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IN STRONGLY DEFORMED NUCLEI
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SUMMARY

In this paper* we present the calculation of the f-decay matrix
elements in strongly deformed nuclei. We have used the wave functions
of A.Bohr and B.R. Mottelson for describing the collective pro-
perties of nuclei and S. G. Nilsson’'s wave function for the individual
nuclecns. The vibrational wave functions are left unspecified. The matrix
elements are given for odd A nuclei. For the relativistic operators we
have used the form obtained by a Foldy —Wouthuysen transfor-
mation. Some of the matrix elements calculated here have been obtained
also independently by S. G. Nilsson.

I. Introduction

The theory of f-decay as formulated originally by E. Fermi
and developed later by E. Konopinski-G. Uhlenbeck,
E. Creuling [1] and many others is relativistic. Relativistic
invariant expressions are built from the spinor fields of nucleons
(protons, neutrons) and leptons (electron, neutrino). To apply it
10 complex nuclei the nucleons are treated in configuration space
and the effects of pair formation of the nucleons are neglected.

The f-spectra, half lives and electron neutrino angular cor-
relations are calculated by the perturbation method. The nuclear
matrix elements are treated as parameters.

To determine the strenght of the coupling constants one can —
in the simplest cases — calculate the matrix elements and determine
from the measured data the coupling constants. Such investigziions
have been performed for decay of mirror [2] nuclei, namely, nuclei
for which the initial and the final state differ only by the Coulomb
effect. The shell model seems to work well in such cases because
the effect of the core structure seems to be negligible. Calculations
of beta matrix elements with shell model wave functions have been
performed by many authors [3]. They have used the nonrelativistic

* The present work is a part of a thesis submitted to the University
of Zagreb (1955) for the degree of Doctor of Physical Sciences.
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approximation of relativistic matrix elements containing a and y,
and one and many particle shell model wave functions [4]. Contrary
to the case of mirror nuclei the corrections of many particle con-
figurations are in many cases very important. That means that the
core structure in such cases has to be taken into account. A further
correction may arise from the configuration mixing [5]. Shell model
neglects also the effect of residual interactions [6], namely, those
which are not included in the average potential which may also
play an important role.

An improvement of the shell model is obtained if one takes
into account the dynamical effects of the core and couples them to
the particle motion. Such a model has been proposed and elaborated
by A. Bohr and R. R. Mottelsomn [7]. In the region between
closed shells as a consequence of strong coupling between particles
and the core the nuclei have large equilibrium deformations. The
motion of a nucleon in such a deformed field has been studied by
S. G.Nilsson [8] who has computed the wave function for such
a model. Using these wave functions — since they include only the
average effects of the nuclear dynamics — one might hope to obtain
some general trends but not detailed description of the fluctuation
of ft values. Such qualitative effect is obtained indeed in the study
of the asymptotic behaviour of these functions for large deformation
[9]. That may give us come hope and encouragement for more
guantitative analys:s.

The purpose of this paper is to compute the §-matrix elements

for strongly deformed nuclei and give the possibility for a quan-
titatve analysis.

II. Operators

Let us start with the five interactions (scalar, vector, tensor,
pseudovector and pseudoscalar) used in the f-decay. We write
them in the configuration space of the nucleons, and for the lepton
part which is taken at the position of the transforming nucleon we
us2 spherical tensor representation [10]:

0Y)

(2)
H,—foL, + faLy, 3)
H, = oL, —y; L, @)
H, = 5)

The linear combination of the five covariants is

5
Hﬁ = g 3 gi [Hi + H,‘*], (la)

i=1
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B, 0,a and y, are the usual Dirac matrices of the nucleons and
L,, L, etc. are the obvious abbreviations for lepton covariants [10].
g; are the relative coupling constants of the five covariants. gg
measures the strength of the beta coupling.

