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detection of DM.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM

ArXiv ePrint: 1307.2647

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2014)115

mailto:subhaditya.bhattacharya@ucr.edu
mailto:blazenka.melic@irb.hr
mailto:jose.wudka@ucr.edu
http://arxiv.org/abs/1307.2647
http://dx.doi.org/10.1007/JHEP02(2014)115


J
H
E
P
0
2
(
2
0
1
4
)
1
1
5

Contents

1 Introduction 1

2 Nonlinear realization of GDM 2

2.1 Conserved currents 6

2.2 Parameters of the model 7

3 DMP interactions 8

3.1 DMP → SM interactions 8

3.2 Direct-detection reaction 10

3.3 Pure DMP scattering 11

3.4 Decays of SM particles to DMP 12

4 Thermal history of DMP 13

4.1 Boltzmann equations 13

4.2 Contributions from SM → DMP decays 16

5 Solving the Boltzmann equations for the SU(2) case 17

5.1 Zero charge solutions 20

5.2 Behavior for small values of |q| 21

6 Experimental limits on model parameters 23

6.1 Constraints from the cold dark matter (CDM) relic density measurements 24

6.2 Direct detection constraints 26

6.3 Combined constraints on DMP model 27

6.4 Comparison with the standard Higgs-portal results 29

7 Conclusions 30

A Effects on the Boltzmann equations of the SM particle decays to DMP. 31

B Kinetics of pure DMP 32

1 Introduction

Dark matter (DM) is the most promising hypothesis proposed to explain astrophysical

and cosmological observations related to the motion of stars in galaxies [1], the motion of

galaxies in clusters [2–4], structure formation [5] and the inhomogeneities in the CMBR [6,

7]. Having not direct experimental information about this component of the universe the

theoretical efforts to understand DM have been couched within realistic extensions of the

Standard model (SM) [8–14], or have taken a purely phenomenological approach [15–23],

in which case simplicity has been used as a guide and constraint.
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In this publication we will investigate a phenomenological model for DM based on

general assumptions concerning the dark sector, explicitly, we will assume that the lightest

particles in that sector are the pseudo-Goldstone bosons resulting from a broken symme-

try [24]. Operationally this implies that the lightest particles (that we take as scalars for

simplicity) transform non-linearly under a continuous symmetry group, a situation similar

to the one occurring in low energy hadron physics. Accordingly, we will refer to them as

dark matter pions (DMP) (we emphasize however, that these are quite distinct form the

pions in the hadronic sector, in particular they do not have direct couplings to the stan-

dard model (SM) W± and photon, and in that sense our assumptions fundamentally differ

from those made in [25]). This approach is in contrast with most phenomenological ap-

proaches where the dark-sector fields are assumed to transform under a discrete symmetry,

or linearly under a continuous one [15–18].1

In the following we will study this type of DM model based on the nonlinear realiza-

tion of a spontaneously broken symmetry group GDM. However, given the difficulties of hot

dark matter gas in dealing with structure formation [26–28], we will also assume that the

Goldstone bosons receive their masses through an explicit breaking of the original symme-

try. We also require that all SM particles are singlets under the dark-sector symmetries

and that the dark particles are singlets under the SM local symmetries.

A similar approach has been followed in several publications. The use of Nambu-

Goldstone bosons as DM was studied in [29, 30], their stabilization using G parity in [31, 32]

and the possibility of composite DM in [33, 34].

The interaction between these two sectors (SM and DM) is presumably effected by

the exchange of some heavy mediators whose nature we do not need to specify, but only

assume are much heavier than the typical scales in either sector.2 Therefore the typical

interactions are of the form

LDM−SM ∼
1

Λn
ODMOSM , (1.1)

where ODM ,OSM are operators invariant under the internal symmetries of the correspond-

ing sector, but they need not be Lorentz invariant (though, of course, LDM−SM must be).

The details of these interactions will be elaborated below.

This paper is organized as follows: in the next section we describe the formalism behind

our model, and construct the Lagrangian we will use in our calculations. In section 3 we

calculate the SM-DM interactions that we then use in sections 4 and 5 to derive the relic

abundance of this type of dark matter. These results are compared with the experimental

constraints in section 6 with our brief conclusions are presented in section 7. A few details

are relegated to the two appendices.

2 Nonlinear realization of GDM

Models where the symmetry is non-linearly realized have been extensively studied (see,

e.g. [35, 36]); here we summarize some of the results for completeness. We assume there is

a subgroup HDM ⊂ GDM under which the vacuum is invariant and, following [35, 36], we

1The model studied here also respects several discrete Z2 symmetries, whose presence follows from the

required behavior under GDM and HDM.
2Explicit realization of such mediators are discussed in [29, 30].
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denote the generators of HDM by Vi and the remaining generators of GDM by Ta. Then the

fields can be chosen as {π,ψ} with the following properties:

• Under HDM they transform linearly: π → D(h)π, ψ → D(h)ψ for h ∈ HDM; where

D and D are some matrix representations of HDM.

• Under a general g ∈ GDM

π → ξ(π, g) , ψ → D
(
eu.V

)
ψ ; u = u(π, g) , (2.1)

where D is the same representation as above, and ξ and u are defined by

geπ.T = eξ.Teu.V . (2.2)

Note that the transformation of π depends only on g and π, and is non-linear; while

that of ψ depends on g, ψ and π. Because of their transformation properties the π

are massless and correspond to the Goldstone bosons generated under the spontaneous

breaking GDM → HDM, and accordingly the number of these fields equals that of the broken

generators Ta. We will refer to the π as the “dark-matter pions” (DMP) or dark pions.

To be specific we concentrate on the familiar case [37–40] of a unitary chiral theory

where GDM = SU(N) × SU(N) and HDM = SU(N), the diagonal subgroup. In this case

the above general formalism is realized by introducing a unitary field Σ and transforms as

Σ→ LΣR† L, R ∈ SU(N) , (2.3)

where Σ = exp(iπ.T/f) and f is a mass scale associated with the spontaneous breaking

of the symmetry. The diagonal subgroup corresponds to the choice R = L.

As it is well known [39–41], the leading fully chirally invariant operator is

L(0) = f2tr
{
∂µΣ† ∂µΣ

}
. (2.4)

Expanding (2.4) in terms of the π we find that this Lagrangian describes a series of mass-

less particles3 which are difficult (though not impossible [45]) to reconcile with structure

formation. We will therefore also include an explicit breaking of the GDM symmetry that

generate a mass for these excitations; for the chiral model this corresponds to a term of

the form

Lmass =
1

2
f2
(
M2tr {Σ}+ H.c.

)
. (2.5)

This term is invariant under the diagonal (unbroken) subgroup HDM and gives the same

mass M to all the π; we could have used a more general mass matrix that breaks HDM

explicitly. If this breaking is small compared to M this generalization would not change

qualitatively the results below. If the breaking is large the heavy π would become unstable

against decaying into the lighter ones and the picture presented below breaks down. Here

we will only consider the fully degenerate case for simplicity.

3We will not be concerned here with coherent excitations that might be stabilized by higher-derivative

operators that describe dark baryons [42–44].
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In order to construct the DM-SM interactions of the form (1.1) we need the list of the

lowest-dimensional SM gauge-invariant (tough not necessarily Lorentz invariant) operators.

These are easily listed; for dimension ≤ 2 we have

dim 2 : |φ|2 , Bµν , (2.6)

where φ denotes the SM scalar doublet and B the hypercharge gauge field containing

physical Z and γ bosons. The dimension 3 operators (that we will not use here) are φ†Dµφ

and ψ̄γµψ
′, where ψ and ψ′ are any two fermion fields carrying the same gauge group

representation (e.g. eR and τR); higher dimensional operators are similarly constructed.

Then, the simplest DM-SM coupling is clearly

LΣ−φ =
1

2
λh
(
|φ|2 − v2

)
tr
{
∂µΣ† ∂µΣ

}
, (2.7)

where v = 〈φ〉 ∼ 174 GeV.

The coupling Σ to Bµν is less straightforward since there are no GDM-invariant oper-

ators that can be constructed out of Σ and its derivatives and which transforms as the

(0, 1) + (1, 0) representation of the Lorentz group.4 Noting however, that (2.5) is invariant

only under the diagonal subgroup HDM, we will only require the Σ − B coupling to have

the same property, and in this case,

LΣ−B = Bµν
(
λV tr

{
Σ†∂µΣ∂νΣ†

}
+ H.c.

)
. (2.8)

For our choices of GDM and HDM the Lagrangian for our model is obtained from (2.4),

(2.5), (2.7), (2.8); explicitly,

L =
1

2

[
f2 + λh

(
|φ|2 − v2

)]
tr
{
∂µΣ† ∂µΣ

}
+

1

2
f2
(
M2tr {Σ}+ H.c.

)
+Bµν

(
λV tr

{
Σ†∂µΣ∂νΣ†

}
+ H.c.

)
, (2.9)

where, as before,

Σ = exp

(
i

f
πaTa

)
. (2.10)

In parallel with the usual strong-interaction pions, we will call f the DMP decay constant.

The Ta are the broken Hermitian generators normalized by

tr {TaTb} = δab , (2.11)

and obeying

[Ta, Tb] = ifabcTc (2.12)

(with a, b, . . . = 1, 2, . . . , N2−1). In the Cartan basis with root generators T±α and Cartan

generators Ti we have [46, 47]

[Ti, Tj ] = 0 , [Ti, Tα] = αiTα , [Tα, Tβ] = Nα,βTα+β , (2.13)

where Nα,β = 0 if α+ β is not a root.

