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1. ALICE Apparatus

ALICE1–3 (A Large Ion Collider Experiment) is a major experiment at the Large

Hadron Collider (LHC), Geneva, which is optimized for the study of QCD matter

created in high-energy collisions between lead nuclei. Analysis based on QCD

(quantum chromodynamics) lead to a prediction of the existence of a state of decon-

fined quarks and gluons at energy densities above 1 GeV/fm3. The transition to this

state is accompanied by chiral symmetry restoration, in which the quarks assume

their current masses. This state of matter occurred in the early universe after the

electroweak phase transition, i.e. at the age of 10−12–10−5 s (for a recent review see

Ref. 4.) High-energy nuclear collisions allow such energy densities to be reached,

albeit in a small volume and for a limited duration. Assessing the properties of the

created matter requires a sound understanding of the underlying collision dynamics.

For this, the heavy-ion (AA) collision studies in the new energy regime accessible

at the LHC have to be complemented by proton–proton (pp) and proton–nucleus

(pA) collision experiments. These control measurements, besides being interest-

ing in themselves, are needed to separate the genuine QCD-matter signals from the

cold-matter initial- and final-state effects. The physics goals of ALICE are described

in detail in Refs. 1 and 2; the results obtained to date are accessible at Ref. 5.

The ALICE apparatus (Fig. 1) has overall dimensions of 16 × 16 × 26 m3 and

a total weight of ∼ 10 000 t. It was designed to cope with the particle densities

expected in central Pb–Pb collisions at the LHC. The experiment has a high detec-

tor granularity, a low transverse momentum threshold pmin
T ≈ 0.15 GeV/c, and good

particle identification capabilities up to 20 GeV/c. The seventeen ALICE detector

systems, listed in Table 1, fall into three categories: central-barrel detectors, for-

ward detectors, and the MUON spectrometer. In this section, a brief outline of

their features is given. Specifications and a more detailed description can be found

in Ref. 3.

The central-barrel detectors — Inner Tracking System (ITS), Time Projection

Chamber (TPC), Transition Radiation Detector (TRD), Time Of Flight (TOF),

Photon Spectrometer (PHOS), Electromagnetic Calorimeter (EMCal), and High

Momentum Particle Identification Detector (HMPID) — are embedded in the L3

solenoid magnet which has B = 0.5 T. The first four cover the full azimuth, with a

segmentation of 20◦, at midrapidity (|η| � 0.9). The ITS and the TPC are the main

charged-particle tracking detectors of ALICE. The ITS is composed of six track-

ing layers, two Silicon Pixel Detectors (SPD), two Silicon Drift Detectors (SDD),

and two Silicon Strip Detectors (SSD). The TPC has a 90 m3 drift volume filled

with Ne–CO2 and is divided into two parts by the central cathode, which is kept
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T0A, V0A
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Fig. 1. The ALICE experiment at the CERN LHC. The central-barrel detectors (ITS, TPC,
TRD, TOF, PHOS, EMCal, and HMPID) are embedded in a solenoid with magnetic field B =
0.5 T and address particle production at midrapidity. The cosmic-ray trigger detector ACORDE
is positioned on top of the magnet. Forward detectors (PMD, FMD, V0, T0, and ZDC) are used
for triggering, event characterization, and multiplicity studies. The MUON spectrometer covers
−4.0 < η < −2.5, η = − ln tan(θ/2).

at −100 kV. The end plates are equipped with multiwire proportional chambers

(MWPC). In addition to tracking, SDD and TPC provide charged-particle identi-

fication via measurement of the specific ionization energy loss dE/dx. The TRD

detector consists of six layers of Xe–CO2-filled MWPCs, with a fiber/foam radiator

in front of each chamber. It is used for charged-particle tracking and for electron

identification via transition radiation and dE/dx. The TOF detector, which is based

on Multigap Resistive Plate Chamber (MRPC) technology, is used for particle iden-

tification at intermediate momenta. Finally, the cylindrical volume outside TOF is

shared by two electromagnetic calorimeters with thicknesses of ∼ 20 X0 (radiation

lengths) and ∼1 λint (nuclear interaction length), the high-resolution PHOS and the

large-acceptance EMCal, along with the ring-imaging Cherenkov detector HMPID,

which has a liquid C6F14 radiator and a CsI photo-cathode for charged-hadron

identification at intermediate momenta.

The central barrel detectors have an 18-fold segmentation in azimuth. The ITS,

TPC, and TOF cover the entire azimuthal range, which is of significant advan-

tage for measurements of angular distributions and correlations. Modules of TRD,

PHOS, and EMCal were successively added during the first years of running. The

installation history of these detectors is given in Table 2.
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Table 2. Number of sectors (20◦ in azimuth each)
of the central barrel covered by TRD, PHOS, and
EMCal in the first years of ALICE running.

TRD PHOS EMCal

|η| < 0.8 |η| < 0.12 |η| < 0.7

2008 4 1 0

2009 7 3 2

2010 7 3 2

2011 10 3 5

2012 13 3 51/3

2013 13 3 51/3

goal 18 5 51/3

The ALICE forward detectors include the preshower/gas-counter Photon Multi-

plicity Detector (PMD) and the silicon Forward Multiplicity Detector (FMD),

which are dedicated to the measurement of photons and charged particles around

|η| ≈ 3, respectively. The quartz Cherenkov detector T0 delivers the time and the

longitudinal position of the interaction. The plastic scintillator detector V0a mea-

sures charged particles at −3.7 < η < −1.7 and 2.8 < η < 5.1, and is mainly

used for triggering and for the determination of centrality and event plane angle

in Pb–Pb collisions.6 The centrality can also be measured with the Zero Degree

Calorimeter (ZDC). The ZDC consists of two tungsten-quartz neutron (ZN) and

two brass-quartz proton (ZP) calorimeters, placed symmetrically on both sides of

the Interaction Point and used to count spectator nucleons. The ambiguity be-

tween the most central (few spectator nucleons) and the most peripheral (spectator

nucleons bound in nuclear fragments) collisions is resolved by using an electromag-

netic calorimeter (ZEM), which consists of two modules placed symmetrically on

both sides of the beam pipe at 4.8 < η < 5.7.

The MUON spectrometer, with a hadron absorber of ∼ 10 λint, a dipole magnet

of 3 Tm, and five tracking stations with two pad chambers each (Muon Chambers,

MCH), is used to measure quarkonium and light vector meson production in a

region of −4.0 < y < −2.5. The measurement of high-pT muons, which predomi-

nantly come from the decay of charm and beauty, also falls within the scope of the

spectrometer. Single-muon and muon-pair triggers with an adjustable transverse-

momentum threshold are provided by two further stations (Muon Trigger, MTR)

placed behind an additional 7λint absorber.

The physics goals and a detailed description of the detectors and their expected

performance can be found in Refs. 1–3. In this paper we report the actual perfor-

mance achieved in the LHC data taking campaign 2009–2013 (LHC Run 1). The

aIn ALICE physics papers an alternative notation, VZERO, is used to avoid conflict with V0, the
neutral particle decaying into two charged tracks (see Subsec. 6.4). In this article we follow the
original notation from Refs. 1–3.
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collision systems and energies inspected by ALICE are summarized in Table 6 in

Sec. 3. In the following, we start from a description of the running conditions, data

taking and calibration, and then review the performance of the experiment in terms

of various physics observables.

The ALICE Coordinate System, used in Table 1 and throughout the paper, is a

right-handed orthogonal Cartesian system defined as follows.7 The origin is at the

LHC Interaction Point 2 (IP2). The z axis is parallel to the mean beam direction

at IP2 and points along the LHC Beam 2 (i.e. LHC anticlockwise). The x axis is

horizontal and points approximately towards the center of the LHC. The y axis,

consequently, is approximately vertical and points upwards.

2. Beam Conditions

2.1. Beam parameters

ALICE is situated at the interaction point IP2 of the LHC, close to the Beam 1

Transfer Line TI 2 injection region. The ALICE design, optimized for nuclear colli-

sions,2 requires a reduced luminosity in pp interactions at IP2. After three years of

operation at the LHC, experience has shown that the maximum pp interaction rate

at which all ALICE detectors can be safely operated is around 700 kHz (including

the contribution of both beam–beam and beam–gas collisions). Typical target lumi-

nosity values for the ALICE pp data taking range from L � 1029 s−1cm−2 (during

minimum bias data taking) to L � 1031 s−1cm−2 (when accumulating rare trig-

gers). The average number of interactions per bunch crossing (μ) varies from 0.05

to 0.3.

During LHC Run 1, the instantaneous luminosity delivered to ALICE in pp col-

lisions was adjusted by the machine to the required level by optimizing the following

parameters: number of interacting bunches; value of the amplitude function at the

interaction pointb β∗ and crossing angles; and separation of colliding beams (in the

plane orthogonal to the crossing plane). Typically, the beams had to be separated

at IP2 by 1.5–3.5 times the RMS of the transverse beam profile, depending on the

values of β∗, bunch intensity, and emittance. In 2012, the machine was operated at

the highest beam intensities so far (up to � 2 × 1014 protons/beam). In order to

ensure the necessary levelling of L and μ at IP2, a “main–satellite” bunch collision

scheme was adopted: ALICE took data by triggering on the encounters of the main

bunches of one beam with the satellite bunches of the other beam, sitting 10 RF

buckets (25 ns) away from the nearest main bunch. The intensity of the satellite

bunches is typically 0.1% of that of the main bunches (∼ 1.6×1011 p), therefore the

luminosity per colliding bunch pair was reduced by the same factor. The very low μ

was balanced by the large (> 2000) number of main–satellite encounters per LHC

bIn accelerator physics, the amplitude function β(z) describes the single-particle motion and
determines the variation of the beam envelope as a function of the coordinate along the beam
orbit, z (see e.g. Ref. 8). The parameter β∗ denotes the value of β(z) at the interaction point.

1430044-7

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

The ALICE Collaboration

orbit, thus allowing the required L to be achieved with collisions quite uniformly

distributed along the LHC orbit, with low pileup.

The rate of Pb–Pb collisions in 2010 and 2011 was well below the ALICE limits

and ALICE was able to take data at the highest achievable luminosity, on the

order of 1025 s−1cm−2 in 2010 and 1026 s−1cm−2 in 2011, with the corresponding

hadronic μ being on the order of 10−5–10−4 and 10−4–10−3, respectively. The

maximum manageable interaction rate for p–Pb collisions was 200 kHz, roughly

corresponding to a luminosity of 1 × 1029 s−1cm−2, only slightly below the LHC

peak luminosity in 2013. The hadronic interaction probability in such conditions is

about 0.06.

The β∗ parameter at IP2 was 3.5 m for most of 2010, including the Pb–Pb run.

In 2011 it was 10 m for the pp runs and 1 m for the Pb–Pb run. Finally, a value of

3 m was used in 2012, and it was reduced to 0.8 m for the p–Pb run at the beginning

of 2013. The corresponding beam RMS widths for typical emittance values range

from 15 to 150 μm. The longitudinal size of the luminous region depends mainly

on the bunch length. Its typical RMS value is about 6 cm. The size of the luminous

region was determined from ALICE data, via the distribution of interaction vertices

(see Sec. 6) and was monitored online.

Due to the muon spectrometer dipole magnet and its respective compensator

magnet, there is an intrinsic (internal) vertical crossing angle at IP2, which varies

with the energy per nucleon (E), charge (Z), and mass number (A) of the beam

particles as

αint =
Z

A

E0

E
α0 , (1)

with E0 = 3.5 TeV/nucleon and α0 = 280 μrad. In addition, an external vertical

crossing angle αext can be applied by means of a suitable magnet current setup

dependent on E and β∗ in order to control long range beam–beam effects and to

prevent parasitic collisions in the vicinity of the IP. During Pb–Pb runs the external

crossing angle is combined with the internal crossing angle in a way that minimizes

the net crossing angle, in order to prevent acceptance losses in the ZDCs due to

shadowing of the spectator neutron spot by the LHC tertiary collimators.9

The main beam parameters at IP2 during Run 1 are summarized in Table 3.

2.2. Machine induced background

2.2.1. Background sources

The operation and performance of detectors at the LHC can be affected by machine-

induced background (MIB), a particle flux originating from the beams interact-

ing with matter in the machine. This background scales with beam intensity and

depends mainly on the residual gas pressure in the beam pipe and on the cleaning

efficiency of collimator systems. The most relevant component of beam background

at IP2 is produced close to the experimental region by inelastic beam–gas (BG)
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Table 3. Summary of beam parameters for ALICE during the first four years of LHC operation.

Year Mode
√
sNN (TeV) β∗ (m) αint (μrad) αext (μrad) Colliding bunches

2009 pp 0.9 10 2180 0 ≤ 2

2009 pp 2.36 10 830 0 ≤ 2

2010 pp 7 2; 3.5 280 0; 220 ≤ 16

2010 Pb–Pb 2.76 3.5 280 −280 ≤ 130

2011 pp 2.76 10 710 0 ≤ 64

2011 pp 7 10 280 160 ≤ 39

2011 Pb–Pb 2.76 1 280 −160 ≤ 336

2012 pp 8 3 245 (−245) −180 (+290) 0 (main–main);

≤ 2500 (main–sat.)

2012 p–Pb 5.02 10 −245 −290 ≤ 8

2013 p–Pb 5.02 0.8 −245 125 ≤ 338

2013 pp 2.76 10 710 170 ≤ 36

interactions in the first 40 m of the so-called Long Straight Section 2 (LSS2), 270 m

on either side of IP2.

Given the requirement of a reduced luminosity, in pp running the background

rate in ALICE can be of the same order of magnitude as the interaction rate.

Since ALICE has been designed to perform tracking for up to 1000 times the pp

multiplicity, the tracking performance is not affected by such a background level.

However, MIB affects the operation of gaseous detectors, leading to HV trips due to

large charge deposits. Such trips were observed during the highest-intensity pp run-

ning periods in 2011 and 2012 and concerned mainly the TPC and MCH detectors.

Furthermore, MIB can cause cumulative radiation damage from high integral doses

and neutron fluence,10 thus accelerating the ageing of detectors. For these reasons,

in the high beam intensity pp running ALICE was switching on its detectors only

after the background interaction rate dropped to an acceptable level (up to several

hours after the beginning of the fill).

Large background from BG interactions was observed in 2011 and 2012 during

the pp runs, increasing faster than linearly with the number of circulating bunches

and bunch intensity. Vacuum deterioration inside the beam pipe can be caused

by synchrotron radiation-induced desorption, beam-induced RF heating, and elec-

tron cloud formation in various sections of the accelerator.11–13 In particular, a

large pressure increase was observed with circulating beams inside the TDI (beam

absorber for injection protection) and the large recombination chamber located in

LSS2.14–16

A detailed study has been performed to characterize the dependence of the

observed background ratec on vacuum conditions and beam charge. A linear

correlation was found between the background rate and the product of the beam

cThe background from BG interactions is measured via the V0 detector timing information, as
will be described in Subsec. 2.2.2.
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Fig. 2. Background rate observed during several fills as a function of the product of the intensity
of Beam 1, N1, and the sum of the measured pressures from three vacuum gauges on the left LSS2.

charge and the sum of the pressures measured by the vacuum gauges along the

LSS2, on both sides of IP2 (Fig. 2). Figure 3 shows a comparison between the mea-

sured background rate for a given LHC filld and that estimated using the linear

dependence described in Fig. 2, confirming the validity of the model.

The residual gas pressure is always nominal in the Pb–Pb physics mode, since

the total beam charge is about two orders of magnitude smaller than in pp. Thus, all

processes which degrade the vacuum in the proton physics mode, in particular TDI

heating and electron cloud formation, are suppressed. Minimum bias and centrality

triggers are not affected by any beam background; however, some of the trigger

inputs, such as the ZDC and muon triggers, showed large rate fluctuations (Fig. 4).

A detailed analysis of all fills has shown that the observed fluctuations are always

correlated with Beam 1 losses on the tertiary collimator (TCTH) located a few

meters upstream of one of the ZDCs (ZDC-A). A clear correlation was observed

between the ZDC-A trigger rate (which is sensitive to both beam–beam and beam–

gas collisions) and the losses recorded by Beam 1 BLM (Beam Loss Monitor) located

on the TCTH. Generally, an increase towards the end of the fill has been observed,

which could be explained by a degradation of the beam quality and interactions

with the collimation system.

dA fill is a period during which beams are circulating in the LHC: it starts with the injection and
ends with the beam dump.
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Fig. 3. Beam pipe pressure and background rate in fill 2181. The expected background rate has
been estimated using the linear parametrization shown in Fig. 2. VGPB.120.4L2, VGPB.231.4L2,
and VGI.514.4L2 are the pressure gauges located in front of the Inner triplet (at 69.7 m from
IP2), on the TDI beam stopper (at 80 m from IP2), and on the large recombination chamber (at
109 m from IP2), respectively.
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Fig. 4. Top: minimum bias, centrality, and muon triggers as a function of time during Pb–Pb data
taking (run 169721). The B mask selects the LHC bunch slots where collisions between bunches of
Beam 1 and Beam 2 are expected at IP2, while the ACE mask selects slots where no beam–beam
collision is expected. Bottom: ZDC-A trigger rate as a function of time in the same run.
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Fig. 5. Correlation between the sum and difference of signal times in V0A and V0C. Three classes
of events — collisions at (8.3 ns, 14.3 ns), background from Beam 1 at (−14.3 ns, −8.3 ns), and
background from Beam 2 at (14.3 ns, 8.3 ns) — can be clearly distinguished.

2.2.2. Background rejection in ALICE

Background estimation for pp running is performed with the V0 detector, a small-

angle detector consisting of two circular arrays of 32 scintillator counters each, called

V0A and V0C, which are installed on either side of the ALICE interaction point.6

As described in Sec. 1, the V0A detector is located 329 cm from IP2 on the side

opposite to the muon spectrometer, whereas V0C is fixed to the front face of the

hadronic absorber, 88 cm from IP2. The signal arrival time in the two V0 modules

is exploited in order to discriminate collision events from background events related

to the passage of LHC Beam 1 or Beam 2. The background caused by one of the

beams is produced upstream of the V0 on the side from which the beam arrives.

It thus produces an “early” signal when compared with the time corresponding to

a collision in the nominal interaction point. The difference between the expected

beam and background signals is about 22.6 ns in the A side and 6 ns in the C

side. As shown in Fig. 5, background events accumulate mainly in two peaks in

the time sum-difference plane, well separated from the main (collision) peak. With

the experience gained during the first years of data taking, in 2012 the V0 time

gates used to set the trigger conditions on collision or background events have

been refined and the MIB contamination has been reduced to ∼ 10%, depending on

vacuum conditions and luminosity.

The collected events are further selected offline to validate the online trigger

condition and to remove any residual contamination from MIB and satellite colli-

sions. As a first step, the online trigger logic is validated using offline quantities.

The V0 arrival time is computed using a weighted average of all detector elements.
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Fig. 6. (Color online) Correlation between reconstructed SPD clusters and tracklets. Two bands
corresponding to the collisions and MIB are visible. The dashed cyan line represents the cut used
in the offline selection: events lying in the region above the line are tagged as BG and rejected.

Then, MIB events are rejected using the timing information measured in the V0

complemented, in pp physics mode, by a cut on the correlation between clusters

and tracklets reconstructed in the SPD. Background particles usually cross the pixel

layers in a direction parallel to the beam axis. Therefore, only random combina-

tions of BG hits can build a reconstructed track pointing to the vertex. Hence, one

needs a large number of clusters to have a significant probability for this to happen

(Fig. 6). This cut requires a large multiplicity in order to be effective and rejects a

negligible number of events beyond those already rejected by the V0. Only a very

small fraction of background events survive the above-mentioned cuts in Pb–Pb

collisions. The overall contamination can be determined by an analysis of control

data taken with only one of the beams crossing the ALICE interaction point and

is found to be smaller than 0.02%. In pp collisions, the amount of background sur-

viving the cuts is strongly dependent on the running conditions and on the specific

trigger configuration under study. While the fraction of background events in the

physics-selected minimum bias triggers amounts to about 0.3% in the data taken

during the 2010 run, it can reach values above 10% at the beginning of a fill in the

2011 and 2012 runs. Whenever relevant for the normalization of the results, the

residual background was subtracted in the physics analyses, based on the informa-

tion obtained from the control triggers.

The parasitic collision of main bunches with satellite bunches located a few

RF buckets away from a main bunch are also a source of background in the

standard analyses. The background from main-satellite collisions is non-negligible

in the Pb–Pb running mode where the satellite population is larger than in pp.
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Fig. 7. Correlation between the sum and the difference of times recorded by the neutron ZDCs
on either side (ZNA and ZNC) in Pb–Pb collisions. The large cluster in the middle corresponds
to collisions between ions in the nominal RF bucket on both sides, while the small clusters along
the diagonals (spaced by 2.5 ns in the time difference) correspond to collisions in which one of the
ions is displaced by one or more RF buckets.

Main-satellite collisions occur at positions displaced by multiples of 2.5 ns/2 · c =

37.5 cm, with respect to the nominal interaction point. This is well outside the

standard fiducial vertex region |Vz | � 10 cm. Satellite events are rejected using the

correlation between the sum and the difference of times measured in the ZDC, as

shown in Fig. 7.

2.3. Luminosity determination

2.3.1. Introduction

Cross-section measurements in pp collisions are essential for the ALICE physics

program because particle production in nucleus–nucleus (A–A) collisions is often

compared with the extrapolation from elementary pp collisions via binary nucleon–

nucleon collision scaling (nuclear modification factor, RAA). The precision of RAA

measurements needed to quantify the importance of nuclear effects is typically

� 10%. Thus, a precision on the order of 5% or better on the pp cross section

(including luminosity normalization) is desired.

Although it is not crucial for RAA,e the determination of the absolute lumino-

sity in Pb–Pb collisions is needed for cross section studies in electromagnetic and

ultraperipheral interactions.

eAs is shown in Subsec. 5.1, a centrality-dependent normalization factor can be obtained via the
Glauber model.
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2.3.2. van der Meer scanning technique

The measurement of the cross section σR for a chosen reference process is a pre-

requisite for luminosity normalization. Reference (or visible) cross sections can be

measured in van der Meer (vdM) scans,17 where the two beams are moved across

each other in the transverse direction. Measurement of the rate R of a given process

as a function of the beam separation Δx, Δy allows one to determine the head-

on luminosity L for a pair of colliding bunches with particle intensities N1 and

N2 as:

L =
N1N2frev
hxhy

, (2)

where frev is the accelerator revolution frequency and hx and hy are the effec-

tive beam widths in the x and y directions: they are measured as the area below

the R(Δx, 0) and R(0,Δy) curve, respectively, when divided by the head-on rate

R(0, 0). Under the assumption that the beam profiles are Gaussian, the effec-

tive width can simply be obtained as the Gaussian standard deviation parame-

ter (obtained from a fit to the curve) multiplied by
√

2π. However, the Gaussian

assumption is not necessary for the validity of the method; thus, other functional

forms can be used, as well as numerical integration of the curve. The cross section

σR for the chosen reference process can be obtained as σR = R(0, 0)/L.

