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MoDvaDon	  

	  
Ø  We	  	  need	  Beyond	  Standard	  Model	  Physics;	  

Ø  Many	  proposals	  and	  searches	  of	  new	  non-‐SM	  parDcles	  at	  LHC;	  
	  
Ø  	  Leptoquarks	  are	  present	  in	  GUT	  theories;	  	  

Ø  	  Scalar	  LQ	  might	  modify	  	  mass	  matrices;	  

Ø  Intensive	  searches	  of	  LQ	  at	  LHC	  

Ø  ExplanaDon	  of	  anomalous	  events	  at	  low	  energies	  by	  LQ	  

Theory	  arguments	  

Experimental	  bounds	  



Why	  Beyond	  SM	  Physics?	  

1)	  Naturalness	   quadraDc	  divergences	  

Comment:	  all	  others	  SM	  parDcles	  get	  logarithmic	  correcDons!	  
	  

2)	  Neutrinos	  have	  masses:	  does	  it	  come	  from	  	  BSM?	  

3)	  What	  is	  the	  nature	  of	  dark	  maier?	  

4) We need more CP violation to understand baryon – antibaryon 
asymmetry in the universe!  
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ADD GKK + g/q − ≥ 1 j Yes 20.3 n = 2 1502.015185.25 TeVMD

ADD non-resonant ℓℓ 2e, µ − − 20.3 n = 3 HLZ 1407.24104.7 TeVMS

ADD QBH→ ℓq 1 e, µ 1 j − 20.3 n = 6 1311.20065.2 TeVMth

ADD QBH − 2 j − 20.3 n = 6 1407.13765.82 TeVMth

ADD BH high Ntrk 2 µ (SS) − − 20.3 n = 6, MD = 3 TeV, non-rot BH 1308.40754.7 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 20.3 n = 6, MD = 3 TeV, non-rot BH 1405.42545.8 TeVMth

ADD BH high multijet − ≥ 2 j − 20.3 n = 6, MD = 3 TeV, non-rot BH 1503.089885.8 TeVMth

RS1 GKK → ℓℓ 2 e, µ − − 20.3 k/MPl = 0.1 1405.41232.68 TeVGKK mass

RS1 GKK → γγ 2 γ − − 20.3 k/MPl = 0.1 1504.055112.66 TeVGKK mass

Bulk RS GKK → ZZ → qqℓℓ 2 e, µ 2 j / 1 J − 20.3 k/MPl = 1.0 1409.6190740 GeVGKK mass

Bulk RS GKK →WW → qqℓν 1 e, µ 2 j / 1 J Yes 20.3 k/MPl = 1.0 1503.04677760 GeVW′ mass

Bulk RS GKK → HH → bb̄bb̄ − 4 b − 19.5 k/MPl = 1.0 1506.00285500-720 GeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 20.3 BR = 0.925 1505.070182.2 TeVgKK mass

2UED / RPP 2 e, µ (SS) ≥ 1 b, ≥ 1 j Yes 20.3 1504.04605960 GeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 20.3 1405.41232.9 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 19.5 1502.071772.02 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 20.3 1407.74943.24 TeVW′ mass

EGM W ′ →WZ → ℓν ℓ′ℓ′ 3 e, µ − Yes 20.3 1406.44561.52 TeVW′ mass

EGM W ′ →WZ → qqℓℓ 2 e, µ 2 j / 1 J − 20.3 1409.61901.59 TeVW′ mass

EGM W ′ →WZ → qqqq − 2 J − 20.3 1506.009621.3-1.5 TeVW′ mass

HVT W ′ →WH → ℓνbb 1 e, µ 2 b Yes 20.3 gV = 1 1503.080891.47 TeVW′ mass

LRSM W ′
R
→ tb 1 e, µ 2 b, 0-1 j Yes 20.3 1410.41031.92 TeVW′ mass

LRSM W ′
R
→ tb 0 e, µ ≥ 1 b, 1 J − 20.3 1408.08861.76 TeVW′ mass

CI qqqq − 2 j − 17.3 ηLL = −1 1504.0035712.0 TeVΛ

CI qqℓℓ 2 e, µ − − 20.3 ηLL = −1 1407.241021.6 TeVΛ

CI uutt 2 e, µ (SS) ≥ 1 b, ≥ 1 j Yes 20.3 |CLL | = 1 1504.046054.3 TeVΛ

EFT D5 operator (Dirac) 0 e, µ ≥ 1 j Yes 20.3 at 90% CL for m(χ) < 100 GeV 1502.01518974 GeVM∗
EFT D9 operator (Dirac) 0 e, µ 1 J, ≤ 1 j Yes 20.3 at 90% CL for m(χ) < 100 GeV 1309.40172.4 TeVM∗

Scalar LQ 1st gen 2 e ≥ 2 j − 20.3 β = 1 Preliminary1.05 TeVLQ mass

Scalar LQ 2nd gen 2 µ ≥ 2 j − 20.3 β = 1 Preliminary1.0 TeVLQ mass

Scalar LQ 3rd gen 1 e, µ ≥1 b, ≥3 j Yes 20.3 β = 0 Preliminary640 GeVLQ mass

VLQ TT → Ht + X 1 e, µ ≥ 2 b, ≥ 3 j Yes 20.3 T in (T,B) doublet 1505.04306855 GeVT mass

VLQ YY →Wb + X 1 e, µ ≥ 1 b, ≥ 3 j Yes 20.3 Y in (B,Y) doublet 1505.04306770 GeVY mass

VLQ BB → Hb + X 1 e, µ ≥ 2 b, ≥ 3 j Yes 20.3 isospin singlet 1505.04306735 GeVB mass

VLQ BB → Zb + X 2/≥3 e, µ ≥2/≥1 b − 20.3 B in (B,Y) doublet 1409.5500755 GeVB mass

T5/3 →Wt 1 e, µ ≥ 1 b, ≥ 5 j Yes 20.3 1503.05425840 GeVT5/3 mass

Excited quark q∗ → qγ 1 γ 1 j − 20.3 only u∗ and d∗, Λ = m(q∗) 1309.32303.5 TeVq∗ mass

Excited quark q∗ → qg − 2 j − 20.3 only u∗ and d∗, Λ = m(q∗) 1407.13764.09 TeVq∗ mass

Excited quark b∗ →Wt 1 or 2 e, µ 1 b, 2 j or 1 j Yes 4.7 left-handed coupling 1301.1583870 GeVb∗ mass

Excited lepton ℓ∗ → ℓγ 2 e, µ, 1 γ − − 13.0 Λ = 2.2 TeV 1308.13642.2 TeVℓ∗ mass

Excited lepton ν∗ → ℓW , νZ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν∗ mass

LSTC aT →W γ 1 e, µ, 1 γ − Yes 20.3 1407.8150960 GeVaT mass

LRSM Majorana ν 2 e, µ 2 j − 20.3 m(WR ) = 2.4 TeV, no mixing 1506.060202.0 TeVN0 mass

Higgs triplet H±± → ℓℓ 2 e, µ (SS) − − 20.3 DY production, BR(H±±L → ℓℓ)=1 1412.0237551 GeVH±± mass

Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, BR(H±±
L
→ ℓτ)=1 1411.2921400 GeVH±± mass

Monotop (non-res prod) 1 e, µ 1 b Yes 20.3 anon−res = 0.2 1410.5404657 GeVspin-1 invisible particle mass

Multi-charged particles − − − 20.3 DY production, |q| = 5e 1504.04188785 GeVmulti-charged particle mass

Magnetic monopoles − − − 7.0 DY production, |g | = 1gD , spin 1/2 Preliminary1.34 TeVmonopole mass

Mass scale [TeV]10−1 1 10
√
s = 7 TeV

√
s = 8 TeV

ATLAS Exotics Searches* - 95% CL Exclusion
Status: July 2015

ATLAS Preliminary∫
L dt = (4.7 - 20.3) fb−1

√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.
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l 
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Color triplet bosons (scalars or vectors)  
with renormalizable  
couplings to the SM fermions 

Charge  
|Q| = 2/3

|Q| = 1/3

Some of  proposals of Physics beyond Standard Model contain  

If	  LQ	  is	  a	  	  weak	  doublet	  then	  lek	  down-‐quark	  fields	  “communicate”	  	  
with	  up-‐quark	  	  fields	  through	  the	  CKM	  matrix	  (the	  same	  for	  	  
leptons	  –	  PMNS	  matrix)	  

Leptoquarks	  



might destabilize  
proton 
ID, SF, NK 
 1204.0674 

(3,2)7/6 and  (3,2)1/6  proper candidates among scalar LQ 

Leptoquark candidates 

we do not  
consider these 
states 

Q=I3 +Y 



Most famous role of leptoquarks: proton destabilization 

Experimental bound    

⌧(p ! e+⇡0) > 1.3⇥ 1034 years



Low energy constraints on leptoquark couplings 

B ! D(⇤)⌧⌫⌧

B ! K⇤l+l�

Z ! bb̄

(g � 2)µ

Scalar LQ might explain small  
deviation: 
Experimental result  
 
 
 
 
SM prediction 

~	  2-‐3	  σ	  

⌧ ! µ�
µ ! e�

LPT-Orsay-15-25

Lepton flavor non-universality in b ! s`+`� processes

Damir Bečirević⇤

Laboratoire de Physique Théorique, CNRS/Université Paris-Sud 11 (UMR 8627), 91405 Orsay, France
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We explore a scenario of New Physics entering the description of B ! K(⇤)µµ decay through
couplings to the operators O0

9,10, satisfying C0
9 = �C0

10. From the current data on B(Bs ! µµ)
and B(B ! Kµµ)[15,22]GeV2 , we obtain constraints on ReC0

10 and ImC0
10 which we then assume

to be lepton specific, and find RK = B(B ! Kµµ)/B(B ! Kµµ)[1,6]GeV2 = 0.88(8), consistent
with recent value measured at LHCb. A specific realization of this scenario is the one with a scalar
leptoquark state �, in which C0

10 is related to the mass of � and its Yukawa couplings. We then
show that this scenario does not make any significant impact on Bs � Bs mixing amplitude nor to
B(B ! K⌫⌫̄). Instead, it can modify RK⇤ = B(B ! K⇤µµ)/B(B ! K⇤µµ)[1,6]GeV2 , which will
soon be experimentally measured and we find it to be RK⇤ = 1.11(8), while RK⇤/RK = 1.27(19).
A similar ratio of forward-backward asymmetries also becomes lower than in the Standard Model.

PACS numbers: 13.20.He,12.60.-i,14.80.Sv

I. INTRODUCTION

The b ! s transitions were in the focus of many theoretical and experimental studies during the last two decades
due to the possibility to constrain potential New Physics (NP) contributions at low energies. With LHC7 and LHC8
runs direct searches for NP became available. This gives us an excellent opportunity to question the appearance of
physics beyond Standard Model (SM). At low energies B-factories and the LHCb experiment provided flavor physics
community with a lot of rather precise results on b ! s transitions. The LHCb experiment has observed slight
discrepancies between the SM predictions and the experimental results for the angular observables in B ! K⇤µ+µ�

decay. This e↵ect has been attributed to NP, although the tension might be a result of the SM QCD e↵ects. Recently,
another anomaly in b ! s`+`� transition has been found in the ratio of the branching fractions,

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

. (1)

LHCb Collaboration measured this ratio for the square of dilepton invariant mass in the bin 1 GeV2  q2  6 GeV2,
and found [1],

RLHCb
K = 0.745±0.090

0.074 ±0.036 , (2)

lower than the SM prediction, RSM
K = 1.0003± 0.0001, in which next-to-next-to-leading QCD corrections have been

included [2]. In other words, the LHCb result points towards a 2.6 � e↵ect of the lepton flavor universality violation.
Furthermore, the combined data analysis of the Bs ! µ+µ� events gathered at LHCb and CMS resulted in B(Bs !

