## Scalar Leptoquarks at Low and High Energies

### Svjetlana Fajfer

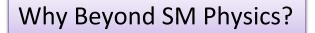
# Physics Department, University of Ljubljana and Institute J. Stefan, Ljubljana Slovenia

Institute Rudjer Bošković, Zagreb, 22<sup>nd</sup> September 2015

# Outline

- Motivation;
- Low-energy constraints
- LQ at high energies;
- Leptoquarks and GUT;
- Leptoquarks at LHC;

Summary.


Based on

D. Bečirević, SF, N. Košnik, Phys.Rev D 92 (2015) 014016;
I.Doršner, S.F., J.F.Kamenik, N.Košnik, I. Nisandžić, JHEP 1506 (2015) 108;
I.Doršner, S.F and A. Greljo, JHEP 1410 (2014) 154;
I.Doršner, S.F., N.Košnik, I. Nisandžić, JHEP 1311 (2013) 084;
S.F. J.F. Kamenik and Nisandžić, Phys.Rev. D85 (2012) 094025;
I.Doršner, S.F., N.Košnik, Phys.Rev. D86 (2012) 015013;

#### Motivation

- We need Beyond Standard Model Physics;
- Many proposals and searches of new non-SM particles at LHC;
- Leptoquarks are present in GUT theories;
- Scalar LQ might modify mass matrices;
- Explanation of anomalous events at low energies by LQ

Theory arguments



#### 1) Naturalness

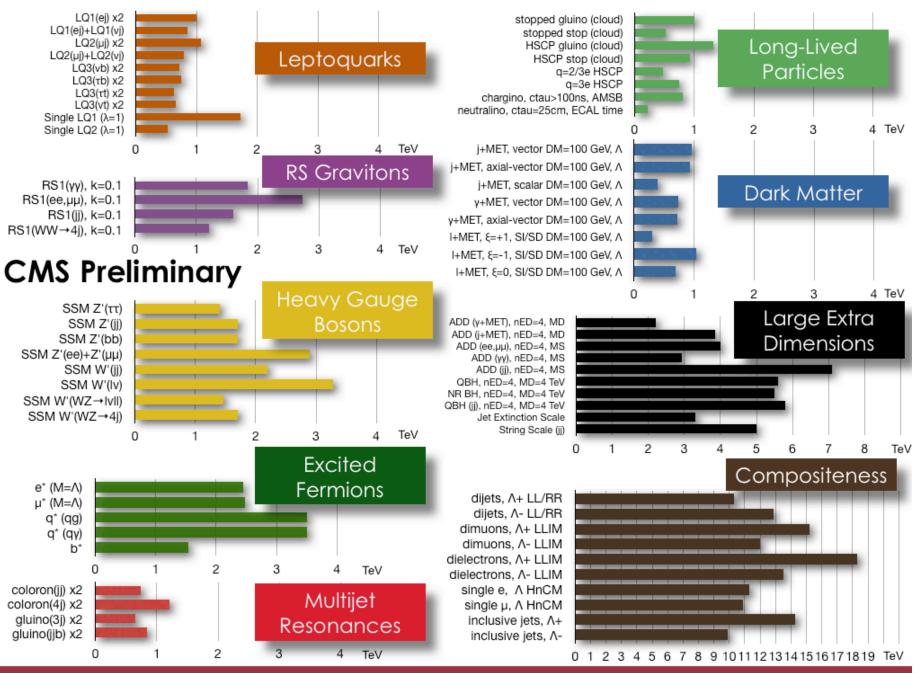
quadratic divergences



Comment: all others SM particles get logarithmic corrections!

2) Neutrinos have masses: does it come from BSM?

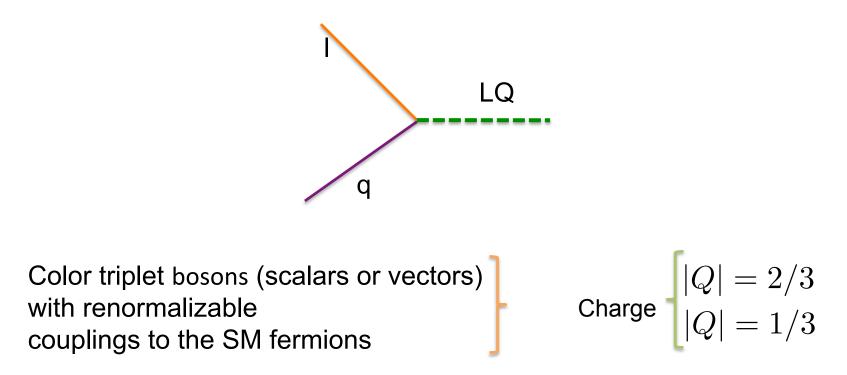
3) What is the nature of dark matter?


4) We need more CP violation to understand baryon – antibaryon asymmetry in the universe!

