the stan-
dard deviation) value from the fit is 3.092 ± 0.036 GeV/c2

(25.0 ± 1.9 MeV/c2) for the electron channel and 3.096 ±
0.002 GeV/c2 (25 ± 1.1 MeV/c2) for the muon channel,
in good agreement with the known value of the J/ψ mass
and compatible with the absolute calibration accuracy of the
barrel. For the incoherent sample, the central mass (width
calculated from the standard deviation) value from the fit is
3.080 ± 0.007 GeV/c2 (25 ± 1.4 MeV/c2) for the electron
channel and 3.085 ± 0.007 GeV/c2 (33 ± 6 MeV/c2) for
the muon channel. The exponential slope parameter, λγγ ,
of the continuum for the coherent enriched sample is com-
puted at 2.2 < Minv < 2.6 GeV/c2 (low) and 3.7 < Minv <

10 GeV/c2 (high) for electrons with −0.9 < η1,2 < 0.9, giv-
ing −1.55 ± 0.88 GeV−1 c2 and −0.73 ± 0.18 GeV−1 c2, in
good agreement with the corresponding Monte Carlo expec-
tation, −1.07±0.16 GeV−1 c2 and −0.81±0.01 GeV−1 c2,
respectively. This is an additional indication that there is no
important background in the invariant mass and pT range
considered.

Exclusive photoproduction of ψ ′, followed by the ψ ′ →
J/ψ + anything decay, can be a background for this analy-
sis when particles produced in addition to the J/ψ are un-
detected. The fraction fD of coherent J/ψ mesons coming
from the decay ψ ′ → J/ψ + anything, was estimated fol-
lowing the same prescription used in [6], with the theoreti-
cal estimates for fD ranging from 4.4 % to 11.8 % for elec-
trons and 4.3 % to 14.7 % for muons. Alternatively, the ratio

of coherent yields for ψ ′ to J/ψ can be extracted from the
real data. Owing to the limited statistics, we combine the
electron and muon channels to obtain Nψ ′ = 17 ± 10 and
Nψ = 505 ± 48 (see Fig. 3). The fraction fD , for a given
J/ψ polarization P , can be written as:

f P
D = Nψ ′ · (Acc × ε)P

ψ ′→J/ψ

(Acc × ε)ψ ′→l+l−

× BR(ψ ′ → J/ψ + anything)

BR(ψ ′ → l+l−)

× BR(J/ψ → l+l−)

NJ/ψ
, (1)

where (Acc × ε)P
ψ ′→J/ψ ranges from 2 % to 3 % for elec-

trons and from 3.4 % to 4.6 % for muons, depending on
the J/ψ polarization. The (Acc × ε)P

ψ ′→l+l− ranges from
3.3 % to 4.5 % for electrons and muons, respectively. The
acceptance corrections are polarization dependent and give
f P

D ranging from 15 ± 9 % for longitudinal polarization to
11 ± 6.5 % for transverse polarization.

In what follows, we use the central value of theoretical
and experimental estimates, and take the others as upper and
lower limits, i.e. fD = 0.10+0.05

−0.06. The di-electron (di-muon)
pT distribution, integrated over 2.2 < Minv < 3.2 GeV/c2,
(3.0 < Minv < 3.2 GeV/c2) is shown in Fig. 4 right (left).
The clear peak at low pT is mainly due to coherent in-
teractions, while the tail extending out to 1 GeV/c comes

Fig. 3 Invariant mass distribution for ultra-peripheral Pb–Pb colli-
sions at

√
sNN = 2.76 TeV at −0.9 < y < 0.9 for events satisfy-

ing the event selection in Table 1, in the invariant mass interval
2.2 < Minv < 6 GeV/c2. Coherent di-electron and di-muon candidates
are summed together. For like-sign pair the penultimate cut in Table 1
is replaced by the request of a same-sign pair
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Fig. 4 Di-muon (left) and di-electron (right) pT distribution for ultra-
peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV and −0.9 < y < 0.9

for events satisfying the event selection in the invariant mass interval
3.0 < Minv < 3.2 GeV/c2 and 2.2 < Minv < 3.2 GeV/c2, respec-
tively, with the pT-range extended to pT < 1 GeV/c (top) and to
pT < 5 GeV/c (bottom). The data points are fitted summing six differ-

