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Abstract: Excitation of 2-hydroxy-3-(diphenylhydroxymethyl)anthracene (7) to S1 initiates 

photodehydration giving the corresponding quinone methide (QM) that was detected by laser 

flash photolysis (LFP) in 2,2,2-trifluoroethanol, TFE (λ = 580 nm, τ = 690 ± 10 ns).  The QM 

decays by protonation, giving cation (λ = 520 nm, τ = 84 ± 3 μs) which subsequently reacts with 

nucleophiles. The rate constants in the reactions with nucleophiles were determined by LFP, 

whereas the adducts were isolated via preparative photolyses.  The photogeneration of QMs in 

the anthrol series is important for potential use in biological systems since the chromophore 

absorbs at wavelengths > 400 nm. Antiproliferative investigations conducted with 2-anthrol 

derivative 7 on three human cancer cell lines showed higher activity for irradiated cells. 

 

Key Words: antiproliferative activity, laser flash photolysis, anthrols, photodehydration, proton 

transfer, quinone methides 

 

Introduction 

Quinone methides (QM) are common reactive intermediates in chemistry and in the 

photochemistry of phenols, attracting much attention recently owing to their biological activity.1 

Although the partial zwitterionic character of QMs makes them both electrophilic and 

nucleophilic, their reactivity with nucleophiles is especially important in biological systems. It 

has been demonstrated that QMs react with amino acids2 and proteins,3 and inhibits the action of 

some enzymes.4 Moreover, QMs also react with nucleotides5 inducing alkylation and the cross-

linking of DNA.6 The ability of QMs to cross-link DNA renders them as potential anticancer 

therapeutics.7 Some antineoplastic agents such as mitomycin8 base their antiproliferative action 

on the metabolic formation of QMs that alkylate DNA. Moreover, some classes of anthracyclines 
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such as daunomycin, that base their action on DNA cross-linking, also metabolically form QMs.9 

However, later it was shown that QMs are not responsible reagents that cross-link DNA, but it 

probably involves metabolic formation of formaldehyde.10 

QMs can be formed under mild conditions in photochemical reactions of suitably substituted 

phenols, such as photodehydroxylation of hydroxybenzylphenols,11 photoelimination of acetic 

acid,12 amines,13 or ammonium salts.2b Photodehydration has also been reported in the larger 

chromophoric systems such as suitably substituted phenylphenols14 and naphthols.15 Popik et al. 

studied photodehydration of naphthol 1 which gave benzoxete intermediate 2 that subsequently 

underwent ring opening to QM 3 (eq.1).16 The photogeneration of naphthalene QMs was later 

applied to photo-caging17 and for surface modification and photolithography.18 

h OO
OH

CH2OH
(1)

1 2 3  

We became interested in the photochemical formation of sterically congested QMs that have 

potential biological applicability.19 Photo-cytotoxicity was investigated on three human cancer 

lines. Photo-induced antiproliferative activity was reported for naphthol,15b 1,1'-bi-2-naphthol 

(BINOL)20 and naphthalene diimide QM derivatives.21 For ultimate application in vivo it is 

essential to develop systems that can photogenerate QMs when excited with the light of longer 

wavelengths (> 350 nm). However, the photogeneration of QMs by photodehydration reaction in 

2-anthrols or larger chromophoric systems has never been reported.9 Herein, we report the first 

example of photochemical QM formation (via dehydration) in an anthrol derivative 7. The 

photoreactivity was studied by preparative irradiations, fluorescence measurements, and by laser 
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flash photolysis (LFP). Antiproliferative investigation was performed on three human cancer cell 

lines with and without irradiation. 

 

Results and Discussion 

Synthesis of the new anthrol 7 was accomplished in 4 steps, starting from the commercially 

available 2-aminoanthraquinone which was converted to 2-hydroxyanthraquinone (4) via a 

known procedure.22 Bromination of 4 afforded 3-bromo derivative 5 (40%), and 1,3-dibromo 

derivative (38%) which was separated from 5 by a column chromatography (Scheme 1). 