## ATLAS Exotics Searches\* - 95% CL Exclusion Status: July 2015

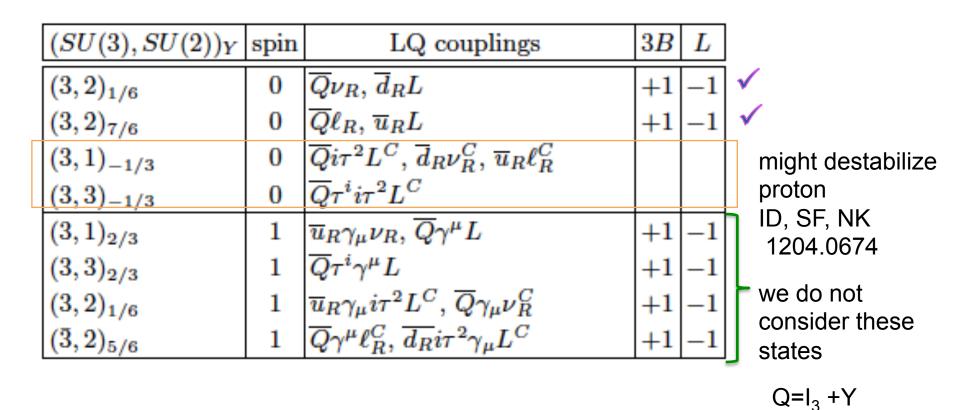
| Sta                 | atus: July 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | /                                  |                                                                              | $\int \mathcal{L} dt = (4.7 - 20.3) \text{ fb}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sqrt{s} = 7, 8 \text{ TeV}$                                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\ell, \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jets                                                           | E <sup>miss</sup>                  | ∫£ dt[fb                                                                     | $\mathcal{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference                                                                                                                                                                                 |
| Extra dimensions    | ADD $G_{KK} + g/q$<br>ADD non-resonant $\ell\ell$<br>ADD QBH $\rightarrow \ell q$<br>ADD QBH<br>ADD BH high $\sum p_T$<br>ADD BH high $\sum p_T$<br>ADD BH high multijet<br>RS1 $G_{KK} \rightarrow \ell\ell$<br>RS1 $G_{KK} \rightarrow \ell\ell$<br>Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$<br>Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$<br>Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$<br>Bulk RS $g_{KK} \rightarrow t\bar{t}$<br>2UED / RPP | $2 e, \mu  2 \gamma  2 e, \mu 2  1 e, \mu 2  -  1 e, \mu 2  1 e, \mu 2  2 e, \mu (SS) ≥ 1  2 e, \mu (SS) ≥ 1  2 e, \mu (SS) ≥ 1  2 e, \mu 2  2 e, \mu 2  2 e, \mu 2$ |                                                                | Yes                                | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                 | Mp       5.25 TeV $n = 2$ Ms       4.7 TeV $n = 3$ HLZ         Mth       5.2 TeV $n = 6$ Mth       5.82 TeV $n = 6$ Mth       5.82 TeV $n = 6$ Mth       5.82 TeV $n = 6$ Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH         Mth       5.8 TeV $n = 6$ , $M_D = 3$ TeV, non-rot BH $G_{KK}$ mass       740 GeV $k/\overline{M_{Pl} = 0.1$ W' mass       760 GeV $k/\overline{M_{Pl} = 1.0$ $k/\overline{M_{Pl} = 1.0$ KK mass       960 GeV       BR = 0.925       BR = 0.925 | 1502.01518<br>1407.2410<br>1311.2006<br>1407.1376<br>1308.4075<br>1405.4254<br>1503.08988<br>1405.4123<br>1504.05511<br>1409.6190<br>1503.04677<br>1506.00285<br>1505.07018<br>1504.04605 |
| Gauge bosons        | $\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{EGM } W' \rightarrow WZ \rightarrow \ell\nu \ell'\ell' \\ \text{EGM } W' \rightarrow WZ \rightarrow qq\ell\ell \\ \text{EGM } W' \rightarrow WZ \rightarrow qqqq \\ \text{HVT } W' \rightarrow WH \rightarrow \ell\nu bb \\ \text{LRSM } W'_R \rightarrow t\overline{b} \\ \text{LRSM } W'_R \rightarrow t\overline{b} \end{array}$              | _<br>1 e,μ<br>1 e,μ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | –<br>–<br>2 j / 1 J<br>2 J<br>2 b<br>b, 0-1 j<br>1 b, 1 J      | –<br>Yes<br>Yes<br>–<br>Yes<br>Yes | 20.3<br>19.5<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 | Z' mass         2.9 TeV           Z' mass         2.02 TeV           W' mass         3.24 TeV           W' mass         1.52 TeV           W' mass         1.59 TeV           W' mass         1.3-1.5 TeV           W' mass         1.47 TeV           W' mass         1.92 TeV           W' mass         1.92 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1405.4123<br>1502.07177<br>1407.7494<br>1406.4456<br>1409.6190<br>1506.00962<br>1503.08089<br>1410.4103<br>1408.0886                                                                      |
| CI                  | CI qqqq<br>CI qqℓℓ<br>CI uutt                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _<br>2 e,μ<br>2 e,μ (SS) ≥ Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 j<br>_<br>1 b, ≥ 1 j                                         | –<br>–<br>Yes                      | 17.3<br>20.3<br>20.3                                                         | $\Lambda$ 12.0 TeV $\eta_{LL} = -1$ $\Lambda$ 21.6 TeV $\eta_{LL} = -1$ $\Lambda$ 4.3 TeV $ C_{LL}  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1504.00357<br>1407.2410<br>1504.04605                                                                                                                                                     |
| DM                  | EFT D5 operator (Dirac)<br>EFT D9 operator (Dirac)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} \geq 1  j \\ J, \leq 1  j \end{array}$       | Yes<br>Yes                         | 20.3<br>20.3                                                                 | M.         974 GeV         at 90% CL for $m(\chi) < 100$ GeV           M.         2.4 TeV         at 90% CL for $m(\chi) < 100$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1502.01518<br>1309.4017                                                                                                                                                                   |
| ГQ                  | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                                                                                              | 2 μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≥2j<br>≥2j<br>1b,≥3j                                           | _<br>Yes                           | 20.3<br>20.3<br>20.3                                                         | LQ mass         1.05 TeV $\beta = 1$ LQ mass         1.0 TeV $\beta = 1$ LQ mass         640 GeV $\beta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Preliminary<br>Preliminary<br>Preliminary                                                                                                                                                 |
| Heavy<br>quarks     | $ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $                                                                                                                                                                                                                                                                                                          | $ \begin{array}{rcl} 1 & e, \mu &\geq 2 \\ 1 & e, \mu &\geq 2 \\ 2/\geq 3 & e, \mu &\geq 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 b, ≥ 3 j<br>1 b, ≥ 3 j<br>2 b, ≥ 3 j<br>2/≥1 b<br>1 b, ≥ 5 j | Yes<br>Yes<br>–                    | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                 | T mass         855 GeV         T in (T,B) doublet           Y mass         770 GeV         Y in (B,Y) doublet           B mass         735 GeV         isospin singlet           B mass         755 GeV         B in (B,Y) doublet           T 5/3 mass         840 GeV         B in (B,Y) doublet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1505.04306<br>1505.04306<br>1505.04306<br>1409.5500<br>1503.05425                                                                                                                         |
| Excited<br>fermions | Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $q^* \rightarrow qg$<br>Excited quark $b^* \rightarrow Wt$<br>Excited lepton $\ell^* \rightarrow \ell\gamma$<br>Excited lepton $\nu^* \rightarrow \ell W, \nu Z$                                                                                                                                                                                                                                                                    | $1 \gamma$<br>-<br>1 or 2 e, $\mu$ 1 b,<br>2 e, $\mu$ , 1 $\gamma$<br>3 e, $\mu$ , $\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 j<br>2 j<br>, 2 j or 1 j<br>_<br>_                           | _<br>Yes<br>_                      | 20.3<br>20.3<br>4.7<br>13.0<br>20.3                                          | q* mass $3.5 \text{ TeV}$ only u* and d*, $\Lambda = m(q^*)$ q* mass $4.09 \text{ TeV}$ only u* and d*, $\Lambda = m(q^*)$ b* mass $870 \text{ GeV}$ left-handed coupling(* mass $2.2 \text{ TeV}$ $\Lambda = 2.2 \text{ TeV}$ v* mass $1.6 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1309.3230<br>1407.1376<br>1301.1583<br>1308.1364<br>1411.2921                                                                                                                             |
| Other               | LSTC $a_T \rightarrow W\gamma$<br>LRSM Majorana $v$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$<br>Monotop (non-res prod)<br>Multi-charged particles<br>Magnetic monopoles<br>$\sqrt{s} = 7 \text{ TeV}$                                                                                                                                                                                                                           | 1 e, μ, 1 γ<br>2 e, μ<br>2 e, μ (SS)<br>3 e, μ, τ<br>1 e, μ<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>2 j<br>-<br>1 b<br>-                                      | Yes<br>-<br>-<br>Yes<br>-<br>-     | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>7.0                  | ar mass960 GeVN <sup>0</sup> mass2.0 TeVH <sup>±±</sup> mass551 GeVH <sup>±±</sup> mass400 GeVspin-1 invisible particle mass657 GeVmulti-charged particle mass785 GeVmonopole mass1.34 TeV $10^{-1}$ 110Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1407.8150<br>1506.06020<br>1412.0237<br>1411.2921<br>1410.5404<br>1504.04188<br>Preliminary                                                                                               |
| *0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | - 4 - 4                            |                                                                              | 10 <sup>-1</sup> Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |

\*Only a selection of the available mass limits on new states or phenomena is shown.