ent Monte Carlo templates: coherent J/ψ production (black), incoher-
ent J/ψ production (red), J/ψs from coherent ψ ′ decay (light blue),
J/ψs from incoherent ψ ′ decay (violet), γ γ (green), and J/ψ pro-
duced in peripheral hadronic collisions (grey). The solid histogram
(blue) is the sum (Color figure online)

from incoherent production. To estimate the fraction (fI )
of incoherent over coherent events in the low pT region
(pT < 300 MeV/c for di-electrons, pT < 200 MeV/c for
di-muons), the ratio σinc/σcoh, weighted by the detector ac-
ceptance and efficiency for the two processes, was calcu-
lated, giving fI = 0.13 (0.06) for di-electrons (di-muons)
when σinc/σcoh was taken from STARLIGHT, and fI =
0.05 (0.03) when the model in [8] was used with leading
twist contribution. For higher twist contributions the above
model gives fI = 0.07 (0.03). An alternative method to ex-
tract an upper limit of fI from the data was carried out by
fitting the measured pT distribution. Six different functions
were used to describe the pT spectrum:

(i) coherent J/ψ photoproduction;

(ii) incoherent J/ψ photoproduction;
(iii) J/ψ from coherent ψ ′ decay;
(iv) J/ψ from incoherent ψ ′ decay;
(v) two-photon production of continuum pairs;

(vi) J/ψ produced in peripheral hadronic collisions.

The shapes for the first five fitting functions (Monte Carlo
templates) were provided by STARLIGHT events folded
with the detector simulation, while the last one is extracted
from data at higher centralities [29]. The relative normal-
ization was left free for coherent and incoherent photopro-
duction. The contribution from the ψ ′ was constrained from
the estimate above (fD = 0.10+0.05

−0.06), and the two-photon
contribution was determined from the fit to the continuum
in Fig. 2. The hadronic J/ψ were constrained by the fit
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to the region pT >1.1 GeV/c, where the ultra-peripheral
J/ψ contribution is negligible. As a result of the fit, we ob-
tain fI = 0.044 ± 0.014 for di-muons and fI = 0.15 ± 0.02
for di-electrons. Since these values are compatible, within
the errors, with the theoretical expectations (for both mod-
els in the case of di-muons and for STARLIGHT for the
di-electrons), they are used in the calculations. The fit re-
produces properly the experimental data pT spectrum, clar-
ifying the origin of the high pT J/ψs pointed out in the
PHENIX paper [5]. Finally, the total number of coherent
J/ψs is calculated from the yield extracted from the fit to
the invariant mass distribution by

Ncoh
J/ψ = Nyield

1 + fI + fD

, (2)

resulting in Ncoh
J/ψ(μ+μ−) = 255 ± 16(sta)+14

−13(sys) and

Ncoh
J/ψ(e+e−) = 212 ± 32(sta)+14

−13(sys), respectively. The co-
herent J/ψ differential cross section is given by

dσ coh
J/ψ

dy
= Ncoh

J/ψ

(Acc × ε)J/ψ · BR(J/ψ → l+l−) ·Lint · Δy
, (3)

where Ncoh
J/ψ is the number of J/ψ candidates from Eq. (2)

and (Acc × ε)J/ψ corresponds to the acceptance and effi-
ciency as discussed above. BR(J/ψ → l+l−) is the branch-
ing ratio for J/ψ decay into leptons [30], Δy = 1.8 the
rapidity interval bin size, and Lint the total integrated
luminosity. As a result we obtain dσ coh

J/ψ/dy = 2.27 ±
0.14(sta)+0.30

−0.20(sys) mb for the di-muon channel and dσ coh
J/ψ/

dy = 3.19 ± 0.50(sta)+0.45
−0.31(sys) mb for the electron one.

Since the di-electron and di-muon data are statistically sepa-
rated samples, they can be combined; their weighted average
gives dσ coh

J/ψ/dy = 2.38+0.34
−0.24(sta + sys) mb.