4Those terms become available for models with two chiral fields Σ1,2 that transform in the same way.
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We could also add another φ− π coupling by replacing

M2 →M2(φ) = M2 + λ′h
(
|φ|2 − v2

)
. (2.14)

To lowest order this coupling is of the form |φ|2π2 and its effects have been studied

extensively [48, 49]. Given our interest in studying the effects of the new interactions

listed in (2.9) we will neglect λ′h in the following. We will, however, present in section 6.4

a brief discussion of the case where λ′h 6= 0 and λh = λV = 0.

Writing Σ = exp(iσ) and using

δΣ = i

∫ 1

0
du ei(1−u)σδσ eiuσ , σ = π.T/f (2.15)

the Lagrangian can be written (in a Hermitian basis)

L =
1

2

(
1 + λh

|φ|2 − v2

f2

)
∂µπa∂

µπb gab +
1

2
M2f2tr

{
Σ + Σ†

}
(2.16)

− 1

f2
Bµν∂µπa ∂νπb gacfcbd Im

(
λV tr

{
TdΣ

†
})

=
1

2
(∂π)2− 1

2
M2π2+

λhv√
2f2

h(∂π)2+
λh
4f2

h2(∂π)2−Re(λV )

f3
Bµνfabc∂µπa ∂νπb πc+ · · · ,

where

gab =

∫ 1

−1
du (1− |u|)tr

{
eiuσ Ta e

−iuσTb
}
, (2.17)

and h is the Higgs field; in unitary (SM) gauge φT =
(
v + h/

√
2
)

(0, 1).

In the Cartan basis,

π2 =
∑
i

π2
i +

∑
α

|πα|2 , π−α = π†α ,

(∂π)2 =
∑
i

(∂πi)
2 +

∑
α

|∂πα|2 =
∑
i

(∂πi)
2 + 2

∑
α>0

|∂πα|2 ,

Bµνfabc∂µπa ∂νπb πc = iBµν

∑
α,β

Nα,βπ
†
α+β ∂µπα ∂νπβ

+
∑
i,α

αi ∂νπ
†
α (2πα∂µπi − πi∂µπα)

 , (2.18)

and for the case of N = 2 (that we will develop later as a specific illustrative case):

π2 = π2
o + 2π+π− ,

(∂π)2 = (∂πo)
2 + 2∂π+∂π− ,

Bµνfabc∂µπa ∂νπb πc = −2iBµν
[
(∂µπo)

(
π−
↔
∂π+

)
+ πo ∂µπ+∂νπ−

]
, (2.19)

where πo is associated with the SU(2) Cartan generator, and π± = π±α, where α is the

single root in this group.
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It is important to note that despite the presence of a vertex of Z (residing in the Bµν
field in (2.19)) with an odd number of π, the dark pions are stable: their decay to other

DMPs is kinematically forbidden, while decay to SM particles is forbidden by the exact

HDM symmetry under which the DMP are triplets, while all SM states are singlets. This,

of course, would be modified if we were to allow HDM-violating terms with sufficiently large

coefficients. We restrict ourselves to regions in parameter space where this does not occur

(e.g. where HDM remain exact).

Note however that the model does not have interactions such as the ones that allow the

ordinary neutral pion to decay into two photons: such effects are produced by the gauged

Wess-Zumino-Witten [50, 51] Lagrangian, which is absent for this form of DM because it

is assumed neutral under the SM local symmetries.

2.1 Conserved currents

The Lagrangian (2.9) is invariant under the global transformations

Σ→ V †ΣV ; V ∈ SU(N) , (2.20)

which give rise to a set of conserved Noetherian currents

Jµb =

(
1 + λh

|φ|2 − v2

f2

)
∂µπdgadπcfbca −

2

f2
Bµν fbcaπcgaefedf∂νπdIm

(
λV tr

{
T fΣ†

})
.

(2.21)

Ignoring the interactions with the SM the canonical momentum are ℘a = gabπ̇a in

terms of which the charges (again ignoring the SM interactions) become

Qb =

∫
d3xJ0

b =

∫
d3x πcfbca℘a (2.22)

and (ignoring possible sigma terms and other anomalies [52]) satisfy the algebra

[Qa, Qb] = ifabcQc , (2.23)

as expected.

The number of commuting conserved charges equals the rank of the group, which, in

a Cartan basis, can be conveniently chosen as those associated with the πi:

[Qi, Qj ] = 0; Qi =
∑
α

αi

∫
d3xπα℘α . (2.24)

Assuming that these relations do not exhibit commutator anomalies [52] the charges Qi
will be conserved; in particular this property will be reflected in the Boltzmann equations.

It follows from the expression for Qi that the πi carry no charge, while π±α carry opposite

i-charges when αi 6= 0.

– 6 –
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2.2 Parameters of the model

The model we consider has then 4 parameters: the DMP mass M , the DMP decay constant

f , the coupling constant of the DMP to the Higgs λh, and λV , the coupling constant of the

DMP to the hypercharge vector field B (from which follow the coupling to the Z boson

and the photon).

In the calculations below we will take λV coupling to be real with magnitude

λV = 0.63 . (2.25)

We will see later that as far as the Boltzmann equations are concerned, any change in λV
can be absorbed in a redefinition of the other parameters (cf. the end of section 5), so this

choice does not represent a loss of generality and is made for computational ease only. It

is worth noting that according to naive dimensional analysis (NDA) [53] its value is λV ∼
g′/(4π)2 ' 0.0023, where g′ is the U(1)Y gauge coupling constant in the Standard Model.

For the rest of the parameters we impose just some loose constraints. We require that

λh < 1 (2.26)

in order to ensure the model remain perturbative.5 We will see later that all the experi-

mental constraints on the model also have simple scaling dependence on the couplings λh
(see section 6.1), so this constraint will also not restrict the generality of our results.

Since we assume that the DMP are the pseudo-Goldstone bosons of some underlying

theory and are generated by the breaking of GDM to HDM at some scale Λ, consistency of

the resulting chiral model requires [41]

4πf �M . (2.27)

For large values ofN the left hand side is expected to be suppressed by a factor of 1/
√
N [54,

55], which we do not include because we will restrict ourselves to low values of N .

Another constraint can be derived by requiring loop corrections not to dominate

over the tree-level terms. In particular this should hold for the radiative corrections

generated by the term proportional to λV in (2.16), which includes vertices of the

form
(
λV /f

n+2
)
Zµν∂

µπ ∂νπ πn. Two such vertices will generate loop corrections to the

∂µπ ∂µπ π
k/fk vertex of the first term in (2.16):

∼ (4πλV )2

fk

(
M

4πf

)2L+2

(L=number of loops) (2.28)

where we have assumed that all the terms in (2.16) that explicitly violate GDM are associated

with the scale M , which we have used as an UV cutoff. We require (2.28) not to be larger

5In imposing this constraint we are being conservative as the perturbative unitarity limit is in fact

λh < 4π.
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Figure 1. DMP → SM particle diagrams.

than the tree-level contribution, which implies (since L can be arbitrarily large)6

f ≥ [max{4πλV , 1}]1/2 M
4π

. (2.29)

3 DMP interactions

In this section we calculate the cross sections for the processes that dominate the Boltzmann

equations that describe possible equilibration between the dark and SM sectors, and within

the dark sector. The relevant interactions (2.16) separate into those that involve only DMP,

and those that involve DMP and the SM scalar φ or the vector boson B. We also derive

the reactions relevant for direct detection of the DMP. In all the calculations below we only

consider 2→ 2 processes and will use the Cartan basis for the DMP.

3.1 DMP → SM interactions

There are two kinds of reactions:

Processes with only SM particles in the final state. These are of the form

πiπi → h∗ → SM , πiπi → hh ,

παπ−α → h∗ → SM , παπ−α → hh , (3.1)

for which the interaction terms in (2.16) are

Lh−2π =

(
vλh√
2 f2

h+
λh
4f2

h2

)[∑
i

(∂πi)
2 + 2

∑
α>0

|∂πα|2
]
, (3.2)

and the processes are shown in figure 1.

6This can be refined by introducing the loop symmetry factor of 1/Γ(L); the lower bound on 4πf/M

in terms of x = 4πλV then becomes:
√
x for x > 1; x1/3 for 1 ≥ x ≥ 1/8, and below x = 0.125 it is

well approximated by −(1/ lnx) + [3 ln(− lnx)− ln(2π)]/
[
2(lnx)2

]
. We will not, however, use these more

complicated relations below.
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The cross sections for these processes are:

σ(ππ →W+W−) =
12κ2

W − 4κW + 1

4κ2
π

βW σSM ,

σ(ππ → ZZ) =
12κ2

Z − 4κZ + 1

8κ2
π

βZ σSM ,

σ(ππ → ff̄) =
κf
2κ2

π

β3
fσSM ,

σ(ππ → hh) =
sλ2

h

1024πf4

βh
βπ

{[
(1− 2κπ)(1 + κh)

1− κh
− 4λhv

2

f2
(1− 8κπ + 2κh)

]2

− 4λhv
2

f2

[
(1−2κπ)(1+κh)

1−κh
− 4λhv

2

f2

1−8κπ+4κ2
π+3κh(4κπ−κh)

1−2κh

]
Υ

+
16λ2

hv
4

f4

[
2(κh − 2κπ)4

κπ + κh(κh − 4κπ)

]}
, (3.3)

where

κi = m2
i /s , (mπ = M) ; βi =

√
1− 4κi ; (3.4)

σSM =
sλ2

h

16πf4

κ2
π

βπ

(1− 2κπ)2

(1− κh)2 + κh
(
Γ2
h/s
) ; Υ =

4(κh − 2κπ)2

βπβh
ln

(
1− 2κh + βπβh
1− 2κh − βπβh

)
.