#### ATLAS Preliminary

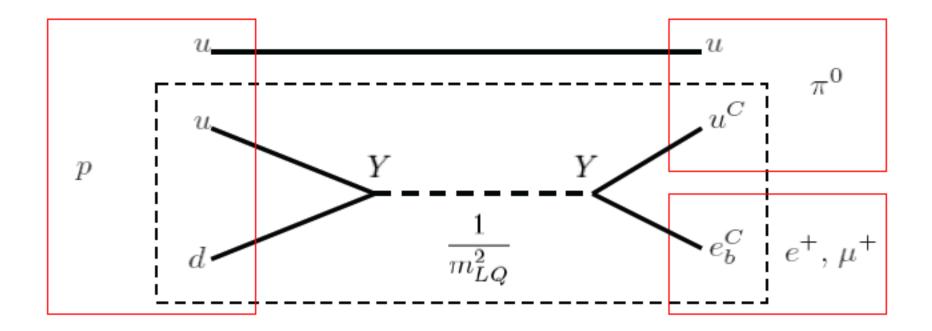


CMS Exotica Physics Group Summary – Moriond, 2015


### Leptoquarks

Some of proposals of Physics beyond Standard Model contain

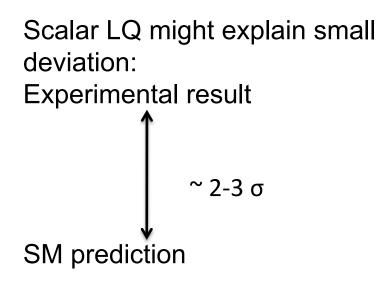



If LQ is a weak doublet then left down-quark fields "communicate" with up-quark fields through the CKM matrix (the same for leptons – PMNS matrix)

Leptoquark candidates



 $(3,2)_{7/6}$  and  $(3,2)_{1/6}$  proper candidates among scalar LQ


Most famous role of leptoquarks: proton destabilization



Experimental bound

 $\tau(p \to e^+ \pi^0) > 1.3 \times 10^{34} \ years$ 

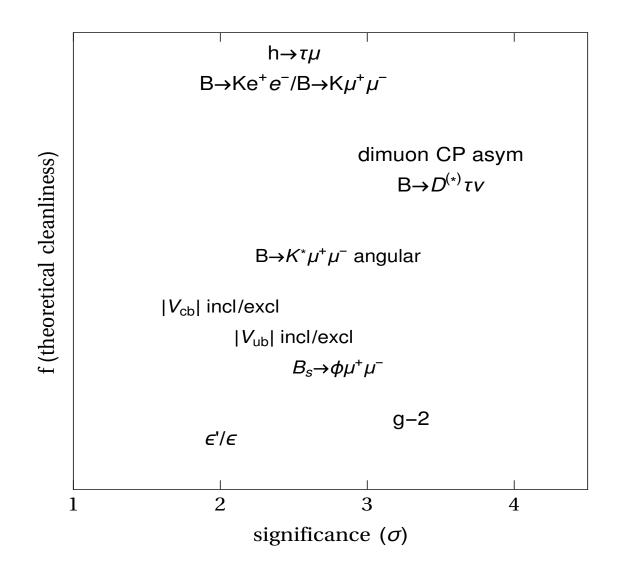
Low energy constraints on leptoquark couplings



$$B \rightarrow D^{(*)} \tau \nu_{\tau}$$

$$B \rightarrow K^{*} l^{+} l^{-}$$

$$Z \rightarrow b \bar{b}$$


$$(g - 2)_{\mu}$$

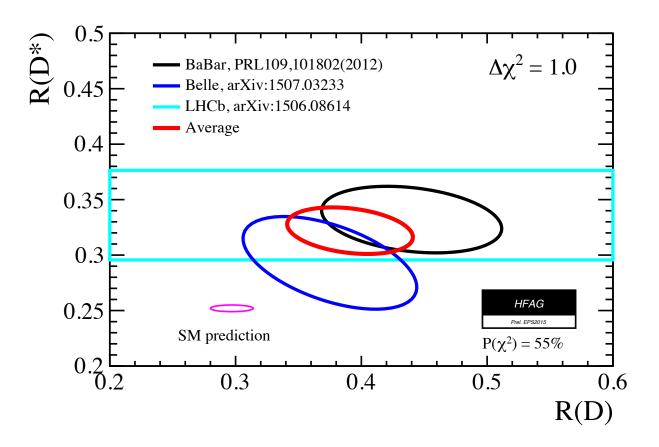
$$\mu \rightarrow e \gamma$$

$$\tau \rightarrow \mu \gamma$$

$$R_{K}$$

$$h \rightarrow \tau \mu \quad (?)$$



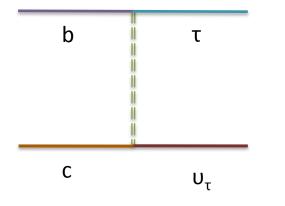

From Z. Ligeti, LP 2015, Ljubljana

Experiment – Theory in  $B \rightarrow D(D^*) \tau v_{\tau}$ 

In ratios there is no dependence on CKM matrix elements:

$$\mathcal{R}^*_{\tau/\ell} \equiv \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)} = 0.332 \pm 0.030$$
$$\mathcal{R}_{\tau/\ell} \equiv \frac{\mathcal{B}(B \to D \tau \nu)}{\mathcal{B}(B \to D \ell \nu)} = 0.440 \pm 0.072$$

|                 | R(D)                        | $R(D^*)$                    |  |  |  |
|-----------------|-----------------------------|-----------------------------|--|--|--|
| BaBar           | $0.440 \pm 0.058 \pm 0.042$ | $0.332 \pm 0.024 \pm 0.018$ |  |  |  |
| Belle           | $0.375 \pm 0.064 \pm 0.026$ | $0.293 \pm 0.038 \pm 0.015$ |  |  |  |
| LHCb            |                             | $0.336 \pm 0.027 \pm 0.030$ |  |  |  |
| Average         | $0.391 \pm 0.050$           | $0.322 \pm 0.022$           |  |  |  |
| SM expectation  | $0.300\pm0.010$             | $0.252\pm0.005$             |  |  |  |
| Belle II, 50/ab | $\pm 0.010$                 | $\pm 0.005$                 |  |  |  |
|                 |                             |                             |  |  |  |




combined  $3.4\sigma$  larger than SM

**Standard Model** 

$$\mathcal{R}_{\tau/\ell}^{*,\text{SM}} = 0.252(3) \\ \mathcal{R}_{\tau/\ell}^{\text{SM}} = 0.296(16)$$

Leptoquark contribution in  $b \rightarrow c \tau \nu_{\tau}$ 



Scalar and vector leptoquark that trigger b→c l u, I.Doršner, S.F., N. Košnik, (2013)

Color triplet bosons (scalars or vectors) with renormalizable couplings to the SM fermions Charge |Q| = 2/3 |Q| = 1/3

If LQ is a weak doublet then left down-quark fields "communicate" with up-quark fields through the CKM matrix (the same for leptons – PMNS matrix)

### Standard Model or New Physics?

Can observed effects be explained within SM?

New form-factors show up in  $~B 
ightarrow D^{(*)} au 
u_{ au}$ 

How well do we know all form-factors?

Lattice improvements?

Lepton flavor universality violation in B semileptonic decays? S.F. J.F. Kamenik, I. Nišandžić, J. Zupan, 1206.1872 Many proposals of NP:

...

P. Ko et al.,1212.4607;
A.Celis et al, 1210.8443;
D. Bečirević et al. 1206.4977;
A. Crivelin et al., 1206.2634;
P. Biancofiore et al.,1302.1042,

P. Ko et al.,1212.4607;

A.Celis et al, 1210.8443;

D. Bečirević et al. 1206.4977;

A. Crivelin et al., 1206.2634;

P. Biancofiore et al.,1302.1042,

Interactions of 
$$\Delta = (3,2,7/6)$$
 state  

$$\Delta = \begin{bmatrix} \Delta^{(2/3)} \\ \Delta^{(5/3)} \end{bmatrix}$$

$$\tilde{\Delta} = i\tau_2 \Delta^*$$

Fields are in the weak base. We use a basis in which all rotations are assigned to neutrinos and up-like quarks. Transition to a mass base:

$$\mathcal{L}^{(2/3)} = (\bar{\ell}_R Y d_L) \,\Delta^{(2/3)*} + (\bar{u}_R [Z V_{\text{PMNS}}] \nu_L) \,\Delta^{(2/3)} + \text{H.c.}$$
$$\mathcal{L}^{(5/3)} = (\bar{\ell}_R [Y V_{\text{CKM}}^{\dagger}] u_L) \,\Delta^{(5/3)*} - (\bar{u}_R Z \ell_L) \,\Delta^{(5/3)} + \text{H.c.}$$