2.3.3. van der Meer scan analysis and results

In this section, results from five scans carried out at the LHC are summarized. Two

scans were performed in 2010 for pp collisions at
√
s = 7 TeV. Another pp scan was

done in 2011 at
√
s = 2.76 TeV. Furthermore, two Pb–Pb scans were performed at√

sNN = 2.76 TeV in 2010 and 2011. More details on these measurements can be

found in Ref. 18.

The conditions, results, and systematic uncertainties of the three pp scans are

specified in Table 4. The chosen reference process (MBand) for all of these scans is

the coincidence of hits in the V0 detectors on the A and C sides. The MBand rate

was measured as a function of the beam separation (upper panels of Fig. 8). The

scan areas were obtained via numerical integration. In the March 2011 scan, the

cross section was measured separately for the 48 colliding bunch pairs (as shown

in the bottom panel of Fig. 8) and then averaged. The resulting spread among

different bunches is less than 0.5% (RMS). A set of corrections must be applied

throughout the data analysis procedure, namely: pileup correction (up to 40%);

length scale calibration, needed for a precise determination of the beam separation

and performed by displacing the beams in the same direction and measuring the

primary vertex displacement with the pixel detector (SPD); satellite (displaced) col-

lisions of protons captured in non-nominal RF slots, detected via the arrival time

difference in the two V0 arrays;19 background from beam–gas interactions; and

variation of the luminosity during the scan due to intensity losses and emittance
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Table 4. Details of the colliding systems and measured MBand cross sections and

uncertainties for the three pp vdM scans performed at the LHC IP2.

Scan May 2010 October 2010 March 2011

√
s (TeV) 7 7 2.76

β∗ (m) 2 3.5 10

Net crossing angle (μrad) 280 500 710

Colliding bunch pairs in ALICE 1 1 48

σMBand (mb) 54.2± 2.9 54.3± 1.9 47.7± 0.9

Uncertainties

Bunch intensity 4.4% 3.2% 0.6%

Length scale 2.8% 1.4% 1.4%

Luminosity decay 1% negligible 0.5%

V0 afterpulses negligible negligible 0.2%

Background subtraction negligible negligible 0.3%

Same fill reproducibility negligible 0.4% 0.4%

x–y displacement coupling negligible negligible 0.6%

β∗ variation during the scan negligible negligible 0.4%

Total 5.4% 3.5% 1.9%

growth. In October 2010, two scans were performed in the same fill, in order to

check the reproducibility of the measurement. The two results agree within 0.4%:

they have been averaged and the difference included in the systematic uncertainties.

The beam intensity is measured separately for each circulating bunch by the LHC

beam current transformers, and provided to the experiments after detailed analy-

sis.19–23 In the March 2011 scan, the uncertainty on the bunch intensity was much

lower compared with the 2010 scans,21,22 so certain additional sources of uncer-

tainty were also investigated. These were: coupling between horizontal and vertical

displacements; variation of β∗ during the scan resulting from beam–beam effects;

and afterpulses in the V0 photomultipliers arising from ionization of the residual

gas inside the photomultiplier tube. For the 2010 scans, these additional sources

are negligible when compared with the uncertainty on the beam current.

The ALICE luminosity determination in pp collisions has been compared with

the other LHC experiments via the cross section for a candle process, defined as

a pp interaction with at least one charged particle produced with pT > 0.5 GeV/c

and |η| < 0.8. This was determined as σcandle = fcandle σMBand, where the scaling

factor fcandle = (0.817 ± 0.004) was determined from data with a small (� 3%)

Monte Carlo efficiency correction. The obtained result (from the May 2010 scan)

is σcandle = 44.3 ± 2.1 mb, in good agreement with the ATLAS (42.3 ± 2.1 mb)

and CMS (44.0 ± 2.0 mb) results.24 The quoted uncertainties represent the sta-

tistical and systematic errors combined in quadrature; part of the uncertainty of

the beam intensity determination, that is common to all experiments,20 is not

included.
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Fig. 8. Top: MBand trigger rate versus beam separation in x and y obtained during the May

2010 van der Meer scan. Double Gaussian fits to the data are shown as lines. Bottom: Measured
MBand cross section for 48 colliding bunch pairs in the March 2011 scan, as a function of the
product of colliding bunch intensities N1N2.

The main parameters for the two Pb–Pb scans are reported in Table 5. Given

the low hadronic interaction rate in 2010, the scan was based on the detection

of neutrons from electromagnetic Pb–Pb interactions by the ZDC.25 The chosen

reference process is the logical OR of hits in either of the two neutron calorimeters

(ZNor). The scanned process in 2011 was a semicentral (SC) trigger based on the

coincidence of V0A and V0C, with signal amplitude thresholds chosen in such a

way that the trigger efficiency is 100% for events belonging to the 0–50% centrality

percentile, and drops rapidly for more peripheral events.
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Table 5. Details of the colliding systems and measured cross sections and

uncertainties for two Pb–Pb vdM scans performed at the LHC IP2.

Scan November 2010 December 2011

√
sNN (TeV) 2.76 2.76

β∗ (m) 3.5 1
Crossing angle (μrad) � 0 120
Colliding bunch pairs in ALICE 114 324

σZNor (b) 371+24
−19 —

σSC (b) — 4.10+0.22
−0.13

Uncertainties
Bunch intensity −3.0% + 4.7% −1.6% + 4.4%
Length scale 2.8% 1.4%
Luminosity decay 2% 2%
Unknown bunch-by-bunch profile 2% —
Background subtraction 1% 1%
Scan-to-scan reproducibility 1% 1%
Total −5.2% + 6.4% −3.1% + 5.3%

The analysis technique is the same as described for the pp scans. Since the

bunch-by-bunch measurement of the reference process rate was not available in

2010, the analysis of the November 2010 scan was performed for the “inclusive”

rate, i.e. the sum of all bunch rates, thus measuring an “average” beam profile.

The bias arising from this limitation was estimated in two ways: by simulation

with realistic bunch intensities and emittances, and by computing the difference

between the two methods for the 2011 scan. The second approach resulted in a

larger discrepancy (2%), which was added to the systematic uncertainties.

The result and uncertainties for the Pb–Pb scans are reported in Table 5. The

main source of uncertainty is the fraction of ghost charge in the measured beam

current, consisting of ions circulating along the LHC rings outside of nominally

filled bunch slots, which do not contribute to the luminosity.23

The analysis of the 2012 (pp) and 2013 (p–Pb) vdM scans is ongoing. For these

scans, along with the MBand trigger, another luminosity signal is available, based

on the T0 detector. The T0 provides a vertex trigger defined as the coincidence

between T0A and T0C, with the additional requirement that the difference in their

signal times corresponds to an interaction happening within 30 cm from IP2. The

latter condition provides excellent rejection of beam-gas and satellite background.

Indeed, a background contamination below 0.1% was obtained in p–Pb collisions

at a luminosity of 1029 s−1cm−2.

2.3.4. Application of the vdM scan results in luminosity and

cross-section measurements

The van der Meer scan results in pp collisions at
√
s = 2.76 and 7 TeV were

used to measure the inelastic cross sections at the two energies.26 A Monte Carlo

simulation, tuned so as to reproduce the fractions of diffractive events observed
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in data, was used to determine the efficiency of the MBand trigger for inelastic

pp interactions. The MBand cross sections were then corrected for this efficiency,

giving the result σINEL = 62.8 ± 1.2 (vdM)+2.4
−4.0 (MC) mb at

√
s = 2.76 TeV and

σINEL = 73.2 ± 2.6 (vdM)+2.0
−4.6 (MC) mb at

√
s = 7 TeV.

In all the other ALICE analyses involving cross-section measurements,f the

reference cross sections (MBand, ZNor, SC) measured in the van der Meer scans

(Tables 4 and 5) were used for indirect determination of the integrated luminosity.

In cases where the trigger condition used for the physics analysis coincided with the

reference trigger (as was the case in Ref. 25), the luminosity was simply measured

as the number of analyzed events divided by the trigger cross section. In all other

cases, the number of triggered events was converted into an equivalent number of

reference triggers via a scaling factor, computed either from data (as for example

in Refs. 28 and 29) or via the ratio of the trigger rates, measured with scalers (as in

Ref. 30). Depending on the analysis, this scaling procedure resulted in additional

systematic uncertainties of up to 3%.

3. Data Taking

3.1. Running periods

ALICE took data for all the collision systems and energies offered by the LHC.

The data taking started in fall 2009 with pp collisions at the LHC injection energy,√
s = 0.9 TeV. In 2010, the proton beam energy was brought up to half of its

nominal value, 3.5 TeV, and the luminosity was gradually increased. In this period

the interaction rate was low (between a few kHz and a few tens of kHz) and ALICE

mostly triggered on minimum bias (MBor18,26) interactions using V0 and SPD,

single muon trigger (MSL), and high-multiplicity trigger (HM) (see Subsec. 3.2

for a description of the ALICE triggers). In the subsequent high-intensity pp and

p–Pb running in 2011–2013, ALICE usually split its data-taking into minimum-

bias (MB) and rare-trigger blocks, for which the interaction rate was reduced to

O(10) kHz and O(100) kHz, respectively. Methods for reducing the luminosity are

described in Sec. 2. The two limits correspond to the saturation of the readout with

minimum-bias triggered events and to the maximum flux tolerated by the detectors,

respectively. The two modes of operation are briefly discussed below.

For minimum bias runs, the pp and p–Pb interaction rates were on the level of

10 kHz, enough to reach 95% of the maximum detector readout rate while keeping

the mean number of interactions per bunch crossing (μ) low, nominally below 0.05,

in order to avoid significant same-bunch pileup.

In the rare-trigger running mode, the luminosity in pp and p–Pb was increased

to 4–10 μb−1s−1 and 0.1 μb−1s−1, corresponding to inelastic interaction rates of

200–500 kHz and 200 kHz, respectively. The luminosity limits were determined by

the stability of the TPC and muon chambers under the load caused by interactions

fWith the exception of Ref. 27, where a theoretical reference cross section was used instead.

1430044-19

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

The ALICE Collaboration

at IP2 and by background particles. During pp and p–Pb rare-trigger runs, the

TPC event size increased by an order of magnitude due to pileup tracks within the

drift time window of ∼ 100 μs. The trigger dead time was kept at a level of 20–40%

in order to inspect as much of the luminosity delivered by the LHC as possible.

The luminosity reduction in the pp running in 2012 was performed by colliding

main bunches with satellite bunches (see Sec. 2). This resulted in a typical lumi-

nosity of ∼ 7 μb−1s−1 (up to a maximum of 20 μb−1s−1) at the beginning of the

fill and a rapid decay within the fill. Owing to this and to a background-interaction

rate of the same order as the pp rate (see Sec. 2), ALICE only took data in the

second part of each fill, starting in the rare-trigger mode with a subset of detectors,

and only switching to minimum-bias mode when the luminosity dropped to about

1–4 μb−1s−1, a level tolerable for the V0 and the TPC. The downscaling factors

for the MBand,18,26 TJE, and SPI triggers were dynamically determined at the

beginning of each run so as to keep the overall trigger live time at a level of 70–80%

over the duration of the fill.

During the 2011 Pb–Pb running period, the interaction rate provided by the

LHC reached 3–4 kHz. ALICE ran with the minimum bias, centrality, and rare

triggers activated at the same time. With the multi-event buffering and with the

minimum bias and centrality triggers downscaled, the effective trigger dead time

was low (dead-time factor of 33%). The situation will be similar in the LHC Run

2 (2015–2017), for which the expected collision rate is O(10) kHz, still low enough

to avoid pileup.

Table 6 summarizes data taking with beams by ALICE together with the

luminosity provided by the LHC, the obtained trigger statistics, and the recorded

data volume. Whenever the luminosity was reduced for ALICE, its final value is

quoted and marked with an asterisk. The beam duration and run duration are the

integrated time with stable beams and the time during which ALICE was record-

ing collision data, respectively. The difference between the two represents the time

spent on starting/stopping of runs, the recovery time after detector trips, and, for

pp runs in 2011 and 2012, the time spent waiting for the particle flux to drop to a

level acceptable for the detectors. The run duration is not corrected for the trigger/

acquisition dead time. The delivered luminosity is the luminosity integrated over

the beam duration. The abbreviations denoting various triggers are explained in

Subsec. 3.2. The recorded data volume slightly exceeds the read one because of the

header data. The large differences between these two numbers, starting from pp in

2011, arise from the online compression discussed in Subsec. 3.4.

In the context of Table 6 one should note that many of the top ALICE physics

goals involve measurements at low transverse momenta, where triggering cannot be

used. This applies in particular to all measurements in the ALICE central barrel,

where the vast majority of published papers are from minimum-bias data. Con-

sequently, for the performance of ALICE the recorded statistics of minimum-bias

events, where the data acquisition system runs with a significant dead time, is

the main figure of merit. The evolution of the ALICE experiment towards Run 3
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Table 6. ALICE data taking in Run 1 (2009–2013). See text for details.

System, Duration Recorded Data read√
sNN Running Peak L beam [run] Delivered statistics [recorded]

Year (TeV) mode (μb−1s−1) (h) L (106 events) (TB)

2009 pp MB 5.2 × 10−4 n.a. 19.6 μb−1 MBor: 0.5 0.41
0.9 [26.8] [0.43]

pp MB 1.0 × 10−4 n.a. 0.87 μb−1 MBor: 0.04 0.01
2.36 [3.1] [0.01]

2010 pp MB 1.5 × 10−2 15.7 0.31 nb−1 MBor: 8.5 5.74
0.9 [13.0] [5.97]

pp MB+rare 1.7* 847 0.5 pb−1 MB: 825 755
7.0 (mixed) [613] HM: 26 [773]

MSL: 132

Pb–Pb MB 2.8 × 10−5 223 9 μb−1 MB: 56 810
2.76 [182] [811]

2011 pp rare 4.4 × 10−1 35 46 nb−1 MBor: 74 100
2.76 [32] HM: 0.0015 [101]

E0: 0.78
MSL: 9.4

pp rare 9 1332 4.9 pb−1 MBor: 608 1981
7.0 (450 kHz) [841] MBand: 163 [1572]

EJE: 27
EGA: 8
MUL: 7.6

Pb–Pb rare 4.6 × 10−4 203 146 μb−1 MBZ: 9 3151
2.76 [159] CENT: 29 [908]

SEMI: 34
MSH: 23
EJE: 11
CUP: 7.9
MUP: 3.4

2012 pp MB 0.2* 1824 9.7 pb−1 MBor: 38 3211
8 (10 kHz) [1073] (altogether) MBand: 270 [1286]

SPI: 63
rare 20 MSH: 86

(1 MHz) MUL: 12
EGA: 3.1
TJE: 21

p–Pb MB 9 × 10−5 7.6 1.5 μb−1 MBand: 2.43 5.0
5.02 (pilot) (180 Hz) [6.6] [3.4]

2013 p–Pb MB 5 × 10−3* 50.2 0.891 nb−1 MBand: 134 406
5.02 (10 kHz) [46.8] ZED: 1.1 [91]

rare 1 × 10−1 70.1 14.0 nb−1 MSH: 10 472
(200 kHz) [50.0] MUL: 9.5 [97]

EGA: 1.3
TJE: 0.59
MUP: 0.76

Pb–p rare 1 × 10−1 77.1 17.1 nb−1 MSH: 18 731
5.02 (200 kHz) [61.8] MUL: 24 [151]

EGA: 1.9
TJE: 1.0
MUP: 3.3

pp rare 2.2* 27.4 129 nb−1 MBand: 20 71
2.76 (105 kHz) [24.9] MSH: 0.89 [16]

MUL: 0.53
EGA: 0.43
TJE: 0.036
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Table 7. Trigger capabilities of the ALICE detectors.

Detector Function Level

SPD hit-multiplicity based trigger and hit-topology based trigger L0
TRD electron trigger, high-pT particle trigger, charged-jet trigger L1
TOF multiplicity trigger, topological (back-to-back) trigger, cosmic-ray trigger L0
PHOS photon trigger L0
EMCal photon trigger, neutral-jet trigger L0/L1
ACORDE cosmic-ray trigger (single and multiple hits) L0
V0 coincidence based minimum-bias interaction trigger, centrality trigger L0
T0 event-vertex selection trigger, interaction trigger L0
ZDC minimum-bias interaction and electromagnetic-dissociation triggers in Pb–Pb L1
MTR single-muon trigger, dimuon trigger L0

(see Sec. 12) is, consequently, focused on continuous read-out of 50 kHz minimum-

bias Pb–Pb collisions.

In addition to the running blocks summarized in Table 6, ALICE took data with

cosmic ray triggers defined using ACORDE, TOF, and TRD for cosmic-ray studies

and detector calibration purposes.31 The cosmic runs were usually performed in

the absence of beams. In 2012, ALICE took ∼ 4× 106 cosmic ray events in parallel

with the collision data taking, using a high-multiplicity muon trigger (signal on at

least 4 scintillator paddles) provided by ACORDE.

3.2. Trigger

The trigger decision is generated by the Central Trigger Processor (CTP) of

ALICE32,33 based on detector signals and information about the LHC bunch fill-

ing scheme. The detectors that provide input to the trigger decision are listed in

Table 7. The CTP evaluates trigger inputs from the trigger detectors every machine

clock cycle (∼ 25 ns). The Level 0 trigger decision (L0) is made ∼ 0.9 μs after the

collision using V0, T0, EMCal, PHOS, and MTR. The events accepted at L0 are

further evaluated by the Level 1 (L1) trigger algorithm in the CTP. The L1 trigger

decision is made 260 LHC clock cycles (∼ 6.5 μs) after L0. The latency is caused by

the computation time (TRD and EMCal) and propagation times (ZDC, 113 m from

IP2). The L0 and L1 decisions, delivered to the detectors with a latency of about

300 ns, trigger the buffering of the event data in the detector front-end electronics.

The Level 2 (L2) decision, taken after about 100 μs corresponding to the drift time

of the TPC, triggers the sending of the event data to DAQ and, in parallel, to the

High Level Trigger system (HLT). During Run 1, all events with L1 were accepted

by L2. In the future, in some running scenarios (e.g. when taking downscaled mini-

mum bias events in parallel with rare triggers) L2 may be used to reject events with

multiple collisions from different bunch crossings piled-up in the TPC (past–future

protection). The events with L2 will subsequently be filtered in the HLT.

Information about the LHC bunch filling scheme was used by CTP to suppress

the background. The bunch crossing mask (BCMask) provides the information as

to whether there are bunches coming from both A-side and C-side, or one of them,
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Table 8. Major ALICE triggers.

Trigger Description Condition

MB-type triggers

MBor minimum bias signals in V0 and SPD
MBand minimum bias signals in V0A and V0C
MBZ minimum bias MB and signals in both ZDC’s
SPI multiplicity trigger n hits in SPD

Centrality triggers

CENT central V0 based centrality trigger for Pb–Pb (0–10%)
SEMI semicentral V0 based semicentral trigger for Pb–Pb (0–50%)

EMCal rare triggers

E0 EMCal L0 EMCal L0 shower trigger in coincidence with MB
EJE neutral jet EMCal L1 jet algorithm following EMCal L0
EJE2 neutral jet like EJE but with a lower threshold than EJE
EGA photon/electron EMCal L1 photon algorithm following EMCal L0
EGA2 photon/electron like EGA but with a lower threshold than EGA

TRD rare triggers

TJE charged jet n charged particles in TRD chamber
in coincidence with MB

TQU electron for quarkonia electron with pT > 2 GeV/c in TRD
in coincidence with MB

TSE electron for open beauty electron with pT > 3 GeV/c in TRD
in coincidence with MB

MUON rare triggers

MSL single muon low single muon in MTR in coincidence with MB
MSH single muon high like MSL but with a higher threshold
MUL dimuon unlike sign two muons above low threshold, unlike sign,

in coincidence with MB
MLL dimuon like sign two muons above low threshold, same sign,

in coincidence with MB

Miscellaneous triggers

HM high multiplicity high multiplicity in SPD in coincidence with MB
PH photon by PHOS PHOS energy deposit in coincidence with MB
EE single electron electron signal in TRD (sector 6–8) and EMCal
DG diffractive charged particle in SPD and no signal in V0
CUP barrel ultraperipheral charged particle in SPD and no signal in V0,

for Pb–Pb and p–Pb
MUP muon ultraperipheral (di-)muon in MTR and no signal in V0A,

for Pb–Pb and p–Pb
ZED electromagnetic dissociation signal in any of the neutron ZDCs
COS cosmic trigger signal in ACORDE

or neither, at a resolution of 25 ns. The beam–gas interaction background was

studied by triggering on bunches without a collision partner, and subtracted from

the physics data taken with the requirement of the presence of both bunches.

Table 8 summarizes the most important trigger configurations used by ALICE.

The minimum bias triggers (MBand and MBor) were used for all pp data taking,
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as well as in Pb–Pb in 2010. The high-efficiency MBor trigger was used at low

luminosity. Once the luminosity and the background level increased, the high-purity

MBand trigger became more advantageous. In the high luminosity Pb–Pb runs in

2011, the V0-based trigger was complemented by a requirement of signals in both

ZDCs (MBZ) in order to suppress the electromagnetic interactions between the lead

ions. The biased “power-interaction” trigger (SPI) required a certain number of hits

(usually around 10) in the SPD. With thresholds on the summed-up signals, V0

was also used to generate central 0–10% (CENT) and semicentral 0–50% (SEMI)

Pb–Pb triggers. The thresholds were applied separately to the sums of the output

charges of V0A and V0C, then the coincidence of the two sides was required.

The rest of the triggers in Table 8 are rare triggers. The high-multiplicity trigger

(HM) was based on the hit multiplicity in the outer layer of the SPD. The multi-

plicity threshold was typically set to 80–100 hits, corresponding to 60–80 SPD

tracklets (pairs of matching clusters in the two layers of SPD). This value was

chosen in order to maximize the inspected luminosity without contaminating the

sample with multiple-interaction events. The PHOS and EMCal L0 triggers (PH

and E0, respectively) required a certain energy deposit within a window of 4 × 4

calorimeter cells. At L1, EMCal provided triggers on photons/electrons (EGA)

and on jets (EJE). The EGA trigger has a higher threshold than E0 and a better

handling of supermodule boundaries. The EJE trigger uses a window of 32 × 32

cells and is primarily sensitive to neutral energy but also includes contributions

from charged particles (see Subsec. 10.2.2). The TRD trigger was introduced in the

2012 pp runs. A fraction (limited to 10 to 25 kHz) of the minimum bias triggers at

L0 were subject to a TRD L1 decision. At L1, four algorithms were implemented: jet

trigger (TJE), single electron trigger (TSE), quarkonium electron trigger (TQU),

and TRD+EMCal electron trigger (EE). The jet trigger requires at least 3 charged

particle tracks with pT > 3 GeV/c to be detected in one TRD stack. A TRD stack

consists of 6 layers of chambers in radial direction and covers Δη ≈ Δφ ≈ 0.1.