The overall factors of s in σSM and σ(ππ → hh) are a consequence of the derivative

coupling of the DMP mandated by chiral symmetry; when small s is allowed by the kine-

matics, this leads to a significant softening of the cross sections compared to the usual

portal coupling of scalar DM to the SM. Other DMP couplings have a more complicated

s behavior (see below).

We neglected the Higgs width in the expression for σ(ππ → hh) since it is never

resonant (resonance occurs at s ∼ m2
h while the reaction occurs only if s > 4m2

h) and

current data [56, 57] suggests Γh ' Γ
(SM)
h ' 4 MeV and mh = 125 GeV so that Γ

(SM)
h /mh '

3.2×10−6. For the W , Z and t reactions we can also ignore Γh in σSM (defined in eq. (3.4));

the same is true for the other reactions if M > mh/2.

Processes involving DMP in the final state. These correspond to ππ ↔ πZ/γ for

which the Lagrangian is given by

LZ−3π =
iλV
f3

iBµν

∑
α,β

∂νπα∂µπ
†
βNα,−βπ

†
α−β

+
∑
α

(∂νπα)
[
2π†α(∂µα.π)− 2(α.π)

(
∂µπ

†
α

)]}
. (3.5)

So there are 3 types of reactions (the first present only for SU(N), N > 2):

πα(p) πβ(q) ↔ πα+β(l) V (k) ,

πα(p) π−α(q) ↔ πi(l) V (k) ,

πα(p) πi(q) ↔ πα(l) V (k)

(3.6)
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Figure 2. DMP scattering with Z and γ.

(V denotes Z or γ), which are presented in figure 2. The cross sections are

σ
(
παπ

†
α → πi V

)
=σ(παπi → πα V )=α2

i

KV

P
σV , σ(παπβ → πα+β V )= |Nα,β|2

KV

P
σV ,

σ
(
πi V → παπ

†
α

)
=σ(πα V → παπi)=

α2
i

sV

P

KV
σV , σ(πα+β V → παπβ)=

|Nα,β|2

sV

P

KV
σV ,

(3.7)

where sV the number of spin degrees of freedom: sZ = 3, sγ = 2, and

σZ =

(
3swλV
f3

)2 P 2

16πs

[(
s−M2 − 1

3
m2
Z

)2

− 4

3

(
s− 4

9
m2
Z

)
K2
Z

]
,

σγ =

(
3cwλV
f3

)2 P 2

24πs

(
s−M2

)2
. (3.8)

In the center of momentum (CM) frame KV = |k| = |l| denotes the magnitude of the V

3-momentum, and P = |p| = |q| the magnitude of the 3-momentum of the pions not paired

with the vector boson:

K2
V =

λ
(
s,m2

V ,M
2
)

4s
, P 2 =

λ
(
s,M2,M2

)
4s

, (3.9)

with

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca . (3.10)

3.2 Direct-detection reaction

The most important process that can contribute to the scattering of the DMP off heavy

nuclei (relevant for direct DM detection [58–64]) is πψ → πψ, where ψ is SM fermion, and

occurs through a t-channel h exchange. The averaged amplitude-squared is

|A|2 =

(
mψλh
2f2

)2( t− 2M2

t−m2
h

)2 (
4m2

ψ − t
)
, (3.11)

so that, in the CM frame, the corresponding cross section for this process is given by

σ(πψ → πψ) =
1

16πs

(
mψλh
2f2

)2
{

2
(
P 2−m2

h+2M2+2m2
ψ

)
−

(
m2
h−4m2

ψ

) (
m2
h−2M2

)2
m2
h

(
m2
h + 4P 2

)
+

(
2M2 + 8m2

ψ − 3m2
h

) (
2M2 −m2

h

)
4P 2

ln

∣∣∣∣4P 2 +m2
h

m2
h

∣∣∣∣
}
, (3.12)
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Figure 3. DMP → DMP scattering diagram.

where P denotes the momentum of the incoming particles in the CM frame. When

M,mh � P,mf this cross section is approximated by

σ(πψ → πψ) ' 1

4πs

(
mψλhM

2

m2
hf

2

)2(
m2
ψ +

P 2

2

)
(M,mh � P,mf ). (3.13)

At low momentum transfer the effective interaction obtained from integrating the Higgs

using (3.2) and the Standard Model hf̄f interaction −(mψ/v)hψ̄ψ is

L(eff)
ππψψ = −

(√
2mψλhM

2

m2
h f

2

)
1

2
π2 ψ̄ψ . (3.14)

3.3 Pure DMP scattering

Finally, we obtain the cross sections responsible for equilibrium within the DMP sector,

ππ → ππ, figure 3. The lowest-order terms (taking M real) in (2.16) are

L =
1

2
(∂π)2 − 1

2
M2π2 +

N

16f2(N2 − 2)

[(
∂π2

)2 − µ2
(
π2
)2]

, (3.15)

where

µ2 =
6N2 − 4

N2(N2 + 1)
M2 (3.16)

and we have dropped terms that vanish on shell and will no contribute to the S-matrix.

In terms of DMP defined in the Cartan basis

π2 =
∑
i

π2
i + 2

∑
α>0

παπ−α ; π†α = π−α , (3.17)

we have the following reactions:

reaction Lagrangian amplitude crosssection

ii→ jj (i 6= j) −(u/4)π2
i

(
� + µ2

)
π2
j iu

(
s− µ2

)
σ0/2

ii→ ii −(u/8)π2
i (� + µ2)π2

i iu
(
4M2−3µ2

)
u2
(
M2 − 3

4µ
2
)2
/(2πs)

ii→ αᾱ −(u/2)π2
i

(
� + µ2

)
|πα|2 iu

(
s− µ2

)
σ0

αᾱ→ ii −(u/2)π2
i

(
� + µ2

)
|πα|2 iu

(
s− µ2

)
σ0/2

αᾱ→ ββ̄ (α 6= β) −u|πβ|2(� + µ2)|πα|2 iu
(
s− µ2

)
σ0

αᾱ→ αᾱ −(u/2)|πα|2
(
�+µ2

)
|πα|2 2iu

(
M2−µ2

)
u2
(
M2−µ2

)2
/(4πs)

(3.18)

where ᾱ = −α, β̄ = −β, and

σ0 =
u2
(
s− µ2

)2
16πs

, u =
N

2f2(N2 − 2)
. (3.19)
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Figure 4. SM particle decays to DMP.

3.4 Decays of SM particles to DMP

Limits on the DMP parameters can be derived either from collider reactions or from po-

tential deviations from SM decays. Reactions of the form ff̄ → ππ, where f is a SM

fermion, or W fusion reactions WW → ππ, would mimic neutrino production at colliders.

The limits, however, are very weak since these processes proceed through a virtual h and

so the amplitude will be proportional to small Yukawa coupling, or, for the case of heavy

initial quarks, suppressed distribution functions.

The main limits are then derived form the two leading decay processes, figure 4, namely,

h→ ππ and Z → πππ, to which we now turn.

h → ππ decay. Using (2.16) and choosing a Hermitian π basis we find that the width

is given by

Γ(h→ πaπb) = Γhππδab ; Γhππ =
(λhv)2

16πmh

(
m2
h − 2M2

2f2

)2
√

1− 4M2

m2
h

θ(mh−2M) ; (3.20)

in the Cartan basis Γ(h→ πiπi) = Γhππ and Γ(h→ παπ−α) = 2Γhππ. Recent data [56, 57]

favors a Higgs decay close to the SM prediction of ∼ 4 MeV and a mass mh ∼ 125 GeV;

this requires M > mh/2, or M < mh/2 and Γhππ < 4 MeV, hence the constraint we use is

f > 5.9|λh|1/2|7812.5−M2|1/2
[

1−
(
M

62.5

)2
]1/8

, M < 62.5 (M in GeV) . (3.21)

In the numerical solutions to Boltzmann equations for DMP for the SU(2) case

(discussed below), we consider DMP masses in the interval 50 GeV ≤ M ≤ 2000 GeV so

the h→ ππ constraint plays an important role only for comparatively small values of M .

Z → πππ decay. The calculation is straightforward; using again a Hermitian DMP

basis we find

Γ(Z → πππ) =
M7s2

wλ
2
V

15 (8πf2)3 r5/2

( ∑
a>b>c

|fabc|2
)

[pEE(c) + pKK(c)] , (3.22)
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where sw = sin θw, while E, K denote the usual Elliptic functions, and

pE =
(
3r8 + 394r6 − 720r4 + 54r2 − 243

)
,

pK = −1

2
(r − 1)3

(
20r6 + 63r5 + 99r4 + 522r3 + 918r2 + 567r + 243

)
,

c = −(r − 3)(1 + r)3

16r
,

r =
mZ

M
. (3.23)

For HDM = SU(N) and our normalization conventions (2.11), (2.12) the summation in-

volving the structure constants is given by∑
a>b>c

|fabc|2 =
1

3!