µ+µ�) = (2.8+0.7
�0.6)⇥ 10�9 [3], in good agreement with the SM prediction B(Bs ! µ+µ�) = (3.65± 0.23)⇥ 10�9 [4].

This o↵ers an excellent probe of b ! sµ+µ� transition in the light of SM and gives rather tight constraints on
parameter space of many models of NP. The RK anomaly has been approached in the literature in di↵erent ways:
either by using the e↵ective Lagrangian approach or in a specific model of NP. For example the e↵ective Lagrangian
approach used in references [5–8] indicated that in order to understand the measured value of RK one must include
the e↵ects of NP, and that the e↵ects of non-perturbative QCD alone could not explain such a large deviation of RK

from unity [6–21]. In particular, it was found that the NP contribution most likely a↵ects C9, C10 or C 0
9, C

0
10 e↵ective

Wilson coe�cients, and that some kind of lepton flavor universality violation is needed, e.g. Cµ
9 6= Ce

9 [10, 22]. In

⇤ Electronic address:damir.becirevic@th.u-psud.fr
† Electronic address:svjetlana.fajfer@ijs.si
‡ Electronic address:nejc.kosnik@ijs.si
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New Physics Models Facing Lepton Flavor Violating Higgs Decays at the

Percent Level

Ilja Doršner,1, 2, ⇤ Svjetlana Fajfer,3, 2, † Admir Greljo,4, ‡

Jernej F. Kamenik,2, 3, § Nejc Košnik,3, 2, ¶ and Ivan Nišandžić5, ⇤⇤

1University of Split, Faculty of Electrical Engineering,

Mechanical Engineering and Naval Architecture in Split (FESB),

R. Boškovića 32, 21 000 Split, Croatia
2Jožef Stefan Institute, Jamova 39, P. O. Box 3000, 1001 Ljubljana, Slovenia

3Department of Physics, University of Ljubljana,

Jadranska 19, 1000 Ljubljana, Slovenia
4Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland

5Institut für Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany

Abstract
We speculate about the possible interpretations of the recently observed excess in the h ! ⌧µ decay. We

derive a robust lower bound on the Higgs boson coupling strength to a tau and a muon, even in presence of

the most general new physics affecting other Higgs properties. Then we reevaluate complementary indirect

constraints coming from low energy observables as well as from theoretical considerations. In particular,

the tentative signal should lead to ⌧ ! µ� at rates which could be observed at Belle II. In turn we show

that, barring fine-tuned cancellations, the effect can only be accommodated within models with an extended

scalar sector. These general conclusions are demonstrated using a number of explicit new physics models.

Finally we show how, given the h ! ⌧µ signal, the current and future searches for µ ! e� and µ ! e

nuclear conversions unambiguously constrain the allowed rates for h ! ⌧e.

⇤ Electronic address:dorsner@fesb.hr
† Electronic address:svjetlana.fajfer@ijs.si
‡ Electronic address:admir@physik.uzh.ch
§ Electronic address:jernej.kamenik@ijs.si
¶ Electronic address:nejc.kosnik@ijs.si
⇤⇤ Electronic address:ivan.nisandzic@tu-dortmund.de
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Current status of flavor anomalies (subjective)

• Some would be unambiguous NP signals

Except for theoretically cleanest modes,
cross-checks needed to build robust case

– measurements of related observables

– independent theory / lattice calc.

1 2 3 4

significance (σ)

f(
th
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h→τμ
B→Ke+e-/B→Kμ+μ-

dimuon CP asym
B→D(*)τν

B→K *μ+μ- angular

Bs→ϕμ+μ-

|Vcb| incl/excl

|Vub| incl/excl

g-2
ϵ'/ϵ

• Each could be a whole talk — I can only make a few comments

Z L – p. 9

From	  Z.	  LigeD,	  LP	  2015,	  Ljubljana	  



The B ! D(⇤)⌧ ⌫̄ decay rates

• Belle & LHCb results on the anomaly seen by BaBar in R(X) =
�(B ! X⌧⌫̄)

�(B ! X(e/µ)⌫̄)

R(D) R(D⇤)
BaBar 0.440 ± 0.058 ± 0.042 0.332 ± 0.024 ± 0.018

Belle 0.375 ± 0.064 ± 0.026 0.293 ± 0.038 ± 0.015

LHCb 0.336 ± 0.027 ± 0.030

Average 0.391 ± 0.050 0.322 ± 0.022

SM expectation 0.300 ± 0.010 0.252 ± 0.005

Belle II, 50/ab ±0.010 ±0.005
R(D)

0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BaBar, PRL109,101802(2012)
Belle, arXiv:1507.03233
LHCb, arXiv:1506.08614
Average

 = 1.02χ∆

SM prediction

HFAG

EPS 2015

) = 55%2χP(

HFAG
Prel. EPS2015

SM predictions fairly robust: heavy quark symmetry + lattice QCD (only D so far)

• Tension: R(D(⇤)
) vs. B(b ! X⌧+⌫) = (2.41 ± 0.23)% (LEP) [Freytsis, ZL, Ruderman]

SM: R(Xc) = 0.223 ± 0.004 — no BaBar / Belle B(B ! X⌧ ⌫̄) measurement yet

Need NP at fairly low scale (leptoquarks, W 0, etc.), likely visible in LHC Run II
[Fajfer, Kamenik, Nisandzic, Zupan, many others]

• Next: LHCb result with hadronic ⌧ decays, measure R(D), maybe ⇤b decay

Z L – p. 10

In  ratios there is no dependence on CKM matrix elements: 

  Experiment – Theory in B    D(D*) τντ 



combined 3.4σ  
larger than SM  

Standard Model  
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Z L – p. 10



	  Leptoquark	  contribuDon	  in	  	  	  	  

Scalar	  and	  vector	  
leptoquark	  	  that	  trigger	  
b	  	  	  	  	  	  c	  l	  υ,	  
I.Doršner,	  S.F.,	  N.	  Košnik,	  (2013)	  

Color	  triplet	  bosons	  (scalars	  or	  vectors)	  	  
with	  renormalizable	  	  
couplings	  to	  the	  SM	  fermions	  

Charge	  	  
|Q| = 2/3

|Q| = 1/3

b ! c⌧⌫⌧

If	  LQ	  is	  a	  	  weak	  doublet	  then	  lek	  down-‐quark	  fields	  “communicate”	  with	  
up-‐quark	  	  fields	  through	  the	  CKM	  matrix	  (the	  same	  for	  leptons	  –	  PMNS	  matrix)	  

b	  

c	  

τ	  

υτ	  

!



Can	  observed	  effects	  be	  explained	  within	  SM?	  
	  
New	  form-‐factors	  show	  up	  in	  	  
	  
How	  well	  do	  we	  know	  all	  form-‐factors?	  
	  
Lavce	  improvements?	  	  
	  
Lepton	  flavor	  universality	  violaDon	  in	  B	  semileptonic	  decays?	  
	  
	  
	  

B ! D(⇤)⌧⌫⌧

Standard Model or New Physics? 

S.F.	  J.F.	  Kamenik,	  I.	  Nišandžić,	  J.	  Zupan,	  1206.1872	  

Many	  proposals	  of	  NP:	  

P.	  Ko	  et	  al.,1212.4607;	  	  
A.Celis	  et	  al,	  1210.8443;	  	  
D.	  Bečirević	  et	  al.	  1206.4977;	  
A.  Crivelin	  et	  al.,	  1206.2634;	  
P.	  Biancofiore	  et	  al.,1302.1042,	  
…	  	  

P.	  Ko	  et	  al.,1212.4607;	  	  
A.Celis	  et	  al,	  1210.8443;	  	  
D.	  Bečirević	  et	  al.	  1206.4977;	  
A.  Crivelin	  et	  al.,	  1206.2634;	  
P.	  Biancofiore	  et	  al.,1302.1042,	  
…	  	  
	  



InteracDons	  of	  Δ	  =	  (3,2,7/6)	  state	  	  
	  

Fields	  are	  in	  the	  weak	  	  base.	  We	  use	  a	  basis	  in	  which	  all	  rotaDons	  	  
are	  assigned	  to	  neutrinos	  and	  up-‐like	  quarks.	  
TransiDon	  to	  a	  mass	  base:	  	  

Requirements:	  	  
	  
-‐	  to	  explain	  deviaDon	  of	  SM	  predicDon	  in	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  
-‐	  no	  contribuDons	  in	  	  
	  

b ! c⌧⌫⌧
b ! cl⌫l, l = e, µ

Δ =	  



We	  impose:	  b	  couples	  to	  τ	  only	  and	  c	  quark	  to	  neutrinos	  

couplings	  	  

couplings	  	  



b ! c⌧⌫⌧EffecDve	  hamiltonian	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  transiDon	  induced	  by	  LQ	  transiDon	  	  

(Fierz’s	  	  transformaDon	  are	  used)	  

SM	  +	  NP	  operators	  	  

this	  relaDon	  holds	  on	  the	  mass	  scale	  of	  Δ	  



1σ range 

R(D*)	  R(D)	  

c b 

l ν 

mb,mc << v

scalar	  and	  tensor	  	  operators	  have	  anomalous	  dimension	  
contrary	  to	  	  V	  and	  A	  	  currents	  
	  	  



Lepton	  electromagneDc	  current	  

Muon	  anomalous	  magneDc	  moment	   enters	  loop	  funcDons	  
charm	  quark	  in	  the	  loop	  



	  
	  
• 	  is	  not	  affected	  due	  to	  -‐1/3	  charge	  of	  quarks	  and	  2/3	  charge	  of	  	  
the	  LQ;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
• 	  muon	  and	  tau	  in	  the	  loop	  –negligible	  modificaDon	  of	  the	  gL	  coupling	  	  	  	  	  	  	  

Z ! bb̄
AddiDonal	  constraints	  

(g � 2)µ

Is	  GUT	  possible	  with	  such	  extension?	  	  

z̃12 ⇠ 10�5The	  small	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  coupling	  	  implies	  vev	  of	  representaDon	  45	  	  
v45	  	  	  to	  be	  large!	  	  



MEG	  experiment	  result	  on	  muon	  BR	  
for	  LFV	  decay	  is	  	  	  much	  stronger	  then	  
for	  bound	  on	  tau	  LFV	  decay	  rate.	  The	  
μ	  likime	  and	  the	  strong	  bound	  on	  
LFV	  	  compensate	  for	  a	  	  helicity	  
suppression.	  	  	  

	  
	  
	  
	  
	  
	  
	  
	  



Is	  our	  low-‐energy	  Yukawa	  ansatz	  compaDble	  with	  the	  idea	  of	  GUT?	  

Georgi-‐Glashow	  (1974)	  proposed	  

GUT	  models	  contain	  such	  a	  state	  in	  	  an	  extended	  SU(5),	  SO(10).	  	  

Ø 	  Minimal	  SU(5)	  GUT	  fails!	  

Two	  problems:	  

Ø 	  ME	  ≈	  MD	  at	  GUT	  scale	  	  	  



(3,2)7/6	  	  in	  GUT	  	  

(3,2)7/6	  can	  be	  found	  in	  representaDons	  45	  and	  50	  of	  SU(5)	  	  	  

has	  both	  couplings	  Z	  and	  Y	  	  

In	  SO(10)	  scenario:	  120	  and	  126	  	  	  

anD-‐symmetric	  
couplings	  to	  maier	  	  

symmetric	  couplings	  	  
to	  maier	  fields	  	  



Our	  assumpDon:	  (3,2)7/6	  	  in	  45	  of	  SU(5)	  	  
	  

We	  assume	  that	  DR,	  UR,	  ER	  are	  real!	  	  	  

RepresentaDon	  45	  with	  its	  vev	  modifies	  mass	  relaDon	  for	  down-‐like	  quarks	  	  
and	  charged	  leptons	  

this	  equaDon	  should	  be	  	  
saDsfied	  at	  GUT	  scale!	  