13 TRD supermodules, five stacks each, were installed and operational in the 2012

and 2013 runs. The electron trigger required an electron PID based on a threshold

for the electron likelihood calculated from the integrated signal of each layer. The

quarkonia electron trigger required a lower pT threshold of 2 GeV/c with a tighter

electron likelihood cut. This enables the detection of low momentum electrons from

J/ψ and ψ′ decays. In contrast to the TJE, TQU, and TSE triggers, the high-

purity electron trigger EE was inspecting all events with EMCal Level 0 trigger

(E0). The TRD trigger condition for EE was the same as for the single electron

trigger; however, the acceptance was limited to the TRD sectors (supermodules 6, 7,

and 8) that overlap with the acceptance of EMCal. A signal in the innermost TRD

layer was required for all TRD electron triggers in order to suppress the background

caused by late photon conversions.

All of the muon triggers were implemented at Level 0. There were two single-

muon triggers (MSL and MSH) and two dimuon triggers (MUL and MLL), all in

coincidence with MB. A low pT threshold was used for MSL, MUL, and MLL, and
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a high one for the MSH trigger. The low-threshold single-muon trigger MSL was

downscaled when used in parallel with MSH. The unlike-sign muon-pair trigger

MUL, used for measuring mesons, was complemented by the like-sign (MLL) one

for the combinatorial background estimation. The low and high pT thresholds were

0.5–1.0 GeV/c and 1.7–4.2 GeV/c, respectively, adjusted according to the run type.

Several additional triggers were implemented in order to enhance events related

to diffractive physics in pp and ultraperipheral nuclear collisions, and to measure

cosmic rays. The DG (double gap) trigger in pp required a particle at midrapidity

and no particles within the intermediate pseudorapidity ranges covered by the V0

detector. The CUP (central-rapidity ultraperipheral) trigger performed a similar

selection in collision systems involving ions. An analogous condition, but with a

forward muon rather than a midrapidity particle, was named the MUP (muon

ultraperipheral) trigger. Finally, a cosmic trigger defined by ACORDE (COS) was

active during most of 2012 to collect high muon multiplicity cosmic events.

The rare triggers implemented in TRD, EMCal, and MUON are further dis-

cussed in Secs. 8, 10 and 11. Physics results based on analyses of E0-, MSL-, and

MUP-triggered events were published in Refs. 28, 34 and 27, respectively.

The instantaneous rate and the total number of collected events in Run 1 are

shown for selected triggers in Fig. 9. The minimum bias and rare-trigger running

modes are illustrated in detail for the p–Pb data taking in 2013 in Fig. 10.

The total number of recorded events and the inspected luminosity are shown

in Table 6 for selected minimum-bias and rare triggers, respectively. The values

are based on raw trigger counts. The luminosities were determined for reference

triggers as described in Subsec. 2.3. For rare triggers, for which no direct measure-

ment of cross section was performed, the integrated luminosity was estimated by

comparing their rates to that of a reference trigger. The resulting uncertainty is

typically about 10%. Another uncertainty of up to 20% comes from the fact that

this simple method does not account for the trigger purity. The actual statistics

useful for physics analysis may thus fall significantly below the numbers given in

the table.

3.3. Readout

The ALICE detectors are equipped with standardized optical fiber based data trans-

mission devices working at a bandwidth of 200 MB/s. Some of the detectors have

multiple data transmission connections. Event data are sent to DAQ and HLT

where event building and data compression are performed. Trigger detectors pro-

vide low-voltage differential signals (LVDS) to the CTP inputs. The CTP makes

the global ALICE trigger decision as described in Subsec. 3.2. In conjunction with

the LHC clock and bunch filling scheme, this decision is propagated to all detectors,

to DAQ, and to HLT via the TTC (Timing, Trigger, and Control)35 passive optical

transmission network system. The LHC clock is used to synchronize the data of all

detectors with the bunch crossing.
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Fig. 9. Instantaneous rate (top) and number of collected events (bottom) for selected triggers in
the running periods from 2010 to 2013. Special running periods (Pb–Pb, p–Pb, low energy pp)
are indicated by shaded areas; the rest represents pp runs at the highest available energy.
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rare-trigger mode (before and after January 25, respectively).
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Table 9. Average busy times and event sizes of the ALICE detectors observed in typical rare-trig-

ger pp runs in 2012, Pb–Pb runs in 2011, and p–Pb runs in 2013. ZDC was not active in the 2012
pp running therefore no value is given for the data size. In p–Pb runs, SPD busy time was either
0 or 370 μs depending on the running mode.

pp Pb–Pb p–Pb

Detector Busy time Data size Busy time Data size Busy time Data size

(μs) (kB) (μs) (kB) (μs) (kB)

SPD 0 7 0 26 0 or 370 7

SDD 1024 22 1024 143 1024 16

SSD 265 46 265 180 265 42

TPC 500 6676 500 25740 350 15360

TRD 300 181 450 3753 270 350

TOF 0 23 0 63 0 23

PHOS 850 25 850 72 850 35

EMCal 270 22 300 53 270 25

HMPID 220 15 300 22 220 18

ACORDE 116 0.1 116 0.1 116 0.1

PMD 170 10 220 50 170 8

FMD 190 14 350 55 190 13

V0 0 6 0 6 0 6

T0 0 0.4 0 0.7 0 0.6

ZDC 122 — 122 0.8 122 0.7

MCH 300 35 300 61 250 18

MTR 160 7 160 7 160 7

The busy time of the data taking is mainly defined by the CTP waiting for the

completion of the readout of all detectors. In addition, L1-rejected events contribute

to the busy time because of the latency of the L1 decision. The detector busy time

due to readout, in general, depends on the event size and thus on the collision system

and background conditions. The ability to buffer events, possessed by some of the

detectors, reduces their respective average busy times by a rate-dependent factor.

The typical readout performance of the ALICE detectors in recent pp, Pb–Pb, and

p–Pb runs is summarized in Table 9. By virtue of event buffering, SPD, TOF, T0,

and V0 do not cause a “detector busy” state. TPC and TRD have multi-event

buffers which efficiently reduce their busy times in rare-trigger pp and Pb–Pb runs

at event rates of 200–300 Hz. The TPC busy duration is identical in these two

collision systems although the event sizes are very different. The TPC busy time

includes a protection period of approximately 300 μs covering the electron drift and

the ion collection times.

The ALICE data volume is dominated by the event size of the TPC. The latter

scales with the charged-particle multiplicity, including pileup tracks from other

interactions within the TPC drift time window of ∼ 100 μs. The maximum TPC

event size, observed in central Pb–Pb collisions, was 70 MB.
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3.4. Online data compression

Over the course of preparations for the Pb–Pb run in 2011 it was estimated that

the data rate would exceed the maximum bandwidth of the connection to mass

storage. The data volume was then reduced by storing TPC cluster information

instead of raw data, using online processing by HLT.36,37 The reduced data are

further compressed by HLT using lossless compression with Huffman encoding.38

The procedure was tested during the pp runs in 2011, and successfully used in the

lead-ion run and all subsequent data taking. For integrity checks, 1% of the events

were recorded without compression. This way, a data compression by a factor of 5

was achieved for the TPC data. As the TPC is the dominant contributor to the

event size, the compression factor for the total data volume in 2012 p–Pb running

was about 4. The effect of the compression can be seen from the difference between

“data read” and “data recorded” in Table 6.

4. Calibration Strategy

The momentum resolution and the particle identification performance critically

depend on the quality of the calibration. The actual positions of the detectors

(alignment), maps of dead or noisy elements, and time and amplitude calibrations

are used in the reconstruction. For the drift detectors (SDD, TPC, TRD), the gain

and the time response are calibrated differentially in space (single readout pads for

TPC and TRD) and time (units of 15 minutes for TPC). Finally, the geometry

of the luminous region and (for Pb–Pb collisions) calibrated centrality and event

plane are important for physics analysis.

In this section we briefly describe the main sources of the various calibration

parameters. Once determined, the calibration parameters are stored in the Offline

Conditions Database (OCDB) and thus become accessible for reconstruction jobs

running on the distributed computing Grid. The list of the calibration parameters,

organized according to the source, is given in Table 10.

4.1. Condition data and online calibration

Condition data are monitored continuously and archived by the Detector Control

System (DCS). Some of these data (e.g. temperatures and pressures) affect the

detector response and thus are relevant to event reconstruction.

Those calibration parameters that can be derived from raw data are extracted

online, i.e. during data taking, from interaction events and/or dedicated calibration

events. The latter can be collected in dedicated calibration runs or in parallel with

the physics data taking. The data processing takes place on the computers of the

Data Acquisition (DAQ) system.39

At the end of each run the condition data and the online calibration parameters

are collected by the Shuttle system40 and transported to the OCDB. A successful

Shuttle termination triggers the first reconstruction pass of the run.
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4.2. Offline calibration

The first two reconstruction passes are performed on a sample of events from each

run and serve for calibration and monitoring purposes. The first pass (cpass0)

provides input for the calibration of TPC, TRD, TOF, T0, luminous region, and

centrality. The second pass (cpass1) applies the calibration, and the reconstructed

events are used as input for data quality assurance and for improved calibration of

SDD, TPC, and EMCal. Once a data taking period (typically 4–6 weeks) is com-

pleted, a manual calibration spanning many runs is performed. The complete cali-

bration is then verified by a validation pass (vpass) performed on a sample of events

from all runs in the period. The subsequent physics reconstruction pass (ppass) is,

in general, performed on all events and provides the input for physics analysis.

The complete calibration reconstruction sequence is thus: cpass0, calibration,

cpass1, quality assurance and calibration, manual multi-run calibration, validation

pass, quality assurance, physics reconstruction pass, quality assurance.

4.3. Detector alignment

The objective of the data-driven alignment of detectors is to account for deviations

of the actual positions of sensitive volumes and material blocks from the nominal

ones in the reconstruction and simulation software. In order to achieve this, first for

those detectors for which standalone reconstruction is possible (ITS, TPC, TRD,

MUON) an internal alignment (e.g. positions of ITS sensors with respect to the

sensor staves and of staves with respect to the ITS center; relative positions of

TRD chambers within a stack; etc.) was performed. This was done by iterative

minimization of the residuals between the cluster positions (measured under the

current assumption of alignment parameters) and the tracks to which these clusters

were attached by the reconstruction procedure. Given the large number of degrees

of freedom in the ITS and MUON detectors (14622 and 1488, respectively) their

alignment was performed using a modified version of the Millepede algorithm.41

The alignment of ITS,42 TPC, and TRD was initially performed using the cosmic

muons data, and then it was refined using tracks reconstructed in the collision

events collected in physics runs as well as in dedicated runs without magnetic

field. For the alignment of the MUON detector, muon tracks from runs with and

without magnetic field were used together with the information from the optical

geometric monitoring system.43,44 The precision of the internal alignment in the

ITS is estimated to be on the level of ∼ 10 (70), 25 (20), and 15 (500) μm in the

bending (nonbending) direction for SPD, SDD, and SSD layers, respectively. For

MUON, the alignment precision is estimated to be better than 50–100 (100–150) μm

in the bending (nonbending) direction, depending on muon station. The precision

of the inter-sector alignment in the TPC is estimated to be ∼ 0.1 mm.

After the internal alignment, the ITS and TPC were aligned to each other to

a precision of ∼ 30 μm and ∼ 0.1 mrad by applying a Kalman-filter based proce-

dure of minimizing the residuals between the tracks reconstructed in each detector.
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The global alignment of other central-barrel detectors was performed by minimizing

the residuals between their clusters and the extrapolation of the ITS–TPC tracks.

The residual misalignment in the rφ and z directions is estimated to be smaller than

∼ 0.6 mm for the TRD, ∼ 5 mm for the TOF, 5–10 mm depending on chamber for

HMPID, ∼ 6 mm for the PHOS, and ∼ 2 mm for the EMCal. The global alignment

of MUON is performed by requiring the convergence of the muon tracks to the

interaction vertex.

The alignment is checked and, if necessary, redone after shutdowns and/or inter-

ventions that may affect the detector positions. In order to minimize the influence

of the residual misalignment on the reconstructed data, the physics measurements

in ALICE are routinely performed with both magnetic field polarities.

5. Event Characterization

For spherical nuclei, the geometry of heavy-ion collisions is characterized by the

impact parameter vector b connecting the centers of the two colliding nuclei in the

plane transverse to the beams. In the experiment, the centrality (related to b := |b|)
and the reaction-plane angle (azimuthal angle of b) are estimated using the particle

multiplicities and/or the zero-degree energy, and the anisotropies of particle emis-

sion, respectively. Below we sketch the methods and quote the resolution achieved

in these variables. A more detailed discussion of the centrality determination in

ALICE can be found in Ref. 45.

5.1. Centrality

It is customary to express the centrality of nuclear collisions not in terms of the

impact parameter b but via a percentage of the total hadronic interaction cross

section σAA. The centrality percentile c of an AA collision with impact parameter

b is defined as

c(b) =

∫ b

0
dσ
db′ db

′∫∞
0

dσ
db′ db

′ =
1

σAA

∫ b

0

dσ

db′
db′ . (3)

Experimentally, the centrality is defined as the fraction of cross section with the

largest detected charged-particle multiplicity Nch or the smallest zero-degree energy

EZDC:

c ≈ 1

σAA

∫ ∞

Nch

dσ

dN ′
ch

dN ′
ch ≈ 1

σAA

∫ EZDC

0

dσ

dE′
ZDC

dE′
ZDC . (4)

The cross section may be replaced with the number of observed events n (corrected

for the trigger efficiency and for the nonhadronic interaction background):

c ≈ 1

Nev

∫ ∞

Nch

dn

dN ′
ch

dN ′
ch ≈ 1

Nev

∫ EZDC

0

dn

dE′
ZDC

dE′
ZDC . (5)
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Fig. 11. (Color online) Distribution of the V0 amplitude (sum of V0A and V0C). The centrality
bins are defined by integrating from right to left following Eq. (5). The absolute scale is determined
by fitting to a model (red line), see below for details. The inset shows a magnified version of the
most peripheral region.

Equations (4) and (5) are based on the assumption that, on average, the particle

multiplicity at midrapidity (the zero-degree energy) increases (decreases) mono-

tonically with the overlap volume, i.e. with centrality. For the zero-degree energy

measurement (5), this assumption holds only for central collisions c � 50%, be-

cause nuclear fragments emitted in peripheral collisions may be deflected out of the

acceptance of the zero-degree calorimeter, leading to low signals indistinguishable

from those seen in central collisions.

The centrality determination via the particle multiplicity in V0 is illustrated in

Fig. 11. The V0 multiplicity (sum of V0A and V0C amplitudes) distribution was

recorded in Pb–Pb collisions at
√
sNN = 2.76 TeV, requiring a coincidence of V0

and SPD, and using ZDC to reduce the electromagnetic dissociation background.

Machine-induced background and parasitic collisions are removed using the timing

information from V0 and ZDC. The analysis is restricted to events with a vertex

position within |zvtx| � 10 cm. The centrality bins are defined by integrating the

charged-particle multiplicity distribution following Eq. (5), and the absolute scale

is determined by fitting to a model as described below.

The distribution of the energy deposited in the zero-degree calorimeter is shown

in Fig. 12. The ambiguity between central and peripheral collisions with unde-

tected nuclear fragments is resolved by correlating the zero-degree signal with the

amplitude of the electromagnetic calorimeter at 4.8 < η < 5.7 (ZEM).

An absolute determination of centrality according to Eqs. (4) or (5) requires

knowledge of the total hadronic cross section σAA or the total number of events

Nev, respectively. The total hadronic cross section σAA for Pb–Pb at
√
sNN =

2.76 TeV was measured in ALICE in a special run triggering on signals in the
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Fig. 12. (Color online) Correlation between the total energy deposited in the zero-degree
calorimeters and the ZEM amplitude. The centrality bins defined based on this distribution (lines)
are compared to the centrality from V0 (colored dots).
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Fig. 13. Correlation between signals in the two neutron zero-degree calorimeters. Single electro-
magnetic dissociation events produce a signal in only one of the calorimeters. Mutual dissociation
and hadronic interactions populate the interior of the plot and can be distinguished from each
other by the signal in ZEM.

neutron zero-degree calorimeters (ZNs) with a threshold well below the signal of a

1.38 TeV neutron.25 The recorded event sample is dominated by the electromagnetic

dissociation (EMD) of one or both nuclei. The single EMD events can be clearly

identified in the correlation plot between the two ZNs (Fig. 13). An additional
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requirement of a signal in ZEM (see Sec. 1) allows one to distinguish between the

mutual EMD and the hadronic interaction events. With the absolute normalization

determined by means of a van der Meer scan as described in Subsec. 2.3.3, a hadronic

cross section of σPbPb =
(
7.7 ± 0.1(stat)+0.6

−0.5(syst)
)

b was obtained. The centrality

may then be derived from the calorimeter signals using Eq. (4).

A higher accuracy of the centrality calibration can be achieved by normalizing

the measured event yield to the total number of events Nev that would be registered

in an ideal case, i.e. without background interactions and with a perfect trigger

efficiency (Eq. (5)). This was the method of choice in ALICE. The high-multiplicity

part of the multiplicity distribution was fitted by the Glauber model (red line in

Fig. 11), and the extrapolation of the model was used to determine the unbiased

number of events at low multiplicities. The Glauber model describes the collision

geometry using the nuclear density profile, assuming that nucleons follow straight

line trajectories and encounter binary nucleon–nucleon collisions according to an

inelastic nucleon–nucleon cross section σNN. For the latter, 64 mb was assumed in

the calculation; this value is consistent with the subsequent ALICE pp measurement

reported in Subsec. 2.3.4. The number of binary NN collisions Ncoll and the number

of participants Npart (nucleons which underwent a NN collision) are determined

for a given impact parameter. The multiplicity distribution was modeled assuming

fNpart+(1−f)Ncoll particle sources, with each source producing particles following

a negative binomial distribution (NBD) with fit parameters μ and k. The parameter

f represents the contribution of soft processes to the particle production. The fit

provides the integrated number of eventsNev needed for the absolute centrality scale

and relates the number of participants and binary NN collisions to the centrality.

The latter relation is presented in detail in Ref. 45.

The centrality for each event can be independently calculated from the multi-

plicities seen in V0A, V0C, ZDC, SPD, and TPC. The resolution of each of these

centrality estimators, defined as their r.m.s. for a sample of events with a fixed

b, was determined by studying correlations between them and is shown in Fig. 14.

The resolution ranges from 0.5% to 4% depending on centrality and on the detector

used. As expected, the resolution of each detector depends on its rapidity coverage,

scaling with ∼ 1/
√
Nch.

5.2. Event plane

The orientation of the reaction plane or, in case of flow fluctuations, the nth-

harmonic collision symmetry plane is estimated with the nth-harmonic event-plane

angle, ΨEP
n .46 For a given harmonic n, one constructs the two-dimensional event-

plane vector Qn from the measured azimuthal distribution of particles produced in

the event as follows:

Qn = (Qn,x, Qn,y) =

(∑
i

wi cosnφi,
∑
i

wi sinnφi

)
. (6)
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Fig. 14. Resolution of various centrality estimators.

Here the sum runs over all reconstructed tracks in the case of the TPC, or segments

of the detectors with azimuthal segmentation like V0, FMD, ZDC, or PMD. The

angle φi is the azimuthal emission angle of the particle i or the azimuthal coordinate

of the detector element i, respectively. For TPC tracks the weight wi can be unity

or a specific function of pT.46 For segmented detectors, wi is the signal observed

in the detector element i. Using the components of the Q-vector one can calculate

the ΨEP
n :46

ΨEP
n =

1

n
arctan 2(Qn,y, Qn,x) . (7)

The correction for the finite event-plane angle resolution can be calculated using

the two- or three- (sub-)detector correlation technique. The resolution correction

factor, in the following for brevity called “resolution,” is close to zero (unity) for

poor (perfect) reconstruction of the collision symmetry plane. In case of two (sub-)

detectors A and B the subevent resolution is defined as

Rsub
n =

√
〈cosn(ΨA

n − ΨB
n )〉 , (8)

where ΨA
n and ΨB

n are the event-plane angles of the two subevents, and the angle

brackets denote the average over an ensemble of the events. Typically, the same

harmonic is used in the flow measurement and for the event-plane determination. In

this case, the full event-plane resolution, i.e. the correlation between the event-plane

angle for the combined subevents and the reaction-plane angle, can be calculated

from46

Rn(χ) =
√
π/2χ exp(−χ2/2)(I0(χ2/2) + I1(χ2/2)) , (9)

Rfull
n = Rn

(√
2χsub

)
. (10)
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Fig. 15. Resolution of the second-order event-plane angle, ΨEP
2 , extracted from two- and three-

detector subevent correlations for TPC, V0, FMD, and PMD.

The variable χ represents the magnitude of flow normalized to the precision with

which it can be measured, and I0, I1 are the modified Bessel functions. In case of

(sub-)detectors with different kinematic coverages, such as V0A and V0C, a three-

detector subevent technique can be used. In this case, the resolution for a given

detector can be defined from the correlation between each detector pair

RA
n =

√〈
cosn

(
ΨA

n − ΨC
n

)〉〈
cosn

(
ΨA

n − ΨB
n

)〉〈
cosn

(
ΨB

n − ΨC
n

)〉 , (11)

where ΨA
n is the event-plane angle for which the resolution is calculated, and B

and C are any other two (sub-)detectors. One can get the resolution for each of the

three detectors by permutation of the event-plane angles for all three detectors. Note

that nonflow correlations and the effects of flow fluctuations can result in different

resolutions being extracted for the same detector from two- or three- (sub-)detector

correlations.

5.2.1. Event plane from elliptic flow

The dominant component of the anisotropic flow in mid-central collisions at LHC

energies is the elliptic flow. Consequently, the resolution of the second-order event

plane is the best. Figure 15 shows the resolution R2 of the second-order event-

plane angle ΨEP
2 , extracted from two- and three-detector subevent correlations

for TPC, V0, FMD, and PMD, versus the collision centrality. Effects from the

azimuthal nonuniformity of the detectors, which may result in nonphysical cor-

relations, were corrected at the time of the event-plane angle calculations. The

resolution R2 for charged particles measured in the TPC detector was calculated

using four different methods: by randomly dividing particles into two subevents
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Fig. 16. Event-plane angle, ΨEP
n , resolution for n = 2, 3, and 4, calculated with a three-detector

subevent technique separately for V0A and V0C detectors.

(denoted as “random-sub”), by constructing subevents from particles with oppo-

site charges (“charge-sub”) or particles separated by a rapidity gap of at least 0.4

units (“η-sub”), and from three-detector subevent correlations in combination with

the V0A and V0C detectors (“3-sub”). Variations in the event-plane resolution

calculated with different methods indicate differences in their sensitivity to the

correlations unrelated to the reaction plane (nonflow) and/or flow fluctuations.