∑
a,b,c

|fabc|2 =
N
(
N2 − 1

)
3

. (3.24)

Using the uncertainty in the invisible width of the Z, Γ(Z)inv we have limit

Γ(Z → πππ) < 3× 10−3Γ(Z)inv = 3× 10−3 g
2mZ

32πc2
w

, (3.25)

which implies

55.4 > N
(
N2 − 1

)(m3
ZλV
f3

)2

Q , (3.26)

where

Q = r−19/2[pEE(u) + pKK(u)] . (3.27)

The function Q is monotonic; it vanishes as r → 3 and approaches 0.75 as r →∞. Taking

N = 2, and λV = 0.63, the most conservative limit (corresponding to taking Q = 3/4)

corresponds to

f > 51.43 GeV
(
M <

mz

3

)
. (3.28)

When λV = 0.063, this limit becomes f > 23.87 GeV.

In the numerical analysis, we choose to work with DMP mass ≥ 50 GeV and therefore

the constraint from Z → πππ is of no importance.

4 Thermal history of DMP

We now turn to the derivation of the relic abundance of DMP. We follow the standard

treatment (see e.g. [65]) and will consider only 2→ 2 processes.

4.1 Boltzmann equations

The change in the number density of particle of type a due to collisions and the expansion

of the universe is given by

ṅa + 3Hna = −Ca ,

Ca =
∑
b,c,d

∫
dΦ|Aa+b→c+d|2(fafb − fcfd) ,

dΦ = dΠa dΠb dΠc dΠd(2π)4δ(4)(pa + pb − pc − pd) , (4.1)
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where dΠ denotes the phase-space volume

dΠ =
g

2Ep

d3p

(2π)3
, (4.2)

and g is the number of internal degrees of freedom. The amplitude-squared |A|2 for the

a + b → c + d process is understood to be averaged over initial and final states, and to

include symmetry factors for identical particles in the final states. The functions f are the

particle phase-space distribution functions; the corresponding particle number density is

n = g

∫
d3p

(2π)3
f . (4.3)

We will assume that interactions are such that kinetic equilibrium is maintained [66];

we will also assume that particles densities are sufficiently small to ignore the effects of

quantum statistics. In this case the energy dependence in the distribution functions is

given by the Boltzmann factor: f = ζ exp(−E/T ). Since we are interested in the epoch

when the DMP first decouple, all distribution functions will have the same temperature

T ; this will continue after decoupling provided no mass thresholds are crossed, or phase

transitions occur.

The equilibrium distributions for a particle of mass m is given by

n(eq) = gz

∫
d3p

(2π)3
e−E/T =

zgm3

2π2

K2(x)

x
, E =

√
m2 + p2 , x =

m

T
(4.4)

where z is the fugacity in equilibrium. For the SM zSM = 1 to very good accuracy [67];

for the DMP, however, we will allow non-zero chemical potentials. Using the definition

in (2.24) and the discussion below it, it follows that

µ
(i)
j = 0 , µ

(i)
α = −µ(i)

−α , (4.5)

where µ
(i)
a denotes the chemical potential for particle a associated with charge Qi so that

z 6= 1 for those particles with non-zero conserved charges, as defined in section 2.1.

Substituting these definitions in the expression for C and using the standard definition

of the scattering cross section σ we find

Ca =
∑
b,c,d

(
ñañb −

n
(eq)
a n

(eq)
b

n
(eq)
c n

(eq)
d

ñcñd

)
〈σv〉a+b→c+d ,

〈σv〉a+b→c+d =
Tgagb

2 (2π)4n
(eq)
a n

(eq)
b

∫ ∞
so

ds
λ
(
s,m2

b ,m
2
a

)
√
s

K1(
√
s/T )σa+b→c+d(s) , (4.6)

where ñ = zn, s = (pa + pb)
2 = m2

a +m2
b + 2pa.pb, λ(a, b, c) is defined in (3.10), and

so = max
{

(ma +mb)
2 , (mc +md)

2
}
. (4.7)

In the definition of so we used the condition (contained in the cross section) that s should

be large enough to create c and d.
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For the pure DMP scattering processes that appear in the Boltzmann equations the

averaged cross sections can be evaluated in closed form. We obtain, for example

〈σv〉πiπi→παπ−α
=

1

8

x

zπazπb [K2(x)]2
1

M5

∫ ∞
4M2

ds
√
s
(
s− 4M2

)
K1

(√
s/T

)
σ0

=
4u2M2

π

1

zπazπbx
3[K2(x)]2

[
Bx2 + 3

x
K2(2x) +

B2x2 + 6

4
K1(2x)

]
, (4.8)

with similar expressions for the other relevant processes; in deriving this we used (3.18)

and (3.19). For the relevant initial states (πiπi or παπ−α) we have zi = 1 = zαz−α so that

in all cases of interest (see below) we can replace zπazπb → 1. Also u is defined in (3.19),

while B is defined as

B = 1− µ2

4M2
=
N4 − 1

2N
2 + 1

N2 (N2 + 1)
(4.9)

and µ is given in (3.15). In deriving the above result we used∫ ∞
1

dy
(
y2 − 1

)n
K1(2xy) =

n!

2

Kn(2x)

xn+1
. (4.10)

With the above preliminaries we can now find the relevant collision terms Ca (cf.

eq. (4.1)) for the cases a = πi and a = πα that we abbreviate as Ci and Cα respectively. We

will assume that all SM particles remain in equilibrium, so that nSM = n
(eq)
SM . The tables

of the relevant reactions (which do not cancel in Ci,α ) are

a = πα

b c/d

π−α W+W−, ZZ, f f̄ , hh, πjV, πjπj , πβπ−β
V πjπα, πβπα−β
πj V πα

πβ V πα+β

a = πi

b c/d

πi W
+W−, ZZ, f f̄ , hh, πjπj , πβπ−β

πβ V πβ

(4.11)

where V represents Z or γ, β 6= −α, and a summation over j and β is assumed.

Now, using (4.6) and noting that (4.5) implies

ñi = ni , ñαñ−α = nαn−α , (4.12)

and similarly for the equilibrium densities, we find

Ci =
(
n2
i − n

(eq)
i

2
)
〈σv〉πiπi→SM +

∑
α

ñα

(
ni − n(eq)

i

) [
〈σv〉πiπα→γπα + 〈σv〉πiπα→Zπα

]
+
∑
α

n
(eq)
i

(
ni

n
(eq)
i

− nα

n
(eq)
α

n−α

n
(eq)
−α

)[
n

(eq)
Z 〈σv〉πiZ→παπ−α

+n(eq)
γ 〈σv〉πiγ→παπ−α

]
(4.13)

+
∑
j 6=i

(
n2
i −

n
(eq)
i

2

n
(eq)
j

2
n2
j

)
〈σv〉πiπi→πjπj+

∑
α

(
n2
i−

n
(eq)
i

2

n
(eq)
α n

(eq)
−α

nαn−α

)
〈σv〉πiπi→παπ−α
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and

Cα =
(
nαn−α − n(eq)

α n
(eq)
−α

)
〈σv〉παπ−α→SM

+
∑
i

(
nαn−α − n(eq)

α n
(eq)
−α

ni

n
(eq)
i

)[
〈σv〉παπ−α→πiγ + 〈σv〉παπ−α→πiZ

]
+
∑
i

(
nαn−α −

n
(eq)
α n

(eq)
−α

n
(eq)
i

2
n2
i

)
〈σv〉παπ−α→πiπi

+
∑

β 6=±α

nαn−α − n
(eq)
α n

(eq)
−α

n
(eq)
β n

(eq)
−β

nβn−β

 〈σv〉παπ−α→πβπ−β
, (4.14)

where the contributions coming from παV → πiπα (V = Z, γ) and παπi → V πα cancel,

as do those from παπβ → V πα+β and παV → πβπα−β. We have also defined, using (4.6),

〈σv〉πiπi→SM = 〈σv〉πiπi→WW + 〈σv〉πiπi→ZZ +
∑
f

〈σv〉πiπi→ff + 〈σv〉πiπi→hh

=
T

32π4n
(eq)
i

2

∫ ∞
0

ds s3/2K1

(√
s/T

)
β2
π

σπiπi→WW + σπiπi→ZZ

+
∑
f

σπiπi→ff̄ + σπiπi→hh

 (4.15)

and similarly for παπ−α → SM.

4.2 Contributions from SM → DMP decays

The effects of Higgs decays into DMP, when kinematically allowed, can be included in the

Boltzmann equation in two equivalent ways. We can include them in the total h width:

Γh = ΓSM
h + Γ(h→ ππ) (4.16)

and use this expression in the cross sections involving Higgs exchange. Or, alternatively,

we can exclude these effects from the Higgs propagators (see e.g. [68]):

mhΓh(
s−m2

h

)2
+m2

hΓ2
h

→ mhΓh(
s−m2

h

)2
+m2

hΓ2
h

− πδ
(
s−m2

h

)
Θ
(
s− 4m2

i

)
, (4.17)

and include them in suitable additions C(decay)
i,α to the collision terms; explicitly

(see appendix A)

C(decay)
i = N i

Hn
(eq)
H

K1(xH)

K2(xH)
Γ(h→ ππ) (4.18)

where N
(i)
h counts the number of produced πi: N

(i)
h = 2! for h → πiπi and N

(i)
h = 1 for

h → παπ−α; Γ(h → ππ) is given in (3.20), and xi = mi/T . An analogous equation holds

for C(decay)
α .