In addition, the fraction Fn of coherent events with no
neutron emission was estimated by STARLIGHT to be Fn =
0.68, while the model [8] predicts Fn = 0.76. Events with
neutron emission can be efficiently tagged in ALICE by the
ZDC calorimeters, taking advantage of their high efficiency
(>98 %). By fitting the di-electron (di-muon) invariant mass
spectrum for events with and without neutron emission and
with pT < 300 MeV/c (pT < 200 MeV/c), we obtain a frac-
tion 0.70 ± 0.05(sta) in good agreement with the above es-
timates.

4.2 Incoherent J/ψ cross section

The incoherent cross sections are obtained in a similar
way. For the incoherent enriched sample the obtained yield
is (Fig. 2 bottom), Nyield = 61 ± 14(sta)+16

−7 (sys) for the

J/ψ → e+e− channel and Nyield = 91 ± 15(sta)+7
−5(sys) for

the J/ψ → μ+μ− channel. Here fD represents the fraction
of incoherent J/ψ mesons coming from the decay ψ ′ →

J/ψ + anything, and was obtained only from formula (1),
since the limited statistics did not allow the extraction of the
ψ ′ yield from the data. The predictions for incoherent fD are
calculated using both STARLIGHT and the model [8]. As a
result we obtain a fD value ranging from 3.9 % to 15.1 %
for muons and from 3.8 % to 18.1 % for electrons. By us-
ing the average we obtain fD = (9.5 ± 5.5)% for muons
and fD = (11 ± 7)% for electrons. Using STARLIGHT,
fC (the fraction of coherent J/ψ contaminating the inco-
herent sample), corrected by the acceptance and the effi-
ciency, is found to be fC = 0.5 for electrons and fC = 0.02
for muons. By fitting the measured pT distribution (Fig. 4)
we extract fC = (0.47 ± 0.09) for electrons, while fC is
fC = (0.03 ± 0.03) for muons. These results are compatible
with those from the models and will be used in the follow-
ing. By applying the ratio 1/(1 +fD +fC) to the Nyield, the
total number of incoherent muon events is N inc

J/ψ(μ+μ−) =
81 ± 13(sta)+8

−6(sys), corresponding to dσ incoh
J/ψ /dy = 1.03 ±

0.17(sta)+0.15
−0.12(sys) mb for the di-muon channel. For elec-

trons we obtain N inc
J/ψ(e+e−) = 39 ± 9(sta)+10

−5 (sys), cor-

responding to dσ incoh
J/ψ /dy = 0.87 ± 0.20(sta)+0.26

−0.14(sys) mb
for the di-electron channel. Since these are statistically sep-
arate channels, their weighted average gives dσ incoh

J/ψ /dy =
0.98+0.19

−0.17(sta + sys) mb.

4.3 Background and systematic error estimate

As discussed in [6], a possible loss of events might come
from correlated QED pair production, i.e. interactions which
produce both a J/ψ and a low mass e+e− pair (the latter pro-
cess has a very large cross section), with one of the electrons
hitting the VZERO detector and thus vetoing the event. This
effect was studied in [6], with a control data sample where
no veto at trigger level was applied. As a result, an upper
limit on the inefficiency smaller than 2 % was found. In the
forward rapidity trigger only VZERO-A was used as a veto,
and therefore we estimate, conservatively, a 4 % systematic
error for this study.

Another possible source of systematic error is the radia-
tive decay J/ψ→ e+e−, neglected by the event generator
used in this paper. We simulated a J/ψ → e+e− sample,
where 15 % of the events had a photon in the final state [31].
The Crystal Ball function fit applied to this sample provides
fit parameters identical to those of the standard sample, and
the (Acc × ε) is also not distinguishable from the standard
value, so no correction is required in this analysis.

A possible background from hadronic J/ψ is found
(Fig. 4) to be negligible for pT below around 200–
300 MeV/c, and therefore it is not important for coherent
production. For incoherent events this background was eval-
uated from the pT fit described above and gives a contribu-
tion (0.043 ± 0.015) for di-electrons and (0.024 ± 0.017)
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for di-muons. These fractions refer to events in the mass
interval 2.2 < Minv < 3.2 GeV/c2 for di-electrons and
3.0 < Minv < 3.2 GeV/c2 for di-muons, respectively, and
therefore are not necessarily J/ψ only. We use these frac-
tions as upper limits to be included in the systematic er-
ror, giving a contribution +0 %

−5 % and +0 %
−3 %, respectively. The

hadronic combinatorial background can be estimated by LS
events (see Table 2). It is negligible for coherent events and
for incoherent di-electrons. For incoherent di-muons this
background, possibly coming from misidentified pion pairs,
was taken into account by using a polynomial function in
the corresponding fit, as described at the end of Sect. 3.