The nucleon operators f and o do not mix the large and the
small components of the nucleon wave functions and are of the

crder of magnitude of unity. a and y, are called the relativistic
operators because they mix the large and the small components and
are — roughly speaking — of the order of magnitude of v/c where
v is the average velocity of the nucleon in the nucleus and ¢ the
velocity of light.

The main terms of the nonrelativistic form of the relatlvistic
operators as obtained by a Foldy-Wouthuysen transfor-
mation [11} may be written [10]:

a=—(—P+iV,TioXV, ' —06.V,)— = - [iaXP +PJ], (6)
L , - 1.
Ba=—-—((cXP+6XV,—V,~ —V,0)— q[loXP-l—P,], (M
L= +iv)— [0 P ®)
Ty
Brg— L oV +V)— L [P 9)
’5_‘M‘(0' 3 5)—2M o] (

V,, V. etc. represent the average potentials in which a nucleon: is
assumed to move. The dom!nant terms seem to be the first terms
in the paranthesis except, perhaps, in the case of pseudoscalar
coupling. Using these terms and the spherical tensor representation
of lepton covariants we obtain the following interaction operators:

H, = B, (4% m7p Y ", (10)
H, = ¢, Y7" + g5 — rty;" . P, (11)
H, = fop,r o X7} iy texe 12

H— Py T 0 Xy — [ M T J1 0 ) ( )
H =@, 0. Y,  +¢ — r'Y:s" 0.P, (13)

1 _
H =g, — v1Y 7 (6. V) +V)— = [a. P g, VYL

m 2M

@y (ol %, 5y, 7, w) ete. are the functions dependent on the angular
momenta position and momenta of the leptons and their couplings.
For the definition of this functions see ref. [10] formula (64) and



248 Gaja Alaga, Zagreb,

(65).” From the formula (10)—(14) it is seen that one has the fol-
low.ng type of operators in the f-decay [12]:

iyt (15)
rlg. Y/—/‘;{ = 7l ’I‘T_T?l (r, 0), (16)
Y, P = it T, V), 1
rYTH X P = —irt T, 0 X V), (18)
Y7 o P=—irtY; " (6.V), (19)

The angular part of the operators (15) and (19) are the ordinary
spherical harmonics while those of (16), (17) and (18) are the tensor
operators defined by

Trr (ra)= > (1—vA—M[1AJ—Ma Y™, @0

vl
a," are the spherical components of the vector a, and
l—pyAd—MI1A4J—M)

are the vector addition coefficients as given in TAS [13].
It is worth noting the relation

vy

Ty, (a,b) = > (v 1y [ 1110 a7 b, = jz: (@xb) 1)

With the help of (21) it is possible to write the tensor operator
(18) in the form

T @, oXV) =301 —uA—mi1l AT —M)Y " (6 XV) — =

am
=iV23(1—udAd—m 147 —M) (1 —»1— | 111—u) Yo, V,—
rm
vy . (22)
which facilitates the calculation of the matrix elements.

III. The Model and the Wave Functions

Because we concentrate our attention to the region of strongly
deformed nuclei we shall ke interested mainly in the collective
model {7].

That model takes advantage of the collective properties of the
nuclei and their coupling to the particle motion. The Hamiltonian
for that case may be written in the form

H Heon (fh a) + Hp + Hint- (23)

The first term represents the collective part of the Hamiltonian
dependent on collective coordinates and velocities. The second part
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is the particle Hamiltonian. The third term represents the inter-
action of the collective and particle motion. It is possible to obtain
solutions of (23) in the case of weak and strong coupling.

The first case is met in the region of closed shells where only
a few particles are outside closed shells.

Nuclear dynamics in this case is represented by the vibration
of the core around equilibrium shape and motion of the particle.
The interaction of the nuclear vibrations and particle motion is
extremely weak so that it can be treated as a small perturbation.

In the case of strong coupling the interaction between core
vibrations and particle motion is rather strong, and we have to use
an approximation similar to that of Born and Oppenheimer
[14] in molecular physics. It is actually applicable only if the col-
lective frequencies are much smaller than the particle frequencies
so that the particle is able to follow adiabatically the change of the
nuclear field [7].