5.2.2. Event plane from higher harmonics

Figure 16 shows the resolution of the event-plane angle, ΨEP
n , for the n = 2, 3, and

4 harmonics calculated with a three-detector subevent technique separately for the

V0A and V0C detectors. The TPC was used as a third, reference, detector. The

ordering of the resolutions for mid-central collisions in Fig. 16 reflects the fact that

higher harmonics of the anisotropic flow are gradually suppressed. At the same time,

even with small signals we still can statistically resolve higher-harmonic event-plane

angles with resolutions of the order of a few percent.

5.2.3. Event plane from spectator deflection

In noncentral nuclear collisions at relativistic energies, the spectator nucleons are

assumed to be deflected in the reaction plane away from the center of the system.

The first-order event-plane angle, which provides an experimental estimate of the

orientation of the impact parameter vector b, can be reconstructed using the neu-

tron ZDCs.1 Located about a hundred meters from the interaction point, these

detectors are sensitive to neutron spectators at beam rapidity. Each ZDC, A-side

(η > 0) and C-side (η < 0), has a 2 × 2 tower geometry. Event-by-event spectator
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Fig. 17. Resolution of the first-harmonic event plane estimated from spectator deflection, as
measured by the two ZDCs.

deflection is estimated from the ZDC centroid shifts Q1:

Q1 =
4∑

i=1

riEi

/
4∑

i=1

Ei , (12)

where ri = (xi, yi) and Ei are the coordinates and the recorded signal of the ith

ZDC tower, respectively. To correct for the time-dependent variation of the beam

crossing position and event-by-event spread of the collision vertex with respect to

the center of the TPC we perform the recentering procedure:

Q′
1 = Q1 − 〈Q1〉 . (13)

Recentering (subtracting the average centroid position 〈Q1〉) is performed as a

function of time, collision centrality, and transverse position of the collision vertex.

After recentering we observe an anticorrelation of the spectator deflections on the

A and C sides. This demonstrates the capability to measure directed flow using

the ZDCs. Figure 17 shows, as a function of centrality, the first-order event-plane

resolution obtained from two different transverse directions x and y in the detector

laboratory frame together with the combined resolution from both ZDCs.

6. Central Barrel Tracking

This section describes track finding in the central barrel. The procedure, shown

schematically in Fig. 18, starts with the clusterization step, in which the detector

data are converted into “clusters” characterized by positions, signal amplitudes,

signal times, etc., and their associated errors. The clusterization is performed sep-

arately for each detector. The next step is to determine the preliminary interaction

vertex using clusters in the first two ITS layers (SPD). Subsequently, track find-

ing and fitting is performed in TPC and ITS using the Kalman filter technique.47
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Fig. 18. Event reconstruction flow.

The found tracks are matched to the other central-barrel detectors and fitted. The

final interaction vertex is determined using the reconstructed tracks. A search for

photon conversions and decays of strange hadrons K0
S/Λ (denoted as V0), Ξ±, and

Ω± concludes the central-barrel tracking procedure. The steps are described in

further detail in this section.

6.1. Preliminary determination of the interaction vertex

Tracking in the central barrel starts with the determination of the interaction vertex

using the two innermost layers (SPD) of the ITS. It is found as a space point to

which a maximum number of tracklets (lines defined by pairs of clusters, one cluster

in each SPD layer) converge. In pp collisions, where interaction pileup is expected,

the algorithm is repeated several times, discarding at each iteration those clusters

which contributed to already-found vertices. By construction, the first vertex found

has the largest number of contributing tracklets and is assumed to be the primary

one. When a single convergence point is not found (particularly in low-multiplicity

events) the algorithm performs a one-dimensional search of the maximum in the

z-distribution of the points of closest approach (PCA) of tracklets to the nominal

beam axis.

6.2. Track reconstruction

Track finding and fitting is performed in three stages, following an inward–outward–

inward scheme.48,49

The first inward stage starts with finding tracks in the TPC. The TPC readout

chambers have 159 tangential pad rows and thus a track can, ideally, produce 159

clusters within the TPC volume. The track search in the TPC starts at a large

radius. Track seeds are built first with two TPC clusters and the vertex point, then

with three clusters and without the vertex constraint. The seeds are propagated

inward and, at each step, updated with the nearest cluster provided that it fulfills
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Fig. 19. TPC track finding efficiency for primary particles in pp and Pb–Pb collisions
(simulation). The efficiency does not depend on the detector occupancy.

a proximity cut. Since the clusters can be reused by different seeds, the same phys-

ical track can be reconstructed multiple times. In order to avoid this, a special

algorithm is used to search for pairs of tracks with a fraction of common clusters

exceeding a certain limit (between 25% and 50%). The worse of the two is rejected

according to a quality parameter based on the cluster density, number of clusters,

and momentum. Only those tracks that have at least 20 clusters (out of maximum

159 possible) and that miss no more than 50% of the clusters expected for a given

track position are accepted. These are then propagated inwards to the inner TPC

radius. A preliminary particle identification is done based on the specific energy

loss in the TPC gas (see Sec. 7). The most-probable-mass assignment is used in

the ionization energy loss correction calculations in the consecutive tracking steps.

(Due to the ambiguity of electron identification, the minimum mass assigned is that

of a pion). Figure 19 shows the tracking efficiency, defined as the ratio between the

reconstructed tracks and generated primary particles in the simulation, as a func-

tion of transverse momentum. While the drop below a transverse momentum of

∼ 0.5 GeV/c is caused by energy loss in the detector material, the characteristic

shape at larger pT is determined by the loss of clusters in the pT-dependent frac-

tion of the track trajectory projected on the dead zone between readout sectors.

The efficiency is almost independent of the occupancy in the detector. Even in the

most central Pb–Pb collisions the contamination by tracks with more than 10%

wrongly associated clusters does not exceed 3%.
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Fig. 20. ITS–TPC matching efficiency versus pT for data and Monte Carlo for pp (left) and
Pb–Pb (right) collisions.

The reconstructed TPC tracks are then propagated to the outermost ITS layer

and become the seeds for track finding in the ITS. The seeds are propagated inward

and are updated at each ITS layer by all clusters within a proximity cut, which takes

into account positions and errors. The result of each update is saved as a new seed.

In order to account for the detection inefficiency, seeds without an update at a given

layer are also used for further track finding. The χ2 of such seeds is increased by a

penalty factor for a missing cluster (unless the seed extrapolation happened to be

in the dead zone of the layer, in which case no cluster should be expected). Thus,

each TPC track produces a tree of track hypotheses in the ITS. As is the case in the

TPC, this seeding procedure is performed in two passes, with and without vertex

constraint. Once the complete tree of prolongation candidates for the TPC track is

built, the candidates are sorted according to the reduced χ2. The candidates with

the highest quality from each tree are checked for cluster sharing among each other.

If shared clusters are found, an attempt is made to find alternative candidates in

the involved trees. In the case of a failure to completely resolve the conflict between

two tracks, the worse of the two acquires a special flag for containing potentially

incorrectly matched (“fake”) clusters. Finally, the highest quality candidate from

each hypothesis tree is added to the reconstructed event. Figure 20 shows the TPC

track prolongation efficiency to ITS in pp and Pb–Pb collisions as a function of track

transverse momentum, with different requirements of ITS layer contributions. The

data and Monte Carlo (MC) efficiencies are shown by solid and open symbols,

respectively. The fraction of tracks with at least one fake cluster in the ITS in the

most central Pb–Pb collisions reaches ∼ 30% at pT < 0.2 GeV/c, decreases to ∼ 7%

at 1 GeV/c, and drops below 2% at 10 GeV/c.

As one can see in Fig. 19, the reconstruction efficiency in the TPC sharply

drops at low transverse momentum. The cutoff is around 200 MeV/c for pions

and 400 MeV/c for protons, and is caused by energy loss and multiple scattering in

the detector material. For this reason, a standalone ITS reconstruction is performed

with those clusters that were not used in the ITS–TPC tracks. The helical seeds are
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built using two clusters from the three innermost ITS layers and the primary vertex

point. Each such seed is propagated to the other layers and updated with clusters

within a proximity cut. Each matching cluster increments the number of seed-

completion hypotheses. For the final step of seed processing, all of the hypotheses

are refitted by a Kalman filter and the track with the best fit χ2 is accepted, with

its clusters being removed from further searches. In order to increase the efficiency

of tracking, the whole procedure is repeated a few times, gradually opening the

seed completion road widths. This algorithm enables the tracking of particles with

transverse momenta down to about 80 MeV/c.

Once the reconstruction in the ITS is complete, all tracks are extrapolated

to their point of closest approach to the preliminary interaction vertex, and the

outward propagation starts. The tracks are refitted by the Kalman filter in the

outward direction using the clusters found at the previous stage. At each outward

step, the track length integral, as well as the time of flight expected for various par-

ticle species (e, μ, π,K, p), are updated for subsequent particle identification with

TOF (see Sec. 7). Once the track reaches the TRD (R = 290 cm), an attempt

is made to match it with a TRD tracklet (track segment within a TRD layer) in

each of the six TRD layers. Similarly, the tracks reaching the TOF detector are

matched to TOF clusters. The track length integration and time-of-flight calcula-

tion are stopped at this stage. The tracks are then propagated further for matching

with signals in EMCal, PHOS, and HMPID (see Secs. 7 and 8 for the perfor-

mance of matching to external detectors). The detectors at a radius larger than

that of the TPC are currently not used to update the measured track kinematics,

but their information is stored in the track object for the purposes of particle

identification.

At the final stage of the track reconstruction, all tracks are propagated inwards

starting from the outer radius of the TPC. In each detector (TPC and ITS), the

tracks are refitted with the previously found clusters. The track’s position, direction,

inverse curvature, and its associated covariance matrix are determined.

The majority of tracks reconstructed with the described procedure come

from the primary interaction vertex (Fig. 21). Secondary tracks, representing the

products of decays and of secondary interactions in the detector material, can be

further suppressed by cuts on the longitudinal and transverse distances of closest

approach (d0) to the primary vertex. The dedicated reconstruction of secondary

tracks is the subject of Subsec. 6.4.

The left panel of Fig. 22 shows the resolution of the transverse distance to

the primary vertex for identified ITS–TPC tracks in pp collisions, compared with

simulation. The contribution from the vertex resolution is not subtracted. The right

panel of Fig. 22 shows the same quantity for all charged particle tracks for three

colliding systems and with a higher pT reach. One can notice an improvement of

the resolution in heavier systems thanks to the more precisely determined vertex

for higher multiplicities.
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Fig. 22. Resolution of the transverse distance to the primary vertex for identified particle global
ITS–TPC tracks (left) and for all charged ITS–TPC tracks (right). The contribution from the
vertex resolution is not subtracted.

The transverse momentum resolution for TPC standalone tracks and ITS–TPC

combined tracks, extracted from the track covariance matrix, is shown in Fig. 23.

The effect of constraining the tracks to the primary vertex is shown as well. The

inverse-pT resolution, plotted in this figure, is connected to the relative transverse

momentum resolution via

σpT

pT
= pT σ1/pT

. (14)
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Fig. 23. (Color online) The pT resolution for standalone TPC and ITS–TPC matched tracks with
and without constraint to the vertex. The vertex constrain significantly improves the resolution
of TPC standalone tracks. For ITS–TPC tracks, it has no effect (green and blue squares overlap).

The plot represents the most advanced reconstruction scheme that was applied to

the data taken in the recent p–Pb run. In central Pb–Pb collisions, the pT resolution

is expected to deteriorate by ∼ 10–15% at high pT due to the loss (or reduction) of

clusters sitting on ion tails, cluster overlap, and fake clusters attached to the tracks.

To demonstrate the mass resolution achievable with ITS–TPC global tracks

we show in Fig. 24 the invariant mass spectra of μ+μ− (left) and e+e− (right)

pairs measured in ultraperipheral Pb–Pb collisions at
√
sNN = 2.76 TeV. The mass

resolution at the J/ψ peak is better than 1%.

Although it provides the best estimate of track parameters, the global ITS–

TPC track reconstruction suffers from gaps in the ITS acceptance. In particular,

in the innermost two SPD layers, up to 20% and 30% of the modules were inactive

in the years 2010 and 2011, respectively. The inefficiency was reduced to ∼ 5% in

2012 after solving problems with detector cooling. For those analyses that require a

uniform detector response, the parameters of the tracks fitted only in the TPC and

constrained to the primary vertex can be used. The transverse momentum resolution

of these tracks is comparable to that of the global tracks up to pT ≈ 10 GeV/c and

significantly worse for higher momenta (red filled circles in Fig. 23).

The ability to reconstruct pairs of close tracks is important for particle-

correlation measurements. The track-separation dependent efficiency has to be

either corrected for or, when dealing with ratios, close pairsg have to be removed

gTwo tracks that are so close to each other that the presence of one track affects the reconstruction
efficiency of the other.
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Fig. 24. Invariant mass spectra of μ+μ− (left) and e+e− (right) pairs in ultraperipheral Pb–Pb
collisions. The solid and dotted lines represent the background (exponential) and peak (Crystal
Ball50) fit components, respectively. The bremsstrahlung tail in the e+e− spectrum is reproduced
in simulation. The mass resolution is better than 1%.

in the numerator and denominator of the correlation function. In the first pion

femtoscopy analysis in Pb–Pb collisions,51 those pairs of tracks that were separated

by less than 10 mrad in θ and by less than 2.4 cm in rφ at a cylindrical radius of

r = 1.2 m were removed. This was sufficient to determine precisely the shape of the

two-particle correlation function.

6.3. Final determination of the interaction vertex

Global tracks, reconstructed in TPC and ITS, are used to find the interaction vertex

with a higher precision than with SPD tracklets alone. By extrapolating the tracks

to the point of closest approach to the nominal beam line and removing far outliers,

the approximate point of closest approach of validated tracks is determined. Then

the precise vertex fit is performed using track weighting to suppress the contribution

of any remaining outliers.52 In order to improve the transverse vertex position

precision in low-multiplicity events, the nominal beam position is added in the fit

as an independent measurement with errors corresponding to the transverse size of

the luminous region.

For data-taking conditions where a high pileup rate is expected, a more robust

version of vertex finding inspired by the algorithm from Ref. 53 is used. It is based

on iterative vertex finding and fitting using Tukey bisquare weights54 to suppress

outliers. A scaling factor is applied to the errors on the tracks extrapolated to

the nominal beam axis and inflated until at least two tracks with nonzero weights

are found for an initial vertex position. The fit, similar to Ref. 52 but accounting

for these weights, is performed, and as the fitted vertex moves towards its true

position, the scaling factor is decreased. The iterations stop when the distance
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Fig. 25. Left: Bunch crossing (BC) ID of tracks obtained from the comparison of time of flight
measured in the TOF detector and expected from the track kinematics. The ID is defined with
respect to the BC in which the triggering interaction took place. The peak at −15 corresponds to
tracks not matched in TOF (mostly from the pileup in the TPC, outside of the TOF readout win-
dow of 500 ns). Right: z coordinates of tracks’ PCA to the beam axis in a single event with pileup;
the positions of reconstructed vertices with attributed bunch crossings are shown by markers.

between successively fitted vertices is below 10 μm. If the scaling factor at this

stage is still significantly larger than unity or the maximum number of iterations

is reached, the vertex candidate is abandoned and the search is repeated with a

different seeding position. Otherwise the final fit of the weighted tracks is done, the

vertex is validated, the tracks with nonzero weights are removed from the pool, and

the search for the next vertex in the same event is performed. The algorithm stops

when no more vertices are found in the scan along the beam direction. In order

to reduce the probability of including tracks from different bunch crossings in the

same vertex, only tracks with the same or undefined bunch crossing are allowed

to contribute to the same vertex. Tracks are associated with bunch crossings using

the time information measured by the TOF detector. The left plot of Fig. 25 shows

bunch-crossings assigned to ITS–TPC tracks in a typical high intensity pp run.

On the right an example of a single event with identified pileup is shown. The

histogram shows the z coordinate of tracks’ closest approach to the beam axis,

while the positions of reconstructed vertices with attributed bunch crossings are

shown by markers.

Figure 26 shows the x (left) and z (right) profiles of the luminous region obtained

from reconstructed vertices in pp and Pb–Pb collisions. The transverse resolution

of the preliminary interaction vertices found with SPD (Subsec. 6.1) and of the final

ones, found with global tracks, are shown in Fig. 27. As expected, both resolutions

scale with the square root of the number of contributing tracks.

6.4. Secondary vertices

Once the tracks and the interaction vertex have been found in the course of event

reconstruction, a search for photon conversions and secondary vertices from particle
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Fig. 26. The x (left) and z (right) projections of the luminous region obtained from reconstructed
vertices in pp and Pb–Pb collisions (folded with vertex resolution).
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Fig. 27. Transverse width of the final vertex distribution (solid points), decomposed into the
finite size of the luminous region σD and the vertex resolution α/

√
(dNch/dη)β . For comparison,

the widths of the preliminary (SPD) interaction vertices are shown as open points.

decays is performed as shown in Fig. 28. Tracks with a distance of closest approach

to the interaction vertex exceeding a certain minimum value (0.5 mm in pp and

1 mm in Pb–Pb) are selected. For each unlike-sign pair of such tracks (called V0

candidate) the point of closest approach between the two tracks is calculated. The

V0 candidates are then subjected to further cuts: (i) the distance between the two

tracks at their PCA is requested to be less than 1.5 cm; (ii) the PCA is requested

to be closer to the interaction vertex than the innermost hit of either of the two

tracks; (iii) the cosine of the angle θ between the total momentum vector of the

pair �ppair and the straight line connecting the primary (interaction) and secondary
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pairp
�

Fig. 28. Secondary vertex reconstruction principle, withK0
S and Ξ− decays shown as an example.

For clarity, the decay points were placed between the first two ITS layers (radii are not to scale).
The solid lines represent the reconstructed charged particle tracks, extrapolated to the secondary
vertex candidates. Extrapolations to the primary vertex and auxiliary vectors are shown with
dashed lines.

vertices must exceed 0.9. For V0 candidates with a momentum below 1.5 GeV/c,

the latter cut is relaxed. This facilitates the subsequent search for cascade decays.

Figure 29 shows K0
S (left) and Λ (center) peaks obtained in central Pb–Pb col-

lisions. Proton daughters of Λ with pT < 1.5 GeV/c were identified by their energy

loss in the TPC gas (see Sec. 7). The right plot shows the K0
S and Λ reconstruction

efficiencies in central and peripheral collisions as a function of their pT. The drop in

Λ reconstruction efficiency at high pT is due to the smaller probability of decay in

the fiducial volume (r < 100 cm) of the V0 search at higher momenta. The distribu-

tions of decay point distances from the interaction vertex agree, after correcting for

the acceptance and efficiency, with the expectations based on the known lifetime of

the hyperons and neutral kaons (Fig. 30).

After finding V0 candidates, the search for the cascade (Ξ−) decays is performed

as shown schematically in Fig. 28. V0 candidates with an invariant mass in the

vicinity of the Λ are matched with a secondary track by cutting on their mutual

distance at the PCA and requesting that the latter is outside of a cylindrical volume

around the interaction vertex (r > 0.2 cm).

The reconstruction of more complex secondary vertices is performed later,

at the analysis stage. For the study of heavy-flavor decays close to the inter-

action point, the secondary vertex is searched for by considering all unlike-sign

track pairs and selecting those passing a set of topological cuts.55 In particular,
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Fig. 29. Invariant mass distributions of π+π− (left panel) and pπ− (middle panel) pairs in central
Pb–Pb collisions at

√
sNN = 2.76 TeV. The hatched areas show the regions of the K0

S and Λ peaks
and of the combinatorial background. The right-hand panel shows the reconstruction efficiencies
(including the candidate selection cuts) as a function of transverse momentum for central (0–5%)
and peripheral (80–90%) collisions.
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Fig. 30. Distance of the Λ, Λ̄, and K0
S decay vertex from the interaction vertex, scaled by p/m.

The slopes of the distributions are consistent with the known lifetimes.

the strongest improvement of the signal-to-background ratio is achieved by cuts

on the significance of the projection of the decay length in the transverse plane

Lxy/σLxy > 7 and on the transverse pointing angle cos(θxy) > 0.998. Lxy is defined

as
(
�uTS−1�r

)
/
(
�uTS−1�u

)
, where �r is the vector connecting the decay and primary

vertices, �u is the unit vector in direction of the decaying particle, and S−1 is the

inverse of the sum of the covariance matrices of the primary and secondary vertices.
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Fig. 31. Invariant mass distribution of K−π+ pairs before (symbols) and after (line) selection
cuts on the relation between the secondary (D0 decay) and primary vertices. The extracted D0

mass and its resolution as well as the significance are shown after selection.

The effect of the described cuts is illustrated in Fig. 31 which shows the resulting

suppression of the combinatorial background in the analysis of D0 → K−π+.

The implementation of the geometry and material distribution of the detectors

in the simulation and reconstruction software is verified by comparing the distri-

butions of reconstructed hadronic interaction vertices to simulations. The hadronic

interaction vertices are found at the analysis level by identifying groups of two or

more tracks originating from a common secondary vertex. For these, none of the

track pairs should have an invariant mass of γ, K0
S, or Λ. Figure 32 shows the r–z

distribution of such vertices representing the material of the apparatus.

7. Hadron Identification

The ALICE detector has a number of different subsystems for identifying charged

hadrons and electrons. The following subsystems are used for hadron identification:

• ITS : The outer four layers of the Inner Tracking System have an analog readout

to measure the deposited charge, thereby providing a dE/dx measurement. This

is mainly useful for low-pT tracks (pT � 0.7 GeV/c), specifically at very low pT,

where the ITS is used for standalone tracking.
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Fig. 32. Distribution of secondary vertices from hadronic interactions in the ALICE material.
The ITS layers (r < 50 cm), the inner TPC containment vessel (60 cm < r < 70 cm), and the
inner TPC field cage (r ∼ 80 cm) are visible.

• TPC : The Time Projection Chamber measures the charge deposited on up to

159 padrows. A truncated mean dE/dx (40% highest-charge clusters discarded)

is calculated and used for a wide range of momenta. The largest separation is

achieved at low pT (pT � 0.7 GeV/c) but a good separation is also present in the

relativistic rise region (pT � 2 GeV/c) up to ∼ 20 GeV/c.

• TOF : The Time-Of-Flight detector is a dedicated detector for particle identi-

fication that measures the arrival time of particles with a resolution of ∼ 80 ps.

This provides a good separation of kaons and protons up to pT � 4 GeV/c.

• HMPID : The High Momentum Particle Identification Detector is a ring-imaging

Cherenkov detector that covers |η| < 0.6 in pseudorapidity and 57.6◦ in azimuth,

corresponding to 5% acceptance of the central barrel, and provides proton/kaon

separation up to pT � 5 GeV/c.

The measurements in the different particle identification detector systems are then

combined to further improve the separation between particle species. This is dis-

cussed in Subsecs. 7.5 and 7.7.