#### Requirements:

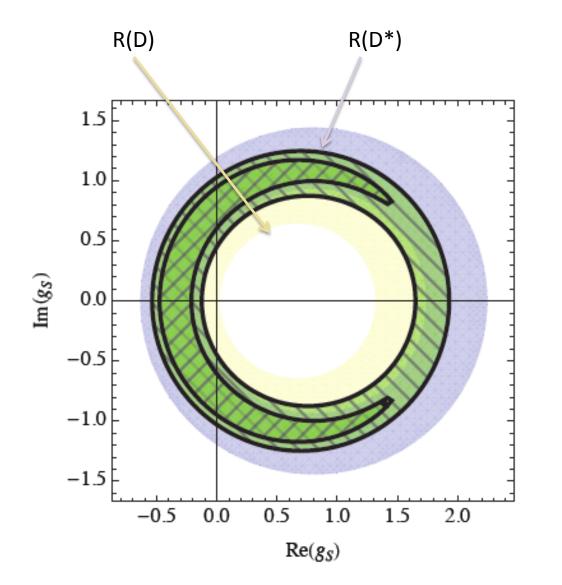
- to explain deviation of SM prediction in  $~b 
  ightarrow c au 
  u_{\! au}$
- no contributions in  $b \rightarrow c l \nu_l, \ l = e, \ \mu$

We impose: b couples to  $\tau$  only and c quark to neutrinos

 $\Lambda^{(2/3)}$ couplings  $\mathcal{L}^{(2/3)} = (\bar{\ell}_R Y d_L) \Delta^{(2/3)*} + (\bar{u}_R [ZV_{\text{PMNS}}]\nu_L) \Delta^{(2/3)} + \text{H.c.}$  $Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{33} \end{pmatrix}, \qquad ZV_{\text{PMNS}} = \begin{pmatrix} 0 & 0 & 0 \\ z_{21} & z_{22} & z_{23} \\ 0 & 0 & 0 \end{pmatrix}$  $\overline{\Lambda}(5/3)$  couplings  $\mathcal{L}^{(5/3)} = (\bar{\ell}_R [YV_{CKM}^{\dagger}] u_L) \Delta^{(5/3)*} - (\bar{u}_R Z \ell_L) \Delta^{(5/3)} + \text{H.c.}$  $YV_{\rm CKM}^{\dagger} = y_{33} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ V_{*}^{*} & V_{*}^{*} & V_{*}^{*} \end{pmatrix}, \qquad Z = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{z}_{21} & \tilde{z}_{22} & \tilde{z}_{23} \\ 0 & 0 & 0 \end{pmatrix}$ 

Effective hamiltonian for  $b\to c\tau\nu_\tau$  transition induced by LQ transition

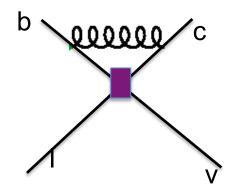
$$\mathcal{H}^{(2/3)} = \frac{y_{33} z_{2i}}{2m_{\Delta}^2} \left[ (\bar{\tau}_R \nu_{iL})(\bar{c}_R b_L) + \frac{1}{4} (\bar{\tau}_R \sigma^{\mu\nu} \nu_{iL})(\bar{c}_R \sigma_{\mu\nu} b_L) \right]$$


(Fierz's transformation are used)

SM + NP operators

$$\mathcal{H} = \frac{4G_F}{\sqrt{2}} V_{cb} \Big[ (\bar{\tau}_L \gamma^\mu \nu_L) (\bar{c}_L \gamma_\mu b_L) + g_S (\bar{\tau}_R \nu_L) (\bar{c}_R b_L) + g_T (\bar{\tau}_R \sigma^{\mu\nu} \nu_L) (\bar{c}_R \sigma_{\mu\nu} b_L) \Big]$$

$$g_S(m_\Delta) = 4g_T(m_\Delta) \equiv \frac{1}{4} \frac{y_{33} z_{23}}{2m_\Delta^2} \frac{\sqrt{2}}{G_F V_{cb}}$$


this relation holds on the mass scale of  $\Delta$ 



 $1\sigma$  range

$$g_S(m_b) = -0.37^{+0.10}_{-0.07}$$

$$m_b, m_c \ll v$$



scalar and tensor operators have anomalous dimension contrary to V and A currents

 $g_T(m_b) \simeq 0.14 g_S(m_b)$ 

Lepton electromagnetic current

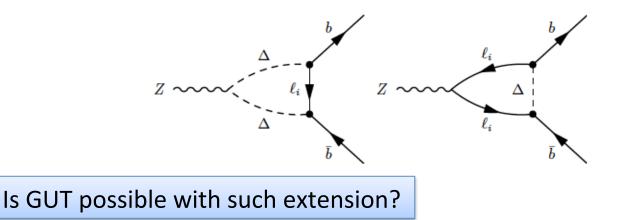
$$-ie\,\bar{u}_{\ell}(p+q)\gamma^{\mu}u_{\ell}(p)$$

$$-ie\,\bar{u}_{\ell}(p+q)\left[F_{E}(q^{2})\gamma^{\mu}+\frac{F_{M}^{\ell}(q^{2})}{2m_{\ell}}i\sigma^{\mu\nu}q_{\nu}+F_{d}^{\ell}(q^{2})\,\sigma^{\mu\nu}q_{\nu}\gamma_{5}\right]u_{\ell}(p)$$

Muon anomalous magnetic moment

 $\Delta^{(5/3)}$  enters loop functions charm quark in the loop

$$\delta a_{\mu} \equiv F_M^{\mu}(q^2 = 0) = -\frac{N_c |\tilde{z}_{22}|^2 m_{\mu}^2}{16\pi^2 m_{\Delta}^2} \left[Q_c F_q(x) + Q_{\Delta} F_{\Delta}(x)\right]$$


Additional constraints

### $Z \to b \overline{b}$

• is not affected due to -1/3 charge of quarks and 2/3 charge of the LQ;

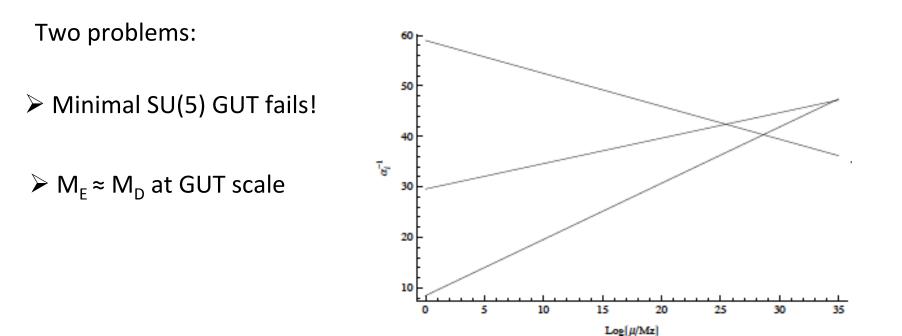
 $(g-2)_{\mu}$ 

• muon and tau in the loop –negligible modification of the  $g_L$  coupling



The small  $\tilde{z}_{12} \sim 10^{-5}$  coupling implies vev of representation 45 v<sub>45</sub> to be large!

$$a_{\mu}^{\text{exp}} = 1.16592080(63) \times 10^{-3}$$
  
 $a_{\mu}^{\text{SM}} = 1.16591793(68) \times 10^{-3}$ 


$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (2.87 \pm 0.93) \times 10^{-9}$$

$$\mathcal{B}(\mu o e\gamma) < 5.7 imes 10^{-13}$$
  
 $\mathcal{B}( au o e\gamma) < 3.3 imes 10^{-8}$   
 $\mathcal{B}( au o \mu\gamma) < 4.4 imes 10^{-9}$ 

MEG experiment result on muon BR for LFV decay is much stronger then for bound on tau LFV decay rate. The  $\mu$  liftime and the strong bound on LFV compensate for a helicity suppression. Is our low-energy Yukawa ansatz compatible with the idea of GUT?

GUT models contain such a state in an extended SU(5), SO(10).