The properly symmetrised wave functions in this case may be
written in the form

O Uyipr; IMK> = ]/— —— @yilr { %o Dlyg (0;) +

B ' 24
T PP r_g Diy_x (@i)} (24)
Dly k(@) and ¢vinr represent the collective rotations and
vibrations, respectively. @; are the Eulerian angles specifying the
position of the body fixed system. I is the total angular momentum
of the nucleus while M and K are the projections of I on the space
and body fixed system, respectively. 7, and -, are the particle

wave functions.
Particle wave functions have been calculated by S. G. Nils-
son [8] for the Hamiltonian:
7 .
HA——_ZM A+ - (w22 + w22+ w228 +Cls + D12, (25)
The first part represents the Hamiltonian of .an anisotropic
harmonic oscillator with frequencies w; etc. C and D are the con-
stants measuring the magnitude of the spin-orbit coupling and the
interpolation term, respectively. M is the nucleon mass.
The wave functions are

2o xRy ;Y23 g%
12 (25)
[—iju

1
J SN _ _ _
(—) » Lon=(—) 2 l§a19_2 Rn1 Y, Q+EZ;/2 2_%9.

d;o_y are the normalized amplitudes given in the tables by
S. G. Nilsson [8] while

Ryi(r) = Nxjo%te— 2P L, (0) (26)
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is the normalized radial wave function. L.? (o) is the associated
Laguerre polynomial. n and a are connected with the quantum
numbers N and !l by means of the relations

a=1+ L )
2
(27)
n = -——
2
r means a \ o and Nv; is the normalization factor
. @7)
I'n+a+ 1)
a—1/_h _1oaxioman V# 28)
r weM 5(2N + 3)
or in - — unit
me
6
V—5— X12X26
X103 A% (28"

V2N + 3

is determined from the requirement that the expectation value of
72 should be equal to the square of the average radius. wo is given
by means of the deformation ¢

ne = mf = w21+ 3 ), (29)

4
3 d).

0 is connected with the deformation parameter used by A.
Bohr and B. R. Mottelsom by

w2 = we® (1 — -

3.
6=§‘/ Y- 8=220958 (30)

Y/?—= and ¥u.2 are the spherical harmonics and the spin wave
functions, respectively.

IV. Matrix Elements
Now we may start to calculate the matrix elements for the

p - decay. Let us start with the operator T/  (r,0). First we have

to transform the operator to the body fixed frame of reference

T4 (x,0) = 2 Duw T4 (x, 0) (1)
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and we use the formula

. . , B 1Jr 1Jr
DIy D/ Dy dQ = (—)—'K "8 - (—M,u M’) ( )

—K u' K’
(32)
to obtain
| K 2 ( rJ )
I TalI'Yg=(—)—u+ 21 + :
¢ Yi= (=) V2l +1 KWK
# (33)
o IJ r
QY+ ., Lo T,

The reduced matrix element is that used in the beta decay.
{3t 2 B\
\My M> M/ '
matrix element.

The problem is reduced now to the calculation of matrix ele-
ments (Q|Ty*| Q) for different operators since formula (33) is

s the three —j symbol [15]. | F|? is the vibrational

independent of any special assumptions. Let us start with Ty, (r, o).
A straightforward calculation gives

(QIT TS (5,0 | Q) = () @+s 1+ 05w o]+ 1(s| o] s

1/ J
E:am—“aun’——s' N Ny af vy o (t4 )
' \éem —u
13
S me

A A U N /7 s1 8N

drzmeo—s) e x) (39
As special cases of the expression (34) we obtain
QY 10) =Y (=)= - Qa_~ Qpg_-
s
’ l 1 U
(NU' T N'TY A Y, |1 ( ‘ !
—Q+3u Q —.S',’
’ , : , s 1 ¢
Qo | Q) = (—)%Z(— 03 Qg _x{(s|o, ”S>( \
(34"7)

the expressions for ordinary spherical harmonics and ¢ matrix.
The matrix elements for derivative couplings may be evaluated
in the similar way