The particle identification (PID) capabilities of these detectors are used for

a wide range of physics analyses, including transverse momentum spectra for

pions, kaons, and protons;56–58 heavy-flavor decays;55 Bose–Einstein correlations

for pions51,59,60 and kaons;61,62 and resonance studies.63 The hadron identification

systems is also used to identify electrons. In addition, the calorimeters (PHOS and

EMCal) and the Transition Radiation Detector (TRD) provide dedicated electron

identification, which will be discussed in Sec. 8.

7.1. Particle identification in the ITS

The inner tracking system (ITS) of ALICE consists of six layers of silicon detectors.

The outer four layers provide a measurement of the ionization energy loss of particles

as they pass through the detector. The measured cluster charge is normalized to
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Fig. 33. Distribution of the energy-loss signal in the ITS as a function of momentum. Both the
energy loss and momentum were measured by the ITS alone.

the path length, which is calculated from the reconstructed track parameters to

obtain a dE/dx value for each layer. For each track, the dE/dx is calculated using a

truncated mean: the average of the lowest two points if four points are measured, or

a weighted sum of the lowest (weight 1) and the second-lowest points (weight 1/2),

if only three points are measured. An example distribution of measured truncated

mean energy loss values as a function of momentum in the ITS is shown in Fig. 33.

7.2. Particle identification in the TPC

The TPC64 is the main tracking detector in ALICE. In addition it provides infor-

mation for particle identification over a wide momentum range. Particle identifica-

tion is performed by simultaneously measuring the specific energy loss (dE/dx),

charge, and momentum of each particle traversing the detector gas. The energy

loss, described by the Bethe-Bloch formula, is parametrized by a function origi-

nally proposed by the ALEPH collaboration,65

f(βγ) =
P1

βP4

(
P2 − βP4 − ln

(
P3 +

1

(βγ)P5

))
, (15)

where β is the particle velocity, γ is the Lorentz factor, and P1−5 are fit parame-

ters. Figure 34 shows the measured dE/dx versus particle momentum in the TPC,

demonstrating the clear separation between the different particle species. The lines

correspond to the parametrization. While at low momenta (p � 1 GeV/c) particles

can be identified on a track-by-track basis, at higher momenta particles can still

be separated on a statistical basis via multi-Gaussian fits. Indeed, with long tracks

(� 130 samples) and with the truncated-mean method the resulting dE/dx peak

shape is Gaussian down to at least 3 orders of magnitude.
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Fig. 34. Specific energy loss (dE/dx) in the TPC versus particle momentum in Pb–Pb collisions
at

√
sNN = 2.76 TeV. The lines show the parametrizations of the expected mean energy loss.
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Fig. 35. Ionization energy loss (dE/dx) distributions in the TPC in pp (left) and Pb–Pb collisions
(right) at

√
sNN = 2.76 TeV. The lines represent Gaussian fits as described in the main text.

In the relativistic rise region, the dE/dx exhibits a nearly constant separation

for the different particle species over a wide momentum range. Due to a dE/dx

resolution of about 5.2% in pp collisions and 6.5% in the 0–5% most central Pb–Pb

collisions,h particle ratios can be measured at a pT of up to 20 GeV/c.66 The main

limitation at the moment is statistical precision, so it is expected that the measure-

ment can be extended up to ∼ 50 GeV/c in the future.

As an example, dE/dx distributions for charged particles with pT ≈ 10 GeV/c

are shown in Fig. 35 for pp and the 0–5% most central Pb–Pb collisions. Note that,

hThe deterioration of the energy-loss resolution in high-multiplicity events is caused by clusters
overlapping in z and/or sitting on top of a signal tail from an earlier cluster.
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for this analysis, a specific η range was selected in order to achieve the best possible

dE/dx resolution. The curves show Gaussian fits where the mean and width were

fixed to the values obtained using clean samples of identified pions and protons

from, respectively, K0
S and Λ decays, and assuming that the dE/dx response at

high pT depends only on βγ.

7.3. Particle identification in TOF

The Time-Of-Flight (TOF) detector67 of ALICE is a large area array of Multigap

Resistive Plate Chambers (MRPC), positioned at 370–399 cm from the beam axis

and covering the full azimuth and the pseudorapidity range |η| < 0.9. In Pb–Pb

collisions, in the centrality range 0–70% the overall TOF resolution is 80 ps for

pions with a momentum around 1 GeV/c. This value includes the intrinsic detector

resolution, the contribution from electronics and calibration, the uncertainty on

the start time of the event, and the tracking and momentum resolution.68 TOF

provides PID in the intermediate momentum range, up to 2.5 GeV/c for pions and

kaons, and up to 4 GeV/c for protons.

The start time for the TOF measurement is provided by the T0 detector, which

consists of two arrays of Cherenkov counters T0C and T0A, positioned at opposite

sides of the interaction point (IP) at −3.28 < η < −2.97 and 4.61 < η < 4.92,

respectively. Each array has 12 cylindrical counters equipped with a quartz radiator

and photomultiplier tube.69 Figure 36 (left panel) shows the distribution of the start

time (interaction time of the collision) as measured by the sum of the time signals

from the T0A and T0C detectors in Pb–Pb collisions at
√
sNN = 2.76 TeV with

respect to the nominal LHC clock value. The width of the distribution is indicative

of how much the collision time can jitter with respect to its nominal value (the LHC

clock edge). This is due to the finite size of the bunches and the clock-phase shift

during a fill. The time resolution of the detector, estimated by the time difference

registered in T0A and T0C, is 20–25 ps in Pb–Pb collisions (Fig. 36, right panel)

and ∼ 40 ps in pp collisions. The efficiency of T0 is 100% for the 60% most central

Pb–Pb collisions at
√
sNN = 2.76 TeV, dropping to about 50% for events with

centrality around 90%. For pp collisions at
√
s = 7 TeV, the efficiency is about

50% for a T0 coincidence signal (T0A-AND-T0C) and 70% if only one of the T0

detectors is requested (T0A-OR-T0C).

The start time of the event tev is also estimated using the particle arrival times at

the TOF detector. A combinatorial algorithm based on a χ2 minimization between

all the possible mass hypotheses is used in the latter case. It can be invoked when

at least three particles reach the TOF detector, to provide increased resolution

and efficiency at larger multiplicity. With 30 tracks, the resolution on tev reaches

30 ps.68 This method is particularly useful for events in which the T0 signal is not

present. If neither of these two methods is available, an average TOF start time for

the run is used instead.
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Fig. 36. Interaction time of the collision with respect to the LHC clock measured by the T0
detector (left) and the resolution of the system obtained as the time difference between T0A and
T0C (right). The time difference is corrected for the longitudinal event-vertex position as measured
by the SPD.
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Fig. 37. Matching efficiency (including the geometric acceptance factor) at TOF for tracks recon-
structed in the TPC in p–Pb collisions at

√
sNN = 5.02 TeV, compared to Monte Carlo simulation.

The efficiency of matching TPC tracks to TOF in the 2013 p–Pb run is compared

with Monte Carlo simulation in Fig. 37. At pT < 0.7 GeV/c, the matching efficiency

is dominated by energy loss and the rigidity cutoff generated by the magnetic field.

At higher transverse momenta it reflects the geometrical acceptance (dead space

between sectors), the inactive modules, and the finite efficiency of the MRPCs

(98.5% on average).
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Fig. 38. Distribution of β as measured by the TOF detector as a function of momentum for
particles reaching the TOF in Pb–Pb interactions.
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Fig. 39. Distribution of β as measured by the TOF detector as a function of momentum for
particles reaching TOF in p–Pb interactions. The background of mismatched tracks is lower than
in Pb–Pb.

Figure 38 illustrates the performance of the TOF detector by showing the mea-

sured velocity β distribution as a function of momentum (measured by the TPC).

The background is due to tracks that are incorrectly matched to TOF hits in

high-multiplicity Pb–Pb collisions. The distribution is cleaner in p–Pb collisions

(Fig. 39), showing that the background is not related to the resolution of the TOF

detector, but is rather an effect of track density and the fraction of mismatched

1430044-57

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

The ALICE Collaboration

βTOF 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

en
tr

ie
s

1

10

210

310

410

510
ALICE
0.95 GeV/c < p < 1.05 GeV/c

 0.032)×TeV   ( 2.76 = 
NN

sPb-Pb 

TeV 5.02 = 
NN

sp-Pb 

Fig. 40. TOF β distribution for tracks with momentum 0.95 GeV/c < p < 1.05 GeV/c. The
Pb–Pb histogram is normalized to the p–Pb one at the pion peak (β = 0.99). While the resolution
(width of the mass peaks) is the same, the background of mismatched tracks increases in the
high-multiplicity environment of Pb–Pb collisions. Both samples are minimum bias.

tracks. This is also visible in Fig. 40 where the β distribution is shown for a narrow

momentum band. The pion, kaon, and proton peaks are nearly unchanged but the

level of background due to mismatched tracks is higher in Pb–Pb. The fraction of

mismatched tracks above 1 GeV/c in Pb–Pb events is closely related to the TOF

occupancy. With 104 hits at TOF (corresponding to a very central Pb–Pb event)

the TOF pad occupancy is 6.7% and the fraction of mismatched hits is around 6.5%.

The resolution can be studied in a given narrow momentum interval by com-

puting the difference between the time of flight measured by TOF and the pion

time expectation. The distribution is fitted with a Gaussian whose width is the

convolution of the intrinsic time resolution of the TOF detector and the resolution

of the event time. In the limit of high track multiplicity the width becomes equal

to the intrinsic resolution of the TOF detector and has a value of 80 ps (Fig. 41).

At those transverse momenta where the TOF resolution does not permit track-

by-track identification, a fit of multiple Gaussian peaks is used to determine the par-

ticle yields. To illustrate this, Fig. 42 shows, for tracks with 1.5 < pT < 1.6 GeV/c,

the difference between the measured time of flight and the expectation for kaons,

together with a template fit to the pion, kaon, and proton peaks and the combina-

torial background from mismatched tracks.

7.4. Particle identification in the HMPID

The High Momentum Particle Identification Detector consists of seven identi-

cal RICH (ring-imaging Cherenkov) modules in proximity focusing configuration,

exploiting a liquid C6F14 radiator coupled to MWPC (multiwire proportional
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Fig. 41. Time resolution of pion tracks with 0.95 < p < 1.05 GeV/c as a function of the number
of tracks used to define the start time of the collision tev .68 The data are from p–Pb collisions.
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Fig. 42. TOF measured in Pb–Pb collisions at
√
sNN = 2.76 TeV. The expected time of flight

for kaons is subtracted and the result is divided by the expected resolution.

chamber)-based photon detectors with CsI photocathodes and covering 11 m2

(≈ 5% of TPC acceptance). On average 14 photoelectrons per ring are detected at

saturation (β ≈ 1). The HMPID detector extends track-by-track charged hadron

identification in ALICE to higher pT. The identification is based on the Cherenkov

angle of the ring produced by charged tracks. The Cherenkov angle is given by:

cos θ =
1

nβ
, (16)

where n is the refractive index of the radiator (n ≈ 1.289 at 175 nm). The match-

ing efficiency of tracks reconstructed in the TPC with the HMPID is shown in
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Fig. 43. Matching efficiency (including the geometric acceptance factor) at HMPID for tracks
reconstructed in the TPC.

Fig. 43 for pp data and positive particles. The value at large transverse momentum

is dominated by the geometrical acceptance of the detector. At low pT, the match-

ing efficiency is shaped by energy loss, a lower momentum cut due to the magnetic

field, and the mass-dependent momentum threshold of the Cherenkov effect. Nega-

tive particles (not shown) have similar behavior. Antiprotons have a slightly lower

efficiency due to differing absorption behavior in the material between TPC and

HMPID.

Figure 44 shows the measured mean Cherenkov angle as a function of track

momentum for pions, kaons, and protons in pp collisions at 7 TeV. The lines rep-

resent parametrizations of Eq. (16) for each species. The separation of kaons from
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Fig. 44. Mean Cherenkov angle measured by HMPID in pp collisions at 7 TeV as a function of
track momentum. The lines represent parametrizations of Eq. (16) for each species.
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Fig. 45. Squared particle masses calculated from the momentum and velocity determined with
ITS-TPC and HMPID, respectively, in central Pb–Pb collisions at

√
sNN = 2.76 TeV. The velocity

is calculated from the Cherenkov angle measured in the HMPID. Dotted lines indicate the PDG
mass values. The pion tail on the left-hand side is suppressed by an upper cut on the Cherenkov
angle. The deuteron peak is clearly visible.

other charged particles, determined by fitting the Cherenkov angle distribution with

three Gaussians for each transverse momentum bin (the background is negligible),

is 3σ for pT < 3 GeV/c for pions, and pT < 5 GeV/c for protons.

Figure 45 shows the mass distribution of particles identified in the HMPID in

central Pb–Pb collisions. The mass is calculated from the Cherenkov angle mea-

sured in the HMPID and the momentum determined by the central-barrel tracking

detectors. For tracks with p > 1.5 GeV/c and with 5–15 clusters per ring, the

deuteron peak becomes clearly visible. This, and the fact that all of the particle

peaks are at their nominal mass values, shows the good performance of the pattern

recognition in the high-multiplicity environment of central Pb–Pb collisions.

7.5. Overview of separation powers and combined PID

Figure 46 shows the pion–kaon (left panel) and kaon–proton (right panel) separation

power of the ITS, TPC, TOF, and HMPID as a function of pT. The separation is

calculated as the distance Δ between the peaks divided by the Gaussian width σ

of the pion and the kaon response, respectively. Note that the detector response for

the individual detectors in Figs. 33, 34, 38, 39, and 44 is naturally a function of

total momentum p. However, since most physics results are analyzed in transverse

momentum bins, in Fig. 46 we present the separation power in pT bins, averaging

the momentum-dependent response over the range |η| < 0.5. For the TPC, a forward

pseudorapidity slice, relevant for high-pT PID analysis, is shown as well. This also

demonstrates the effect of averaging over a larger η range, which mixes different

momentum slices.
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Fig. 46. Separation power of hadron identification in the ITS, TPC, TOF, and HMPID as a
function of pT at midrapidity. The left (right) panel shows the separation of pions and kaons
(kaons and protons), expressed as the distance between the peaks divided by the resolution for
the pion and the kaon, respectively, averaged over |η| < 0.5. For the TPC, an additional curve is
shown in a narrower η region. The lower panels show the range over which the different ALICE
detector systems have a separation power of more than 2σ.

The plots demonstrate the complementarity of the different detector systems.

At low pT < 500 MeV/c, the TPC and ITS provide the main separation, because

TOF and HMPID are not efficient. At intermediate pT, up to 3 (4) GeV/c for

pions/kaons and 5 (6) GeV/c for protons, TOF(HMPID) provides more than 3σ

separation power. TOF has full azimuthal coverage and it reaches lower pT, while

HMPID only covers 5% of the full acceptance. At higher pT, the TPC can be used

to separate pions from protons and kaons with ∼ 2σ separation, exploiting the

relativistic rise of the energy loss. Protons and kaons can be separated statistically

with a multi-Gaussian fit to the collected signal (see Fig. 35).

The separation of hadron species can be further improved by combining infor-

mation from multiple detectors, thus allowing a further extension of the momentum

range for identified particle measurements. An example of this approach is shown in

Fig. 47, where at intermediate pT the difference between the measured and expected

PID signals for TPC and TOF are represented. It is evident that cuts or fits using

a combination of the variables provide a better separation than just considering

their projections. This technique was used to measure the p/π ratio in di-hadron

correlations70 and permits, using fits of the bidimensional distribution, to extend

the kaon/pion separation up to a transverse momentum of 5 GeV/c in Pb–Pb.

A Bayesian approach to combined PID, making use of the known relative yields

of different particle species, is under development.
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Fig. 47. Combined pion identification with TOF and with dE/dx in the TPC.

7.6. Particle identification using weak decay topology

In addition to the direct identification of the more stable hadrons (π,K, p) using

mass-dependent signals such as dE/dx, TOF and Cherenkov radiation, ALICE

also identifies hadrons through their weak decay topology. This technique is used

for strange hadrons, such as K0
S, Λ, and the multi-strange baryons Ξ and Ω, as well

as for charmed hadrons. In all of these cases a full kinematical reconstruction of

the decay into charged hadrons is used, as described in Subsec. 6.4.

In addition to these, charged kaons can be identified by a distinct kink in the

track owing to the decay into a muon and a neutrino with a branching ratio (BR)

of 63.5%. Figure 48 shows an invariant mass distribution of kink-decay daughters,

assumed to be a muon and a neutrino. The muon momentum is taken from the track

segment after the kink. For the neutrino momentum, the difference between the

momenta of the track segments before and after the kink is used. The distribution

shows two peaks representing the muonic decays of pions and kaons, as well as

K± → π± + π0 (BR = 20.7%) reconstructed with an incorrect mass assumption.

The broad structure outside the pion mass region mainly originates from three-

body decays of kaons. The efficiency for reconstruction and identification of charged

kaons is ∼ 60% at pT around 1.0 GeV/c and decreases gradually at higher transverse

momenta, as the angle between mother and daughter tracks becomes smaller. The

structures in the invariant mass distribution are well reproduced in simulation.

The simulation also provides an estimate of the contamination. For kaons with

transverse momenta up to 8 GeV/c, the contamination is below 3%. Most of the

contamination arises due to single charged-particle tracks with a small-angle kink

caused by scattering rather than a decay.
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Fig. 48. Invariant mass of reconstructed charged particles (pions and kaons) decaying inside the
TPC volume and producing a secondary vertex (kink). The mass is calculated assuming that the
track segment after the kink represents a muon and that the neutral decay daughter is a neutrino.
The neutrino momentum is taken from the difference between the momenta of the track segments
before and after the kink.

7.7. Particle identification in physics analysis

The use and performance of particle identification can best be illustrated using

examples of specific physics analyses. Transverse momentum spectra of π, K, and

p, identified using ITS, TPC, TOF, and decay topology, were published for pp56

and Pb–Pb57,58 collisions. Applications of PID techniques to analyses of φ, D, and

light nuclei are briefly discussed below.

7.7.1. φ meson

The φ meson predominantly decays into two charged kaons φ → K+K−. Since

this is a strong decay, it is not possible to topologically reconstruct the decay.

Identification of the decay products, however, dramatically improves the signal-to-

background ratio. This is demonstrated in Fig. 49, which shows the φ signal in

3 million central Pb–Pb events without particle identification (green circles) and

with particle identification using a 2σ cut on the TPC dE/dx (red dots). The

signal-to-background ratio at the φ peak for 1 < pT < 1.5 GeV/c (pT < 24 GeV/c)

improves from 0.3 × 10−3 (0.1 × 10−3) to 5 × 10−3 (4 × 10−3) when the PID cut is

applied. In terms of the peak significance, the improvement is from 14 to 45 (from

15 to 75).
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Fig. 49. (Color online) Invariant mass distribution of K+K− candidate pairs for reconstruction
of the φ → KK decay, with and without particle identification, before (left panel) and after (right
panel) background subtraction.

7.7.2. D meson

Charm production measurements in ALICE are performed, among others, using

hadronic decays of the charmed mesons D0, D±, and D∗±.55,71,72 For these analy-

ses, the identification of the kaons greatly enhances the signal significance. As an

example, Fig. 50 shows the invariant mass distribution of Kπ candidate pairs with

)2c) (GeV/πM(K
1.75 1.8 1.85 1.9 1.95 2 2.0

co
un

ts

0

5000

10000

15000

20000

25000

=2.76 TeVNNsPb-Pb 
centrality 0-20%

no PID
with PID

)2c) (GeV/πM(K
1.75 1.8 1.85 1.9 1.95 2

co
un

ts

-200

0

200

400

600

800

1000

no PID
with PID

Fig. 50. Invariant mass distribution of Kπ candidate pairs for reconstruction of the D0 → Kπ de-
cay, with and without particle identification, before (left panel) and after (right panel) background
subtraction.
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Fig. 51. Measured dE/dx signal in the ALICE TPC versus magnetic rigidity, together with
the expected curves for negatively-charged particles. The inset panel shows the TOF mass
measurement which provides additional separation between 3 He and 4 He for tracks with
p/Z > 2.3 GeV/c.

and without particle identification. The pairs were preselected using cuts on pT,

impact parameter, and various requirements on the decay topology. In this case,

loose particle identification cuts are used to ensure a high efficiency in the selection.

A clear reduction of the combinatorial background by a factor of ∼ 3 can be seen

in Fig. 50, with negligible (a few percent) loss of signal.

7.7.3. Light nuclei

In Pb–Pb collisions light nuclei were identified via the dE/dx signal in the TPC

and time-of-flight measurements with the TOF detector. Figure 51 illustrates the

separation between 3 He and 4 He in TPC and TOF. This identification technique

was used to study the formation of antinuclei and hyperons in Pb–Pb collisions.

8. Electron Identification

The detector systems for hadron identification that are described in the previous

section are also used to identify electrons. In addition, the following systems have

dedicated electron identification capabilities:

• TRD : The Transition Radiation Detector identifies electrons based on their

specific energy loss and transition radiation (TR) and covers the full central

barrel.i

iAs of 2013, 5 out of 18 TRD supermodules are yet to be installed. See Table 2 for details.
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• EMCal : The Electromagnetic Calorimeter identifies electrons by measuring their

energy deposition and comparing it to the measured track momentum (E/p

method). The EMCal has a partial coverage |η| < 0.7 and 107◦ in φ.

• PHOS : The Photon Spectrometer is a high-granularity electromagnetic calori-

meter that can also identify electrons using the E/p method. PHOS covers |η| <
0.12 with up to five modules, 20◦ in azimuth each. Three modules were installed

in 2009–2013.

The PHOS, EMCal, and TRD also have capabilities to trigger on high-

momentum electrons, charged particles, and photons (PHOS and EMCal only).

These detector systems provide complementary capabilities for electron mea-

surements: the TRD with its large acceptance and triggering capabilities at inter-

mediate pT = 2–5 GeV/c is particularly suited for dilepton measurements, including

quarkonia, while the trigger capabilities of EMCal (and PHOS) make it possible

to sample the full luminosity for high-pT electron measurements (from heavy-flavor

decays). To obtain a pure electron sample for physics analysis, signals from multiple

detectors are used (see Subsec. 8.3 for some examples).

8.1. Electron identification in the EMCal

Electrons deposit their entire energy in the calorimeter while hadrons typically

only lose a small fraction. The ratio E/p of the energy E of EMCal clusters (for

cluster finding see Subsec. 9.1.2) and the momentum p of reconstructed tracks that

point to the cluster is therefore used to separate electrons and hadrons. An EMCal

cluster is considered to be matched to a track when the maximum distance between

the extrapolated track position as shown in Fig. 52 is less than a predetermined

cutoff value (for a minimum hadron contamination one uses Δη < 0.0025 and

Δφ < 0.005). The electron–hadron separation can be further enhanced by taking

into account the different electromagnetic shower shapes for electrons and hadrons.

In order to determine the E/p distribution, clean electron and hadron samples

were obtained from experimental data using the charged tracks originating from

decays of neutral particles. Protons and pions are identified from the decays of Λ

and K0
S particles and a clean electron sample was obtained from photon conversions

in the detector material.