Georgi-Glashow (1974) proposed  $SU(5) \longrightarrow SU(3) \times SU(2) \times U(1)$ 



(3,2)<sub>7/6</sub> in GUT

 $(3,2)_{7/6}$  can be found in representations 45 and 50 of SU(5)

has both couplings Z and Y

In SO(10) scenario: 120 and 126

anti-symmetric couplings to matter

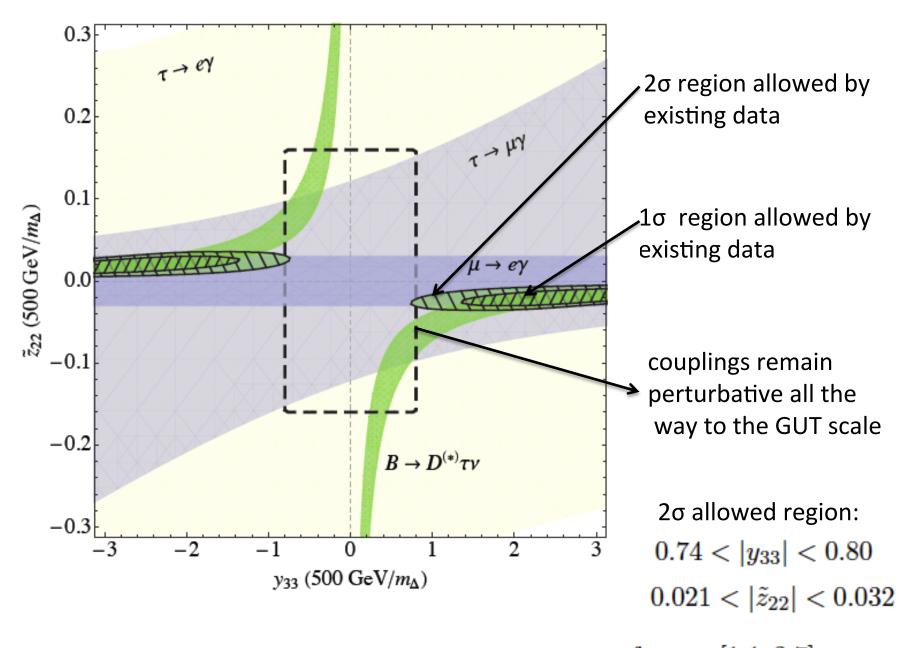
symmetric couplings to matter fields Our assumption: (3,2)<sub>7/6</sub> in 45 of SU(5)

without 45:  $M_E \approx M_D$  at GUT scale

with 45 :  $M_E = \approx -3 M_D$  at GUT scale

Representation 45 with its vev modifies mass relation for down-like quarks and charged leptons

$$2M_D^{\text{diag}} D_R^T = -2Y_1 v_{45} - Y_3 v_5$$
$$2E_R M_E^{\text{diag}} = 6Y_1 v_{45} - Y_3 v_5$$

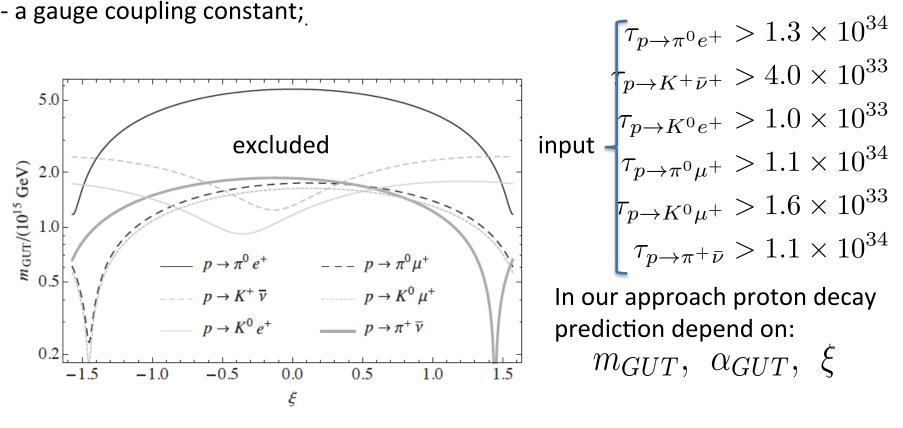

We assume that  $D_R$ ,  $U_R$ ,  $E_R$  are real!

$$M_D^{\text{diag}} D_R^T - E_R M_E^{\text{diag}} = 4U_R Z v_{45}$$

this equation should be satisfied at GUT scale!

11 parameters and 9 equations only parameter  $\xi$  can not be fixed!

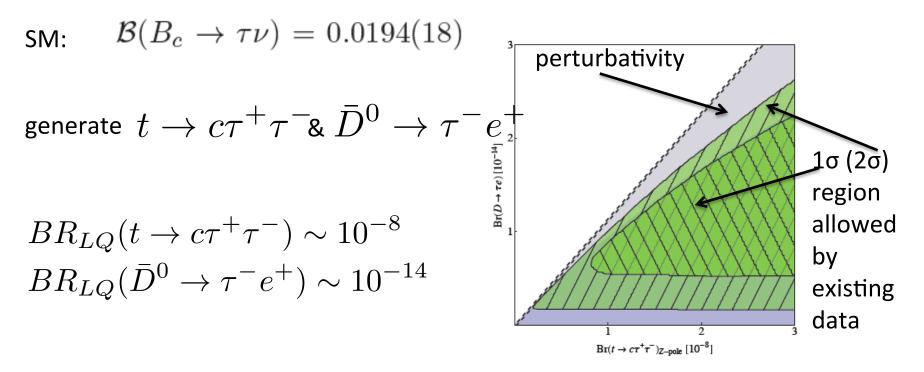
$$\tilde{z}_{21}$$
 :  $\tilde{z}_{22}$  :  $\tilde{z}_{23} = 0.024$  : 0.32 : 1




 $f_{\rm RGE} 5.0 \,{
m GeV} < v_{45} < f_{
m RGE} 7.6 \,{
m GeV}$  ( $f_{
m RGE} \in [1.1, 3.7]$ 

Proton decay amplitude depends on one parameter!

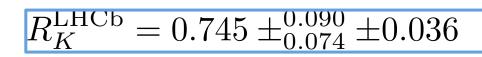
necessary to know:


- all unitary transformations in the charged fermion sector;
- masses of all proton mediated gauge bosons and
- a gauge coupling constant;

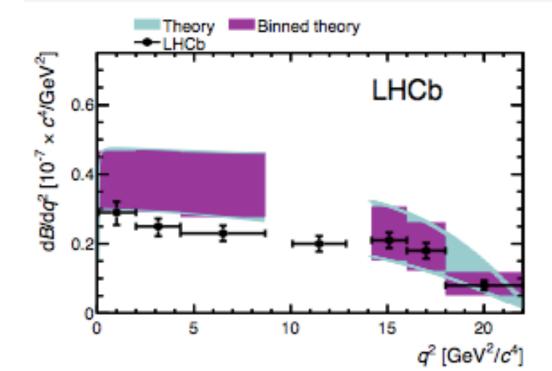


In some part of parameter space  $p \rightarrow \pi^0 e^+$  is suppressed in comparison with  $p \to K^+ \bar{\nu}, \, p \to K^0 e^+$ 

#### Predictions


$$BR_{SM+LQ}(B_c \to \tau \nu_{\tau}) \simeq \begin{bmatrix} 0.36BR_{SM}(B_c \to \tau \nu_{\tau}) \\ g_S = -0.37 \\ 84BR_{SM}(B_c \to \tau \nu_{\tau}) \\ g_s \simeq 1.8 \pm 0.4i \end{bmatrix}$$