Another source of background may come from photo-
produced J/ψ by nuclei with impact parameters b < 2R.
According to a simulation, based on a calculation method
similar to STARLIGHT, the cross section for this process
(usually not included in the event generator) is 1.1 mb and
0.7 mb in the centrality bin (80–90) % and (90–100) %, re-
spectively. The survival probability of the events in these
two bins was simulated with 2.2×106 Pb–Pb minimum bias
events produced by the HIJING event generator. Assuming
the trigger conditions (i, ii, Sect. 3) and the analysis cuts
(ii, iv, vi, Sect. 3) to be fully satisfied by di-leptons produced
in UPC J/ψ decays, we find the fraction of events passing
the trigger cut (iii) and the analysis cuts (iii, v) to be 0.06 %
and 0.3 % in the two centrality bins. This process therefore
gives a negligible contribution to the ultra-peripheral cross
section.

5 Two-photon cross section

The STAR Collaboration measured the two-photon cross
section with a precision of 22.5 % when adding the statisti-
cal and systematic errors in quadrature [32]. This result was
slightly larger than the one predicted by STARLIGHT, but
within ∼2σ . The PHENIX Collaboration has also measured

the cross section of two-photon production of di-electron
pairs [5]. This measurement, which has an uncertainty of
about 30 %, when the statistical and systematic errors are
added in quadrature, was found to be in good agreement
with STARLIGHT. The cross section for γ γ → e+e− can
be written in a similar way to Eq. (3),

σγγ = Nγγ

(Acc × ε)γ γ ·Lint
, (4)

where Nγγ was obtained by fitting the continuum in the in-
variant mass intervals 2.2 < Minv < 2.6 GeV/c2 (Ne+e−

γ γ =
186 ± 13(sta) ± 4(sys)) and 3.7 < Minv < 10 GeV/c2

(Ne+e−
γ γ = 93 ± 10(sta) ± 4(sys)), to avoid contamination

from the J/ψ peak. In this analysis the integrated luminos-
ity used was Lint = 21.7 +0.7

−1.1 µb−1 and the cut (iv) on the
track pT was removed. The cross section for the process
γ γ → μ+μ− was not studied due to a possible contamina-
tion (although small) from pions in the di-muons sample,
suggested by the presence of LS events. The cross sec-
tion for di-lepton invariant mass was computed between
2.2 < Minv < 2.6 GeV/c2 and 3.7 < Minv < 10 GeV/c2,
for a di-lepton rapidity in the interval −0.9 < y < 0.9,
and requiring −0.9 < η1,2 < 0.9 for each lepton. The data
cuts applied to the Monte Carlo sample are the same as
those applied in the analysis described above, resulting in
a (Acc × ε)e

+e−
γ γ = 5.6 % for 2.2 < Minv < 2.6 GeV/c2

and (Acc × ε)e
+e−

γ γ = 4.73 % for 3.7 < Minv < 10 GeV/c2.

As a result we obtain σ e+e−
γ γ = 154 ± 11(sta)+17

−11(sys) µb

for the lower invariant mass interval and σ e+e−
γ γ = 91 ±

10(sta)+11
−8 (sys) µb for the higher invariant mass interval,

to be compared with σ = 128 µb and σ = 77 µb given by
STARLIGHT, respectively. In Fig. 5 the invariant mass dis-
tributions for 2.2 < Minv < 2.6 GeV/c2 interval and for
3.7 < Minv < 10 GeV/c2 are shown. The relevant param-
eters of the present paper analysis are listed in Table 3.