In Fig. 53 the E/p distributions for electrons and pions are shown for experimen-

tal and MC data in a transverse momentum interval 2.5 GeV/c < pT < 3.0 GeV/c.

The normalization of both distributions is arbitrary and does not reflect the yield

ratio between the two particle species. Electrons exhibit a clear peak at E/pc ∼ 1,

with a tail at lower values due to bremsstrahlung in the detector material in front of

the EMCal. Pions, on the other hand, are mostly minimum-ionizing particles, with

a typical E/pc ∼ 0.1 and a shoulder at higher values due to additional hadronic

interactions in the calorimeter.

The E/p distribution for electrons can be characterized using a Gaussian fit,

which then can be cut on for electron identification or used to calculate probability
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Fig. 52. Distribution of the residuals for the EMCal clusters to track matching in pseudorapidity
(ηcluster − ηtrack) versus azimuth (φcluster − φtrack) in pp collisions at

√
s = 7 TeV triggered by

EMCal. Only clusters with an energy Ecluster > 1 GeV and tracks with a transverse momentum
pT, track > 1 GeV/c are used.
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Fig. 53. (Color online) E/p distributions for (a) electrons and (b) pions in pp collisions at√
s = 7 TeV, measured in the experiment (red dotted line), and compared to simulation (black full

line). The samples of identified electrons and pions were obtained from reconstructed γ conversions
and Λ/K0

S decays, respectively. The simulation is a Pythia simulation with realistic detector
configuration and full reconstruction.
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Fig. 54. (Color online) Relative resolution of E/p versus transverse momentum pT for electrons
in experimental data (full dots) and from a fully reconstructed MC (open circles) in pp collisions
at

√
s = 7 TeV. The EMCal energy resolution deduced from the width of the π0 and η invariant

mass peaks (black dotted line), added in quadrature to the TPC pT resolution (green dash-dotted
line), describes the measurement reasonably well (red solid line).

densities and a Bayesian probability. For the latter, a parametrization of the hadron

distributions is determined as well. Figure 54 shows the relative resolution of E/p

as a function of transverse momentum as measured in the experiment, compared

to detector simulations of full events from Pythia. The experimental data are com-

patible with the simulation within uncertainties. Shown in the same figure are the

EMCal energy resolution, deduced from the width of the π0 and η peaks in the

invariant mass distribution of photon pairs, and the momentum resolution of elec-

trons from tracking (relevant at high momentum). The two contributions added in

quadrature describe the measured E/p resolution reasonably well.

8.2. Electron identification in the TRD

The Transition Radiation Detector provides electron identification in the central

barrel (|η| < 0.9)73 and can also be used to trigger (L1 hardware trigger, as dis-

cussed in Subsec. 3.2) on electrons with high transverse momenta and on jets.74

The electron identification is based on the specific energy loss and transition radia-

tion. The TRD is composed of six layers consisting of a radiator followed by a

drift chamber. Transition radiation is produced when a relativistic charged particle

(γ � 103) traverses many interfaces of two media of different dielectric constants75

composing the radiator. On average, for each electron with a momentum above

1 GeV/c, one TR photon (energy range: 1–30 keV) is absorbed and converted in

the high-Z gas mixture (Xe-CO2 [85-15]) in each layer of the detector. Figure 55

shows the combined TRD signal (dE/dx and TR) as a function of momentum

for p–Pb collisions. The dependence of the most probable TRD signal on βγ is

shown in Fig. 56. The data are from measurements with pions and electrons in
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Fig. 55. Sum of the TRD signal (ionization energy loss plus transition radiation) as a function
of momentum for protons from Λ decays, charged pions from K0

S decays, and electrons from γ
conversions in p–Pb collisions.
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Fig. 56. The most probable TRD signal as a function of βγ. Measurements performed in test
beam runs, pp collisions at

√
s = 7 TeV, and cosmic rays are compared.

test beam runs at CERN PS, performed with and without the radiator;76 protons,

pions, and electrons in pp collisions at
√
s = 7 TeV;77 and cosmic muons triggered

by subdetectors of the ALICE setup.78 With cosmic muons, the selection of the

flight direction allows one to measure only the specific energy loss (dE/dx) or the

summed signal (dE/dx+ TR). The onset of TR production is visible for βγ � 800,

both for electrons and high-energy (TeV scale) cosmic muons. Also note that the

muon signal is consistent with that from electrons at the same βγ.
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Fig. 57. The ratio of the average signal of electrons to that of pions as a function of the depth
in the detector (slice number; the lowest slice number is farthest away from the radiator).

For particle identification, the signal of each chamber is divided into seven slices

(starting the numbering at the read-out end farthest away from the radiator), each

integrating the sampled signal in about 5 mm of detector thickness. Figure 57 shows

the ratio of the average signal for electrons to that of pions as a function of slice

number. The TR contribution is visible at large slice numbers (corresponding to

long drift times) because the TR is predominantly absorbed at the entrance of the

detector.

The above plot was produced using data collected in the recent p–Pb run at√
sNN = 5.02 TeV. The same data are used to quantify the TRD identification per-

formance. Clean samples of electrons from γ conversions and pions fromK0
S decays77

are selected using topological cuts and TPC and TOF particle identification. The

performance of the detector is expressed in terms of the pion efficiency, which is the

fraction of pions that are incorrectly identified as electrons. The pion rejection factor

is the inverse of the pion efficiency. We employ the following methods: (i) truncated

mean;65,79 (ii) one-dimensional likelihood on the total integrated charge (LQ1D);77

(iii) two-dimensional likelihood on integrated charge (LQ2D);80 and (iv) neural

networks (NN).81 The results are compared in Fig. 58, where the pion efficiency is

shown as a function of the electron efficiency and as a function of the number of

layers providing signals. The truncated mean and the LQ1D are simple and robust

methods which provide reasonable pion rejection. The LQ2D and NN methods also

make use of the temporal distribution of the signal, which provides about a factor of

two improvement of the pion rejection compared to the truncated mean and LQ1D
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Fig. 58. Pion efficiency as a function of electron efficiency (left panel, for 6 layers) and as a
function of the number of layers (right panel, for 90% electron efficiency) for the momentum range
0.9–1.1 GeV/c. The results are compared for the truncated mean, LQ1D, LQ2D, and NN methods.
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Fig. 59. Momentum dependence of the pion efficiency for the truncated mean, LQ1D, LQ2D,
and NN methods. The results are for 90% electron efficiency and for tracks with signals in six
layers.

methods. The present pion rejection factors obtained from collision data confirm

the design value found in test beams with prototypes.76

The momentum dependence of the pion efficiency is shown in Fig. 59. The pion

rejection with the LQ1D and LQ2D methods first improves with increasing momen-

tum because of the onset of the transition radiation. Starting from 1–2 GeV/c, the

saturation of the TR production and the relativistic rise of the specific energy

1430044-72

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

Performance of the ALICE experiment at the CERN LHC

dE/dxσ

e
〉dE/dx〈dE/dx - 

TPC   

-10 -5 0 5 10

 c
ou

nt
s

1

10

210

310

410

510

610
all tracks
with TOF PID
with TOF and TRD PID (LQ2D)

hadron rejection factor: 185
electron efficiency: 0.86

 = 5.02 TeVNNsALICE p-Pb 
c = 1.9-2.1 GeV/p

Fig. 60. dE/dx distribution of electron candidate tracks, with TOF and TRD selections (using
6 tracklets in the TRD) in pp collisions. Only tracks with six TRD tracklets are included.

loss of pions lead to a gradual reduction of the electron–pion separation power.

The LQ2D method lacks necessary references for momenta above 4 GeV/c. Studies

with parametrizations of the respective charge-deposit distributions are ongoing

and the first results look promising. The truncated-mean method shows very good

pion rejection at low momenta where the energy loss dominates the signal. At

higher momenta, the rejection power decreases because the TR contribution, yield-

ing higher charge deposits, is likely to be removed in the truncation.

In addition to the identification efficiency, there is a finite matching efficiency be-

tween TPC tracks and TRD clusters, which is ≥ 85% for pT > 0.8 in the azimuthal

area covered by the TRD. Losses are mostly due to chamber boundaries.

8.3. Electron identification in physics analysis

One of the important uses of electron identification in physics analysis is the mea-

surement of the electron spectrum from semileptonic decays of heavy-flavor hadrons.

For this measurement, a very pure electron sample is selected, using a combination

of various detectors, such as ITS+TPC+TOF+TRD, or EMCal+TPC.

To illustrate the strength of combined PID for electrons, we show in Fig. 60

the TPC dE/dx distribution of tracks with p = 2 GeV/c and compare with track

samples where cuts are applied on TOF and TRD to select electrons. It can be seen

in the figure that the TOF and TRD cuts reduce the hadron contamination in the

track sample, allowing the selection of a very pure electron sample when combined

with TPC dE/dx. For details, we refer to the corresponding publication.82
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Fig. 61. Invariant mass distribution for J/ψ candidates from EMCal-triggered events in pp col-
lisions at

√
s = 7 TeV (L ≈ 0.4 pb−1, 8M events). Electrons are identified by their energy loss in

the TPC (dE/dx > 70) and the E/p ratio in the EMCal (0.9 < E/p < 1.1) for both legs. A fit to
the signal (Crystal Ball50) and the background (exponential) is shown in addition.

Another illustrative case for the application of electron identification is the re-

construction of the decay of the J/ψ meson into an electron and a positron. In

this case, rather loose selection cuts are applied on electrons, since the hadronic

contamination only enters in the combinatorial background in the invariant mass

distribution.

Figure 61 shows the invariant mass distribution of J/ψ candidates decaying into

e+e−, identified using the EMCal. In this analysis, electrons from EMCal-triggered

events are identified by a combination of TPC energy loss and the E/p ratio. This

allows the extension of the pT interval and leads to a better S/B ratio. More analysis

details and results can be found in Refs. 29 and 83.

In Fig. 62 we show the effect of the TRD electron identification for the J/ψ

measurement in the 40% most central Pb–Pb collisions at
√
sNN = 2.76 TeV. In

both the TPC-only and the TPC+TRD combined analysis, electrons were identified

through their specific energy loss in the TPC, applying a (−1.5σ,+3σ) inclusion cut.

Pions and protons are rejected via ±3.5σ and ±4σ exclusion cuts, respectively. For

the TPC-only analysis, the total number of candidates after background subtraction

is 4956 ± 482J/ψ in the invariant mass region 2.92–3.16 GeV/c2, with a signal-to-

background ratio of 0.022 ± 0.002 and a significance of ∼ 10.

In the TPC+TRD combined analysis, the LQ2D method was applied, requiring

an electron likelihood of at least 0.7. For the data shown here, collected in year

2011, the TRD had only partial coverage (10 out of the 18 TRD supermodules were
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Fig. 62. e+e− invariant-mass distribution with TPC-only as well as TPC and TRD particle
identification in 0–40% centrality in Pb–Pb collisions at

√
sNN = 2.76 TeV.

installed). Thus the TRD particle identification was used whenever a candidate J/ψ

leg had a signal in at least four TRD layers. Despite reduced coverage, the signal

to background ratio improved by roughly 20% compared to the TPC-only analysis.

The impact of TRD on the significance of the J/ψ yield is small but will increase

once all 18 TRD supermodules have been installed.

To significantly enrich the quarkonium sample, the TRD detector was used to

select events with electrons at the trigger level 1 (see Sec. 3). For this, track segments

(tracklets) were reconstructed locally in the front-end electronics mounted on each

chamber. The tracklets were calculated as a straight line fit through the positions

of the clusters, determined taking into account the pad response function. The

tracklets from different TRD layers are combined using again a straight line fit
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and the transverse momentum was determined for tracks which were detected in

at least four TRD layers. The pT resolution was better than 20% over the target

pT range of 2–8 GeV/c. For the particle identification, the total charge of each

tracklet was translated into an electron probability by a look-up table based on

reference data with clean electron and pion samples. Pad-by-pad gain variations

were corrected for in the front-end electronics, based on Kr calibration. To ensure

stable drift velocity and gas amplification, a feedback system was implemented to

compensate for environmental changes (mostly of the pressure) by high voltage

adjustments. A global electron probability was calculated by averaging over the

contributing tracklets. For an electron efficiency of 40%, a pion rejection factor of

200 was achieved in pp collisions. The dominant background was from (low-pT)

photons, which convert into e+e− at large radii and thus produce electrons with

small apparent deflection. For an overview of the TRD trigger see Ref. 74.

9. Photons

Photon identification at midrapidity in ALICE is performed either by reconstructing

the electromagnetic shower developed in the PHOS and EMCal calorimeters, or by

reconstructing electron–positron pairs originating from photons converted in the

material of the inner detector (“conversion electrons”) with the ITS and TPC using

the Photon Conversion Method (PCM).

9.1. Photon reconstruction with calorimeters

The central barrel of the ALICE setup contains two calorimeters for photon detec-

tion: the Photon Spectrometer (PHOS)84,85 and the Electromagnetic Calorimeter

(EMCal).86 Both calorimeters have cellular structure with square cells with a trans-

verse size of 2.2× 2.2 cm in PHOS (“crystals”) and 6× 6 cm in EMCal (“towers”),

which is roughly equal to (or slightly larger than) the Molière radius. With this

choice of cell size, the electromagnetic showers produced by photons and electrons

cover groups of adjacent cells (clusters). The material budget of the cells along

the particle path is 20X0 which is sufficient for photons, electrons, and positrons

with about 100 GeV/c to deposit their full energy. For hadronic interactions, the

thickness of the cells is about one nuclear radiation length, i.e. the calorimeters are

rather transparent for hadrons. The energy deposited by hadrons is small compared

with their full energy (see Fig. 53).

The cells of the calorimeters are packed into rectangular matrices called modules

in PHOS and supermodules in EMCal. As of 2012, the PHOS detector consists of

three modules of 64 × 56 cells each (|η| < 0.12, 260◦ < φ < 320◦), and the EMCal

contains 10 supermodules of 48 × 24 cells and two supermodules of 48 × 8 cells

(|η| < 0.7, 80◦ < φ < 187◦).
Below, we briefly discuss the cluster finding methods and the photon reconstruc-

tion performance of EMCal and PHOS. The electron identification capabilities of

the two calorimeters are described in Sec. 8.
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9.1.1. Cluster finder in PHOS

In PHOS, the cluster finding algorithm starts from any cell with a measured am-

plitude above some threshold, referred to as the seed energy, Eseed.2 The choice of

this seed energy depends on the event environment. In pp collisions the occupancy

of the PHOS detector is low, and thus the probability of showers overlapping is

small. The seed energy is set to Eseed = 0.2 GeV, slightly below the MIP threshold.

In the high-multiplicity environment of Pb–Pb collisions, the overlap probability

becomes significant. In order to suppress the hadronic background the seed energy

is set to Eseed = 0.4 GeV. Cells with an energy above the noise level, which share

a common edge with the seed cell, are added to the cluster. Subsequently, further

cells above the noise level are added if they are adjacent to cells that have already

been added.

Clusters can be produced either by a single electromagnetic or hadronic shower,

or by several overlapping showers. In the latter case, the cluster may have distinct

local maxima, i.e. cells with large energy separated by at least one cell with smaller

energy. The presence of such local maxima in a cluster initiates cluster unfolding,

which is a procedure that separates the cells of the primary cluster from several

clusters corresponding to individual particles. The cluster unfolding algorithm is

based on the knowledge of the transverse profile of electromagnetic showers.

9.1.2. Cluster finder in EMCal

Due to the larger cell size in EMCal compared to PHOS, the cluster finding algo-

rithm in EMCal varies depending on the event environment.2 The default algo-

rithm is the same as that implemented in PHOS, used with a seed energy of

Eseed = 0.3 GeV, slightly above the MIP threshold. At pion transverse momenta

pT > 6 GeV/c, showers from decay photons of π0 start to overlap, thus reducing

the performance of the π0 reconstruction. For such overlapping clusters, a slightly

modified version of the cluster finding algorithm stops adding cells at the first local

minimum to avoid shower merging from the two decay photons. An alternative

algorithm, originally developed for heavy-ion collisions where the cell occupancy of

the EMCal detectors is high, uses a fixed shape of 3 × 3 cells centered around the

seed cell.

9.1.3. Cluster parameters

Clusters found in the calorimeters are characterized by several parameters. Since

photons and electrons are expected to deposit their full energy in the PHOS and

EMCal, the sum of cell energies ei is used as the estimator of the photon or elec-

tron energy E =
∑N

i=1 ei. The photon coordinate x̄ in the reference system of

the module can be determined as the first moment of the coordinates xi of the

cells contributing to the cluster, weighted by the logarithms of the cell energies

wi = max[0, w0 + log(ei/E)] with w0 = 4.5. For inclined photons, the center of
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gravity of the shower is displaced towards the inclination direction. As the actual

incidence angle of photons is not known, one assumes that all detected photons

are produced in the primary vertex, meaning that the incidence angle is deter-

mined geometrically from the photon hit coordinate. The shape of showers which

develop in the calorimeters can be characterized by the eigenvalues λ0, λ1 of the

covariance matrix built from the cell coordinates and weights wi,
2 and may be used

to differentiate between different incident particle species. A cluster can be further

characterized by the time of flight of a particle from the interaction point to the

calorimeter, which is selected as the shortest time among the digits making up the

cluster.

For PHOS, another cluster parameter defined for high-multiplicity environments

using the cluster cell content is the core energy. The core energy is given by the sum

of cell energies within a circle of radius R = 3.5 cm around the cluster coordinate,

where R is defined such that 98% of the electromagnetic shower energy is deposited

within this circle.

9.1.4. Photon identification in calorimeters

Photon identification in the calorimeters is based on three complementary criteria:

(1) Since photons cannot be traced by the tracking system, a cluster with no re-

constructed tracks in the vicinity (as propagated to the calorimeter surface) is

considered as a neutral particle candidate.

(2) Showers produced in the active calorimeter medium by photons and hadrons

differ by the transverse profile. Shower shape parameters λ0, λ1, Ecore are used

to discriminate electromagnetic showers from hadronic ones.

(3) The time-of-flight information of the cluster can be used to identify fast particles

and suppress clusters produced by nucleons.

Neutral particle identification is based on the distance between the cluster center

and the nearest charged particle track at the face of the calorimeter. As the calorime-

ter signal for charged hadrons is generated at a finite depth, the centroids of the

cluster–track matching distributions are systematically shifted as shown in the left

panel of Fig. 63 for PHOS. Knowing the positions and widths (right panel of Fig. 63)

of these distributions, one can recognize and suppress clusters produced by charged

hadrons. The selection parameters for PHOS and EMCal depend on the cluster

energy and the purity of the photon sample required for particular analyses. Typi-

cal values for the selection are 0.005 in the azimuthal and 0.003 in pseudorapidity

direction.

The shower shape helps in distinguishing between showers produced by single

photons, hadrons, and photons from the decay of high-momentum π0. The latter is

more relevant for EMCal, in which photons from the π0 decay start overlapping from

pT > 6 GeV/c. Single photons tend to have spherically shaped showers, while the

clusters with merged showers from high-pT π
0 decays are elongated. The elongation
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Fig. 63. Mean track matching distance (left) and RMS of the track matching distance distribution
(right) for PHOS. The lines are fits to phenomenological parametrizations.

is quantified by the parameter λ20, which is the weighted RMS of the shower energy

along the major ellipse axis. For photons the typical value of this shower shape

parameter λ20 is around 0.25 independent of the cluster energy, while for π0 it has

a value of λ20 ≈ 2.0 for pT ∼ 6 GeV/c and decreases to λ20 ≈ 0.4 at pT ∼ 30 GeV/c,

allowing for good discrimination between these two kinds of clusters. This feature

is especially interesting for the identification of high-momentum π0’s because the

invariant mass method (see Subsec. 9.3) has low efficiency above pT > 20 GeV/c

for EMCal and pT > 60 GeV/c for PHOS.

To test the quality of the photon identification with the EMCal, π0’s with one

of the decay photons converting in the inner material of the experiment (see Sub-

sec. 9.2) and the other decay photon reaching the EMCal (semi-converted π0) are

used to select a photon-enriched sample of clusters. This is achieved by reconstruct-

ing the invariant mass of the cluster-conversion pairs and selecting those clusters

whose pair masses lie in the π0 mass range. The λ20 distribution of these clusters

is compared to Monte Carlo simulations in Fig. 64. In this simulation, Pythia87

events are fully reconstructed in the ALICE experiment and subject to standard

analysis cuts. The two distributions show satisfactory agreement. The application

of these criteria depends on the specific physics analysis being undertaken. For pro-

cesses with a high signal-to-background ratio, one of the criteria may be sufficient to

reach an adequate purity, while in other cases it may become necessary to combine

all three photon identification methods.
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Fig. 64. λ20 distribution of photon clusters in the EMCal with transverse energy of 6 GeV/c <
ET < 8 GeV/c originating from “semi-converted” π0’s in pp collisions at 7 TeV compared to
Monte Carlo simulation.

9.2. Photon conversion method

At energies above 5 MeV, the interaction of photons with detector material is

dominated by the creation of positron–electron (e+e−) pairs.2 The converted photon

and its conversion point can be reliably measured by reconstructing the electron and

positron with the ITS and TPC for conversions within 180 cm from the beam axis.

Within the fiducial acceptance (|η| < 0.9) the main sources for conversions are the

beam pipe, the 6 layers of the ITS, the TPC vessels, and part of the TPC drift gas.

Outside the fiducial acceptance, the ITS services and the ITS and TPC support

structures lead to additional contributions. The photon conversion probability is

very sensitive to the amount, geometry, and chemical composition of the traversed

material. Therefore, it is vital to have accurate knowledge of the material budget

before photon production can be assessed quantitatively.

The converted photons are obtained by employing a secondary vertex algorithm

(V0 finder), as explained in Subsec. 6.4. The same algorithm is used to recon-

struct K0
S, Λ, Λ̄, and γ conversions from reconstructed tracks. In order to obtain

a clean photon sample, the PID capabilities of the TPC and TOF are exploited

as described in Sec. 8. Electron and positron track candidates are selected by re-

quiring the specific energy loss dE/dx in the TPC and the time of flight in TOF

to be within (−4σdE/dx,+5σdE/dx) and (−2σTOF,+3σTOF), respectively, from the

values expected for electrons. Tracks close to the pion line in Fig. 34 — within

(−0.5σdE/dx,+0.5σdE/dx) and (−∞,+0.5σdE/dx) for momenta below and above

0.3 GeV/c, respectively — are rejected. The precision of the photon conversion

point estimate can be improved with respect to the one obtained from the V0 algo-

rithm by requiring that the momentum vectors of the e+e− pair are almost parallel
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Fig. 65. (Color online) Invariant mass distribution of all reconstructed secondaries (blue) and
of the selected photon candidates (red) after all cuts were applied.

at the conversion point. The final photons are selected by a cut of the χ2(γ)/ndf

after applying constraints on the photon candidate mass and on the opening angle

between the reconstructed photon momentum and the vector joining the collision

vertex and the conversion point. The invariant mass distributions of all V0’s cal-

culated with the electron mass hypothesis before and after all selection criteria are

shown in Fig. 65.