### Lepton flavor universality violation: $R_{\kappa}$

G. Hiller and F. Kruger, hep-ph/0310219 suggested to measure

$$R_K = \frac{\mathcal{B}(B \to K\mu^+\mu^-)_{q^2 \in [1,6] \text{ GeV}^2}}{\mathcal{B}(B \to Ke^+e^-)_{q^2 \in [1,6] \text{ GeV}^2}}$$



$$R_K^{SM} = 1.0003 \pm 0.0001$$

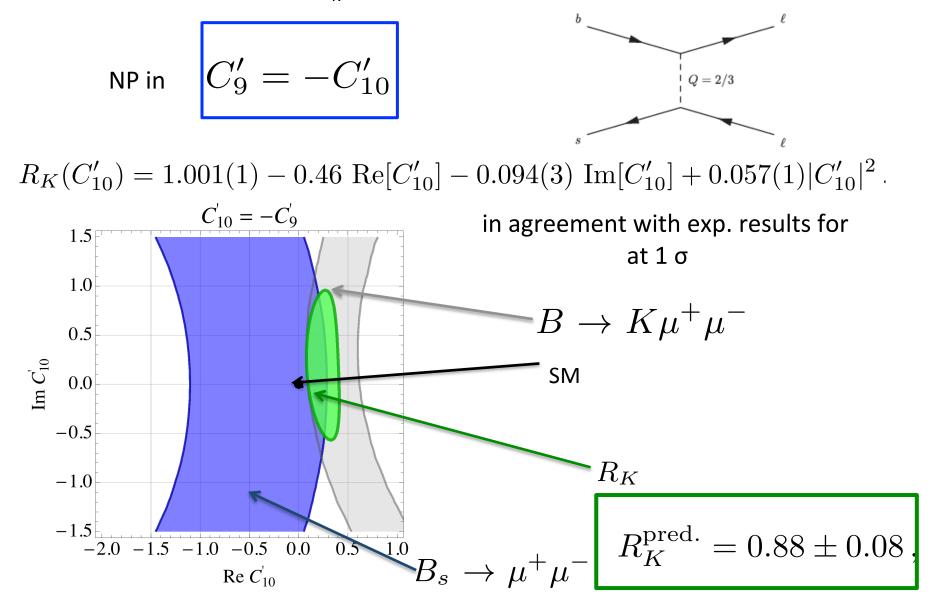


This decay modes give useful constraints on NP!

$$\begin{bmatrix}
B \to K^* l^+ l^- \\
B \to K l^+ l^- \\
B \to X_s l^+ l^- \\
B_s \to l^+ l^-
\end{bmatrix}$$

In our study we use:

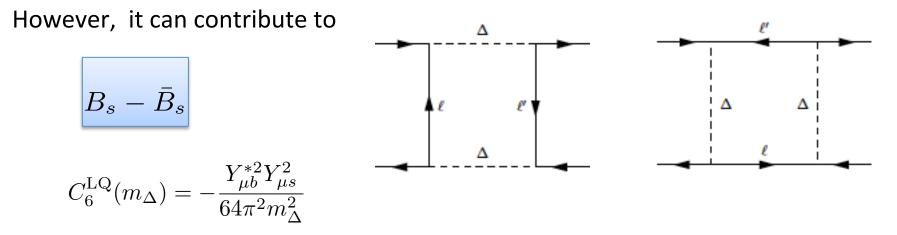
Experimental results 2013


$$BR(B_s \to \mu^+ \mu^-)_{LHCb} = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$$
$$BR(B_s \to \mu^+ \mu^-)_{CMS} = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$
$$BR(B_s \to \mu^+ \mu^-)_{SM} = (3.23 \pm 0.23) \times 10^{-9}$$

Buras et al, 1208.0934

Effective Hamiltonian for  $b \to s \mu^+ \mu^-$ 

renormalisation- effective Wilson coefficients are used!


Our explanation of  $R_{\kappa}$  anomaly (D. Bečirević, SF, N. Košnik, 1503.09024)



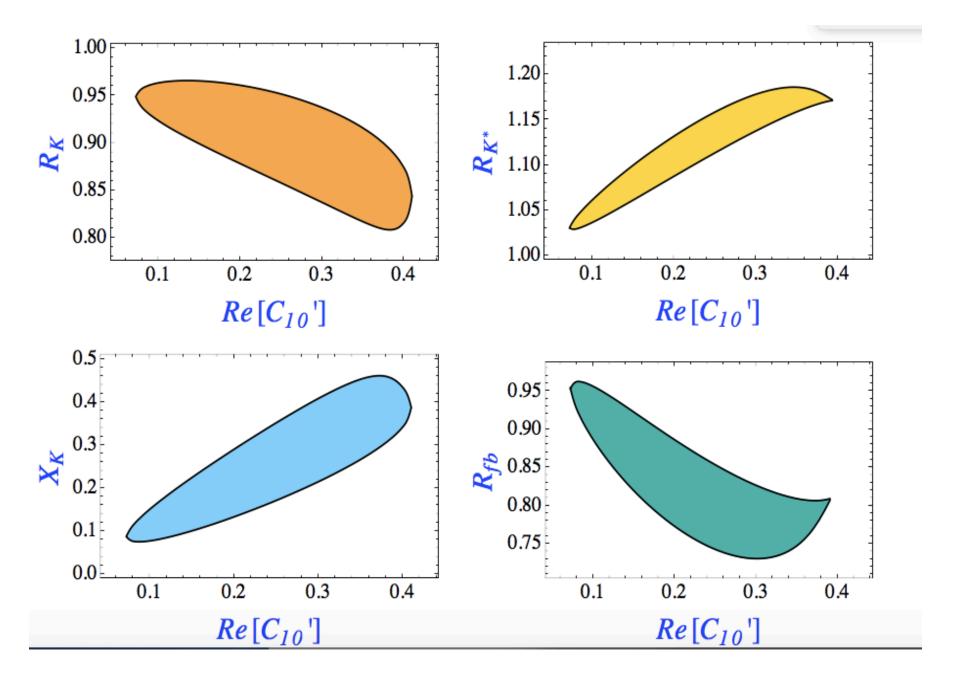
G. Hiller & M. Schmaltz : observed  $R_K$  can be explained by LQ which fulfill  $C'_{9} = -C'_{10}$ 

$$\mathcal{L} = Y_{ij}\overline{L}_i i\tau^2 \Delta^* d_{Rj} + \text{h.c.}$$
  
=  $Y_{ij} \left( -\bar{\ell}_{Li} d_{Rj} \Delta^{(2/3)*} + \bar{\nu}_{Lk} (V^{\text{PMNS}})^{\dagger}_{ki} d_{Rj} \Delta^{(-1/3)*} \right) + \text{h.c.}$ 

$$C_{10}' = -C_9' = \frac{-\pi}{2\sqrt{2}G_F V_{tb} V_{ts}^* \alpha} \frac{Y_{\mu b} Y_{\mu s}^*}{m_\Delta^2}$$



With value  $C_{10}'$  one can get very loose bound on  $\underline{m}_{\Delta}$  ~ 100 TeV.