11	  parameters	  and	  9	  equaDons	  	  	  only	  parameter	  ξ	  can	  not	  be	  fixed!	  

without	  45:	  ME	  ≈	  MD	  at	  GUT	  scale	  	  
	  
with	  45	  :	  ME=	  ≈	  -‐3	  MD	  at	  GUT	  scale	  



11σ	  	  region	  allowed	  by	  
eexisDng	  data	  	  

couplings	  remain	  
perturbaDve	  all	  the	  
	  way	  to	  the	  GUT	  scale	  

2σ	  region	  allowed	  by	  
exisDng	  data	  	  

2σ	  allowed	  region:	  

(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  



Proton	  decay	  amplitude	  depends	  on	  one	  parameter!	  

excluded	  

In	  some	  part	  of	  parameter	  space	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  suppressed	  in	  	  comparison	  with	  
	  

p ! ⇡0e+

p ! K+⌫̄, p ! K0e+

	  
	  	  	  necessary	  to	  know:	  
-‐	  all	  unitary	  transformaDons	  in	  the	  charged	  fermion	  sector;	  	  
-‐ 	  masses	  of	  all	  proton	  mediated	  gauge	  bosons	  and	  	  
-‐ 	  a	  gauge	  coupling	  constant;.	  	   ⌧p!⇡0e+ > 1.3⇥ 1034

⌧p!K+⌫̄+ > 4.0⇥ 1033

⌧p!K0e+ > 1.0⇥ 1033

⌧p!⇡0µ+ > 1.1⇥ 1034

⌧p!K0µ+ > 1.6⇥ 1033

⌧p!⇡+⌫̄ > 1.1⇥ 1034

input	  

In	  our	  approach	  proton	  decay	  	  
predicDon	  depend	  on:	  	  

mGUT , ↵GUT , ⇠



PredicDons	  

SM:	  

gs ' 1.8± 0.4i

BRSM+LQ(Bc ! ⌧⌫⌧ ) '

84BRSM (Bc ! ⌧⌫⌧ )

0.36BRSM (Bc ! ⌧⌫⌧ )

t ! c⌧+⌧�&generate	  	  

BRLQ(t ! c⌧+⌧�) ⇠ 10�8

BRLQ(D̄
0 ! ⌧�e+) ⇠ 10�14

perturbaDvity	  

1σ	  (2σ)	  
region	  	  
allowed	  
by	  
exisDng	  
data	  	  

D̄0 ! ⌧�e+
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We explore a scenario of New Physics entering the description of B ! K(⇤)µµ decay through
couplings to the operators O0

9,10, satisfying C0
9 = �C0

10. From the current data on B(Bs ! µµ)
and B(B ! Kµµ)[15,22]GeV2 , we obtain constraints on ReC0

10 and ImC0
10 which we then assume

to be lepton specific, and find RK = B(B ! Kµµ)/B(B ! Kµµ)[1,6]GeV2 = 0.88(8), consistent
with recent value measured at LHCb. A specific realization of this scenario is the one with a scalar
leptoquark state �, in which C0

10 is related to the mass of � and its Yukawa couplings. We then
show that this scenario does not make any significant impact on Bs � Bs mixing amplitude nor to
B(B ! K⌫⌫̄). Instead, it can modify RK⇤ = B(B ! K⇤µµ)/B(B ! K⇤µµ)[1,6]GeV2 , which will
soon be experimentally measured and we find it to be RK⇤ = 1.11(8), while RK⇤/RK = 1.27(19).
A similar ratio of forward-backward asymmetries also becomes lower than in the Standard Model.

PACS numbers: 13.20.He,12.60.-i,14.80.Sv

I. INTRODUCTION

The b ! s transitions were in the focus of many theoretical and experimental studies during the last two decades
due to the possibility to constrain potential New Physics (NP) contributions at low energies. With LHC7 and LHC8
runs direct searches for NP became available. This gives us an excellent opportunity to question the appearance of
physics beyond Standard Model (SM). At low energies B-factories and the LHCb experiment provided flavor physics
community with a lot of rather precise results on b ! s transitions. The LHCb experiment has observed slight
discrepancies between the SM predictions and the experimental results for the angular observables in B ! K⇤µ+µ�

decay. This e↵ect has been attributed to NP, although the tension might be a result of the SM QCD e↵ects. Recently,
another anomaly in b ! s`+`� transition has been found in the ratio of the branching fractions,

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

. (1)

LHCb Collaboration measured this ratio for the square of dilepton invariant mass in the bin 1 GeV2  q2  6 GeV2,
and found [1],

RLHCb
K = 0.745±0.090

0.074 ±0.036 , (2)

lower than the SM prediction, RSM
K = 1.0003± 0.0001, in which next-to-next-to-leading QCD corrections have been

included [2]. In other words, the LHCb result points towards a 2.6 � e↵ect of the lepton flavor universality violation.
Furthermore, the combined data analysis of the Bs ! µ+µ� events gathered at LHCb and CMS resulted in B(Bs !

µ+µ�) = (2.8+0.7
�0.6)⇥ 10�9 [3], in good agreement with the SM prediction B(Bs ! µ+µ�) = (3.65± 0.23)⇥ 10�9 [4].

This o↵ers an excellent probe of b ! sµ+µ� transition in the light of SM and gives rather tight constraints on
parameter space of many models of NP. The RK anomaly has been approached in the literature in di↵erent ways:
either by using the e↵ective Lagrangian approach or in a specific model of NP. For example the e↵ective Lagrangian
approach used in references [5–8] indicated that in order to understand the measured value of RK one must include
the e↵ects of NP, and that the e↵ects of non-perturbative QCD alone could not explain such a large deviation of RK

from unity [6–21]. In particular, it was found that the NP contribution most likely a↵ects C9, C10 or C 0
9, C

0
10 e↵ective

Wilson coe�cients, and that some kind of lepton flavor universality violation is needed, e.g. Cµ
9 6= Ce

9 [10, 22]. In
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The b ! s transitions were in the focus of many theoretical and experimental studies during the last two decades
due to the possibility to constrain potential New Physics (NP) contributions at low energies. With LHC7 and LHC8
runs direct searches for NP became available. This gives us an excellent opportunity to question the appearance of
physics beyond Standard Model (SM). At low energies B-factories and the LHCb experiment provided flavor physics
community with a lot of rather precise results on b ! s transitions. The LHCb experiment has observed slight
discrepancies between the SM predictions and the experimental results for the angular observables in B ! K⇤µ+µ�

decay. This e↵ect has been attributed to NP, although the tension might be a result of the SM QCD e↵ects. Recently,
another anomaly in b ! s`+`� transition has been found in the ratio of the branching fractions,

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

. (1)

LHCb Collaboration measured this ratio for the square of dilepton invariant mass in the bin 1 GeV2  q2  6 GeV2,
and found [1],

RLHCb
K = 0.745±0.090

0.074 ±0.036 , (2)

lower than the SM prediction, RSM
K = 1.0003± 0.0001, in which next-to-next-to-leading QCD corrections have been

included [2]. In other words, the LHCb result points towards a 2.6 � e↵ect of the lepton flavor universality violation.
Furthermore, the combined data analysis of the Bs ! µ+µ� events gathered at LHCb and CMS resulted in B(Bs !

µ+µ�) = (2.8+0.7
�0.6)⇥ 10�9 [3], in good agreement with the SM prediction B(Bs ! µ+µ�) = (3.65± 0.23)⇥ 10�9 [4].

This o↵ers an excellent probe of b ! sµ+µ� transition in the light of SM and gives rather tight constraints on
parameter space of many models of NP. The RK anomaly has been approached in the literature in di↵erent ways:
either by using the e↵ective Lagrangian approach or in a specific model of NP. For example the e↵ective Lagrangian
approach used in references [5–8] indicated that in order to understand the measured value of RK one must include
the e↵ects of NP, and that the e↵ects of non-perturbative QCD alone could not explain such a large deviation of RK

from unity [6–21]. In particular, it was found that the NP contribution most likely a↵ects C9, C10 or C 0
9, C
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and B(B ! Kµµ)[15,22]GeV2 , we obtain constraints on ReC0
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10 which we then assume

to be lepton specific, and find RK = B(B ! Kµµ)/B(B ! Kµµ)[1,6]GeV2 = 0.88(8), consistent
with recent value measured at LHCb. A specific realization of this scenario is the one with a scalar
leptoquark state �, in which C0

10 is related to the mass of � and its Yukawa couplings. We then
show that this scenario does not make any significant impact on Bs � Bs mixing amplitude nor to
B(B ! K⌫⌫̄). Instead, it can modify RK⇤ = B(B ! K⇤µµ)/B(B ! K⇤µµ)[1,6]GeV2 , which will
soon be experimentally measured and we find it to be RK⇤ = 1.11(8), while RK⇤/RK = 1.27(19).
A similar ratio of forward-backward asymmetries also becomes lower than in the Standard Model.
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I. INTRODUCTION

The b ! s transitions were in the focus of many theoretical and experimental studies during the last two decades
due to the possibility to constrain potential New Physics (NP) contributions at low energies. With LHC7 and LHC8
runs direct searches for NP became available. This gives us an excellent opportunity to question the appearance of
physics beyond Standard Model (SM). At low energies B-factories and the LHCb experiment provided flavor physics
community with a lot of rather precise results on b ! s transitions. The LHCb experiment has observed slight
discrepancies between the SM predictions and the experimental results for the angular observables in B ! K⇤µ+µ�

decay. This e↵ect has been attributed to NP, although the tension might be a result of the SM QCD e↵ects. Recently,
another anomaly in b ! s`+`� transition has been found in the ratio of the branching fractions,

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

. (1)

LHCb Collaboration measured this ratio for the square of dilepton invariant mass in the bin 1 GeV2  q2  6 GeV2,
and found [1],

RLHCb
K = 0.745±0.090

0.074 ±0.036 , (2)

lower than the SM prediction, RSM
K = 1.0003± 0.0001, in which next-to-next-to-leading QCD corrections have been

included [2]. In other words, the LHCb result points towards a 2.6 � e↵ect of the lepton flavor universality violation.
Furthermore, the combined data analysis of the Bs ! µ+µ� events gathered at LHCb and CMS resulted in B(Bs !

µ+µ�) = (2.8+0.7
�0.6)⇥ 10�9 [3], in good agreement with the SM prediction B(Bs ! µ+µ�) = (3.65± 0.23)⇥ 10�9 [4].

This o↵ers an excellent probe of b ! sµ+µ� transition in the light of SM and gives rather tight constraints on
parameter space of many models of NP. The RK anomaly has been approached in the literature in di↵erent ways:
either by using the e↵ective Lagrangian approach or in a specific model of NP. For example the e↵ective Lagrangian
approach used in references [5–8] indicated that in order to understand the measured value of RK one must include
the e↵ects of NP, and that the e↵ects of non-perturbative QCD alone could not explain such a large deviation of RK

from unity [6–21]. In particular, it was found that the NP contribution most likely a↵ects C9, C10 or C 0
9, C

0
10 e↵ective

Wilson coe�cients, and that some kind of lepton flavor universality violation is needed, e.g. Cµ
9 6= Ce
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BR(Bs ! µ+µ�)LHCb = (2.9+1.1
�1.0)⇥ 10�9

BR(Bs ! µ+µ�)CMS = (3.0+1.0
�0.9)⇥ 10�9

BR(Bs ! µ+µ�)SM = (3.23± 0.23)⇥ 10�9

Buras	  et	  al,	  1208.0934	  

Experimental	  results	  2013	  

This	  decay	  modes	  	  give	  useful	  constraints	  on	  NP!	  