The distribution of the reconstructed photon conversion points, shown in

Figs. 66 and 67 for |η| < 0.9, represents a precise γ-ray tomography of the AL-

ICE inner barrel detectors. Different layers of the ITS and the TPC are clearly

separated. The radial distribution is compared to Monte Carlo (MC) simulations

generated with PHOJET.88 The integrated detector material for R < 180 cm and

|η| < 0.9 amounts to a radiation thickness of 11.4 ± 0.5% X0, and results in a

conversion probability of about 8.5%. The differences between the measured and

simulated distributions (apparent mainly at R = 50 cm) are taken into account

when estimating systematic uncertainties in the analyses that rely on the knowl-

edge of the material. Further details relating to the analysis of the ALICE material

distribution, the photon conversion probability and reconstruction efficiency in the

inner parts of the detector are discussed in Ref. 89.

9.3. π0 and η reconstruction

The detection of light neutral mesons like π0 and η is a benchmark for photon detec-

tors. The mesons are identified via the invariant mass of photon candidate pairs.90

For the calorimeters, rather loose photon identification criteria are sufficient to

extract the π0 peak from invariant-mass spectra in pp collisions. In particular,
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Fig. 66. Transverse distribution of the reconstructed photon conversion points for |η| < 0.9.

R (cm)
0 20 40 60 80 100 120 140 160 180

) 
-1

 (
cm

d
Rγ

d
N

 
ch

N1

-610

-510

-410

-310

B
ea

m
 P

ip
e 

&
 S

P
D

 L
ay

er
st

S
D

D
 1

 L
ay

er
 +

 S
u

p
p

o
rt

 S
tr

u
ct

u
re

s
n

d
S

D
D

 2

 L
ay

er
st

S
S

D
 1

 L
ay

er
n

d
S

S
D

 2

T
P

C
 In

n
er

 C
o

n
ta

in
m

en
t 

V
es

se
l

T
P

C
 In

n
er

 F
ie

ld
 C

ag
e 

V
es

se
l

T
P

C
 G

as

Data
MC conversion candidates
MC true primary conversion
MC true secondary conversion

 Dalitz0
πMC true 

 DalitzηMC true 
MC true combinatorics
MC true hadronic bck

Fig. 67. (Color online) Radial distribution of the reconstructed photon conversion points for
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Fig. 68. Invariant mass spectra of photon candidate pairs for pp collisions at 7 TeV by PCM,
PHOS and EMCal.

all clusters with an energy E > 0.3 GeV (and with three or more cells in PHOS) are

considered as photon candidates for π0 measurement. Figure 68 shows the invariant

mass spectra of photon pairs in the mass range around the π0 peak measured in

pp collisions at
√
s = 7 TeV for 0.6 < pγγT < 0.8, 1.0 < pγγT < 2.0, and 5 <

pγγT < 7 GeV/c by PCM, PHOS, and EMCal, respectively. The invariant mass

distributions are fitted using a Gaussian distribution, leading to a mass position

of 135.8 and 136.8 MeV/c2 with a width of 5.3 and 10.3 MeV/c2 for PHOS and

EMCal, respectively. In the case of PCM, the peak is asymmetric, but nevertheless

is fitted by a pure Gaussian to the right of the mass peak, leading to a mass position

of 135.8 with a width of 1.5 MeV/c2. The background is estimated using first-order

polynomials after the uncorrelated contribution estimated using the event mixing

technique has been subtracted. To contrast the low occupancy environment present

in pp collisions, Fig. 69 shows similar invariant mass distributions in the 0–10% most

central Pb–Pb collisions at
√
sNN = 2.76 TeV for 1.4 < pγγT < 1.6, 2.0 < pγγT < 3.0,

and 5 < pγγT < 7 GeV/c by PCM, PHOS, and EMCal. For the PHOS and PCM,

we show a low pT range illustrating how the S/B worsens in the high-multiplicity

environment of central Pb–Pb collisions, while for the EMCal the focus is on higher

pT values. To cope with the large occupancy in the calorimeters, the cluster energy is

approximated with the core energy Ecore for PHOS, while for EMCal the minimum
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Fig. 69. Invariant mass spectra of photon candidate pairs for 0–10% central Pb–Pb collisions at√
sNN = 2.76 TeV by PCM, PHOS and EMCal.
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cluster energy is increased to E > 2 GeV and a mild cut on the shower shape of

λ20 < 0.5 is required. The mass position and width obtained from the Gaussian fits

are 135.6, 137.8, and 144.6 MeV/c2 for the position, and 1.9, 6.1, and 13.4 MeV/c2

for the width in PCM, PHOS, and EMCal, respectively. The dependence of the

pion mass position and width on the transverse momentum shown in Figs. 70 and

71 is used for tuning the Monte Carlo simulations.

The increasing difference in the mass position between the data and simulation,

which gets apparent for the EMCal at momenta above 10 GeV/c in pp collisions,

may be improved with a cluster unfolding algorithm based on a model of the trans-

verse profile of the shower in the EMCal. Compared to the calorimeters, the PCM

method can be used to measure the π0 down to very low momentum, but with a

rather small efficiency due to the small probability of about 0.7% for both photons

to convert. Compared with PHOS, the EMCal has a worse π0 resolution, but a ∼ 10

times larger acceptance. This is illustrated in Fig. 72, which compares the total cor-

rection (product of efficiency and acceptance) for |y| < 0.5 for PCM, PHOS, and

EMCal in pp collisions at
√
s = 7 TeV (left panel) and in 0–10% central Pb–Pb

collisions at 2.76 TeV (right panel). The π0 reconstruction efficiency for the EMCal

decreases at around 10 GeV/c due to the fact that the showers from the two decay

photons start to overlap significantly. For PHOS, the π0 reconstruction efficiency

is affected by the shower merging only above 25 GeV/c (not shown).

10. Jets

Jet measurements in relativistic nuclear collisions are of particular interest due to

the phenomenon of “jet quenching” (Ref. 91 and references therein), in which an

energetic parton interacts with the color-charged, hot and dense matter prior to its

fragmentation into hadrons. This interaction modifies the hadronic structure and

transverse momentum of jets generated in the medium relative to those in vacuum,

producing a variety of phenomena that are observable experimentally and can be

calculated theoretically.91 Measurements of jet quenching thus provide unique infor-

mation on the properties of hot QCD matter.

Operationally, a jet is specified in terms of a reconstruction algorithm92

that clusters hadrons within a specified distance R in angular space, i.e.√
(Δη)2 + (Δφ)2 < R. The algorithm should be applicable in comparable fashion

to both experimental data and theoretical calculations based on perturbative QCD,

dictating that it be both infrared safe (jet measurement stable against additional

soft radiation) and colinear-safe (independent of the details of fragmentation of the

parton shower into final-state hadrons).92

Jet reconstruction in nuclear collisions is especially challenging, owing to the

large and inhomogeneous background in such events. The accurate measurement

of jets in heavy-ion collisions requires careful accounting of both the overall

level of underlying event background, and the influence of its region-to-region

fluctuations.93–95
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Fig. 70. Reconstructed π0 peak width (a) and position (b) in pp collisions at
√
s = 7 TeV for

PCM, PHOS, and EMCal compared to Monte Carlo simulations (Pythia for PCM and PHOS,
and embedding of clusters from single π0 in data for EMCal).
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Fig. 71. Reconstructed π0 peak width (a) and position (b) in 0–10% central Pb–Pb collisions at√
sNN = 2.76 TeV for PCM, PHOS, and EMCal compared to Monte Carlo simulations (Hijing for

PCM, and embedding of clusters from single π0 in data for PHOS and EMCal).
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Fig. 72. Total correction (efficiency and acceptance) for |y| < 0.5 for π0 reconstruction via two-
photon invariant mass determination in pp collisions at

√
s = 7 TeV (left panel) and in 0–10%

central Pb–Pb collisions at
√
sNN = 2.76 TeV (right panel) for PCM, PHOS, and EMCal.

Jets are measured within ALICE in the central detector, utilizing charged par-

ticle tracking in ITS and TPC (see Sec. 1) for the charged hadronic energy and

electromagnetic (EM) calorimetry to measure the neutral hadronic energy car-

ried by photons (π0, η, . . .).86 This approach is closely related to “Particle Flow”

methods96 and enables detailed control of the constituent particles used in the jet

reconstruction. This is of especial importance in the complex heavy-ion collision

environment. The inclusive jet cross section, measured using this technique in pp

collisions at
√
s = 2.76 TeV, has been reported by ALICE.34 Jet measurements

using a similar approach have also been reported for pp collisions at RHIC.97–99

In this section we present the current performance of ALICE jet reconstruction.

The emphasis is on the recently completed measurement of the inclusive jet cross

section in pp collisions at
√
s = 2.76 TeV,34 together with considerations for ongoing

heavy-ion jet analyses.

10.1. EMCal jet trigger

The ALICE EMCal,86 a lead-scintillator electromagnetic calorimeter covering 107

degrees in azimuth and |η| < 0.7, is used to trigger on jets. The jet trigger in

Ref. 34 is based on the EMCal single shower (SSh) trigger, labeled E0 in Table 8,

which utilizes the fast hardware sum of transverse energy (ET) in groups of 4 × 4

adjacent EMCal towers, implemented as a sliding window. An SSh trigger accept is

issued if the threshold is exceeded by at least one EMCal tower group. The nominal

threshold was 3.0 GeV for the data recorded in pp collisions at
√
s = 2.76 TeV. An

event is accepted if it also passes the minimum bias (MB) trigger requirements.

The EMCal Jet Patch (JP) trigger (EJE and EJE2 in Table 8) sums tower

energies within a sliding window of 32 by 32 adjacent EMCal towers, corresponding
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Fig. 73. (Color online) SSh trigger efficiency in pp collisions at
√
s = 2.76 TeV. Efficiency for

single EM clusters (left panel) and reconstructed jets (anti-kT, R = 0.4, right panel) for data (red
points) is well reproduced in simulation (black dashed line). See text for details.

to Δη × Δφ ≈ 0.46 × 0.46. For heavy-ion running, the JP integrated energy is

corrected for the underlying event in the collision prior to comparison to the trigger

threshold. This correction is based on the analog charge sum in the V0 detectors

at forward rapidity (see Table 1), which is observed to be highly correlated with

the transverse energy measured in the EMCal acceptance. The V0 signal provides a

centrality estimator that is used by the programmable logic of the EMCal Summable

Trigger Unit to adjust the JP trigger threshold on an event-wise basis.86

Figure 73, left panel, represents the SSh trigger efficiency for single EM clusters

in pp collisions at
√
s = 2.76 TeV, measured by comparing to MB data. Also shown

is a calculation of the SSh trigger efficiency from a detailed, detector-level simulation

based on the PYTHIA event generator (Perugia 2010 tune) and GEANT3. The

distribution of data is normalized to the simulated distribution in the region pT >

5 GeV/c. Good agreement is observed between measurement and simulation in the

turn-on region of the trigger.

Figure 73, right panel, shows the efficiency of the SSh trigger for jets in pp

collisions at
√
s = 2.76 TeV. Jets are reconstructed offline using the anti-kT algo-

rithm,100 R = 0.4. The red points show the trigger efficiency measured in data as

the ratio of jet yields in SSh-triggered and MB data. Since the kinematic reach of the

MB dataset is limited, we also assess the jet trigger bias by a data-driven simulation,

shown by the black dashed line. This calculation utilizes the measured EM cluster

trigger efficiency (left panel, red points), together with the detailed detector-level

simulation (PYTHIA6 + GEANT3) to model the jet response. The simulation

and data differ in the trigger turn-on region by ∼ 18% in yield, corresponding to

a shift in Jet Energy Scale of ∼ 1–2 GeV. This shift is within the precision of the

simulation, and is accounted for in the systematic uncertainties of the corresponding

cross-section measurement.34
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Fig. 74. PYTHIA particle-level simulation of jet-by-jet energy shift due to unobserved contribu-
tions from neutrons and K0

L.

10.2. Jets in pp collisions

Instrumental corrections and systematic uncertainties of jet measurements depend

on the jet observable under consideration. In this section we discuss the main instru-

mental corrections for measurement of the inclusive jet cross section in pp collisions

at
√
s = 2.76 TeV, with more detail found in Ref. 34.

10.2.1. Undetected hadronic energy

Long-lived neutral hadrons (principally, neutrons and K0
L), will not be detected by

the tracking system and will most often deposit only a small fraction of their energy

in the EMCal. Correction for this unobserved component of jet energy is based on

simulations. PYTHIA predictions for high-pT identified particle production have

been compared with ALICE inclusive measurements of high-pT protons and charged

kaons in 2.76 TeV pp collisions, with good agreement observed. The systematic

uncertainty in the jet energy correction arising from this comparison of simulations

and measurement is negligible.34

Figure 74 shows a PYTHIA particle-level simulation of the shift in jet energy

due to unobserved neutral hadronic energy, calculated on a jet-by-jet basis. Jet

reconstruction (anti-kT, R = 0.2 and 0.4) was carried out twice on each simulated

event: first including all stable particles except neutrinos, and then excluding the

neutron and K0
L component. The distribution of the relative difference in recon-

structed jet energy is shown for various intervals in jet pT, where the difference is

normalized by the jet energy calculated without contribution from neutrons and

K0
L. The calculation exhibits no shift in jet energy for between 50% and 70% of

the jet population, corresponding to the probability for jets not to contain an ener-

getic neutron or K0
L among its fragments. A tail to positive momentum shift ΔpT is

observed, corresponding to energy lost due to the unobserved energy. A small tail to
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negative ΔpT is also observed, corresponding to rare cases in which the exclusion of

a neutron or K0
L shifts the jet centroid significantly, causing the jet reconstruction

algorithm to include additional hadrons from the event. For jets reconstructed with

anti-kT, R = 0.4, the Jet Energy Scale correction and systematic uncertainty due

to this effect is (4 ± 0.2)% for jet pT = 20 GeV/c, and (6 ± 0.5)% at 100 GeV/c.34

10.2.2. Charged particle energy deposition in EMCal

Charged hadrons and electrons shower in the EMCal, and are also measured by

the ALICE tracking system. Their contribution to EMCal cluster energy must be

accounted for, in order not to double-count a fraction of their energy in the measured

jet energy. The correction procedure minimizes dependence on the simulation of

hadronic and EM showers.

Charged-particle trajectories are propagated to a depth of 10X0 in the EMCal,

with each track then matched to the nearest EMCal cluster falling within Δη =

0.015 and Δφ = 0.03. Multiple charged tracks can be matched to a single cluster,

though the probability for multiple matches is less than 0.5% for pp collisions. We

then define Σp to be the sum of the 3-momentum magnitude of all matched tracks.

For measured cluster energy Eclust, the corrected cluster energy Ecorr is set to zero

if Eclust < fsub · Σpc; otherwise, Ecorr = Eclust − fsub · Σpc, where fsub = 1 for the

primary analysis and is varied for systematic checks. The correction to the cluster

energy, ΔEcorr = Eclust − Ecorr, takes the following values:

ΔEcorr =

{
Eclust for Eclust < fsub · Σpc ,

fsub · Σp for Eclust > fsub · Σpc .
(17)

To examine the distribution of ΔEcorr, we specify fsub = 1 and consider the follow-

ing ratio, which is calculated on a cluster-by-cluster basis:

Rcorr =
ΔEcorr

Σpc
. (18)

Figure 75 shows the normalized probability distribution of Rcorr measured in four

different bins of Σp for MB and EMCal-triggered pp collisions, each compared to a

detector-level simulation (PYTHIA6). For a cluster whose energy arises solely from

matched charged tracks, i.e. which does not contain photons or untracked charged

particles, the ratio Rcorr = E/pc, where E is the EMCal shower energy and p is the

momentum of the charged tracks contributing to the shower. The probability per

cluster for pileup from photons or untracked charged particles in pp collisions is less

than 0.5%, so that Fig. 75 represents, to good accuracy, the in-situ measurement

of E/p for the EMCal.

The peak at unity in Fig. 75 corresponds to 100% of the matched track momenta

being subtracted from the cluster energy. Full containment of a hadronic shower in

the EMCal is unlikely, and the peak at unity originates in part from over-subtraction

from pileup due to neutral particles and unmeasured charged particles.

1430044-89

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

The ALICE Collaboration

corrR

0 0.2 0.4 0.6 0.8 1

p
ro

b
ab

ili
ty

 (
0.

05
)

-310

-210

-110

1
pp Minimum Bias
pp EMCal Trigger
PYTHIA detector-level

 < 1 GeV/cch p∑0 < 

corrR

0 0.2 0.4 0.6 0.8 1

p
ro

b
ab

ili
ty

 (
0.

05
)

-310

-210

-110

1

 < 3 GeV/cch p∑2 < 

corrR

0 0.2 0.4 0.6 0.8 1

p
ro

b
ab

ili
ty

 (
0.

05
)

-310

-210

-110

1

 < 8 GeV/cch p∑5 < 

corrR

0 0.2 0.4 0.6 0.8 1

p
ro

b
ab

ili
ty

 (
0.

05
)

-310

-210

-110

1

 < 15 GeV/cch p∑10 < 

Fig. 75. Probability distribution of Rcorr (Eq. (18)) for various intervals of Σp, measured in MB
and EMCal-triggered pp collisions, compared to detector-level simulations based on PYTHIA.

The figure shows that the distribution of Rcorr for the MB trigger is modeled well

by a PYTHIA-based detector-level calculation. The variation in the distribution for

the EMCal-triggered data is due to the trigger bias: the EMCal trigger at threshold

favors highly abundant low pT charged hadrons that deposit above-average energy

in the EMCal.

Detector-level simulations show that the above procedure corrects the Jet

Energy Scale to within 1–2% in pp collisions, for choices of fsub between 0.7 and

1.0. The contribution of this correction to the Jet Energy Resolution is about 5%

at pjetT = 40 GeV/c, and 8% at pjetT = 100 GeV/c.

10.2.3. Other corrections

Other significant corrections to the inclusive jet cross-section measurement are due

to the tracking efficiency and track momentum resolution. A brief discussion of

these effects is found below; for further details see Ref. 34.

Jets in pp collisions are made up of a limited number of particles, with large

jet-to-jet fluctuations in both the pT distribution of the constituents and the rela-

tive fraction of jet energy carried by neutral or charged particles. The effect of

tracking efficiency on measured jet pT is therefore not modeled well by a Gaussian

distribution, but has a more complex form. This distribution has been studied using

PYTHIA-based simulations, which show that for 74% of jets with particle-level pT
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Fig. 76. Mean transverse momentum, 〈pT〉, of constituents measured in reconstructed jets in
2.76 TeV pp collisions (anti-kT, R = 0.4) versus jet pT. Left: charged tracks; Right: neutral
clusters. Data are shown for MB and SSh triggers, and are compared to detector-level simulations.

in the range 105–125 GeV/c (anti-kT, R = 0.4) the pT shift due to tracking efficiency

is below 10%. For 30% of the population, the shift is negligible. For pp collisions

at
√
s = 2.76 TeV, tracking efficiency generates a Jet Energy Scale uncertainty of

2.4% and a multiplicative correction to the inclusive jet cross section of a factor of

1.37 ± 0.12.34

The pT resolution of tracking and the energy resolution of the EMCal contribute

an uncertainty in Jet Energy Scale of 1–2%, generating a systematic uncertainty in

the inclusive jet cross section that is small compared to other contributions.34 This

arises because jets are multi-hadron objects whose energy is carried to a significant

extent by a number of relatively low pT constituents, with average constituent pT
increasing only gradually with jet pT.

10.2.4. Jet structure

We next compare specific features of reconstructed jet structure in data and

PYTHIA-based detector-level simulations. Figure 76 shows the jet pT dependence

of the mean hadron pT within the jet, 〈pT〉, for charged tracks (left) and neutral

clusters (right), for both MB and SSh-triggered event populations. The value of

〈pT〉 rises slowly with jet pT, and is well described by the detector-level PYTHIA

simulation over the full measured range.

Figure 77, left panel, shows the mean number of jet constituents (total number of

charged tracks and neutral clusters), while the right panel shows the mean Neutral

Energy Fraction (NEF). Both distributions are presented as a function of jet pT.

PYTHIA detector-level simulations describe both distributions accurately, for both

the MB and SSh-triggered datasets. The NEF distributions are discussed in more

detail in Ref. 34.
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Fig. 77. Mean total number of constituents (left) and mean neutral energy fraction (right) mea-
sured in reconstructed jets in 2.76 TeV pp collisions (anti-kT, R = 0.4), versus jet pT. Data are
shown for MB and SSh triggers, and are compared to detector-level simulations.

10.2.5. Jet energy resolution

Jet Energy Resolution is calculated using simulations, with all significant compo-

nents of the simulation validated against data (e.g. Figs. 76 and 77; see further

discussion in Ref. 34). Jet reconstruction is carried out on each generated event

at both particle and detector level. Reconstructed jets whose centroids lie close in

(η, φ) at the particle and detector level are identified, and their relative difference

in reconstructed jet energy is calculated according to:

ΔpT =
pdetT − ppartT

ppartT

. (19)

Figure 78, upper panel, shows the distribution of ΔpT for three ranges of jet

pT. The distributions are weighted towards negative values, corresponding to lower

energy at the detector level. The lower panels show the median and mean (left)

and RMS (right) of the upper distributions, as a function of particle-level pT. The

mean relative energy shift (Jet Energy Scale, or JES, correction) is seen to be pT-

dependent, ranging between 17% and 22%. The RMS, corresponding to the Jet

Energy Resolution (JER), is seen to be a weak function of jet pT in the range

40–100 GeV, varying between 18% and 20%.

10.3. Jets in heavy-ion collisions

Full jet reconstruction in heavy-ion collisions offers the possibility to measure jet

quenching effects at the partonic level, without the biases intrinsic to measurements

based on high pT single hadrons, which suppress direct observation of the struc-

ture of quenched jets. While hard jets are clearly visible in event displays of single

heavy-ion collisions (see Fig. 79), accurate measurement of the energy of such jets

on an event-by-event basis is challenging, due to the large and inhomogeneous
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Fig. 78. Instrumental effects on jet energy measurement (Eq. (19)). Upper panel: jet-by-jet dis-
tribution for various intervals in jet pT. Lower panels: Mean and median (left) and standard
deviation (right) of these distributions.

Fig. 79. Event display of a central Pb–Pb collision containing a high pT jet in the EMCal
acceptance. The event was triggered using the EMCal SSh trigger.
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underlying background. The mean background energy in a cone of radius R = 0.4

is about 60 GeV in a central Pb–Pb collision, though the distribution of this quan-

tity has a large tail to much higher values. It is not possible to discriminate the

hadronic component of a hard jet from that of the background on a rigorous basis,

and any jet reconstruction algorithm applied to such events will therefore incor-

porate hadrons arising from multiple incoherent sources (hard jets, mini-jets, soft

production) into the same jet. This results in a significant distortion (“smearing”)

of the hard jet energy distribution, together with generation of a large population

of “combinatorial” jets comprising solely hadrons generated in soft processes. The

latter population has no distinct physical origin, and is experimental noise.