Table 3 Summary of the main experimental results obtained in the J/ψ and γ γ analysis and of the most relevant correction parameters applied

Sample Coherent enriched
J/ψ → μ+μ−

Coherent enriched
J/ψ → e+e−

Incoherent enriched
J/ψ → μ+μ−

Incoherent enriched
J/ψ → e+e−

γ γ → e+e−
(low)

γ γ → e+e−
(high)

Yield 291 ± 18(sta) 265 ± 40(sta) 91 ± 15(sta) 61 ± 14(sta) 186±13(sta) 93 ± 10(sta)

± 4(sys) ± 12(sys) +7
−5(sys) +16

−7 (sys) ± 12(sys) ± 6(sys)

Mass (GeV/c2) 3.096 ± 0.002 3.092 ± 0.036 3.085 ± 0.007 3.080 ± 0.007 – –

σ (MeV/c2) 25 ± 1.1 25.0 ± 1.9 33 ± 6 25.0 ± 1.4 – –

Acc × ε (%) 4.57 2.71 3.19 1.8 5.6 4.73

LS pairs 3 0 53 8 0 0

OS pairs 365 514 178 143 186 93

fD 0.1+0.05
+0.06 0.1+0.05

+0.06 0.095 ± 0.055 0.11 ± 0.07 – –

fI 0.044 ± 0.014 0.15 ± 0.02 – – – –

fc – – 0.03 ± 0.03 0.47 ± 0.09 – –

λγγ (GeV−1 c2) – – – – −1.55±0.88 −0.73±0.18
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Fig. 5 γ γ → e+e− cross
section (blue circles) for
ultra-peripheral Pb–Pb
collisions at

√
sNN = 2.76 TeV

at −0.9 < η < 0.9 for events in
the invariant mass interval
2.2 < Minv < 2.6 GeV/c2 (top)
and 3.7 < Minv < 10 GeV/c2

interval (bottom) compared to
STARLIGHT simulation (black
line). The blue (green) bars
show the statistical (systematic)
errors, respectively

6 Discussion

The cross section of coherent J/ψ photoproduction is com-
pared with calculations from six different models [8–13] in
Fig. 6(a). The incoherent production cross section is com-
pared with calculations by three different models [8, 9, 13].
These models calculate the photon spectrum in impact pa-
rameter space in order to exclude interactions where the nu-
clei interact hadronically. The differences between the mod-
els come mainly from the way the photonuclear interaction
is treated. The predictions can be divided into three cate-
gories:

(i) those that include no nuclear effects (AB-MSTW08,
see below for definition). In this approach, all nucle-
ons contribute to the scattering, and the forward scat-
tering differential cross section, dσ/dt at t = 0 (t is the
momentum transfer from the target nucleus squared),
scales with the number of nucleons squared, A2;

(ii) models that use a Glauber approach to calculate the
number of nucleons contributing to the scattering

(STARLIGHT, GM, CSS and LM). The calculated
cross section depends on the total J/ψ -nucleon cross
section and on the nuclear geometry;

(iii) partonic models, where the cross section is propor-
tional to the nuclear gluon distribution squared (AB-
EPS08, AB-EPS09, AB-HKN07, and RSZ-LTA).

The rapidity region −0.9 < y < 0.9 considered here cor-
responds to photon–proton centre-of-mass energies, Wγ p,
between 59 GeV and 145 GeV. The corresponding range
in Bjorken-x is between x = 5 × 10−4 and x = 3 × 10−3.
In this region, a rather strong shadowing is expected, and
models based on perturbative QCD predict a lower value for
the cross section than models using a Glauber approach to
account for the nuclear effect.

The measured cross section, dσ coh
J/ψ/dy = 2.38+0.34

−0.24(sta +
sys) mb is in very good agreement with the calculation
by Adeluyi and Bertulani using the EPS09 nuclear gluon
prediction. The GM model, and the other models using a
Glauber approach, predict a cross section a factor 1.5–2
larger than the data, overestimating the measured cross sec-
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Fig. 6 Measured differential cross section of J/ψ photoproduc-
tion in ultra-peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV at

−0.9 < y < 0.9 for coherent (a) and incoherent (b) events. The er-
ror is the quadratic sum of the statistical and systematic errors. The
theoretical calculations described in the text are also shown

tion by more than 3 standard deviations. So does the predic-
tion based on the HKN07 parametrization, which includes
less gluon shadowing than EPS09.