Subsequent reduction of 5 gave 2-bromo-3-anthrol (6) in 80% yield and a small amount of 2-

anthrol (8) due to undesired concomitant debromination. Lithiation with an excess of BuLi and 

quenching with benzophenone furnished 7 in 40% yield. 
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Scheme 1. 

 

Absorption spectra of 7 and 8 in CH3CN solution exhibit absorption band of lowest energy 

centered between 350-400 nm, 50 nm bathochromically shifted compared to that of anthracene. 
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The pKa of 2-anthrol (8) in CH3CN-H2O (1:9) in S0 and S1 was determined by UV-vis and 

fluorescence titration, respectively (pKa = 9.40 ± 0.03; pKa* = 2.13 ± 0.01, see the SI). Since it is 

known that intramolecular H-bonding with the benzyl alcohol increases acidity in 2-naphthol,16 

the anticipated pKa values for 7 are expected to be somewhat lower. 

The photophysical properties of 7 and 8 were investigated in CH3CN and CH3CN-H2O (1:1). 

Results are compiled in Table 1. Fluorescence in aqueous solution is quenched compared to that 

in neat CH3CN. The quenching is due to proton transfer (PT) to solvent. Furthermore, ΦF for 7 in 

both solvents is lower than for 8. Since 8 cannot give QMs, the lower ΦF of 7 may be due to the 

photochemical pathway giving QM. Contrary to 2-methoxyanthracene,23 7 and 8 are 

characterized by a single exponential decay of fluorescence in CH3CN. Addition of H2O changes 

the decay. For 8 it becomes double-exponential with a rise component (assigned to phenolate) 

that contributes more at longer wavelengths. For 7, the best fit was obtained by a three-

exponential function with two rise components. Although a firm elucidation of the decay kinetics 

cannot be made at this time, the finding is consistent with a scheme that photodissociation of the 

anthrol OH of 7 in S1 triggers elimination of OH- (overall loss of H2O) that leads to the formation 

of QM. 

 

Table 1. Photophysical properties of 7 and 8 in CH3CN and CH3CN-H2O (1:1). 

 7 8 

ΦF (CH3CN)a 0.86 ± 0.01 0.88 ± 0.05 

ΦF (CH3CN-H2O)a 0.39 ± 0.01 0.57 ± 0.02 

τ (CH3CN)/nsb 17.8 ± 0.1 25.3 ± 0.1 

τ (CH3CN-H2O)/nsb 1.7 ± 0.2 phenolate 15.4 ± 0.1 phenolate 



6 

 

8.1 ± 0.2 phenolate 

24.5 ± 0.1 phenol 

25.3 ± 0.1 phenol 

a Quantum yields of fluorescence measured by use of quinine sulfate in 0.05 M aqueous H2SO4 

(ΦF = 0.53) as a reference.24  b Fluorescence lifetimes measured by time-correlated single photon 

timing method. 

 

Photochemical solvolysis of 7 was investigated by irradiations in CH3OH-H2O (see the SI). 

Irradiations gave cleanly one product (9, Eq. 2). Conversion to 9 after 1 h of irradiation was 

higher in the presence of 20% H2O (≈70%) than in neat CH3OH (≈50%). Such a finding has been 

reported in systems wherein the phenolic OH is not H-bonded to the benzylic alcohol,19 and 

explained by a higher ability of phenols to deprotonate in S1 to clusters of H2O than CH3OH.25 

OH

Ph Ph
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Ph Ph
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Photosolvolysis of trityl derivatives, can in principle, take place via carbocations. To probe if 7 

undergoes heterolytic cleavage of OH to give carbocation 13 (Scheme 2), irradiation of 7OMe 

was performed. However, in the condition where 7 gave 72% of 9, 7OMe remained unchanged. 

This finding indicates that the free phenolic OH is required for the formation of the solovolysis 

products. Furthermore, the finding is in accord with the photosolvolysis mechanism involving 

QM 12 (vide infra). 
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The scope of the photosolvolysis was further investigated by performing irradiations in the 

presence of other nucleophiles. Thus, azide adduct 10, and 2,2,2-trifluoroethanol (TFE) adduct 11 

were isolated after irradiation of 7 in CH3CN-H2O, and CH3CN-TFE, respectively, in ≈35-40% 

yield. The structures of the photoproducts 9, 10, and 11 were confirmed by NMR analysis. 