B ! K⇤l+l�

B ! K l+l�

B ! Xsl+l�

Bs ! l+l�

In	  our	  study	  we	  use:	  



EffecDve	  	  Hamiltonian	  for	  

2

order to determine whether RK anomaly is due to NP in electron or/and muon couplings through a combined analysis
of several decay modes, it is very important to have a high precision knowledge of hadronic form factors [16–18], which
can be computed in the region of large q2’s by means of numerical simulations of QCD on the lattice [23–25].

In this study we first use a model independent approach, assuming that NP contributes at low energies to an
operator that is a product of a right-handed quark and a left-handed muon current. In the language of b ! sµµ
e↵ective Hamiltonian such a situation corresponds to a combination of Wilson coe�cients C 0

9 and C 0
10, and that they

obey C 0
9 = �C 0

10. Decays to the final states with electron-positron pair are instead governed by the SM only. This
assumption is motivated by the fact that measured quantities of b ! se+e� processes agree with the SM predictions
better than they do for the b ! sµ+µ� processes [12], which are also more precisely measured than the electronic
modes. We consider simultaneously the constraints posed by B(B ! Kµ+µ�) and B(Bs ! µ+µ�) on such a scenario,
and then predict the RK as well as RK⇤ . We discuss other observables which might serve as additional probes of the
observed lepton-flavor universality violation.

A specific realization of the scenario we discuss in this paper is a model with a light scalar leptoquark � with
quantum numbers of SU(3)c ⇥ SU(2)L ⇥ U(1)Y being (3, 2, 1/6). It indeed verifies the relation, C 0

9 = �C 0
10 [9],

and leads to a consistency with the measured value of RK . The features of this leptoquark state have been already
described in the literature [26]. While there is no theoretical motivation to forbid leptoquark contributing to b ! see
decays, simultaneous presence of both muonic and electronic couplings could be problematic because they would,
together, induce lepton flavor violation in Bs ! eµ and µ ! e� decays. It is interesting that the flavor physics
constraints at low energies agree and are complementary with the constraints obtained from the direct experimental
searches at LHC [27, 28]. Furthermore, the atomic parity violation experiments provided a strong constraint on the
interaction of the down-quark–electron interaction with the leptoquark state [26, 29], while the couplings to muons
appear to be less constrained via B(KL ! µ±e⌥) < 4.7 ⇥ 10�12 [26, 30]. We therefore assume in our analysis that
in the b ! s`+`� processes only the muons can interact with the leptoquark state. A few other leptoquark states
have been discussed in the literature [6, 9, 14, 16] as possible candidates to contribute to the RK anomaly. However,
the leptoquark with quantum numbers (3, 2, 1/6) has a desired feature that it can be light without destabilizing the
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and it leads to the relation C9 = C10. That latter scenario, however, cannot explain the RK anomaly as discussed in
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flavor universality violation. In Sec. IV we discuss a model with scalar leptoquark in which the relation C 0
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and the “theoretical” branching ratio is expressed as

B(Bs ! µ+µ�)th = B0|P |2 , B0 =
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4m2

µ
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Bs

. (10)

For the decay constant of the Bs meson we take fBs = (228±8) MeV, consistent with the average made by FLAG [44].
Due to Bs � B̄s oscillations and relatively large ys = ��s/(2�s) in the Bs sector, the measured branching fraction
actually corresponds to a time-integrated rate of the oscillating Bs system to µ+µ� [45]. In e↵ect, the value reported
by the experimentalists is di↵erent from B(Bs ! µ+µ�)th:

B(Bs ! µ+µ�)exp =
B0

1� y2s

⇥
|P |2 + ysRe(P

2)
⇤
. (11)

Latest average of the LHCb and CMS measurements of Bs ! µ+µ� branching fraction is [3]

B(Bs ! µ+µ�)exp = (2.8+0.7
�0.6)⇥ 10�9 . (12)

The relative decay width di↵erence ys = 0.061±0.009 has been determined from LHCb simultaneous measurement of
total width �s and width di↵erence ��s in decay channels Bs ! J/ P+P� [46]. The above determined value agrees
very well with the HFAG and PDG averages [30, 47]. In the fits we use the values for �s and ��s reported by LHCb
with summed statistical and systematic errors

��s = (0.0805± 0.0123) ps�1 , �s = (0.6603± 0.0042) ps�1 , (13)

with correlation coe�cient �0.3 [46].

III. NEW PHYSICS IN C0
9 = �C0

10 AND PREDICTION FOR RK

We focus now on the SM extensions that a↵ect the e↵ective Hamiltonian solely by a single operator that is a
product of right-handed quark current with a left-handed lepton current. In our operator basis it corresponds to a
linear combination O0

9 �O0
10 implying

C 0
9(⇤) = �C 0

10(⇤) , (14)

where ⇤ is a scale where NP degrees of freedom are integrated out. An explicit example of such a scenario can be
made in a leptoquark model that will be discussed in Section IV. If Eq. (14) holds at scale ⇤ it is neccessary to run the
Wilson coe�cients down to the low scale µb using the renormalization group equations. Under QCD renormalization
group the two operators do not run, keeping the constraint (14) intact [48]. 1 Thus we have, at low energies, a SM
modification that satisfies

C 0
9 = �C 0

10 , (15)

where C 0
9,10 are scale invariant, modulo small QED corrections.

In Fig. 1 we show in gray the 1� region in the C 0
10 plane as obtained from the fit to the partial branching fraction

of B+ ! K+µ+µ�, cf. Eq. (8). The 1� region is defined here as �2 < 2.30. The width of the “donut” reflects both
experimental and form factor uncertainties. The SM point in the parameter space is marked with a dot and exhibits
a tension with the measurement with �2 = 3.9. In Fig. 1 the 1� region (defined as before) of fit to the B(Bs ! µ+µ�)
according to Eq. (12) is depicted in blue. In this case the SM point is in comfortable agreement with the observable
(�2 = 0.7). Then we perform combined fit to all of the above quantities and find the best value to be �2

min = 2.26,
which is substantially better than the SM point with �2

SM = 4.6. The green patch is defined by �2 < �2
min + 1 = 3.26

with 39% C.L. and corresponds to the 1� region of predicted RK given below.
Assuming that the e↵ective Hamiltonian (3), tailored for b ! se+e�, receives only SM contributions, unlike

b ! sµ+µ� that also receives NP contributions from C 0
9,10, we can now predict the value of RK . In RK the

uncertainties of the hadronic form factors cancel out to a large extent in the ratio and the formula boils down to:

RK(C 0
10) = 1.001(1)� 0.46 Re[C 0

10]� 0.094(3) Im[C 0
10] + 0.057(1)|C 0

10|2 . (16)

1 Eq. (14) is broken only by tiny e↵ects from QED renormalization.
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Figure 1. Regions in the complex C0
10 plane that are in 1� agreement with Bs ! µ+µ� (blue), B ! Kµ+µ� (gray). Green

area corresponds to the 1� coverage of RK from fit to both observables. Black dot is the SM.
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which are obviously di↵erent from the values obtained in the SM, RSM
K = 1.00, RSM

K⇤ = 0.996(5) ⇡ 1, Rfb = 0.995(4) ⇡
1, and XK = �0.004(5) ⇡ 0. Notice, however, that while our value for RK is lower than the one in the SM, our
prediction for RK⇤ is larger than that obtained in the SM. The measurement of RK⇤ at LHCb will therefore help to
either confirm or discard our model as a viable description of the lepton flavor universality violation. The errors in
Eq. (23) are completely dominated by the range of Re[C 0

10] and Im[C 0
10], while those arising from form factors are

reduced in the ratios and induce an uncertainty negligible in comparison with that coming from the variation of C 0
10.

Besides the above quantities, one can also check on the asymmetries A
(2)
T and A

(Im)
T , defined in the Appendix,

which are experimentally more di�cult to study but which could be very useful to compare with predictions as their
values can considerably change if C 0

9,10 6= 0. To exemplify that feature we consider the bin q2 2 [2, 6] GeV2 and in the

SM we have hA(2)
T (q2)iSMq22[2,6] GeV2 = �0.05(2), and hA(Im)

T (q2)iSMq22[2,6] GeV2 ' 0, for either electrons or muons in the

final state. If, instead, the coe�cients C 0
10 = �C 0

9 become non-zero and take values within the green region shown in
Fig. 1, then in the case of B ! K⇤µ+µ�, the above values change to

hA(2)
T (q2)iµq22[2,6] GeV2 ' �0.09

����
for Re[C0

10]=0.08

,�0.24

����
for Re[C0

10]=0.4

, |hA(Im)
T (q2)iµq22[2,6] GeV2 | . 0.27 . (24)

Notice also that hA(Im)
T (q2)i has not yet been measured, and that the current errors on hA(2)

T (q2)i are still too large
for making a meaningful quantitative comparison with our results [65].

Finally, before closing this part of our paper, we need to comment on P 0
5(q

2), an observable constructed from
coe�cients of the angular distribution of the B ! K⇤`+`� decay [66], P 0

5(q
2) = I5/

p
�4Ic2I

s
2 , which has been

measured at LHCb, and turned out to be 4� away from the value predicted in the SM when integrated over an
interval q2 2 [4.3, 8.68] GeV2 [67]. More specifically, the SM value is hP 0

5iSM[4.3�8.68] = �0.90(5), while the measured one

is hP 0
5iLHCb

[4.3�8.68] = �0.19(16) [67], which can be compactly written as, hP 0
5iLHCb

[4.3�8.68]/hP 0
5iSM[4.3�8.68] = 0.22(18). While

the interpretation of this discrepancy is somewhat controversial [18, 19, 68], it is nevertheless interesting to check
whether or not the leptoquark model used in this paper (and discussed in more details in the following Section) can
describe the manifest disagreement between theory and experiment. With the values of C 0

10 = �C 0
9 discussed above

we indeed see that hP 0
5iLQ[4.3�8.68]/hP 0

5iSM[4.3�8.68] < 1, but with the leptoquark model discussed here we cannot reach

very low values. We instead obtain 0.78  hP 0
5iLQ[4.3�8.68]/hP 0

5iSM[4.3�8.68]  0.98. A similar tendency is observed for other

bins, and in particular the one corresponding to q2 2 [1, 6] GeV2.

IV. MODEL WITH A SCALAR LEPTOQUARK

In this Section we discuss a specific model in which the scenario discussed above, i.e. C 0
9 = �C 0

10, is explicitly
realized and involves the presence of a light scalar leptoquark state �. More specifically, we choose the leptoquark
� to carry the quantum numbers (3, 2, 1/6) of the SM gauge group. Its couplings to fermions are described by a
renormalizable Lagrangian

L = YijLi i⌧
2�⇤dRj + h.c.

= Yij

⇣
�¯̀

LidRj�
(2/3)⇤ + ⌫̄Lk(V

PMNS)†kidRj�
(�1/3)⇤

⌘
+ h.c. ,

(25)

where Y is a 3 ⇥ 3 complex matrix, Li and dRj are the lepton doublet and down-quark singlet. Charge eigenstates
of the leptoquark doublet are denoted with �(2/3) and �(�1/3) and we will assume that they are degenerate. The
second line in the above Lagrangian is written in the fermion mass basis, and a relative PMNS rotation in lepton
doublet components has been assigned to the neutrino sector.

Clearly, the lepton flavor universality is explicitly broken by the terms presented in Eq. (25). This might appear
questionable because in a similar situation in which the coupling of leptoquark to µc would be allowed, the ratio of
the electronic and muonic widths of the decay of J/ and its radial excitations have been accurately measured, and
shows no violation of the lepton flavor coupling universality. In particular, the measured �(J/ ! µ+µ�)/�(J/ !
e+e�) = 1.0016 ± 0.0031 [30] is in excellent agreement with its SM value, 1.00001. 3 That situation is, however,

3 By explicitly including the lepton mass in the calculation of phase space we obtain,

�(J/ ! `

+
`

�) =
16⇡↵2

27mJ/ 

 
1 +

2m2
`

m

2
J/ 

!vuut1�
4m2

`

m

2
J/ 

f

2
J/ 

and the e↵ect on the ratio of the electronic and muonic widths is extremely small.