The model AB-EPS08, significantly underestimates the
measured cross section by about a factor of two (about 5
standard deviations), indicating that the gluon shadowing is
too strong in the EPS08 parameterization. The leading twist
calculation (RSZ-LTA) is also significantly below the data,
by about 2–3 sigma.

For the incoherent cross section, shown in Fig. 6(b), there
are three model predictions available, LM, STARLIGHT,
and RSZ-LTA. The measured value deviates by about
two standard deviations from the LM prediction, while
STARLIGHT predicts an incoherent cross section 60 % too
high, and RSZ-LTA a factor 4 too low. Taking the ratio be-
tween the incoherent and coherent cross section provides
further constraints on the treatment of the nuclear modifi-
cations implemented in the different models. Another ad-
vantage is that the photon spectrum is factorized out, so
that the comparison directly probes the ratio of the pho-
tonuclear cross sections. The ratio obtained from data is

0.41+0.10
−0.08(sta + sys). This can be compared with 0.21 from

LM, 0.41 from STARLIGHT, and 0.17 from RSZ-LTA. Al-
though the RSZ-LTA model is quite close for the coherent
cross section at mid-rapidity, it seems to underpredict the
incoherent cross section. The LM model also predicts a too
low ratio. STARLIGHT, on the other hand, has about the
right ratio of incoherent-to-coherent cross section, although
it does not reproduce any of the cross sections individually.
All three models use the Glauber model to calculate the in-
coherent cross section, but the implementation and the input
cross section for γ + p → J/ψ + p varies. In STARLIGHT
the scaling of the inelastic J/ψ + nucleus cross section,
ranges from A2/3 to A, depending on the J/ψ + nucleon
cross section. In the first case, only the nucleons on the sur-
face participate in the scattering, while in the second one
all the nucleons contribute. The cross section for incoherent
photoproduction is assumed in STARLIGHT to follow the
same scaling, while in the other models, the reduction with
respect to the A scaling is larger.

The measured values for the γ γ cross sections are 20 %
above but fully compatible within 1.0 and 1.5 sigma with the
STARLIGHT prediction for the high and low invariant mass
intervals, respectively, if the statistical and systematic errors
are added in quadrature. This result provides important con-
straints on calculations that include terms of higher orders
in αem. A reduction in the two-photon cross section of up
to 30 % compared with leading-order calculations has been
predicted [14, 15]. The result for the two-photon cross sec-
tion to di-lepton pairs, measured by ALICE with a precision
of 12 % and 16 % for the low and high invariant mass range,
respectively, is thus fully consistent with STARLIGHT, and
sets limits on the contribution from higher-order terms [16].
This result supports the ALICE J/ψ photoproduction mea-
surement in the forward rapidity region [6], where the cross
section was based on σγγ .

7 Summary

In summary, the first measurement of coherent and incoher-
ent J/ψ photoproduction and two-photon production of di-
lepton pairs in Pb–Pb collisions at mid-rapidity at the LHC
has been presented and compared with model calculations.
The J/ψ photoproduction cross sections provide a powerful
tool to constrain the nuclear gluon shadowing in the region
x ≈ 10−3. The coherent J/ψ cross section is found to be
in good agreement with the model which incorporates the
nuclear gluon shadowing according to the EPS09 parame-
terization (AB-EPS09).

Models which include no nuclear gluon shadowing are
inconsistent with the measured results, as those which use
the Glauber model to incorporate nuclear effects. The AB-
HKN07 and AB-EPS08 models contain too little or too
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much shadowing, respectively, to match the data. Our re-
sults are about 3 sigma higher than the RSZ-LTA model
prediction, although a deviation of just 1.5 sigma is found
from the model upper limit. Nevertheless the above predic-
tions may have large uncertainties coming not only from the
parametrization of the nuclear gluon distribution but also
from the selection of the hard scale, the contributions from
the higher-order terms and the treatment of the photon fluc-
tuation to a quark–antiquark pair. The current measurement
will contribute to resolve these uncertainties.

None of the three existing models predicts the incoherent
photoproduction cross section correctly, but STARLIGHT
predicts a correct incoherent-to-coherent ratio.

Finally, the measured two-photon cross section for di-
electron production is consistent with the STARLIGHT
model. This implies the models predicting a strong contri-
bution of higher-order terms (not included in STARLIGHT)
to the cross section are not favored.
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