If we assume that the recently observed particle at the LHC [56, 57] is the SM Higgs,

it’s very small total width ensures that the effects from Higgs decay to DMP are negligible.

We have checked that for realistic DMP masses the contribution of Z → πππ decays in the

Boltzmann equations (see appendix A) are also negligible.
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5 Solving the Boltzmann equations for the SU(2) case

The simplest non-trivial group is HDM = SU(2), which we consider as an illustrative

example of the formalism; the same approach can be used for any N , though with the

calculations become increasingly cumbersome. For N = 2 there is a single conserved charge

and 3 DMP states that we label as o,±, with the first associated with the Cartan generator.

As usually we find it convenient to rewrite the Boltzmann equations (BE) (4.1), (4.13),

(4.14) by defining

x =
M

T
, Yr =

1

s
nr , Y (eq)

r =
1

s
n(eq)
r , (5.1)

where T denotes the photon temperature and s the entropy density:

s =
2π2

45
gs(T )T 3 ; gs(T ) =

∑
k

rkgk

(
Tk
T

)3

θ(T −mk) ; (5.2)

here k runs over all particles, Tk is the temperature of particle k and gk its number of

internal degrees of freedom, and rk = 1 (7/8) when k is a bosons (fermion). We will also

make use of Friedman’s equation,

H2 =
8πG

3
ρ =

4π3G

45
g(T )T 4 ; g(T ) =

∑
k

rkgk

(
Tk
T

)4

θ(T −mk) . (5.3)

In the following we will take Tk for all SM particles (assuming T is above that of the e+e−

annihilation epoch), so that gs(T ) = g(T ); we use the expression for g(T ) in ref. [69]. The

explicit form of the equilibrium distribution is

Y (eq)
r =

45

4π4

gr
gs(T )

zrx
2
rK2(xr)

xr�1−→ arzrx
3/2
r e−xr ; xr=

mr

T
, ar=

45

4π4

√
π

2

gr
gs(T )

(5.4)

where zr is the fugacity for particle r and gr the number of internal degrees of freedom.

We will also consider model parameters where the SM and DM sectors are in equilib-

rium for temperatures T > Tf , such that Tf < M , so that the region of interest is x > 1

and the DMP will not contribute7 to the effective number of relativistic degrees of freedom

g(T ) = gSM(T ).

In terms of Y the Boltzmann equations take the form

d Yr
d x

= −
√
πg(T )

45G

M

x2
Cr(Y ) , Cr(Y ) =

1

s2
Cr , (r = o,±) (5.5)

where the collision terms are

Co(Y ) =
(
Y 2
o − Y (eq)

o

2
)
〈σv〉πoπo→SM +

(
Y 2
o − Y+Y−

)
〈σv〉πoπo→π+π−

+
[
YoY

(eq)
o − Y+Y− + (Y+ + Y−)

(
Yo − Y (eq)

o

)]
〈σv〉π+π−→πoV , (5.6)

7If Tf > M then the situation is more complicated, as the DMP will contribute to the relativistic

degrees of freedom during their decoupling form the SM. For T ≤ Tf the DMP temperature is determined

by entropy conservation: sπ(Tπ)R3 = sπ(Tf )R3
f and is in general different form the photon temperature.
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and

C±(Y ) =
(
Y+Y− − Y (eq)

o

2
)
〈σv〉πoπo→SM +

(
Y+Y− − Y 2

o

)
〈σv〉π+π−→πoπo

cq +
(
Y+Y− − YoY (eq)

o

)
〈σv〉π+π−→πoV , (5.7)

where we used Y
(eq)

+ Y
(eq)
− = Y

(eq)
o

2
, and also

Y (eq)
o Y

(eq)
Z/γ 〈σv〉πoZ/γ→π+π− = Y (eq)

o Y
(eq)
± 〈σv〉πoπ±→Z/γπ± = Y (eq)

o

2 〈σv〉π+π−→πoZ/γ , (5.8)

and defined

〈σv〉π+π−→πoV = 〈σv〉π+π−→πoγ + 〈σv〉π+π−→πoZ . (5.9)

For the SU(2) case there is a single non-trivial chemical potential (4.5) and an associ-

ated conserved charge

q = Y− − Y+ . (5.10)

Using q, the two independent Boltzmann equations become

dY+
dx

= −
√
πg(T )

45G

M

x2

{[
Y+(Y+ + q)− Y (eq)

o
2
]
〈σv〉πoπo→SM +

[
Y+(Y+ + q)− Y 2

o

]
〈σv〉π+π−→πoπo

+
[
Y+(Y+ + q)− YoY (eq)

o

]
〈σv〉π+π−→πoV

}
,

dYo
dx

= −
√
πg(T )

45G

M

x2

{(
Y 2
o − Y (eq)

o

2
)
〈σv〉πoπo→SM +

[
Y 2
o − Y+(Y+ + q)

]
〈σv〉πoπo→π+π−

+
[
(2Y++q)

(
Yo−Y (eq)

o

)
−Y+(Y++q)+YoY

(eq)
o

]
〈σv〉π+π−→πoV

}
. (5.11)

From (4.6) we find that

Y (eq)
o Y

(eq)
Z/γ 〈σv〉πoZ/γ→π+π− =

T

2 [2π2s(T )]2

∫ ∞
so

dsPKV

√
sK1

(√
s/T

)
σZ/γ ,

Y (eq)
o

2 〈σv〉πoπo→SM =
T

2 [2π2s(T )]2

∫ ∞
so

ds
√
sP 2K1

(√
s/T

)
σπoπo→SM , (5.12)

where σZ/γ are given in (3.8) and P, KV are defined in (3.9).

The 〈σv〉 are plotted in figure 5 for a representative parameter space point. The SM

cross section is almost x-independent (corresponding to a predominance of s-wave scat-

tering), while the γ/Z cross section is proportional to 1/x, indicating a predominance of

p-wave scattering. It is interesting to note that the DMP→DMP cross section has an

unusual 1/
√
x behavior for large x that results from all particles having the same mass

and the amplitude being non-zero and finite at threshold, which for this model is a conse-

quence of the chiral couplings of the DMPs. One can see, that 〈σv〉ππ→SM is much smaller

than 〈σv〉ππ→πV or 〈σv〉ππ→ππ for the particular choice of parameters. The relevance of

〈σv〉ππ→SM can be understood by referring to figure 6 where we compare 〈σv〉ππ→SM and

〈σv〉ππ→πV at the decoupling temperature (the point at which the DMP particle density
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Figure 5. Cross sections for a representative set of parameters, (M,f, λh, λV ) =

(1000 GeV, 950 GeV, 0.01, 0.63), for which the model satisfies the cold-dark matter and direct-

detection constraints. Top curve: 107x 〈σv〉ππ→πV ; middle curve: 1012 〈σv〉ππ→SM; bottom curve:

108
√
x 〈σv〉ππ→ππ. The prefactors are chosen to fit the curves into the same graph and to illustrate

the leading x behavior. All the cross sections are in GeV−2.

Figure 6. Region in the M −f plane allowed by the CMD constraint (6.1) when q = 0, λV = 0.63,

and |λh| < 1. Blue points: subregion where 〈σv〉ππ→SM (x = xf ) > 〈σv〉ππ→πV (x = xf ). Green

points: subregion where 〈σv〉ππ→SM (x = xf ) < 〈σv〉ππ→πV (x = xf ). Red points: subregion

excluded by the Higgs decay constraint (3.21).

begins to deviate significantly from its equilibrium value — see section 5.1) for points that

satisfy the cold-dark matter (CDM) relic-abundance constraint (see eq. (6.1) below).

To obtain the particle densities and their freeze out temperatures it is necessary to solve

a system of coupled linear differential equations for {Yo, Y+} given by (5.11). The boundary

conditions are determined by requiring that at low x the DM sector is in equilibrium with

the SM:

x < xf : Yo = Y (eq)
o , and Y± = Y

(eq)
± =

√
Y

(eq)
o

2 +
q2

4
∓ q

2
. (5.13)
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Note that (5.11) and (5.13) imply that both the equations and initial conditions are invari-

ant under Y+ ↔ Y− and q ↔ −q. The solutions to the equations (5.11) will be obtained

numerically below; however the case of pure DM scattering can be solved analytically and

is presented for completeness in appendix B.

For the following it is useful to note that 〈σv〉πoπo→SM depends on λh only in the

combination λh/f
2, while 〈σv〉π+π−→πoV depends on λV only as λV /f

3. This implies that

we can take M,f and λh as independent parameters, fixing λV at some convenient value

as in (2.25); any other value of λV can be obtained by appropriate rescaling of f and λh.

5.1 Zero charge solutions

When q = 0 all DMP will have the same initial equilibrium distribution, the relevant

solutions to the BE then correspond to Yo,± = Y ; substituting this (and q = 0) in (5.11)

we find

dY

dx
= −

√
πg(T )

45G

M

x2

(
Y − Y (eq)

){(
Y + Y (eq)

)
〈σv〉πoπo→SM +Y 〈σv〉π+π−→πoV

}
, (5.14)

where we drop the o,± subindices.

Approximate solutions to this equation are readily obtained. We find that to good

accuracy (see figure 5) the cross sections have an s and p wave behaviors for x > 10:

〈σv〉πoπo→SM ' σSM , 〈σv〉π+π−→πoV '
1

x
σV , (5.15)

where σSM,V are approximately x-independent.