However,	  	  it	  can	  contribute	  to	  	  
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much di↵erent from the examples discussed in this paper, because the amplitude for J/ ! `+`� is dominated by
the tree-level electromagnetic interaction diagram which is much larger than the weak interaction one, suppressed by
1/m2

Z with respect to the dominant one, and therefore completely negligible. Our leptoquark state is m� � mZ , and
its contribution to J/ ! `+`� is even smaller than the weak interaction diagram and cannot make an impact on
the decay of charmonia at the present level of accuracy.

Instead, the weak b ! sµ+µ� decays in the SM are loop-induced so that the tree level contribution involving
couplings to the leptoquark state may become comparable in size to the SM amplitude, which is why the b ! sµ+µ�

is likely to be more sensitive to the presence of the term described by the lagrangian (25). The relevant leptoquark
coupling for the b ! sµ+µ� is the product YµbYµs, which enters the Wilson coe�cients divided by m2

�. The scalar
particle exchange generates scalar operators in the Fierzed basis and those appear as (pseudo)vector currents in the
ordinary operator basis [9]:

C 0
10 = �C 0

9 =
�⇡

2
p
2GFVtbV ⇤

ts↵

YµbY
⇤
µs

m2
�

. (26)

We assume other elements of Yukawa matrix Y to vanish. The same state will also contribute at loop level to electro-
and chromo-magnetic operators C 0

7(m�) and C 0
8(m�) where these coe�cients will be suppressed by electromagnetic

↵(m�)/(4⇡) and strong ↵S(m�)/(4⇡) couplings at high scale m�, respectively. We have explicitly checked that these
modifications result in negligibly small value of C 0

7 when compared to the C7 of SM, cf. Eq. (5). In the remainder of
this Section we will analyze additional observables that constrain this leptoquark scenario.

The considered leptoquark state � couples to the neutrinos with the same couplings as to the charged leptons, only
modified by a PMNS rotation matrix. Namely, the charge �1/3 state will generate (s̄b)(⌫̄⌫) operators while the box
diagrams will lead to Bs � B̄s mixing.

A. Contribution of (3, 2, 1/6) leptoquark in Bs � B̄s oscillation frequency

The state (3, 2, 1/6) will induce �B = 2 box diagrams with µ and �(2/3) or ⌫ and �(�1/3) running in the box. The
two contributions of boxes with µ and ⌫ are equal in the mµ = 0 limit and in sum they amount to

CLQ
6 (m�) = �

Y ⇤2
µb Y

2
µs

64⇡2m2
�

. (27)

The e↵ective �B = 2 Hamiltonian is defined as

He↵ = CSM
1 (b̄�µPLs) (b̄�

µPLs) + CLQ
6 (b̄�µPRs) (b̄�

µPRs) + h.c. , (28)

where PL/R = (1 ⌥ �5)/2. The coe�cient in Eq. (27) is subject to QCD renormalization and has to be evaluated

at scale µb. The anomalous dimensions of CLQ
6 is however equal to the one of CSM

1 . Therefore the two Wilson
coe�cients renormalize with the same multiplicative factor between scales µ = mt, where SM is matched onto
e↵ective Hamiltonian (28), and µb, where the hadronic matrix elements are computed. Remaining CLQ

6 running from
m� down to mt is already in the asymptotic regime of QCD and can be safely neglected. The mass di↵erence of the
Bs � B̄s system is then

�mBs =
2

2mBs

����
G2

Fm
2
W

16⇡2
(V ⇤

tbVts)
2⌘BS0(xt) +

⌘B
4
CLQ

6 (m�)

���� hB̄
0
s |b̄�µ(1� �5)s b̄�

µ(1� �5)s|B0
s i . (29)

By using Eq. (26) we can write

CLQ
6 (m�) = �G2

F

8⇡4
(V ⇤

tbVts)
2↵2m2

�(C
0⇤
10)

2 , (30)

which, together with hB̄0
s |b̄�µ(1� �5)s b̄�µ(1� �5)s|B0

s i = (8/3)f2
Bs

m2
Bs

BBs , gives

�mBs =
G2

Fm
2
W

6⇡2
|V ⇤

tbVts|2f2
Bs

mBsBBs⌘BS0(xt)
| {z }

�mSM
Bs

����1�
1

2⇡2

↵2

S0(xt)
(C 0⇤

10)
2 m

2
�

m2
W

���� . (31)
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coe�cients renormalize with the same multiplicative factor between scales µ = mt, where SM is matched onto
e↵ective Hamiltonian (28), and µb, where the hadronic matrix elements are computed. Remaining CLQ

6 running from
m� down to mt is already in the asymptotic regime of QCD and can be safely neglected. The mass di↵erence of the
Bs � B̄s system is then

�mBs =
2

2mBs

����
G2

Fm
2
W

16⇡2
(V ⇤

tbVts)
2⌘BS0(xt) +

⌘B
4
CLQ

6 (m�)

���� hB̄
0
s |b̄�µ(1� �5)s b̄�

µ(1� �5)s|B0
s i . (29)

By using Eq. (26) we can write

CLQ
6 (m�) = �G2

F

8⇡4
(V ⇤

tbVts)
2↵2m2

�(C
0⇤
10)

2 , (30)

which, together with hB̄0
s |b̄�µ(1� �5)s b̄�µ(1� �5)s|B0

s i = (8/3)f2
Bs

m2
Bs

BBs , gives

�mBs =
G2

Fm
2
W

6⇡2
|V ⇤

tbVts|2f2
Bs

mBsBBs⌘BS0(xt)
| {z }

�mSM
Bs

����1�
1

2⇡2

↵2

S0(xt)
(C 0⇤

10)
2 m

2
�

m2
W

���� . (31)

With	  value	  C10’	  	  	  one	  can	  get	  very	  loose	  bound	  on	  mΔ	  	  	  ~	  100	  TeV.	  
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much di↵erent from the examples discussed in this paper, because the amplitude for J/ ! `+`� is dominated by
the tree-level electromagnetic interaction diagram which is much larger than the weak interaction one, suppressed by
1/m2

Z with respect to the dominant one, and therefore completely negligible. Our leptoquark state is m� � mZ , and
its contribution to J/ ! `+`� is even smaller than the weak interaction diagram and cannot make an impact on
the decay of charmonia at the present level of accuracy.

Instead, the weak b ! sµ+µ� decays in the SM are loop-induced so that the tree level contribution involving
couplings to the leptoquark state may become comparable in size to the SM amplitude, which is why the b ! sµ+µ�
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C 0
10 = �C 0

9 =
�⇡

2
p
2GFVtbV ⇤

ts↵

YµbY
⇤
µs

m2
�

. (26)
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which are obviously di↵erent from the values obtained in the SM, RSM
K = 1.00, RSM

K⇤ = 0.996(5) ⇡ 1, Rfb = 0.995(4) ⇡
1, and XK = �0.004(5) ⇡ 0. Notice, however, that while our value for RK is lower than the one in the SM, our
prediction for RK⇤ is larger than that obtained in the SM. The measurement of RK⇤ at LHCb will therefore help to
either confirm or discard our model as a viable description of the lepton flavor universality violation. The errors in
Eq. (23) are completely dominated by the range of Re[C 0

10] and Im[C 0
10], while those arising from form factors are

reduced in the ratios and induce an uncertainty negligible in comparison with that coming from the variation of C 0
10.

Besides the above quantities, one can also check on the asymmetries A
(2)
T and A

(Im)
T , defined in the Appendix,

which are experimentally more di�cult to study but which could be very useful to compare with predictions as their
values can considerably change if C 0

9,10 6= 0. To exemplify that feature we consider the bin q2 2 [2, 6] GeV2 and in the

SM we have hA(2)
T (q2)iSMq22[2,6] GeV2 = �0.05(2), and hA(Im)

T (q2)iSMq22[2,6] GeV2 ' 0, for either electrons or muons in the

final state. If, instead, the coe�cients C 0
10 = �C 0

9 become non-zero and take values within the green region shown in
Fig. 1, then in the case of B ! K⇤µ+µ�, the above values change to

hA(2)
T (q2)iµq22[2,6] GeV2 ' �0.09

����
for Re[C0

10]=0.08

,�0.24

����
for Re[C0

10]=0.4

, |hA(Im)
T (q2)iµq22[2,6] GeV2 | . 0.27 . (24)

Notice also that hA(Im)
T (q2)i has not yet been measured, and that the current errors on hA(2)

T (q2)i are still too large
for making a meaningful quantitative comparison with our results [65].

Finally, before closing this part of our paper, we need to comment on P 0
5(q

2), an observable constructed from
coe�cients of the angular distribution of the B ! K⇤`+`� decay [66], P 0

5(q
2) = I5/

p
�4Ic2I

s
2 , which has been

measured at LHCb, and turned out to be 4� away from the value predicted in the SM when integrated over an
interval q2 2 [4.3, 8.68] GeV2 [67]. More specifically, the SM value is hP 0

5iSM[4.3�8.68] = �0.90(5), while the measured one

is hP 0
5iLHCb

[4.3�8.68] = �0.19(16) [67], which can be compactly written as, hP 0
5iLHCb

[4.3�8.68]/hP 0
5iSM[4.3�8.68] = 0.22(18). While

the interpretation of this discrepancy is somewhat controversial [18, 19, 68], it is nevertheless interesting to check
whether or not the leptoquark model used in this paper (and discussed in more details in the following Section) can
describe the manifest disagreement between theory and experiment. With the values of C 0

10 = �C 0
9 discussed above

we indeed see that hP 0
5iLQ[4.3�8.68]/hP 0

5iSM[4.3�8.68] < 1, but with the leptoquark model discussed here we cannot reach

very low values. We instead obtain 0.78  hP 0
5iLQ[4.3�8.68]/hP 0

5iSM[4.3�8.68]  0.98. A similar tendency is observed for other

bins, and in particular the one corresponding to q2 2 [1, 6] GeV2.

IV. MODEL WITH A SCALAR LEPTOQUARK

In this Section we discuss a specific model in which the scenario discussed above, i.e. C 0
9 = �C 0

10, is explicitly
realized and involves the presence of a light scalar leptoquark state �. More specifically, we choose the leptoquark
� to carry the quantum numbers (3, 2, 1/6) of the SM gauge group. Its couplings to fermions are described by a
renormalizable Lagrangian

L = YijLi i⌧
2�⇤dRj + h.c.

= Yij

⇣
�¯̀

LidRj�
(2/3)⇤ + ⌫̄Lk(V

PMNS)†kidRj�
(�1/3)⇤

⌘
+ h.c. ,

(25)

where Y is a 3 ⇥ 3 complex matrix, Li and dRj are the lepton doublet and down-quark singlet. Charge eigenstates
of the leptoquark doublet are denoted with �(2/3) and �(�1/3) and we will assume that they are degenerate. The
second line in the above Lagrangian is written in the fermion mass basis, and a relative PMNS rotation in lepton
doublet components has been assigned to the neutrino sector.

Clearly, the lepton flavor universality is explicitly broken by the terms presented in Eq. (25). This might appear
questionable because in a similar situation in which the coupling of leptoquark to µc would be allowed, the ratio of
the electronic and muonic widths of the decay of J/ and its radial excitations have been accurately measured, and
shows no violation of the lepton flavor coupling universality. In particular, the measured �(J/ ! µ+µ�)/�(J/ !
e+e�) = 1.0016 ± 0.0031 [30] is in excellent agreement with its SM value, 1.00001. 3 That situation is, however,

3 By explicitly including the lepton mass in the calculation of phase space we obtain,

�(J/ ! `

+
`

�) =
16⇡↵2

27mJ/ 

 
1 +

2m2
`

m

2
J/ 

!vuut1�
4m2

`

m

2
J/ 

f

2
J/ 

and the e↵ect on the ratio of the electronic and muonic widths is extremely small.
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Figure 2. Contours of constant RK are indicated by dashed lines. Gray region represents the 1� measured range of RK

projected onto the C0
10 plane, whereas green contour denotes the region allowed by Bs ! µ+µ� and B ! Kµ+µ�. Black dot

is the SM.