QI Ty 6,V)] Q) = () 1N (—)m

vz (35)

P AT o
Y2t 1@~ Bpp—sy ) b(& =2,
\e M —u
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The abbreviations used are [15], [16]

@l+1) @V +1) @24
e

+1) (l A l’) 38)

T'n+1)I'(n +1)
I'mtat)I'(m+ad+1)

ALY 11 == V

(NUI'NIY =a'Tp+ 1)V
(39)

The sumation has to be extended over all nonvanishing bino-
m:al coefficients.

I' is the ordinary gamma function

p=Larr+at, (40)

(NU[r'D N1 { ]'/n,+a,+2<Nl'r N + 1))

—(1+a’)<N”T"|N'l'>+ (41)
+(n'+0—’+I)Jm@”l?’”lN’(n’—l)l’)}_.

P-—*—l-(l'+l+41) (42)

When using formula (41) (n" + 1) and (" — 1) has to be supsti-
tuted in (39) with (42) for p

(sllogf|sy =2ys(s+1) (2s+ 1) (43)
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The expression for b is as follows

_( | U+1 \ 1 4 v+ \

—\l

b=yl'+1 o~ _Q,J_V,_F,,)\_QJrFm Q,_E,JFE,,)
(NUHD [NTY QY |V + 1 — T (44)

iU 1 U—1 \ / l A UV—1 \
O S e _Q,JFE,_S,,) \__QJFEm .Q’—E’+s")
NUIHD, N QY | U—1).

The radial operators D. and D_ are

D, — d n U+ 1
T dr ro
(45)
b-= dr 7
In der.ving (44) we used also the expression
Y YREvSYmEd o = (—) ™ {\jf+ 1 (46)

1 L1y 1 Lol

: )
e —m,—¢e) \—m, m, m, + &/

l"»
v+ ()

e A A
F 2R T | I | R 4 ~7 \mg £ —mR—S/ \‘_ml mz mg +g/ -

The associated Laguerre polinomials are defined by means
of the generating functions as [8]

(—t) e 11—t (47)
AT@ratn O = et
n_0
It is important to mention that the second part of the equation
(33) is important and gives corrections for the allowed and the first
forbidden transitions in the case that the transitions are of the form
Y% — % and % — 3/2. For higher forbidden transitions the correction
is un'mportant.
By means of the second equation E)f (25") we obtain for the ex-
pression corresponding to (34)
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@ITy | Q) =27 \2T + 1|0, |5 -

VYa,, ao_w NI NTYY G ey .
3 me (48)
1A TN/ l A [ vV/oos s’
lem —w/\—0+ Xm—Q + S \—3 e

Comparing (48) with (34) it is obvious that (48) is obtained from
(34) by multiplying it by a phase factor (—)/ " ¥—" and changing
the signs of £2" and 3". Doing the same in all other cases we get the
corrections for other matrix elements.

V. ft Values

The transition probability as a function of the electron energy
is given by

NW) = 5 Wpa*FCy. (49)

W and p are the energy and the momentum of the electron. g
is the momentum of the neutrino. F is the well-known Fermi
function which measures the influence of the Coulomb field on the
spectrum. Cp is the so called correction factor which may be written
in the form

EEHJ%*H,; Widr,....drgl2 (50)

f

H; is the interaction (1 a), The summation has to be performed
over the angular quantum numbers of electron and neutrino. f and
i refers to the final and initial states of the nucleus, respectively.
We take the average over the initlal and sum over firal states of
the nucleons. The average life time 7 and the half life t are given
by the energy or momentum integral of (49).

p- g~

; 1
—_—— = \ NW)ydW = —(—,~ \ (Wo—W)2p2F Csd p.
T t 2 . 51)

The function p?F is tabulated for several values of p and z.
There are also tables for the integral of (Wy— W)2p? F for several
values of z and maximum energy W,

jt=t [ (Wo— W) p>Fdp, (52)
i. e. the product of the measured half 1:fe in seconds and the func-
tion f is called the ft value. Because the half lifes of §-emitters
are spread over a large range of values the quantity ft corrected

for the maximum energy is expected to be more suitable in analysis
of the experimental data.
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It is simple to work out the expression for ft value if one uses
the theoretical value for t

(- In2 . 2a%ln2
T INW)AW Cp

The last step is justified if the correction factor does not depend
very much on energy. Ce is the abbreviation for the average value
of the correction factor.