Our suggestion: new observables

$$R_{K^*} = \frac{\Gamma(B \to K^* \mu^+ \mu^-)_{q^2 \in [1,6] \text{ GeV}^2}}{\Gamma(B \to K^* e^+ e^-)_{q^2 \in [1,6] \text{ GeV}^2}} \qquad X_K = \frac{R_{K^*}}{R_K} - 1$$
$$A_{\text{fb}[4-6]}^{\ell} = \frac{3}{4} \frac{\int_{4 \text{ GeV}^2}^{6 \text{ GeV}^2} I_6^s(q^2) \, dq^2}{\Gamma(B \to K^* \ell^+ \ell^-)_{q^2 \in [4,6] \text{ GeV}^2}} \qquad R_{\text{fb}} = \frac{A_{\text{fb}[4-6]}^{\mu}}{A_{\text{fb}[4-6]}^e}$$

LQ (3,2,1/6) in suggested observables leads to :

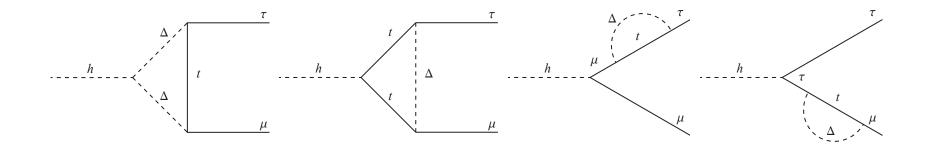
$$R_K = 0.88 \pm 0.08$$
,  $R_{K^*} = 1.11 \pm 0.08$ ,  
 $X_K = 0.27 \pm 0.19$ ,  $R_{\text{fb}} = 0.84 \pm 0.12$ ,

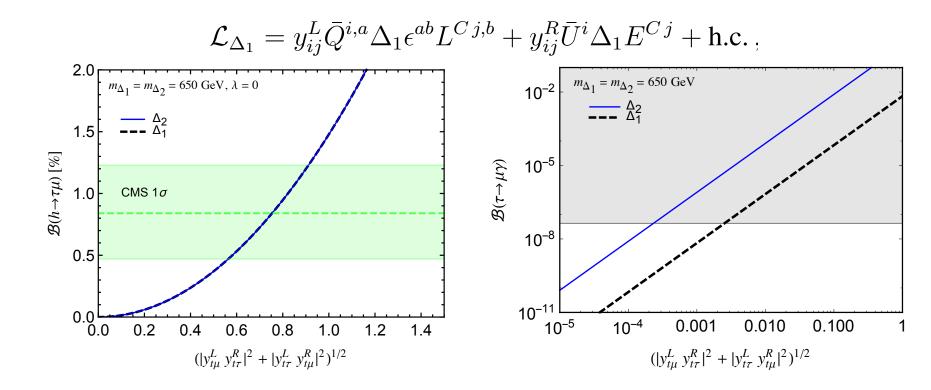
It can give increase of the rate for  $~B \to K \nu \bar{\nu}$  at the order of 5%

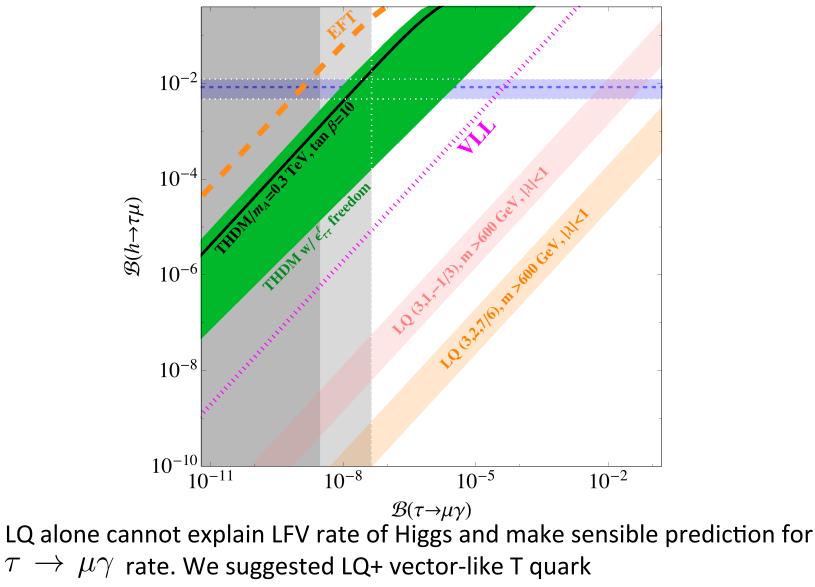


Lepton flavor violating decay  $h \rightarrow \tau \mu$ 

CMS result 
$$\mathcal{B}(h \to \tau \mu) = \left(0.84^{+0.39}_{-0.37}\right)\%$$
 (assuming SM Higgs production)


After EWSB 
$$\mathcal{L}_{Y_{\ell}}^{\text{eff.}} = -m_i \delta_{ij} \bar{\ell}_L^i \ell_R^j - y_{ij} \left( \bar{\ell}_L^i \ell_R^j \right) h + \ldots + \text{h.c.}$$


$$\mathcal{B}(h \to \tau \mu) = \frac{m_h}{8\pi\Gamma_h} \left( |y_{\tau\mu}|^2 + |y_{\mu\tau}|^2 \right)$$


 $0.0019(0.0008) < \sqrt{|y_{\tau\mu}|^2 + |y_{\mu\tau}|^2} < 0.0032(0.0036)$  at 68% (95%) C.L.

We considered low energy bounds and found that if CMS result holds the at Belle II  $\tau \to \mu \gamma~$  should be observed!

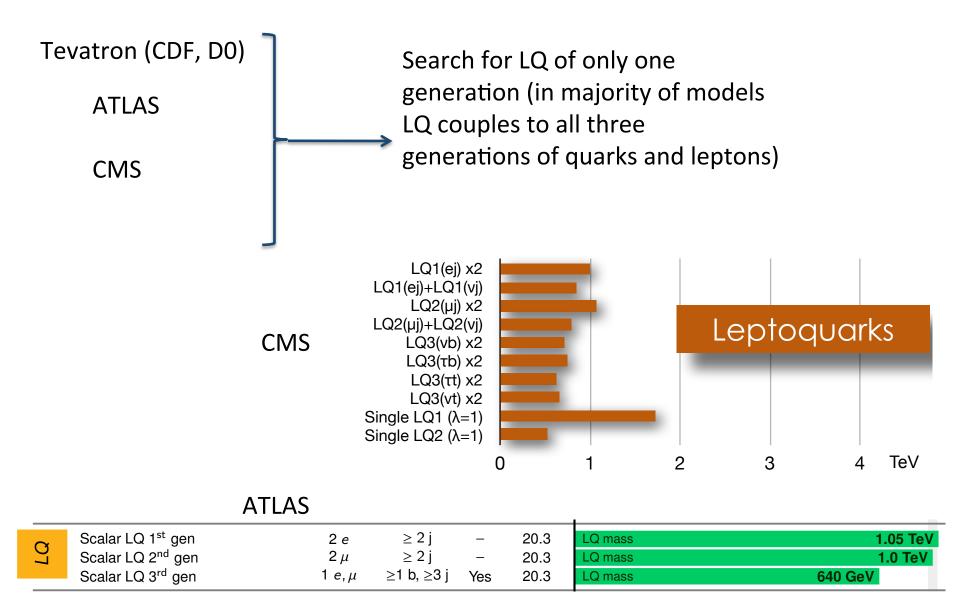
LQ candidates:  $\Delta_1 = (3,1,-1/3)$  $\Delta_2 = (3,2,7/6)$ 

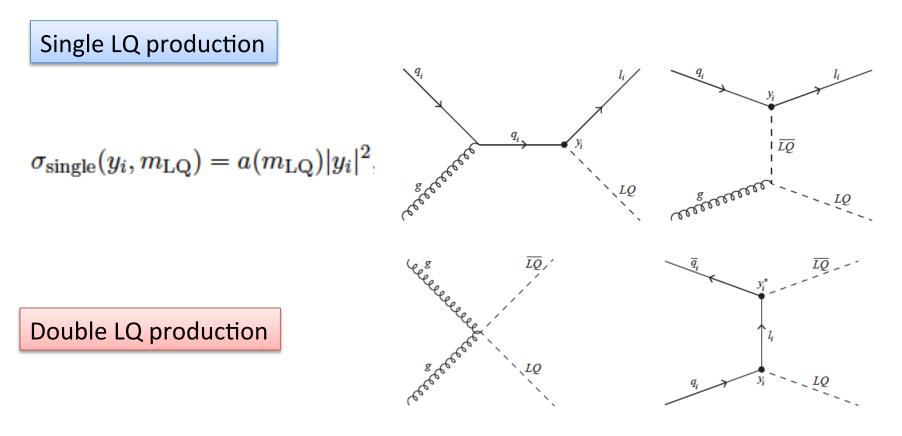






(I.Doršner, S.F., J.F.Kamenik, N.Košnik, I. Nisandžić, 1502.07784\_)


Low energy constraints and searches for LQ at LHC


What do we achieve obtaining bounds from low energy phenomenology?