The strategy of looking for the NP e↵ects through a detailed analysis of the angular distribution of B ! K⇤`+`�

is somewhat plagued by hadronic uncertainties. The observables built up of AL,R
?,k (q

2) turn out to be less sensitive to

hadronic uncertainties because they involve the (combinations of) hadronic form factors which appear to be under a
rather good theoretical control, especially in the region of small q2’s [52–54] (see also discussion in Ref. [51]). On the
other hand, the observables made of AL,R

0,t (q2) entail the hadronic form factors that are less well understood. Moreover,
the latter observables are subject to another kind of hadronic uncertainty, i.e. the one arising from misidentification of
the K⇡ pairs coming from B ! K⇤(! K⇡)`+`� with those emerging from B ! K⇤

0 (! K⇡)`+`�, where K⇤
0 stands

for a broad scalar state [55–59]. Finally, and to avoid problems of the cc̄-resonances in the q2-spectrum of the decay, a
standard strategy is to either work at low q2 < m2

J/ or large q2 & 15GeV2, in which the impact of the cc̄-resonances
is expected to be small. To be more specific, we fully rely on quark-hadron duality since we avoid the region in which
the prominent narrow cc̄-resonances appear, and integrate over a window & 5 GeV2. 2

With the information obtained in the previous section of this paper, i.e. with C 0
10 = �C 0

9 extracted from the
comparison of the measured B(Bs ! µ+µ�) and B(B ! Kµ+µ�)q2>15 GeV2 with the corresponding theoretical
expressions, we already showed that we were able to verify the consistency of our result for RK with the one measured
at LHCb. With our approach, in which only the decay to muon-pair is modified, we can also predict RK⇤ , defined as

RK⇤ =
�(B ! K⇤µ+µ�)q22[1,6] GeV2

�(B ! K⇤e+e�)q22[1,6] GeV2

, (19)

as well as the ratio of the two [6, 22], namely,

XK =
RK⇤

RK
� 1 . (20)

In Ref. [19] it was shown that the ratio of forward-backward asymmetries integrated between q2 2 [4, 6] GeV2 can

2 For a recent attempt to more realistically model the e↵ects of such resonances see Ref. [60] or those discussed previously in Refs. [61, 62].
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also be sensitive to lepton flavor universality violation. After defining,

A`
fb[4�6] =

3

4

Z 6 GeV2

4 GeV2

Is6(q
2) dq2

�(B ! K⇤`+`�)q22[4,6] GeV2

, (21)

the ratio of forward-backward asymmetries is then simply,

Rfb =
Aµ

fb[4�6]

Ae
fb[4�6]

. (22)

To compute the above-mentioned quantities we use the standard values of the Wilson coe�cients [40], and include
the e↵ect of quark loops in the coe�cients C7,9 arising from the operators O1,2, as calculated in Ref. [39]. We neglect
the soft gluon corrections to the charm quark loop at low q2, which according to Ref. [63] is reasonable. At low q2 the
hard scattering contributions are neglected. For the form factors we use the values computed by means of QCD sum
rules on the light cone [64]. In Fig. 3 we show our results for RK⇤ , XK and Rfb as functions of Re[C 0

10]. For an easier
comparison, in the same plot we also show RK . The range 0.075  Re[C 0

10]  0.41 has been obtained in the previous
section of this paper, where we showed that for a given value of 0.075  Re[C 0

10]  0.41 there is a region of allowed
Im[C 0

10], and therefore instead of curves in Fig. 3 we actually have the corresponding regions of values determined
by Im[C 0

10]. We should emphasize again that the uncertainties related to form factors cancel to a large extent in the
ratios. As for the results, we first see that in the scenario with C 0

10 = �C 0
9 6= 0, allowing coupling to muons only, and
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Figure 3. RK , RK⇤ , XK and Rfb, defined in Eq. (1,19,20,22) respectively, are plotted as functions of Re[C0
10], in the range

allowed by the measured values of B(Bs ! µ+µ�) and B(B ! Kµ+µ�)q2>15 GeV2 . Instead of a curve for each quantity we
actually have a region of values, reflecting the fact that for each Re[C0

10] there is a range of allowed values of Im[C0
10], as shown

in Fig. 1.

explicitly realized in the model with a (3, 2, 1/6) leptoquark state, we get

RK = 0.88± 0.08 , RK⇤ = 1.11± 0.08 ,

XK = 0.27± 0.19 , Rfb = 0.84± 0.12 ,
(23)

7

also be sensitive to lepton flavor universality violation. After defining,

A`
fb[4�6] =

3

4

Z 6 GeV2

4 GeV2

Is6(q
2) dq2

�(B ! K⇤`+`�)q22[4,6] GeV2

, (21)

the ratio of forward-backward asymmetries is then simply,

Rfb =
Aµ

fb[4�6]

Ae
fb[4�6]

. (22)

To compute the above-mentioned quantities we use the standard values of the Wilson coe�cients [40], and include
the e↵ect of quark loops in the coe�cients C7,9 arising from the operators O1,2, as calculated in Ref. [39]. We neglect
the soft gluon corrections to the charm quark loop at low q2, which according to Ref. [63] is reasonable. At low q2 the
hard scattering contributions are neglected. For the form factors we use the values computed by means of QCD sum
rules on the light cone [64]. In Fig. 3 we show our results for RK⇤ , XK and Rfb as functions of Re[C 0

10]. For an easier
comparison, in the same plot we also show RK . The range 0.075  Re[C 0

10]  0.41 has been obtained in the previous
section of this paper, where we showed that for a given value of 0.075  Re[C 0

10]  0.41 there is a region of allowed
Im[C 0

10], and therefore instead of curves in Fig. 3 we actually have the corresponding regions of values determined
by Im[C 0

10]. We should emphasize again that the uncertainties related to form factors cancel to a large extent in the
ratios. As for the results, we first see that in the scenario with C 0

10 = �C 0
9 6= 0, allowing coupling to muons only, and

0.1 0.2 0.3 0.4

0.80

0.85

0.90

0.95

1.00

Re @C10 'D

R K

0.1 0.2 0.3 0.4
1.00

1.05

1.10

1.15

1.20

Re @C10 'D

R K
*

0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

Re @C10 'D

X K

0.1 0.2 0.3 0.4

0.75

0.80

0.85

0.90

0.95

Re @C10 'D

R f
b
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explicitly realized in the model with a (3, 2, 1/6) leptoquark state, we get

RK = 0.88± 0.08 , RK⇤ = 1.11± 0.08 ,

XK = 0.27± 0.19 , Rfb = 0.84± 0.12 ,
(23)
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explicitly realized in the model with a (3, 2, 1/6) leptoquark state, we get

RK = 0.88± 0.08 , RK⇤ = 1.11± 0.08 ,

XK = 0.27± 0.19 , Rfb = 0.84± 0.12 ,
(23)

LQ	  	  (3,2,1/6)	  	  in	  suggested	  observables	  leads	  to	  :	  

It	  can	  give	  increase	  of	  the	  rate	  for	  
at	  the	  order	  of	  5%	  	  
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With the current values for fBs = 228(8) MeV and BBs = 1.33(6), as obtained in numerical simulations of QCD on

the lattice [44], and mMS
t (mt) = 160+5

�4 GeV [30], we get 4

�mSM
Bs

= 17.3± 1.7 ps�1, (32)

which is in excellent agreement with the measured �mBs = 17.7(2)ps�1 [30]. With the values of C 0
10 determined in the

previous Section, we see that Eq. (31) leads to a very loose upper bound form�. For example, for Re[C 0
10] 2 [0.15, 0.35],

we get the upper bound of the order 100 TeV.

B. Impact of (3, 2, 1/6) leptoquark on B ! K⌫⌫̄

In the presence of leptoquark� the pair of neutrinos in the final state of B ! K⌫⌫̄ may be in any flavor combination.
In order to encompass such a possibility we must extend the e↵ective Hamiltonian of Ref. [70] to account for the
disparity in neutrino flavors:

He↵ = �4GFp
2
VtbV

⇤
ts(C

ij
L Oij

L + Cij
ROij

R ) . (33)

The operators are defined as Oij
L,R = e2

16⇡2 (s̄�µPL,Rb)(⌫̄i�µ(1� �5)⌫j). The authors of [70] found that in the SM the
Wilson coe�cient at next-to-leading order in QCD is

CSM
L ⌘ Cii

L = �6.38± 0.06 , (no sum over i implied). (34)

If the leptoquark state (3, 2, 1/6) is present then it will manifest itself in B ! K⌫⌫̄ through right-handed operators:

Cij
R =

1

N

(V Y )ib(V Y )⇤js
4m2

�

, N ⌘ GFVtbV
⇤
ts↵p

2⇡
. (35)

Here V denotes the PMNS matrix. The experimentally accessible decay width of B ! K⌫⌫̄ is a sum of partial widths
of B ! K⌫i⌫̄j . The amplitudes are proportional to the sum of the SM and leptoquark contribution and the two will
interfere in the B ! K⌫⌫̄ decays width as

�(B ! K⌫⌫̄) ⇠
3X

i,j=1

����ijCSM
L + Cij

R

���
2

= 3|CSM
L |2 + |C 0

10|2 � 2Re[CSM⇤
L C 0

10] .

(36)

C 0
10 is the Wilson coe�cient of b ! sµ+µ� that we obtained from the fits to experimental data in the previous

Section. Last line of Eq. (36) was obtained by applying the unitarity of matrix V , and assuming that Yµb and Yµs

are the only non-zero elements of the matrix Y . Finally, the q2-spectrum of this decay reads,

d�

dq2
(B ! K⌫⌫̄) =

|N |2
384⇡3m3

B

f+(q
2)

⇥
�(m2

B ,m
2
K , q2)

⇤3/2
✓
3|CSM

L |2 + |C 0
10|2 � 2Re[CSM⇤

L C 0
10]

◆
, (37)

where q2 in this case stands for the invariant mass of the neutrino pair. Notice that the above expression, for C 0
10 = 0,

confirms Eq. (2.14) of Ref. [70]. The expression (37) can be recast into a product of the SM q2-spectrum and a
correction factor,

1.01 <


1 +

1

3

��C 0
10/C

SM
L

��2 � 2

3
Re[C 0

10/C
SM
L ]

�
< 1.05 , (38)

where its lower and upper bounds have been derived from the 1� region of C 0
10, obtained in the previous Section. We

learn that the B(B ! K⌫̄⌫) will increase by at most 5% if leptoquark � is present.

4 To evaluate �m

SM
Bs

we also used ⌘B = 0.55(1) [69], and S0(xt) = 2.25+11
�09, the Inami-Lim function at xt = m

2
t /m

2
W .
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC [1, 2] imbues the standard model (SM) of par-

ticle physics with completeness and self-consistency. Nonetheless, its failure to account for non-

vanishing neutrino masses is one of the main motivations for considering physics beyond the

SM. Incidentally, the accidental SM symmetries that prevent neutrinos from acquiring mass also

completely suppress lepton flavor violating (LFV) processes. The observation of the former thus

provides ample motivation for a rich experimental program to search for the latter. The CMS

collaboration has recently reported a slight excess with a significance of 2.4 � in the search for

LFV decay h ! ⌧µ [3]. The best fit for the branching ratio of the Higgs boson to ⌧µ final state

(summed over ⌧�µ+ and ⌧+µ�), assuming SM Higgs production, is found to be

B(h ! ⌧µ) =
�
0.84+0.39

�0.37

�
% . (1)

This recent hint has expectedly received significant amount of attention in the literature [4–10].