In this way we have completed the expressions necessary for
calculating ft values and comparing them with experiments.

An analysis of the experimental ft values in the region of
strongly deformed nuclei may be found in ref. [17]

At the end I would like to aknowledge the assistance of D.
Zivkovic in the calculations.

Faculty of Science, Zagreb
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MATRICNI ELEMENTI g-RASPADA JAKO DEFORMIRANIH JEZGRI
Gaja Alaga, Zagreb
Sadrzaj

U ovoj radnji su izracunati matricni elementi za beta-prijelaze .
kod jako deformiranih jezgri. Nerelativisticki oblik relativistickih
operatora dobiven je Foldy-Wouthuysenovom transforma-
cijom, a valne funkcije su one, koje su dane kod A. Bohra-B.R.
Mottelsonai S. G. Nilssona.

Poznato je da se u teoriji beta-radioaktivnog raspadanja ma-
tricni elementi, koji ovise o strukturi jezgre, tretiraju kao para-
metri. Usporedbom racunatih i mjerenih velicina dobivamo izvjesne
cbav:jesti o velicini ovih parametara. Jasno, da bi to mogli naciniti,
moramo poznavati zakone beta-radioaktivnog raspadanja. Kako njih
medutim moramo isto tek odrediti, to postupak ide u stvari kom-
binirano. Za slucajeve, gdje se matricni elementi daju jednostavno
odrediti, mogu se dobiti izvjesne obavijesti o konstantama vezanja.
To se onda primjenjuje dalje da odredimo matricne elemente u
drugim kompliciranijim slucajevima. To je dakle kao neka vrsta
iteracije.

Kako su medutim kod nuklearnih modela matricni elementi
oni, koji mnogo kriticnije ovise o detaljima nuklearne strukture,
nego staticke velicine, energije i momenti, to ce racunanje matric-
nih elemenata i usporedba sa iskustvom biti daleko veca provjera
ispravnosti modela. Kolektivni model A. Bohrai B. R. Mottel-
sona (23).1 (24) imao je upravo zapanjujuce uspjehe u tumacenju
nisko pobudenih t. zv. rotacionih stanja, velikih kvadrupolnih mo-
menata te ubrzanih kvadrupolnih i usporenih magnetskih dipolnih
prijelaza, Racuni S. G. NilssonaiB. R. Mottelson a pokazali
su nadalje, da se i cesticna stanja mogu klasificirati na temelju
sheme dobivene rjesenjem gibanja jedne cestice u deformiranom
potencijalu (25). Kvalitativno tumacenje usporenja elektricnih di-
polnih prijelaza i nekih dozvoljenih i zabranjenih beta-prijelaza
daje nade, da ce se dobiti i bolje slaganje za matricne elemente.

Transformirajuc’ operatore (31) u sistem cvrsto vezan sa je-
zgrom (cije su osi u glavnim osima tromosti) uz pomoc formula (32),
mozemo dobiti izraze za matricne elemente (34), (34"), (34"), (35),
(36) i (37).

Namjesto mneposrednog usporedivanja matricnih elemenata sa
onima odredenim iz mjerenja, puno je zgodnije usporedbu provesti
na ft vrijednostima. ft vrijednosti su dane u zadnjem poglavlju.

Usporedbu sa iskustvom nacinit cemo u jednoj narednoj pu-
blikaciji.

(Primljeno 29. VI. 1957.)