Near the decoupling temperature we write Y = Y (eq) + ∆ and neglect terms propor-

tional to d∆/dx and ∆2; then (5.14) becomes

∆ ' x2

2ϑSM + ϑV /x
; ϑSM =

√
πg(T )

45G
MσSM , ϑV =

√
πg(T )

45G
MσV , (5.16)

where we also approximated dY (eq)/dx ' −Y (eq).

For large x, in contrast, ∆ ' Y � Y (eq) and (5.14) becomes

d∆

dx
= −ϑSMx+ ϑV

x3
∆2 ⇒ ∆∞ '

x2
f

ϑSMxf + ϑV /2
, (5.17)

where 1/∆(xf ) is neglected.

Finally the decoupling ‘temperature’ xf is obtained from the condition ∆(xf ) =

cY (eq)(xf ), where c is a numerical constant. This gives

Y∞ =
x2
f

ϑSMxf + ϑV /2
,

xf = ln
[
ac(c+ 2)ϑSMξ

−1/2 + ac(c+ 1)ϑV ξ
−3/2

]
; ξ = ln [c (ϑSM + ϑV ) a] (5.18)

where a is defined in (5.4) and ϑSM, ϑV in (5.16); this result is better suited for the case

ϑV � ϑSM than the one presented in [65]. We will follow this reference and choose c(c+2) =

1 or, c ' 0.414. In calculating the relic abundance it is important to remember that Y∞
refers to each DMP species, so that the total abundance will be proportional to 3Y∞.
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Figure 7. Plot of Γ/H for the same parameters as in figure 5. We also include the values of xf
obtained from the condition ∆ = cY (eq) for c = 0.414, 0.732, 1 (left, center and right heavy dots

on the dashed line, respectively). The freeze-out condition Γ = H corresponds to xf ' 31.3 which

coincides almost exactly with the c = 1 value.

An alternative definition of xf can be derived by assuming Y is close to Y (eq) and

casting (5.14) in the form

x

Y
(eq)
o

dY

dx
= − Γ

H

(
Y

Y
(eq)
o

− 1

)
;

Γ

H
=

(
2ϑSM + ϑV

x

)
Y (eq)
o (5.19)

so xf can be defined as the point where Γ/H = 1. A plot of Γ/H for representative values of

the parameters, and a comparison with the previous definition of xf is given in figure 7. This

also illustrates that xf in general is large enough for the approximations (5.15) to be valid.

In figure 8 we compare the relic abundance derived numerically with the one obtained

from (5.18), showing that, at least in this instance, the latter is reasonably accurate. From

this figure one can also see that the decoupling point inferred from the numerical solutions

equals the analytically obtained values within 10%.

5.2 Behavior for small values of |q|

We now turn to the case where q is small but non-vanishing. In this case it is convenient

to define

Yt = Yo + Y+ + Y− = Yo + 2Y+ + q ,

Yd =
Y+ + Y−

2
− Yo = Y+ − Yo +

q

2
, (5.20)

in terms of which eqs. (5.11) become

Y ′t = −1

3

(
y2
t + 2y2

d

)
(A+B) +

(
yt + y2

d

)
B +

[
q2

4
(2A+B) + 3A

]
,

Y ′d =
1

3
yd(yd − 2yt)

(
A+B +

3

2
C

)
− yd (yd + 2)B +

q2

4

(
A+ 3Bh+

3

2
C

)
, (5.21)
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Figure 8. Plot of the yield Y as a function x for the representative point of figure 5 when q = 0.

Dark matter pion abundance is depicted in blue, and the equilibrium distribution is shown in red.

The heavy dot on the right indicates the value of Y∞ obtained form (5.18) using c = 1. All masses

are in GeV.

where yt,d = Yt,d/Y
(eq)
o and

{A, B, C} =

√
πg(T )

45G

M

x2
Y (eq)
o

2
{
〈σv〉πoπo→SM , 〈σv〉π+π−→πoV , 〈σv〉πoπo→π+π−

}
, (5.22)

while the initial conditions (5.13) correspond to

Yt = Y
(eq)
t = Y (eq)

o + 2

√
Y

(eq)
o

2
+ q2/4 ,

Yd = Y
(eq)
d = −Y (eq)

o +

√
Y

(eq)
o

2
+ q2/4 . (5.23)

Now Yt,d are even in q, and assuming they are analytic in q it follows that they depend

on q2; at q = 0, we have Yt = 3Y and Yd = 0. Taking a derivative of (5.21) with respect to

q2 and evaluating at q = 0 gives(
∂Yt
∂q2

)′
q=0

= − 2y

Y
(eq)
o

(
A+B − B

2y

)(
∂Yt
∂q2

)
q=0

+
2A+B

4
,(

∂Yd
∂q2

)′
q=0

= − 2y

Y
(eq)
o

(
A+B +

B

y
+

3

2
C

)(
∂Yd
∂q2

)
q=0

+
A+ 3B + 3C/2

4
, (5.24)

where y = Yo/Y
(eq)
o . Initially,(

∂Yt
∂q2

)
q=0

=

(
∂Y

(eq)
t

∂q2

)
q=0

=
1

4Y
(eq)
o

,

(
∂Yd
∂q2

)
q=0

=

(
∂Y

(eq)
d

∂q2

)
q=0

=
1

8Y
(eq)
o

. (5.25)
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Now, a differential equation of the form

Z ′ = uZ + v (5.26)

has solution

Z(x) =

∫ x

xi

ds v(s) exp

[∫ x

s
dr u(r)

]
+ Zi exp

[∫ x

xi

dr u(r)

]
, Zi = (xi) . (5.27)

In particular, if v(x) > 0 for all x, and Zi > 0, then Z(x) > 0 for x > xi. Applying this to

Z =
(
∂Yt,d/∂q

2
)
q=0

, that have initial values ∼ 1/Y
(eq)
o (xi) > 0, we find that(

∂Yt,d
∂q2

)
q=0

> 0 , for x ≥ xi . (5.28)

The relic abundance is obtained from the following expression [65]:

ΩDMh
2 = 2.7711×108(M/GeV)(Yo+Y++Y−)x=∞ = 2.7711×108(M/GeV)Yt|x=∞ , (5.29)

since Yt(q 6= 0) > Yt(q = 0) (at least for small q and with the other parameters fixed), it

follows that

ΩDM(f,M, λh, λV ; q = 0) < ΩDM(f,M, λh, λV ; q 6= 0) . (5.30)

If ΩDM (f,M, λh, λV ; q = 0) < ΩCDM for some parameters {f, M, λh, λV }, then there will

be a non-zero q such that ΩDM(f,M, λh, λV ; q) = ΩCDM. That is, if the predicted abun-

dance falls below the observations when q = 0, one can always “make-up” the difference

by introducing an appropriate q (at least when the difference is small). It follows that the

the region in parameter space that can satisfy the CDM constraints is determined by

ΩDM (f,M, λh, λV ; q = 0) < ΩCDM . (5.31)

A non-zero value of q does not, of course, affect the direct-detection probability.

We illustrate Boltzmann equation solutions for small q in figure 9. In general, there

is a small range of |q| ∼ 10−12 − 10−13 for which differences among the Y+, Y− and

Y0 abundances and between these and their equilibrium values are easily distinguished

(it these cases the freeze-out temperatures for all three DMP components are very close).

For smaller values, the effect of q is negligible, while for larger values the effects of q

dominate the relic abundance and we find that Yo + Y+ + Y− ' |q|.

6 Experimental limits on model parameters

In this section we will consider the restrictions on the parameters of the model that are

derived from cosmic background radiation using the data from the WMAP and PLANCK

experiments [6, 7]; we then consider direct detection constraints derived from the results

obtained by the LUX [62], XENON100 and XENON1T experiments [63, 64]. We also

include the consistency restrictions discussed in section 2.2. Brief comments on indirect

detection are presented in Conclusions.
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Figure 9. Illustration of the q 6= 0 case.

6.1 Constraints from the cold dark matter (CDM) relic density measurements

In this section we will obtain the numerical solution to the Boltzmann equations for the

case q = 0, when8 Y+ = Y− = Yo = Y , and find the region of parameter space that meets

the relic-abundance constraint [70]9

0.094 ≤ ΩDMh
2 ≤ 0.130 . (6.1)

As noted at the end of section 5 the solutions will depend on 3 independent parameters

that we choose as M , f and λh; without loss of generality, we fix λV to the value (2.25).