It is thus an imperative to either confirm or reject validity of this tantalizing hint with more data

by both ATLAS and CMS experiments. At the same time, it is instructive to revisit expectations

for this observable within various new physics (NP) scenarios and in particular re-evaluate the

feasibility of obtaining such a large signal in light of severe indirect constraints on LFV Higgs

interactions coming from low energy probes.

Without loss of generality, one can parameterize the mass terms and Higgs boson couplings of

charged leptons after electroweak symmetry breaking (EWSB) as

Le↵.
Y`

= �mi�ij ¯`
i
L`

j
R � yij

�
¯`iL`

j
R

�
h+ . . .+ h.c. , (2)

where the ellipsis denotes non-renormalizable interactions involving more than one Higgs boson

and `i = e, µ, ⌧ . In the SM, the Higgs couplings are diagonal and given by yij = (mi/v)�ij ,

where v = 246GeV . On the other hand, non-zero y⌧µ and/or yµ⌧ induce h ! ⌧µ decays with a

branching ratio of

B(h ! ⌧µ) =
mh

8⇡�h

�|y⌧µ|2 + |yµ⌧ |2
�
. (3)

Assuming that the total Higgs boson decay width (�h) is given by its SM value enlarged only

by the contribution from h ! ⌧µ itself, i.e., �h = �

SM

h /[1 � B(h ! ⌧µ)], where �

SM

h (mh =

125GeV) = 4.07MeV [11], the measurement in Eq. (1) can be interpreted as a two-sided bound

on the |y⌧µ|2+ |yµ⌧ |2 combination of couplings. These limits read (see also the left-hand side panel

2
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC [1, 2] imbues the standard model (SM) of par-

ticle physics with completeness and self-consistency. Nonetheless, its failure to account for non-

vanishing neutrino masses is one of the main motivations for considering physics beyond the

SM. Incidentally, the accidental SM symmetries that prevent neutrinos from acquiring mass also

completely suppress lepton flavor violating (LFV) processes. The observation of the former thus

provides ample motivation for a rich experimental program to search for the latter. The CMS

collaboration has recently reported a slight excess with a significance of 2.4 � in the search for

LFV decay h ! ⌧µ [3]. The best fit for the branching ratio of the Higgs boson to ⌧µ final state

(summed over ⌧�µ+ and ⌧+µ�), assuming SM Higgs production, is found to be

B(h ! ⌧µ) =
�
0.84+0.39

�0.37

�
% . (1)

This recent hint has expectedly received significant amount of attention in the literature [4–10].

It is thus an imperative to either confirm or reject validity of this tantalizing hint with more data

by both ATLAS and CMS experiments. At the same time, it is instructive to revisit expectations

for this observable within various new physics (NP) scenarios and in particular re-evaluate the

feasibility of obtaining such a large signal in light of severe indirect constraints on LFV Higgs

interactions coming from low energy probes.

Without loss of generality, one can parameterize the mass terms and Higgs boson couplings of

charged leptons after electroweak symmetry breaking (EWSB) as

Le↵.
Y`

= �mi�ij ¯`
i
L`

j
R � yij

�
¯`iL`

j
R

�
h+ . . .+ h.c. , (2)

where the ellipsis denotes non-renormalizable interactions involving more than one Higgs boson

and `i = e, µ, ⌧ . In the SM, the Higgs couplings are diagonal and given by yij = (mi/v)�ij ,

where v = 246GeV . On the other hand, non-zero y⌧µ and/or yµ⌧ induce h ! ⌧µ decays with a

branching ratio of

B(h ! ⌧µ) =
mh

8⇡�h

�|y⌧µ|2 + |yµ⌧ |2
�
. (3)

Assuming that the total Higgs boson decay width (�h) is given by its SM value enlarged only

by the contribution from h ! ⌧µ itself, i.e., �h = �

SM

h /[1 � B(h ! ⌧µ)], where �

SM

h (mh =

125GeV) = 4.07MeV [11], the measurement in Eq. (1) can be interpreted as a two-sided bound

on the |y⌧µ|2+ |yµ⌧ |2 combination of couplings. These limits read (see also the left-hand side panel
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and `i = e, µ, ⌧ . In the SM, the Higgs couplings are diagonal and given by yij = (mi/v)�ij ,

where v = 246GeV . On the other hand, non-zero y⌧µ and/or yµ⌧ induce h ! ⌧µ decays with a

branching ratio of

B(h ! ⌧µ) =
mh
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�
. (3)

Assuming that the total Higgs boson decay width (�h) is given by its SM value enlarged only

by the contribution from h ! ⌧µ itself, i.e., �h = �

SM

h /[1 � B(h ! ⌧µ)], where �

SM

h (mh =

125GeV) = 4.07MeV [11], the measurement in Eq. (1) can be interpreted as a two-sided bound

on the |y⌧µ|2+ |yµ⌧ |2 combination of couplings. These limits read (see also the left-hand side panel
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of Fig. 1)

0.0019(0.0008) <
q
|y⌧µ|2 + |yµ⌧ |2 < 0.0032(0.0036) at 68% (95%) C.L. . (4)

In general, the experimentally measured h ! ⌧µ event yield depends not only on the values of

y⌧µ and yµ⌧ , but also on other Higgs couplings contributing both to its total decay width �h as

well as its production cross-section (�h). In particular, a given signal can be reproduced for larger

(smaller) values of |y⌧µ| and |yµ⌧ | by enhancing (suppressing) �h and/or suppressing (enhancing)

�h. Since both �h and �h affect other currently measured Higgs observables, their individual

effects can be disentangled by performing a global fit to all Higgs production and decay event

yields at the LHC. The details of this procedure can be found in Appendix A, while the resulting

best fit �2 values as functions of
p|y⌧µ|2 + |yµ⌧ |2 are shown in the right-hand side panel of Fig. 1.

In particular, �h is well determined by the measurements of both inclusive and separate exclusive

Higgs production channels in several different decay modes. Similarly, �h is bounded from below

by the observations (or at least indications [12]) of the dominant SM Higgs decay modes (h ! b¯b,

h ! WW ⇤, h ! ⌧+⌧�, etc.). Consequently the lower range of allowed |y⌧µ| and |yµ⌧ | values

does not change much compared to Eq. (4) when considering the global fit. On the other hand, the

fact that the total Higgs decay width is currently only weakly bounded from above [13, 14] allows

significantly larger |y⌧µ| and |yµ⌧ | couplings to reproduce the same observed signal in the general

case.1 Numerically, we find

0.0017(0.0007) <
q
|y⌧µ|2 + |yµ⌧ |2 < 0.0036(0.0047) at 68% (95%) C.L. . (5)

The rest of the paper is devoted to interpreting these ranges in terms of hypothetical new physics

(NP) effects. In Sec. II we review the model independent considerations of flavor violating Higgs

couplings using an effective field theory approach. Sec. III is devoted to a case study of the two

Higgs doublet model (THDM) with a generic Yukawa structure (the so-called type-III THDM) that

can account for the observed anomaly at tree level and be in agreement with present low energy

flavor constraints. Scenario that relies on vector-like fermions to explain the data is presented in

Sec. IV. Possibility to explain the anomaly via one-loop physics effects is discussed in Sec. V,

where we investigate phenomenology of scalar leptoquarks to demonstrate difficulties with this
1 It has been argued recently [15, 16], that the current total Higgs decay width measurements using off-peak data [13,

14] introduce some model-specific assumptions into the fit. We have checked that removing the total Higgs width

constraint from the fit, no upper bound on
p|y⌧µ|2 + |yµ⌧ |2 can be set.

3
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FIG. 6. Feynman diagrams for LQ contribution to h ! ⌧µ.

of LQ Yukawa couplings must then be well beyond the perturbative regime to result in B(h ! ⌧µ)

at the percent level. In this respect, only LQ states that couple to charged leptons and top quark

are suitable candidates that will be studied in what follows. Inspection of helicity structure of the

diagrams reveals that both left and right chiralities of leptons and top quark have to couple to the

LQ state.

The physical Higgs can couple to the scalar � or to the top quark as shown in the first two

diagrams in Fig. 6. While the strength of the coupling relevant for the latter process is fixed by

the top Yukawa, the former process depends on an unknown hLQLQ coupling, �v, that originates

from the marginal “Higgs portal” operator,

L 3 ��H†H�

†

� . (42)

Here � is the scalar LQ and H is the SM Higgs doublet.

A. The �
1

= (3,1,�1/3) case

The Yukawa couplings of �
1

are given by the following Lagrangian

L
�1 = yLij

¯Qi,a
�

1

✏abLC j,b
+ yRij

¯U i
�

1

EC j
+ h.c. , (43)

where Qi
= (ui

L, d
i
L)

T and U i
= ui

R are the quark weak doublets and up-type singlets, respectively.

We explicitly show flavor indices i, j = 1, 2, 3, and SU(2) indices a, b = 1, 2, with ✏
12

= 1. Also,

here yLij and yRij are elements of arbitrary complex 3⇥3 Yukawa coupling matrices. After expanding

the SU(2) indices, we obtain

L
�1 = yLijū

i
L`

C j
L �

1

� (V †

CKM

yLijVPMNS

)

¯diL⌫
C j
L �

1

+ yRij ū
i
R`

C j
R �

1

+ h.c., (44)

where V
CKM

and V
PMNS

represent Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-Nakagawa-

Sakata mixing matrices, respectively. All fields in Eq. (44) are specified in the mass eigenstate
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FIG. 7. (Left-hand side panel) Higgs branching ratio to ⌧µ final state in the presence of scalar leptoquarks

�
1

= (3,1,�1/3) and �
2

= (3,2,7/6) with Higgs portal coupling � set to zero. (Right-hand side panel)

⌧ ! µ� constraints. The �
1

(�
2

) case is rendered in dashed (solid) line. The following transformation

needs to be applied when going from the �
1

to the �
2

case: yLij ! yLji.

Thus, a positive large � could in principle relax the leptoquark Yukawa couplings and yield sizable

h ! ⌧µ rates without violating the ⌧ ! µ� constraint. However, the Higgs portal coupling

also induces corrections to the h ! �� decay and to gluon-gluon fusion (ggF) induced Higgs

production with the leptoquark running in the triangular loop. The modified ggF production cross

section normalized to its SM value is

�ggF

�SM
ggF

= |ĉg|2, where ĉg = 1 + 0.24
�v2

m2

�

N
�

iC(r
�

). (51)

Here, N
�

i is the number of �i components in the weak multiplet �. C(r
�

) is the index of color

representation r
�

of � and for the triplet (C(3) = 1/2). We consider heavy enough colored

scalars such that the loop function is in the decoupling limit. Similarly, the modified h ! ��

decay width, normalized to its SM value, is given by

�h!��

�

SM
h!��

= |ĉ�|2, where ĉ� = 1� 0.025
�v2

m2

�

d(r
�

)

X

i

Q2

�

i . (52)

The sum in Eq. (52) runs over all weak components of the SU(2)L multiplet. d(r
�

) and Q
�

i are

the dimension of the color representation of � and the electric charges of weak �

i components,

respectively. We fit the latest LHC Higgs data (including the CMS signal of h ! ⌧µ) taking �

and leptoquark Yukawa couplings as free parameters. The result for the �
1

LQ model is shown in

Fig. 8. The preferred regions at 1 � and 2 � are rendered in solid pink and dashed pink, respectively.
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FIG. 3. Correlation between B(h ! ⌧µ) and B(⌧ ! µ�) in various NP scenarios. The present experimental

result for B(h ! ⌧µ) is shown in horizontal blue band [3]. Current and future projections for B(⌧ ! µ�)

experimental sensitivity are represented with vertical light [24] and dark [25] gray bands, respectively.

Superimposed are the predictions within the EFT approach (diagonal dashed orange line), in the type-III

THDM (green and black bands), in models with vector-like leptons (diagonal dotted purple line) and in

models with scalar leptoquarks (diagonal red and orange shaded band). See text for details.