-If leptoquarks are relatively light (mass  $\sim 1 \text{ TeV}$ ) one might check whether unification is possible within SU(5) and SO(10)!

- ATLAS and CMS search for LQ. Are these bounds relevant for their searches?

#### **Experimental searches for LQ**





 $\sigma_{\text{pair}}(y_i, m_{\text{LQ}}) = a_0(m_{\text{LQ}}) + a_2(m_{\text{LQ}})|y_i|^2 + a_4(m_{\text{LQ}})|y_i|^4$ 

- Sizable Yukawa couplings of LQ with SM fermions could influence pair production at LHC;

- For small Yukawas LQ production is the same as within QCD.

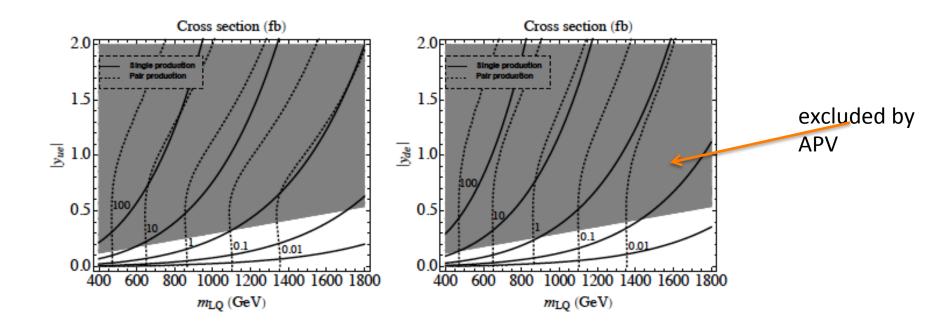
Search of LQ(3,2,1/6) at LHC

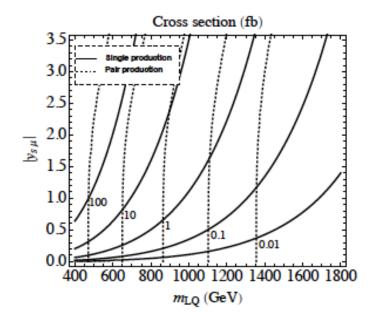
For simplicity we assume only diagonal couplings in the search for LQ at LHC!

I generation couplings: best constraints come from atomic parity violation

$$\mathcal{L}_{\rm PV} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d} (C_{1q} \bar{e} \gamma^{\mu} \gamma_5 e \bar{q} \gamma_{\mu} q + C_{2q} \bar{e} \gamma^{\mu} e \bar{q} \gamma_{\mu} \gamma_5 q)$$

$$C_{1d} = C_{1d}^{\rm SM} + \delta C_{1d} \qquad \delta C_{1u(d)} = \frac{\sqrt{2}}{G_F} \frac{|y_{u(d)e}|^2}{8m_{\rm LQ}^2} \begin{cases} |y_{de}| \le 0.34 \left(\frac{m_{\rm LQ}}{1\,{\rm TeV}}\right) \\ |y_{ue}| \le 0.36 \left(\frac{m_{\rm LQ}}{1\,{\rm TeV}}\right) \end{cases}$$


Bounds on II generation LQ


$$BR(K_L \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$$

Experimental bound:

$$|y_{s\mu}y_{de}^*| < 2.1 \times 10^{-5} \left(\frac{m_{\rm LQ}}{1{
m TeV}}\right)^2$$

The LQ of the first generation is fully constrained by APV, hence couplings of LQ to a down quark and an electron is very small.

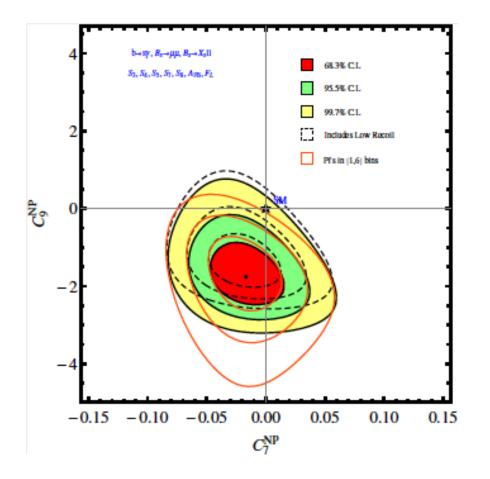




If Yukawa couplings are large, one also needs to take into consideration a single leptoquark production and t-channel leptoquark pair production.

# Summary

- (3,2,7/6) state introduced to explain R(D) and R(D\*);
- scalar with charge 2/3 introduces scalar and tensor operator into effective Lagrangian;
- charge 5/3 state induces quark and lepton flavor changing processes;
- constraints from  $Z \to \overline{b}b$ ,  $(g-2)_{\mu}$ ,  $d_{\tau}$ ,  $\tau \to \mu\gamma$ ,  $\mu \to e\gamma$ ;


• Model with (3,2,7/6) LQ state can be accommodated with SU(5) GUT by adding 45 scalar representation.

- (3,2,1/6) can explain R<sub>K</sub> anomaly.
- LQ alone cannot explain LFV rate of Higgs and make sensible prediction for  $\tau \to \mu \gamma {\rm rate}$  .

• Searches of LQ at LHC do depend on LQ couplings to quark and lepton, for large Yukawa couplings a single leptoquark production and t-channel leptoquark pair production are important - IMPORTANCE OF FLAVOUR PHYSICS FOR LHC! Global fit of NP contributions (S. Decotes-Genot et al.,1307.5683) 47 observables

$$\begin{array}{ll} BR(B \to X_{s}\gamma), & BR(B \to X_{s}\mu^{+}\mu^{-})_{Low \ q^{2}} \\ BR(B_{s} \to \mu^{+}\mu^{-}), & A_{I}(B \to K^{*}\gamma), & S(B \to K^{*}\gamma) \\ B \to K^{*}\mu^{+}\mu^{-}: \ \langle P_{1}\rangle, \langle P_{2}\rangle, \langle P_{4}'\rangle, \langle P_{5}'\rangle, \langle P_{6}'\rangle, \langle P_{8}'\rangle, \langle A_{FB}\rangle \end{array}$$

| Coefficient                       | $1\sigma$      | $2\sigma$     | 3σ            |
|-----------------------------------|----------------|---------------|---------------|
| $\mathcal{C}_{7}^{\mathrm{NP}}$   | [-0.05, -0.01] | [-0.06, 0.01] | [-0.08, 0.03] |
| $\mathcal{C}_{9}^{\mathrm{NP}}$   | [-1.6, -0.9]   | [-1.8, -0.6]  | [-2.1, -0.2]  |
| $\mathcal{C}_{10}^{\text{NP}}$    | [-0.4, 1.0]    | [-1.2, 2.0]   | [-2.0, 3.0]   |
| $\mathcal{C}^{\mathrm{NP}}_{7'}$  | [-0.04, 0.02]  | [-0.09, 0.06] | [-0.14, 0.10] |
| $\mathcal{C}_{9'}^{\mathrm{NP}}$  | [-0.2, 0.8]    | [-0.8, 1.4]   | [-1.2, 1.8]   |
| $\mathcal{C}_{10'}^{\mathrm{NP}}$ | [-0.4, 0.4]    | [-1.0, 0.8]   | [-1.4, 1.2]   |



Most likely modifications of SM Wilson coefficients; confirmed also by Altmannshofer and Straub 1308.1501, Beujean, Bobeth, van Dyk 1310.2478, Horgan et al., 1310.3887