We scan the 3-dimensional parameter space (M,f, λh) in the ranges 50 GeV ≤M ≤ 2 TeV,

50 GeV ≤ f ≤ 1.5 TeV, 10−4 ≤ |λh| ≤ 1 for points allowed by (6.1); we also impose the

constraint (2.27) and the one derived from h → ππ decay, which is open in the low M

region (cf. section 3.4); note that in this region of parameter space the decay Z → πππ

is kinematically forbidden, so that the restriction (3.26) does not apply. The q 6= 0 case

is included by considering only the upper inequalities (see (5.31)). In particular, using

Yo+Y++Y− ' |q| for q � 10−12 (cf. the end of section 5.2) we find that (5.31) satisfies (6.1)

provided
3.4× 10−10

M/GeV
< |q| < 4.7× 10−10

M/GeV
M � 100 GeV . (6.2)

In figure 10 we plot the relic abundance ΩDMh
2 and low-temperature distribution

Y∞ as functions of M ; note that (cf. the bottom panel of this figure) Y∞ has a non-trivial

dependence on the DMP massM . In figure 11 we show the region in theM−f plane allowed

by the CDM constraint (6.1) as well as the region allowed by q 6= 0. We see from figure 11

that, for fixed λV , ΩDM increases with λh: and the region of sufficiently small (large) λh
corresponds to an under (over)-abundance of DM; this is in contrast to models where the

8Note that for q = 0 case, DMP → DMP scattering cross sections do not enter eq. (5.14).
9The range we use corresponds to the WMAP results; the PLANCK constraints 0.112 ≤ ΩDMh

2 ≤
0.128 [7], though more stringent, do not lead to significant changes in the allowed regions of parameter space.
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Figure 10. ΩDMh
2 (top left) and Y∞ (top right) dependence on the DMP mass M for all values

of f, λh in the region scanned, and when q = 0 and λV = 0.63. Red points: DM over-abundance

(ΩDMh
2 > 0.13); blue points: region allowed by the CDM constraint (6.1); green points: DM under-

abundance (ΩDMh
2 < 0.094), which are allowed for appropriately chosen non zero q. The CDM-

allowed region for Y∞ is amplified in the bottom panel in order to better see the dependence on M .

leading coupling to the DM fields is through the Higgs-portal interaction [48, 49]. We trace

this difference to the presence of the ππ → Zπ interaction, not to the derivative coupling:

comparing figure 6 and figure 11 we see that the region where the relic abundance is small

(but still allowed by the data) corresponds to small values of λh and also to 〈σv〉ππ→SM (x =

xf ) > 〈σv〉ππ→πV (x = xf ); while large values of λh correspond to the larger allowed values

of the relic abundance and to 〈σv〉ππ→SM (x = xf ) < 〈σv〉ππ→πV (x = xf ).

The allowed region in figure 11 corresponding to q = 0 can be approximated

analytically by

39.65
√
M ≥ f ≥ 9.33M2/3 (M,f in GeV; M < 2 TeV, |λh| ≤ 1, λV = 0.63) . (6.3)

We now use this result to extend the CDM limits with reasonable accuracy to the whole

region of parameter space of interest. To do that note first that the s-wave contribution

to 〈σv〉ππ→SM is generated by the ππ → hh contribution (cf. eq. (3.3)) so that in (5.15)

σSM ∼
(
λhM/f2

)2
where the factor

(
|λh|/f2

)2
comes from the vertices, while the factor of

M2 is needed to get the right units (the other mass scales can be ignored for M > mh/2).10

Similarly σV ∼
(
λVM

2/f3
)2

where the factor
(
|λV |/f3

)2
comes from the vertices, while

the factor of M4 is needed to get the right units.

10The factor of M2 can also be seen to follow from the derivative couplings of the DMP; it typically leads

to an over-abundance of DM for small M and is excluded by the CMD data.
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Figure 11. Left panel: region in the f −M plane allowed by the CDM constraint (blue); the

region corresponding to DM under-abundance (green); and the region excluded by the Higgs decay

constraint eq. (3.21) (red). The solid and dashed black line correspond to the analytic approxi-

mations (6.3). Right panel: λh dependence of the points in the region allowed by (6.1). Orange:

0.0001 ≤ λh ≤ 0.01, purple: 0.01 ≤ λh ≤ 0.3, green: 0.3 ≤ λh ≤ 0.6, blue: 0.6 ≤ λh ≤ 1. Red

points are disallowed by (3.21).

Using this in (5.18) and (5.29) we find that up to a weak logarithmic dependence the pa-

rameters, 1/
(
h2ΩDM

)
will depend on a linear combination of

(
λhM/f2

)2
and

(
λVM

2/f3
)2

.

Comparing then figure 6 and figure 11 we find that the upper limit in (6.3) corresponds to

parameters where σSM dominates and where the upper limit in (6.1) is saturated; while the

lower limit in (6.3) corresponds to parameters where σV dominates and where the lower

limit in (6.1) is saturated. Using this in conjunction with (6.3) we find that the CDM

constrain reduces to

4.04× 10−7 ≤
(
λhM

f2

)2

+ 0.93

(
λV M

2

f3

)2

≤ 5.59× 10−7δq0 (M,f in GeV) , (6.4)

where δq0 vanishes when q 6= 0 so that there is no upper limit in (6.4) in this case.

6.2 Direct detection constraints

The direct detection experiments probe the elastic scattering of DM particles off different

kinds of materials [58–64]. For the present model the leading interaction is the πN → πN

scattering of DMP off the material’s nucleons N (figure 12) through a t-channel Higgs

exchange. The corresponding hard process was discussed in section 3.2 where we show

that the DMP-quark scattering cross section (3.13) is proportional to
(
λhM

2/f2
)2

.

The parton-level interaction is converted to the nucleon level by using effective nucleon

fq
N (N = p, n) couplings defined as [71]

〈N |mqψ̄qψq|N〉 = fq
NMN , (6.5)

where MN is the nucleon mass and fpu = 0.0160, fpd = 0.0193, fps = 0.0410, for the proton;

fnu = 0.0108, fnd = 0.0284, fns = 0.0409 for the neutron; while for the heavy quarks the

fNq are generated by gluon exchange with the nucleon and are given by

fNQ =
2

27

1−
∑

q=u,d,s

fNq

 Q = c, t, b. (6.6)
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Figure 12. Direct detection process.

Then, DMP scattering with a nucleon composed of Z protons and A− Z neutrons is [71]

σπN =
1

π

(
mN

mN +M

)2

(Zfp + (A− Z)fn)2 ;
fN

mN
=
∑
q

fNq
mq

αq (6.7)

and the sum is over all quarks. The αq are effective couplings of DMP with the q-quarks,

L = −1
2αqψqψqππ that can be read off (3.14):

αq =
√

2
mqM

2

m2
h

λh
f2

. (6.8)

Using microOMEGAs [71] we evaluate numerically the DMP-nucleon scattering cross

section for direct detection and then compare these results to the LUX, XENON100 and

XENON1T bounds. The results are presented in figure 13. As indicated above, if M is

fixed the cross section depends only on λh/f
2 and, in fact, the direct detection bounds give

rather simple expressions for the constraints on this ratio:

XENON100 : f2/λh > 105.5 ,

LUX : f2/λh > 106 ,

XENON1T : f2/λh > 106.5 . (6.9)

The corresponding restrictions on the M − f plane over the CDM constrain are presented

in figure 14.

6.3 Combined constraints on DMP model

The parameters in the model are constrained by the relations (2.29), (3.21), (6.4), and (6.9)

that we collect here for convenience:

perturbativity : f ≥ max
{√

4πλV , 1
}M

4π
,

Higgs decay : f > 5.9|λh|1/2|7812.5−M2|1/2
[

1−
(
M

62.5

)2
]1/8

(M < 62.5 [GeV]) ,

LUX : f > 103 |λh|1/2 ,

CDM : 4.04× 10−7 ≤
(
λhM

f2

)2

+ 0.93

(
λV M

2

f3

)2

≤ 5.59× 10−7δq,0 , (6.10)

where f,M are in GeV, and we used the LUX limit. The δq,0 factor indicates that the

corresponding limit disappears when non-zero values of q are allowed.
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Figure 13. Direct detection constraints from the XENON and LUX experiments. XENON100

excludes all points above the solid line in purple at the top, which corresponds to the constraint

λh/f
2 < 10−5.5; the recent LUX results gives λh/f

2 < 10−6. XENON1T is projected to exclude all

points above the lower (red) solid line and would correspond to the constraint λh/f
2 < 10−6.5.

Figure 14. Left: region in the M − f plane allowed by the CDM constraint and allowed (green) or

disallowed (red) by the XENON100 data (6.9); black points are disallowed by (3.21). Right: same

for the predicted XENON1T exclusion region in red and allowed in blue. We took q = 0, λV = 0.63

and |λh| < 1.

The resulting allowed regions in parameter space are given in figure 15 for our bench-

mark value of λV = 0.63 as well as for the smaller natural value λV = 0.0023 derived by

NDA (see section 2.2). As can be seen from this figure if λh 6' 0 current data excludes DMP

masses below ∼ 100 GeV, while XENON1T would push this limit above 1 TeV. As men-

tioned earlier small DMP masses are excluded because they lead to DM over-abundance,

a consequence of a softening of the cross sections produced by the derivative coupling of

the DMP. These limits do not apply when λh ' 0; in this case low values (< 100 GeV) for

M and f are allowed; in this case a non-zero value of q can always be found that meets all

constraints (see eq. (6.2)).
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Figure 15. Top left panel: region in the f −M plane allowed by the combined constraints (6.10)

when q = 0 for λV = 0.0023. The various bands correspond to λh = {0, 0.5, 1, 1.5, 2, 2.5, 3} from

bottom to top, respectively; the darker regions correspond to those allowed by XENON1T. Top

right panel: same for λV = 0.63. Bottom panels: same as the top panels when q 6= 0.

6.4 Comparison with the standard Higgs-portal results

Here we present, as mentioned in section 2, a short discussion on the manner in which our

results compare with those obtained using the usual Higgs-portal coupling, corresponding

to λ′h 6= 0 in (2.14) and λh = λV = 0. For brevity we will restrict ourselves to the SU(2)

case and take M > mh; in this case we can approximate [72]

〈σv〉′ππ→SM '
λ′h

2

32πM2
+
λ′h

2v2Γh(2M)

32M5
'
(

λ′h
7.62M

)2

, (λh = λV = 0) (6.11)

where v = 〈φ〉 on the right-hand side, Γh(2M) ' 0.48 TeV(2M/1 TeV)3 denotes the Higgs

particle width when its mass equals 2M , and M is in GeV units in the last expression.