Since jet quenching is generically expected both to soften and to broaden the

fragmentation pattern of jets in medium relative to jets in vacuum, care must be

taken in the choice of instrumentation and algorithm to preserve the soft component

of jets in heavy-ion measurements. ALICE’s unique capabilities to measure hadrons

efficiently down to very low pT raise the possibility of jet reconstruction with very

low infrared cutoff (∼ 0.2 GeV/c), even in heavy-ion collisions. Techniques to remove

the combinatorial component from the measured jet population and to correct the

remaining hard-jet distribution for the effects of background, while preserving the

low infrared cutoff, are outlined in Refs. 93, 101 and 102. These techniques have

recently been applied to ALICE data to measure the inclusive jet cross section102,103

and hadron-jet coincidences104 in Pb–Pb collisions. Full analyses of jets in heavy-

ion collisions will be reported in forthcoming ALICE publications. Correction for

background depends upon the physics observable under consideration, and we do

not consider it further here.

The remainder of this section discusses instrumental corrections for heavy-ion

jet measurements, which are similar to those applied in pp collisions (see Ref. 34 and

discussion above). The main difference arises in the correction for charged particle

energy deposition in the EMCal, due to the greater pileup contribution of photons

and untracked charged particle energy to EMCal clusters, arising from the high

multiplicity in heavy-ion events. For pp collisions, the cluster pileup probability is

less than 0.5%, whereas in central Pb–Pb collisions the probability of having two or

more particles contributing above noise threshold to the cluster energy is about 5%.

We utilize the probability distribution of Rcorr (Eq. (18)), which corresponds to

the EMCal E/p distribution in the absence of cluster pileup, to assess the effects of

pileup in the heavy-ion environment. The Rcorr probability distribution is shown in

Fig. 75 for pp collisions, and in Fig. 80 for central (0–10%) and peripheral (70–80%)

Pb–Pb collisions, in two different intervals of Σp. Figure 80 also shows two different

detector-level simulations: the PYTHIA distribution is the same as that shown in

Fig. 75, which accurately describes the Rcorr distribution for MB pp collisions, while

Hijing is used to model the Rcorr probability distribution for 0–10% central Pb–Pb

collisions.

All data and simulated distributions in Fig. 80 are qualitatively similar: the

most probable value of Rcorr (≈ 0.15) matches within 10% and the medians are
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Fig. 80. Probability distribution of Rcorr (Eq. (18)) in two different intervals of Σp, measured
in central (0–10%) and peripheral (70–80%, left panel only) Pb–Pb collisions. Also shown are
detector-level simulations for MB pp collisions based on PYTHIA (same distributions as Fig. 75),
and for central Pb–Pb collisions based on HIJING (left panel only).

compatible within 4%. In the left panel, for 2 < Σp < 3 GeV, the peripheral

Pb–Pb distribution does not match that for pp in detail at (and slightly above)

the minimum ionizing particle (MIP) peak. The probability at the saturation peak,

Rcorr = 1, is largest for central Pb–Pb, with lower probability for peripheral Pb–Pb,

and even lower for pp. This is due to a larger contribution from cluster pileup, which

increases the probability for large cluster energy. However, the increase in proba-

bility for the saturation peak from peripheral to central collisions is seen to be only

3%. Since the probability is normalized to unity, this difference between the systems

at Rcorr = 1 must be accompanied by differences for Rcorr < 1, which are visible

but are of moderate magnitude. The Hijing simulation models the Rcorr distribu-

tion for central collisions reasonably well, though its estimate of the probability for

Rcorr = 1 is lower than seen in data, and it undershoots the data slightly in the

region just above the MIP peak.

The right panel in Fig. 80, for 10 < Σp < 15 GeV (and correspondingly for

more energetic EMCal clusters), also exhibits minor differences between Rcorr dis-

tributions in central Pb–Pb and pp. Since the magnitude of cluster pileup energy

is independent of the true cluster energy, its relative effect on the Rcorr probability

distribution is expected to be smaller for larger cluster energy.

The above observations indicate that the magnitude of cluster pileup effects in

central Pb–Pb collisions due to neutral particles and unmeasured charged particles

is modest. While the pileup contribution cannot be measured explicitly on a cluster-

by-cluster basis, its average magnitude can be estimated, based on the distributions

in Fig. 80, to correspond to about 50 MeV of additional energy per EMCal tower

for central Pb–Pb relative to pp collisions. However, subtraction of this average

value from each tower in a cluster does not improve the overall agreement of the

distributions in Fig. 80, and such a correction is not applied in the physics analysis
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Fig. 81. Invariant mass distribution of μ+μ− pairs measured by ALICE for pp collisions at√
s = 7 TeV (L = 1.35 pb−1, corresponding to the full 2011 dimuon-triggered data sample).

of jets. Rather, the difference between the distributions is incorporated into the

systematic uncertainty of the measurement.

11. Muons

Light (ω and φ) and heavy (J/ψ and Υ families) vector mesons are measured in

ALICE in their μ+μ− decay channel using the muon spectrometer. The invariant

mass reach with the statistics collected in one year of running with pp collisions

is illustrated in Fig. 81. The spectrometer is also used to measure the production

of single muons from decays of heavy-flavor hadrons105 and W± bosons. Below

we discuss the performance of the spectrometer, with an emphasis on the J/ψ

measurement.

The muon spectrometer covers −4.0 < η < −2.5 and consists of the following

components: a passive front absorber (4.13 m, ∼ 10 λint, ∼ 60 X0) suppressing

charged hadrons and muons from π/K decays; a high-granularity tracking system

of ten detection planes (five stations, two Cathode Pad Chambers each); a large

dipole magnet (
∫
B dz = 3 Tm, bending tracks vertically); a passive muon-filter

wall (1.2 m thick, ∼ 7.2 λint) followed by four planes of Resistive Plate Chambers

for triggering; and inner beam shielding to protect the detection chambers from the

primary and secondary particles produced at large rapidities.

The key features of the muon spectrometer are good J/ψ acceptance down to

pT = 0 and high readout granularity resulting in an occupancy of 2% in central

Pb–Pb collisions. The combined effect of the front absorber (which stops primary

hadrons) and of the muon-filter wall (which suppresses the low-momentum muons

from pion and kaon decays) leads to a detection threshold of p � 4 GeV/c for tracks

matching the trigger.

1430044-96

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

Performance of the ALICE experiment at the CERN LHC

During the heavy-ion run in 2011, about 20% of the electronic channels in the

tracking chambers had to be discarded because of faulty electronics or high voltage

instabilities. In a similar way, the noisy strips in the trigger chambers (0.3%)106

have also been excluded from data taking.

The clusters of charge deposited by the particles crossing the muon tracking

chambers are unfolded using the Maximum Likelihood Expectation Maximization

(MLEM) algorithm107 and fitted with a 2D Mathieson108 function to determine

their spatial location. A tracking algorithm based on the Kalman filter reconstructs

the trajectory of the particles across the five tracking stations. These tracks are

then extrapolated to the vertex position measured by the ITS (SPD only in most

cases) and their kinematic parameters are further corrected for multiple scattering

and energy loss of muons in the front absorber.109

While the actual detector occupancy measured in real Pb–Pb collisions, 2%, is

well below the design value (5%), it was still important to fine tune the reconstruc-

tion parameters to keep the fraction of fake tracks as low as possible. The size of

the roads (defined in the tracking algorithm that searches for new clusters to be

attached to the track candidates) is limited by the intrinsic cluster resolution and

the precision of the alignment of the apparatus.

Since the background in Pb–Pb collisions is large, tight selection criteria have

to be imposed on single muon tracks in order to preserve the purity of the muon

sample. Tracks reconstructed in the tracking chambers are required to match a

trigger track, they must lie within the pseudorapidity range −4 < η < −2.5, and

their transverse radius coordinate at the end of the front absorber must be in

the range 17.6 cm < Rabs < 89 cm. An additional cut on p × DCA, the product

of the track momentum and the distance between the vertex and the track extra-

polated to the vertex transverse plane, may also be applied to further reduce residual

contamination. With such cuts, a large fraction of the remaining fake tracks are

removed.

11.1. Reconstruction efficiency

The track reconstruction efficiency (Fig. 82) is determined with experimental data

using a method that takes advantage of the redundancy of the detector, i.e. the

fact that a subset of all chambers is sufficient for a track to be reconstructed. The

tracking algorithm requires at least one cluster in each of the first three stations and

at least three clusters in three different chambers in the last two stations in order

to validate a track. As a result, the efficiency of a given chamber can be determined

by the ratio of the number of reconstructed tracks detected in that chamber over

the total number of reconstructed tracks. In order to avoid any bias that may be

introduced by the reconstruction criteria themselves, only tracks that still satisfy

these criteria when that chamber is not taken into account must be considered

when computing the ratio. For instance, in the first station, the efficiency of one of

the two chambers is determined by dividing the number of tracks detected in both
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Fig. 82. (Color online) Measured muon track reconstruction efficiency in Pb–Pb collisions as a
function of the collision centrality.

chambers by the number of tracks detected by the other chamber. By combining

the individual chamber efficiencies according to the reconstruction criteria, one can

determine the overall reconstruction efficiency.

The resulting efficiency (black points in Fig. 82) exhibits a drop for central

Pb–Pb collisions. This drop can, however, be largely ascribed to the remaining fake

tracks, which inherently contain less clusters than the others. To cure this problem,

the p×DCA cut is applied first, strongly reducing this contamination (blue points

in Fig. 82). Then a second cut on the normalized χ2 of the tracks (χ2 < 3.5) is

added to further cut the remaining contamination at very low pT (< 1–2 GeV/c),

where the p × DCA cut is not 100% efficient (red points on the figure). After all

these cuts have been applied, the relative loss of efficiency as a function of centrality

is very low (of the order of 1.5% in the centrality bin 0–10%).

The product of acceptance A and efficiency ε for measuring J/ψ mesons emitted

within −4.0 < y < −2.5, obtained from Monte Carlo (MC) simulations of pure J/ψ

signal with input y and pT distributions tuned to the measured ones, is sizable down

to pT = 0. The transverse momentum dependence (for J/ψ within −4.0 < y < −2.5)

and the rapidity dependence (for a realistic pT distribution) of this quantity are

shown in Fig. 83.

11.2. Trigger efficiency

While it has been verified with data that the efficiency of the trigger chambers them-

selves does not vary with the centrality of the collision, the overall reconstruction

efficiency of the trigger tracks can do so. The reason is that the trigger algorithm

can only produce one trigger track per local board, and the detector is divided into
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Fig. 83. Muon spectrometer acceptance times efficiency for J/ψ within −4.0 < y < −2.5 during
the Pb–Pb 2011 campaign, as a function of the J/ψ transverse momentum (left) or rapidity (right).

234 local boards. So even if the occupancy in the trigger system is small, the prob-

ability that two tracks are close enough to interfere in the trigger response can be

sizable. The response of the algorithm, taking this effect into account, is neverthe-

less well reproduced in simulations using the embedding technique (see below). In

these simulations we observe a relative loss of trigger track reconstruction efficiency

of 3.5% in the most central collisions.

The trigger used for J/ψ measurements110 in the 2011 Pb–Pb run was an unlike-

sign dimuon trigger (MUL) with a pT threshold of 1 GeV/c for each muon. The

centrality-integrated efficiency of this trigger for J/ψ is shown in Fig. 84 as a func-

tion of the J/ψ transverse momentum. The trigger efficiency is evaluated via a MC

simulation having as input the trigger chamber efficiency, determined from experi-

mental data.106 In order to separate the detector efficiency from acceptance effects,

the simulation was also run assuming a chamber efficiency of 100%. The effect of the

trigger chamber inefficiencies is smaller than 5%, with weak (if any) pT dependence.

11.3. Invariant-mass resolution

The momentum resolution of the muon spectrometer crucially depends on the

detector alignment. Each of the 156 detection elements of the muon spectrometer’s

tracking chambers has six spatial degrees of freedom, three translations and three

rotations. In addition, since the detection elements are mounted in independent

support structures, six further degrees of freedom per half-chamber need to be con-

sidered. The initial position of the (half-)chambers was measured by the CERN
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Fig. 84. Unlike-sign dimuon trigger efficiency for J/ψ, calculated using a realistic (filled squares)
and ideal (open squares) chamber efficiency. The ratio of the two curves is shown in the bottom
panel.

survey group with about 1 mm resolution in three directions. The displacements

of the (half-)chambers relative to a reference chamber has been monitored by the

Geometry Monitoring System (GMS)43 with about 40 μm resolution in three direc-

tions. The optimal method for aligning the tracking detectors is to use reconstructed

tracks taken with and without magnetic field and perform a least-square mini-

mization of the cluster-to-track residuals with respect to the alignment and the

track parameters simultaneously. A special computation-efficient implementation111

allowed the minimization to be performed on a sample of 500000 tracks, which cor-

responded to a few hours of data taking. The resulting alignment resolution was

∼ 100 μm.
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Fig. 85. Muon spectrometer resolution measured as a function of the centrality of the collision.
The main contributions come from the cluster resolution and the residual misalignment of the
tracking chambers.

The overall detector resolution, including the cluster resolution and the resi-

dual misalignment, can be measured using the distance between the position of

the clusters and the position of the reconstructed tracks they belong to. Within

chambers it ranges between 450 and 800 μm in the nonbending direction, and

between 100 and 400 μm in the bending direction. The degradation in resolution

due to the large occupancy in central heavy ion collisions is less than 5% (Fig. 85).

To extract the invariant mass distributions of muon pairs in Pb–Pb collisions,

the standard track cuts previously described (trigger matching, Rabs and pseudo-

rapidity cuts) are applied to both muon tracks. The J/ψ peak in the μ+μ− invariant

mass spectra can be fitted by an extended Crystal Ball function50 (Fig. 86). The

mass resolution at the J/ψ peak in central Pb–Pb collisions, ∼ 73 MeV/c2, is in

agreement with the design value. An analogous fit of the Υ peak in minimum-bias

Pb–Pb collisions yields a mass resolution of 147 ± 27 MeV/c2. This is shown in

Fig. 87, representing the full statistics of the 2011 run. The mass resolution, in

general, is determined by multiple scattering and energy loss in the front absorber,

intrinsic spatial resolution of the chambers, and alignment. At the J/ψ and Υ

peaks the resolution is dominated by multiple scattering in the front absorber and

the overall detector resolution, respectively.

The aforementioned increase of the detector occupancy with the centrality of the

collision could alter the shape of the J/ψ mass peak. This effect has been studied

using a Monte Carlo embedding procedure, in which a simulated signal particle

(a J/ψ in our case) is embedded into a real raw-data event. The embedded event is
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Fig. 86. Invariant-mass distribution of μ+μ− pairs in 0–10% most central Pb–Pb collisions at√
sNN = 2.76 TeV with the J/ψ peak fitted by an extended Crystal Ball function. The combina-

torial background was determined by the event mixing method and subtracted.
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Fig. 87. Invariant-mass distribution of μ+μ− pairs in Pb–Pb collisions at
√
sNN = 2.76 TeV with

the Υ(1S), Υ(2S), and Υ(3S) peaks fitted by the sum of three extended Crystal Ball functions
with identical relative widths and identical relative displacements from the PDG mass values.
The tail shape is fixed by the embedding-MC simulation and the combinatorial background is
parametrized by an exponential.
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Fig. 88. Centrality dependence of J/ψ invariant mass fit parameters.

then reconstructed as if it were a real event. This technique has the advantage of

providing the most realistic background conditions. With such a technique it was

shown (Fig. 88) that the J/ψ signal fit parameters do not depend on centrality. The

peak widths obtained from the simulation agree within errors (from 3% for central

collisions to 10% for the most peripheral ones) with those observed in experimen-

tal data. The same embedding technique has also been used to confirm the small

drop in the track reconstruction efficiency for the most central collisions mentioned

above.

12. Conclusion and Outlook

ALICE recorded data for all collision systems and energies offered by the Large

Hadron Collider in its first running period from 2009 to 2013. The performance

of the experiment was in good agreement with expectations. This is shown in

Table 11 where, for selected parameters, the achieved performance is compared to

the expectations contained in the ALICE Physics Performance Report from 2006.2

ALICE measurements during the full-energy LHC Run 2 (2015–2017) will, on

one hand, focus on low-pT observables where triggering is not possible. The goal

here is to increase the statistics to ∼ 500 million minimum bias Pb–Pb events.

Concerning rare probes, it is planned to inspect 1 nb−1 Pb–Pb interactions in the

rare-trigger running mode. This requires increasing the collision rates to 10–20 kHz,

for which consolidation work is ongoing. The TPC electronics will be upgraded and

the maximum readout rate of this detector will be doubled. The completion of

TRD and PHOS, and extension of EMCal by adding calorimeter modules on the

opposite side (Di-Jet Calorimeter, DCal)112 are other important ingredients of the

preparation for Run 2.
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Table 11. Selection of parameters characterizing the performance of the ALICE experiment in

Run 1 of the LHC. The expectations published in 2006 in the ALICE PPR2 (column 2) and
the achieved performance (column 3) are compared. For the vertex resolution, the approximation
dNch/dy ≡ dNch/dη is used.

Parameter Expected Achieved

Event vertex resolution with ITS–TPC tracks

vertex resolution at dNch/dη = 5, transverse 85 μm 97 μm
vertex resolution at dNch/dη = 25, transverse 35 μm 32 μm

DCA resolution of ITS–TPC tracks in central Pb–Pb collisions

transverse DCA resolution at pT = 0.3 GeV/c 200 μm 200 μm
transverse DCA resolution at pT = 3 GeV/c 30 μm 30 μm
transverse DCA resolution at pT = 20 GeV/c 15 μm 15 μm

DCA resolution of ITS–TPC tracks in pp collisions (including vertex resolution)

transverse DCA resolution at pT = 0.2 GeV/c 300 μm 300 μm
transverse DCA resolution at pT = 3 GeV/c 50 μm 45 μm
transverse DCA resolution at pT = 30 GeV/c 25 μm 20 μm

Barrel tracking efficiency in central Pb–Pb collisions

TPC track finding efficiency at pT > 0.2 GeV/c > 78% a > 70%
TPC track finding efficiency at pT > 1.0 GeV/c > 90% a > 78%
ITS matching efficiency at pT > 0.2 GeV/c > 95% > 92%

Barrel pT resolution

ΔpT/pT of TPC tracks at pT = 10 GeV/c 4–6% 6%
ΔpT/pT of TPC tracks at pT = 30 GeV/c 10–15% 18%
ΔpT/pT of ITS–TPC tracks at pT = 10 GeV/c 1–2% 1.5%
ΔpT/pT of ITS–TPC tracks at pT = 30 GeV/c 2–3% 2.5%

Barrel particle identification

TPC dE/dx resolution in pp 5.4% 5.2%

TPC dE/dx resolution in central Pb–Pb 6.8% 6.5%
TOF resolution 60–110 ps 80 ps
T0 resolution 15–50 ps 21 ps

Muon spectrometer

MUON track finding efficiency 95% 85–87%
invariant mass resolution at J/ψ peak in central Pb–Pb 70–74 MeV/c2 73 MeV/c2

invariant mass resolution at Υ peak in central Pb–Pb 99–115 MeV/c2 147 (27) MeV/c2

aWithout track quality cuts.

In Run 3 (after 2018), the LHC will provide Pb–Pb collisions at a rate of 50 kHz.

With the planned continuous readout of the ALICE TPC, the statistics available for

data analysis could be increased compared to Run 2 by two orders of magnitude.

To achieve this, the ALICE Collaboration has presented a plan to upgrade its

detector systems. The current ITS will be replaced and the overall rate capabilities

of the experiment will be enhanced. The goal is to have sampled, by the mid-2020s,

an integrated luminosity of 10 nb−1. In addition, three new detectors have been

proposed. For more information, the reader is referred to the upgrade documents

cited in Table 12.
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Table 12. ALICE upgrades considered for the time after Run 2.

System Upgrade Documents

ITS Reduced material, improved resolution, topo-
logical trigger at L2

CDR,113 LoI,114 TDR115

TPC Faster gas, GEM readout chambers, new read-
out electronics, continuous readout

LoI,114 TDR116

Trigger/readout Fast readout of ITS, TPC, TRD, TOF, EM-
Cal, PHOS, MTR, MCH, and ZDC; replacing
T0/V0/FMT with a new detector FIT; new
trigger system

LoI,114 TDR117

O2 New combined DAQ, HLT, and offline com-
puting system for high-rate and continuous
readout

LoI114

MFT Muon Forward Tracker, pixel Si before ab-
sorber, −4 < η < −2.5, better resolution and
S/B for heavy flavors

Addendum to LoI118

VHMPID Very High Momentum PID, gas Cherenkov,
π/K/p separation in 5 < p < 25 GeV/c

Ref. 119

FoCal Forward EM Calorimeter, W+Si 2.5 < η <
4.5, γ/π discrimination

Ref. 120
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EPLANET Program (European Particle Physics Latin American Network) Sticht-

ing voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organ-

isatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of

Norway (NFR); Polish Ministry of Science and Higher Education; National Science

Centre, Poland; Ministry of National Education/Institute for Atomic Physics and

CNCS-UEFISCDI — Romania; Ministry of Education and Science of Russian

Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic

Energy, Russian Federal Agency for Science and Innovations and The Russian

Foundation for Basic Research; Ministry of Education of Slovakia; Department of

Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economı́a y

Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleŕıa de Educación),
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M. Marchisone,25,66 J. Mareš,56 G. V. Margagliotti,24 A. Margotti,101

1430044-108

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 R
U

D
E

R
 B

O
SK

O
V

IC
 L

IB
R

A
R

Y
 o

n 
02

/1
7/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 26, 2014 16:32 WSPC/139-IJMPA S0217751X14300440

Performance of the ALICE experiment at the CERN LHC
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Y. Martynov,3 A. Mas,109 S. Masciocchi,93 M. Masera,25 A. Masoni,102

L. Massacrier,109 A. Mastroserio,31 A. Matyja,112 C. Mayer,112 J. Mazer,120

M. A. Mazzoni,105 F. Meddi,22 A. Menchaca-Rocha,60 E. Meninno,29
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34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Engineering, Bergen University College, Bergen, Norway
36 Faculty of Mathematics, Physics and Informatics, Comenius University,

Bratislava, Slovakia
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical

University in Prague, Prague, Czech Republic
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Nantes, France
110 Suranaree University of Technology, Nakhon Ratchasima, Thailand
111 Technical University of Split FESB, Split, Croatia
112 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of

Sciences, Cracow, Poland
113 The University of Texas at Austin, Physics Department, Austin, TX, USA
114 Universidad Autónoma de Sinaloa, Culiacán, Mexico
115 Universidade de São Paulo (USP), São Paulo, Brazil
116 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
117 University of Houston, Houston, TX, United States
118 University of Jyväskylä, Jyväskylä, Finland
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