G` ⌘ SU(3)L ⇥ SU(3)E 2 GF . In the SM (without neutrino masses), the charged lepton Yukawa

matrix � ⇠ (3, ¯3) is the only source of G` breaking. Consequently all lepton interactions are

flavor conserving in the charged lepton mass basis. Conversely, as also demonstrated explicitly

in Eq. (8), the generation of lepton flavor violating Higgs interactions requires at least two non-

aligned sources of lepton flavor symmetry breaking. At the tree level, there are only two possi-

bilities: (1) one can enlarge the SM scalar sector, such that more than one Higgs doublet couples

to the leptons (corresponding to the first term in Eq. (8)); (2) one can extend the leptonic sector

by vector-like fermions, whose Dirac masses and mixing terms with SM chiral fields can pro-

vide additional sources of G` breaking. This leads to the appearance of the �0 contributions after

integrating out the new heavy fermionic states. Both possibilities are explored in the following

sections. Example of an enlarged Higgs sector is given in Sec. III whereas the vector-like fermion

case is discussed in Sec. IV.

8

LQ	  alone	  cannot	  explain	  LFV	  rate	  of	  Higgs	  and	  make	  sensible	  predicDon	  for	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rate.	  We	  suggested	  LQ+	  vector-‐like	  T	  quark	  
(I.Doršner,	  S.F.,J.F.Kamenik,	  	  N.Košnik,	  I.	  Nisandžić,	  1502.07784	  )	  
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Low energy constraints and searches for LQ at LHC  

What do we achieve obtaining bounds from low energy 
phenomenology? 
 
 
- If leptoquarks are relatively light (mass ~ 1 TeV) one might check 
whether  unification  is possible within SU(5) and SO(10)! 

 
- ATLAS and CMS search for LQ. Are these bounds relevant for their 
searches? 



Experimental	  searches	  for	  LQ	  	  

ATLAS	  
	  
CMS	  

Search	  for	  LQ	  of	  only	  one	  
generaDon	  (in	  majority	  of	  models	  
LQ	  couples	  to	  all	  three	  
generaDons	  of	  quarks	  and	  leptons)	  

Tevatron	  (CDF,	  D0)	  

ATLAS	  

CMS	  

Model ℓ, γ Jets Emiss
T

∫
L dt[fb−1] Limit Reference

E
xt

ra
d

im
e

n
si

o
n

s
G

a
u

g
e

b
o

so
n

s
C

I
D

M
L

Q
H

e
a
vy

q
u

a
rk

s
E

xc
ite

d
fe

rm
io

n
s

O
th

e
r

ADD GKK + g/q − ≥ 1 j Yes 20.3 n = 2 1502.015185.25 TeVMD

ADD non-resonant ℓℓ 2e, µ − − 20.3 n = 3 HLZ 1407.24104.7 TeVMS

ADD QBH→ ℓq 1 e, µ 1 j − 20.3 n = 6 1311.20065.2 TeVMth

ADD QBH − 2 j − 20.3 n = 6 1407.13765.82 TeVMth

ADD BH high Ntrk 2 µ (SS) − − 20.3 n = 6, MD = 3 TeV, non-rot BH 1308.40754.7 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 20.3 n = 6, MD = 3 TeV, non-rot BH 1405.42545.8 TeVMth

ADD BH high multijet − ≥ 2 j − 20.3 n = 6, MD = 3 TeV, non-rot BH 1503.089885.8 TeVMth

RS1 GKK → ℓℓ 2 e, µ − − 20.3 k/MPl = 0.1 1405.41232.68 TeVGKK mass

RS1 GKK → γγ 2 γ − − 20.3 k/MPl = 0.1 1504.055112.66 TeVGKK mass

Bulk RS GKK → ZZ → qqℓℓ 2 e, µ 2 j / 1 J − 20.3 k/MPl = 1.0 1409.6190740 GeVGKK mass

Bulk RS GKK →WW → qqℓν 1 e, µ 2 j / 1 J Yes 20.3 k/MPl = 1.0 1503.04677760 GeVW′ mass

Bulk RS GKK → HH → bb̄bb̄ − 4 b − 19.5 k/MPl = 1.0 1506.00285500-720 GeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 20.3 BR = 0.925 1505.070182.2 TeVgKK mass

2UED / RPP 2 e, µ (SS) ≥ 1 b, ≥ 1 j Yes 20.3 1504.04605960 GeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 20.3 1405.41232.9 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 19.5 1502.071772.02 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 20.3 1407.74943.24 TeVW′ mass

EGM W ′ →WZ → ℓν ℓ′ℓ′ 3 e, µ − Yes 20.3 1406.44561.52 TeVW′ mass

EGM W ′ →WZ → qqℓℓ 2 e, µ 2 j / 1 J − 20.3 1409.61901.59 TeVW′ mass

EGM W ′ →WZ → qqqq − 2 J − 20.3 1506.009621.3-1.5 TeVW′ mass

HVT W ′ →WH → ℓνbb 1 e, µ 2 b Yes 20.3 gV = 1 1503.080891.47 TeVW′ mass

LRSM W ′
R
→ tb 1 e, µ 2 b, 0-1 j Yes 20.3 1410.41031.92 TeVW′ mass

LRSM W ′
R
→ tb 0 e, µ ≥ 1 b, 1 J − 20.3 1408.08861.76 TeVW′ mass

CI qqqq − 2 j − 17.3 ηLL = −1 1504.0035712.0 TeVΛ

CI qqℓℓ 2 e, µ − − 20.3 ηLL = −1 1407.241021.6 TeVΛ

CI uutt 2 e, µ (SS) ≥ 1 b, ≥ 1 j Yes 20.3 |CLL | = 1 1504.046054.3 TeVΛ

EFT D5 operator (Dirac) 0 e, µ ≥ 1 j Yes 20.3 at 90% CL for m(χ) < 100 GeV 1502.01518974 GeVM∗
EFT D9 operator (Dirac) 0 e, µ 1 J, ≤ 1 j Yes 20.3 at 90% CL for m(χ) < 100 GeV 1309.40172.4 TeVM∗

Scalar LQ 1st gen 2 e ≥ 2 j − 20.3 β = 1 Preliminary1.05 TeVLQ mass

Scalar LQ 2nd gen 2 µ ≥ 2 j − 20.3 β = 1 Preliminary1.0 TeVLQ mass

Scalar LQ 3rd gen 1 e, µ ≥1 b, ≥3 j Yes 20.3 β = 0 Preliminary640 GeVLQ mass

VLQ TT → Ht + X 1 e, µ ≥ 2 b, ≥ 3 j Yes 20.3 T in (T,B) doublet 1505.04306855 GeVT mass

VLQ YY →Wb + X 1 e, µ ≥ 1 b, ≥ 3 j Yes 20.3 Y in (B,Y) doublet 1505.04306770 GeVY mass

VLQ BB → Hb + X 1 e, µ ≥ 2 b, ≥ 3 j Yes 20.3 isospin singlet 1505.04306735 GeVB mass

VLQ BB → Zb + X 2/≥3 e, µ ≥2/≥1 b − 20.3 B in (B,Y) doublet 1409.5500755 GeVB mass

T5/3 →Wt 1 e, µ ≥ 1 b, ≥ 5 j Yes 20.3 1503.05425840 GeVT5/3 mass

Excited quark q∗ → qγ 1 γ 1 j − 20.3 only u∗ and d∗, Λ = m(q∗) 1309.32303.5 TeVq∗ mass

Excited quark q∗ → qg − 2 j − 20.3 only u∗ and d∗, Λ = m(q∗) 1407.13764.09 TeVq∗ mass

Excited quark b∗ →Wt 1 or 2 e, µ 1 b, 2 j or 1 j Yes 4.7 left-handed coupling 1301.1583870 GeVb∗ mass

Excited lepton ℓ∗ → ℓγ 2 e, µ, 1 γ − − 13.0 Λ = 2.2 TeV 1308.13642.2 TeVℓ∗ mass

Excited lepton ν∗ → ℓW , νZ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν∗ mass

LSTC aT →W γ 1 e, µ, 1 γ − Yes 20.3 1407.8150960 GeVaT mass

LRSM Majorana ν 2 e, µ 2 j − 20.3 m(WR ) = 2.4 TeV, no mixing 1506.060202.0 TeVN0 mass

Higgs triplet H±± → ℓℓ 2 e, µ (SS) − − 20.3 DY production, BR(H±±L → ℓℓ)=1 1412.0237551 GeVH±± mass

Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, BR(H±±
L
→ ℓτ)=1 1411.2921400 GeVH±± mass

Monotop (non-res prod) 1 e, µ 1 b Yes 20.3 anon−res = 0.2 1410.5404657 GeVspin-1 invisible particle mass

Multi-charged particles − − − 20.3 DY production, |q| = 5e 1504.04188785 GeVmulti-charged particle mass

Magnetic monopoles − − − 7.0 DY production, |g | = 1gD , spin 1/2 Preliminary1.34 TeVmonopole mass

Mass scale [TeV]10−1 1 10
√
s = 7 TeV

√
s = 8 TeV

ATLAS Exotics Searches* - 95% CL Exclusion
Status: July 2015

ATLAS Preliminary∫
L dt = (4.7 - 20.3) fb−1

√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

CMS Exotica Physics Group Summary – Moriond, 2015!
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Single	  LQ	  producDon	  

Double	  LQ	  producDon	  

-‐	  Sizable	  Yukawa	  couplings	  of	  LQ	  with	  SM	  fermions	  could	  influence	  pair	  
producDon	  at	  LHC;	  
-‐	  For	  small	  Yukawas	  LQ	  producDon	  is	  the	  same	  as	  within	  QCD.	  



I	  generaDon	  couplings:	  best	  constraints	  come	  from	  atomic	  parity	  violaDon	  	  

Experimental	  bound:	  

Bounds	  on	  II	  generaDon	  LQ	  

The	  LQ	  of	  the	  first	  generaDon	  	  is	  	  fully	  constrained	  by	  APV,	  hence	  couplings	  of	  LQ	  
to	  a	  	  down	  quark	  and	  an	  electron	  is	  very	  small.	  

Search	  of	  LQ(3,2,1/6)	  at	  LHC	  

For	  simplicity	  we	  assume	  only	  diagonal	  couplings	  in	  the	  search	  for	  LQ	  at	  LHC!	  
	  



excluded	  by	  
APV	  

If Yukawa  couplings are large,  
one also needs to take into 
consideration a single leptoquark 
production and t-channel 
leptoquark pair production. 



•  (3,2,7/6) state introduced to explain R(D) and R(D*); 

•  scalar with charge 2/3 introduces scalar and tensor operator into effective Lagrangian; 

•  charge 5/3 state induces quark and lepton flavor changing processes;  

•  constraints from                                                            ,              ; 
 
•  Model with (3,2,7/6) LQ state  can be accommodated with SU(5) GUT by adding 45 
scalar representation.  

•   (3,2,1/6) can explain RK anomaly. 
	  
•  LQ	  alone	  cannot	  explain	  LFV	  rate	  of	  Higgs	  and	  make	  sensible	  predicDon	  for	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rate	  .	  
 
•  Searches of LQ at LHC do depend on LQ couplings to quark and lepton, for large 
Yukawa  couplings a single leptoquark production and t-channel  leptoquark pair 
production are important - IMPORTANCE OF FLAVOUR PHYSICS FOR LHC! 

Summary 

µ ! e�Z ! b̄b, , (g � 2)µ, d⌧ , ⌧ ! µ�
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Global fit of NP contributions  (S. Decotes-Genot et al.,1307.5683) 
47 observables 



Most likely modifications of SM 
Wilson coefficients; 
confirmed also by Altmannshofer  
and Straub 1308.1501,  
Beujean, Bobeth, van Dyk 
1310.2478,  
Horgan et al., 1310.3887 
 
 
 