The first contribution comes from the hh final state, and the second from the other final

states. Note that 〈σv〉′SM ∝ M−2, while 〈σv〉SM ∝ M2, with the difference a consequence

of the derivative coupling of the DMP that leads to the exclusion of the small M region

when λh 6= 0.
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The freeze-out value of x, xf = M/Tf and zero temperature distribution function Y∞
(for each dark pion state) are [65]

xf ' ln
[
c(c+ 2)aϑ′SM

]
; Y∞ '

xf
ϑ′SM

(6.12)

where

ϑ′SM =

√
πg(M)

45G
M 〈σv〉′ , (λh = λV = 0) (6.13)

that are to be compared with (5.18).

It follows form these expressions that for the purposes of calculating the relic abun-

dance, the qualitative difference between the case we have studied here and the standard

Higgs-portal results is generated by the λV coupling of the Σ-Bµν term in (2.8) (see section 2

for details). The λh coupling generates s-wave annihilation into the SM, just as the stan-

dard portal coupling does. For large DMP masses (above ∼ 100GeV) the fact that this is

a derivative coupling is not significant: all cross sections have a minimum CM energy of

2M , excluding the zero momentum region where the λh terms differ qualitatively from the

standard portal interaction proportional to λ′h.

7 Conclusions

We have studied a phenomenological model, where dark matter particles are pseudo-

Goldstone bosons associated with the spontaneous breaking GDM → HDM; we refer to

these particles as dark matter “pions”, DMP.11

The self-couplings and the couplings to the SM for such pionic DM differ from those

of conventional scalars due to their chiral nature. We have illustrated the formalism for

the case GDM = SU(2) × SU(2), HDM = SU(2) for which we have calculated all possible

interactions and solved the Boltzmann equations to study the thermal history of such pionic

dark matter. We have also derived approximate analytic solutions and shown that they

are consistent with the numerical calculations.

Our model of pionic dark matter satisfy relic abundance and direct detection constraint

in a large region of parameter space. When the coupling to the Higgs is not too small the

DMP mass M is required to lie above ∼ 100 GeV, and this lower limit will increase to

∼ 2 TeV if XENON1T does not detect a signal, since the absence of direct detection

corresponds to relatively large values of f2/λh. For each value of M the DMP decay

constant f is moderately constrained to a range of values which is ∼ 200 GeV wide.

Collider signature of such dark matters at LHC is hard to see. The channel to study is

essentially jets with missing energy [73], which is similar to many other dark matter model

signatures [74]. This requires a careful analysis to see if the existing bound in such channels

put further constraints on the DMP parameter space, which lies beyond the scope of this

paper. We will consider this in a future publication.

11As in QCD, there will presumably be baryons in this model (corresponding to solitons in the chiral

theory, stabilized by higher derivative terms such as the Skyrme term [42–44]), but though they are SM

singlets, they carry DM baryon number, so they do not couple singly to the SM, and they do not look like

RH neutrinos.
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The DM couples to the SM via Z, γ and h, therefore it does not distinguish between

fermion flavors. In particular there is no mechanism for suppressing the effects of the π at

XENON experiments and enhancing them at DAMA/LIBRA [58, 59].

Though a careful discussion of the indirect detection prospects for this model lies

beyond the scope of this publication, it is worth noting that the presence of the π3γ vertex

would imply that a region with sufficiently high concentration of non-relativistic dark pions

would act as a source of monochromatic photons of energy M [75]. This is what can occur

at the galactic center, in which case the flux corresponding to this process is [76]

Φγ =
〈σv〉

4πM2

∫
l.o.s.

ρ2(l) dl(ψ) , (7.1)

where σ refers to the ππ → πγ cross section (3.7), (3.8), ρ denotes the DM density along

the line of sight (l.o.s.), and ψ the angle between the direction of the galactic center and

that of observation.

We now assume M > mZ and restrict ourselves to regions in the parameter space

where the terms proportional to λV are the dominant contributions to the abundance. In

this case we can neglect ϑSM in (5.18); and also 〈σv〉ππ→πγ ' c2
w 〈σv〉ππ→πV , which can be

directly related to the relic abundance. We find 〈σv〉 ' 4.5× 10−27cm3/s and

Φγ ' 6.54× 10−11s−1 cm−2

(
0.13

ΩDMh2

)(
M

100 GeV

)−2

J(ψ) , (7.2)

where J is a dimensionless function defined in reference [76] and ranges from about 10−2

to 100 depending on the density profile and the angle ψ. For the FermiLAT detector [77]

this gives about 20(M/100 GeV)−2J events per year; it is noteworthy that this result is in

rough agreement with the tentative signal obtained from that experiment at an energy of

130 GeV [78].

A Effects on the Boltzmann equations of the SM particle decays to DMP.

The decay of the SM particles to the DMP require modification of the Boltzmann equation

collision term by adding two terms Ch and CZ corresponding to the h→ ππ and Z → πππ

decays. For the first,

Ch = 2

∫
dΠh dΠπ dΠπ(2π)4δ(4)(ph − pπ − pπ)|Ah→π+π|2fh(1 + fπ)(1 + fπ)

' N (i)
h mhΓ(h→ ππ)

∫
dp3

(2π)3Eh
fh , (A.1)

where the pre factor of N
(i)
h corresponds to the number πi produced, and we approximated

(1 + fπ) ' 1. Since Γ does not depend on Eh =
√
p2 +m2

h, and using fh = e−Eh/T (we

assume a vanishing Higgs chemical potential), it follows

Ch = N
(i)
h mhΓ(h→ ππ)

∫
dp3

(2π)3Eh
e−Eh/T =

N
(i)
h

2

m3
h

π2

K1(κh)

κh
Γ(h→ ππ)

= N
(i)
h Γ(h→ ππ)

K1(κh)

K2(κh)
n

(eq)
h (κh) , (A.2)

with κi defined in (3.4), Γ(h→ ππ) is given in (3.20), and where we used (4.4).
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In complete analogy, the corresponding contribution from Γ→ πππ is

CZ = Γ(Z → πππ)
K1(κZ)

K2(κZ)
n

(eq)
Z (κZ) , (A.3)

where Γ(Z → πππ) is given in (3.22). Note that for this decay the final state has a single

πi (and a π±α pair) so the prefactor corresponding to N
(i)
h is N

(i)
Z = 1.

B Kinetics of pure DMP

Using expressions from section 4 and section 5, and eq. (3.18) the Boltzmann equations for

pure DMP scattering are

dYi
dτ

= −
∑
j 6=i

(
Y 2
i − Y 2

j

)
−
∑
α>0

(
Y 2
i − YαY−α

)
,

dYα
dτ

= −
∑
i

(
YαY−α − Y 2

i

)
−

∑
β 6=±α,β>0

(YαY−α − YβY−β) , (B.1)

where dτ = ξ dx with

ξ =

√
πg(T )

45G

M

x2
〈σv〉πiπi→παπ−α

(B.2)

and the last factor is explicitly given in (4.8). We solve these equations in two special cases

• Suppose Yi = Yj = YC for all i, j and Yα = Yβ = YR for all α,β; then

dYC
dτ

= −N(N − 1)

2
(Y 2
C − Y 2

R) ,
dYR
dτ

= −N − 1

2
(Y 2
R − Y 2

C) , (B.3)

with solutions

YC =
N2N
N2 − 1

(
w − 1

N

)
, YR =

N2N
N2 − 1

(
1− w

N

)
, (B.4)

where N is a constant and

w = tanh

(
N(N − 1)

2
N τ + const

)
. (B.5)

In particular, YC(τ =∞) = YR(τ =∞) = NN/(N + 1).

• N = 2. Using the notation of section 5

dYo
dτ

= Y+Y− − Y 2
o ,

dY±
dτ

=
1

2
(Y 2
o − Y+Y−) , (B.6)

then12 Yo + Y+ + Y− = 3N = const, and Y+ − Y− = 6N δ = const. Defining now

η =
√
|1− 3δ2| , u =

3ηN
2

τ + u0 , yo,± =
Yo,±
N

, (B.7)

12Other constants of the motion of the form (c+ + c−)Yo + 2 c+Y+ + 2 c−Y− are not independent.
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where u0 is a constant, the time-dependent solutions for 3δ2 < 1 are

yo = −1 + 2η tanh(u) y± = 2± 3δ − η tanh(u)

or

yo = −1 + 2η coth(u) y± = 2± 3δ − η coth(u) , (B.8)

where the second set diverges at u = 0; in particular, for τ → ∞: yo → −1 + 2η,

y± → 2 ± 3δ + η (for τ → −∞ replace η → −η). For 3δ2 > 1 the time-dependent

solutions become

no = −1− 2η tan(u) , n± = 2± 3δ + η tan(u) , (B.9)

which diverge for u = (n + 1/2)π, n ∈ Z. Note that for all the time-dependent

solutions there is always an unphysical τ region where Yo < 0.

There are also constant solutions

yo = −1− 2η y± = 2± 3δ + η ,

yo = −1 + 2η y± = 2± 3δ − η , (B.10)

that are real only for 3δ2 ≤ 1; note that the τ -dependent solutions interpolate between

them. Only the second set has a region (|δ| ≤ 1/2) where they are all positive, so

these correspond to the steady-state solutions.
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