Additionally, all photosolvolyses were achieved by use of light > 350 nm (350 nm, 420 nm, and 

vis-lamps, see the SI). 

 

The efficiency of the photosolvolysis in CH3OH-H2O (4:1) was determined by simultaneous use 

of three actinometers, valerophenone, KI/KIO3 and ferioxalate.26 Irradiation was performed by 

use of monochromatic light at 254 nm, and the composition of the irradiated solution of 7 was 

analyzed by HPLC. All actinometers gave ΦR = 0.023 ± 0.001 for reaction. 

 

To probe for QM and other plausible long-lived intermediates in the photochemistry of 7, LFP 

measurements were performed. The samples were excited by use of a Nd:YAG laser at 354 nm. 

The measurements were performed in CH3CN and CH3CN-H2O (1:1), and the difference was 

anticipated due to PT in the aqueous solution. In CH3CN solution (N2- and O2-purged), a band 

centered at 700 nm can be seen (τ = 1.0 ± 0.1 μs) that in the aqueous solution decays during the 

laser pulse. The transient is tentatively assigned to anthrol radical-cation which in the aqueous 
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solution decays by deprotonation.27 In addition, in both solvents, more persistent transients were 

detected absorbing at shorter wavelengths 400-600 nm. The decay is multi-exponential revealing 

several species. The major contribution to the band more centered at shorter wavelengths (400-

500 nm) decays slower (τ ≈ 10-100 μs and τ ≈ 0.1-2 s) and can also be seen in the transient 

spectra of 8 (see the supporting info). The transients are not affected by the presence of O2 and 

H2O. The shorter-lived species is tentatively assigned to phenoxyl radical, according to the 

comparison with the published spectra and decay kinetics.28 In addition, a transient absorption 

was detected at 500-600 nm that decays multi-exponentially that could be quenched by 

nucleophiles (and not by O2). Therefore, this transient could tentatively be assigned to QMs or 

other electrophilic species (see the SI). However, due to complex decay kinetics and overlapping 

of the transient absorption spectra with several other species, no firm assignment to a QM can be 

made at this time. 

A cleaner picture was obtained for LFP experiments carried out in TFE. TFE is a polar non-

nucleophilic solvent in which electrophilic species such as QMs14,15,19 and carbocations29 exhibit 

longer lifetimes. LFP measurement for 7 in O2-purged TFE gave rise to a strong transient 

absorption centered at 580 nm that is formed within the laser pulse. It decayed (k12→13 = 1.4×106 

s-1, τ = 690 ± 10 ns) giving a new species absorbing at 520 nm (Fig.1) that also decays (k13→9 = 

1.4×104 s-1, τ = 84 ± 3 μs). Addition of ethanolamine, an ubiquitous quencher of QMs,14,19 

changed the appearance of the spectra. However, the decay of the absorption at 580 nm was 

slower, and faster at 520 nm, giving one band in the spectra. This finding suggests that two 

species are in equilibrium that is influenced by pH (ethanolamine is a base). Quenching with 

nucleophiles was successful for species absorbing at 520 nm (not affecting the faster decay at 580 

nm). The quenching rate constants are compiled in Table 2. According to the quenching data and 
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the position of the maximum in the absorption spectra (comparison with the known spectra of 

trityl cation),30 the long-lived transient was assigned to carbocation 13. Since the short-lived 

transient is sensitive to acidity and in equilibrium with the cation, it is tentatively assigned to QM 

12. Consequently, the first detected species in TFE by LFP is QM 12 which decays by 

protonation giving cation 13 (Scheme 2). Subsequent reaction with nucleophiles furnishes 

adducts. Interestingly, ethanolamine did not quench QM 12 in the tested concentration. The 

finding was explained by the ethanolamine basicity (pKa = 9.5) which prevented fast protonation 

of QM 12 to cation 13. 
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Figure 1. Transient absorption spectra of 7 in O2-purged 2,2,2-trifluoroethanol (TFE) (left), and 

growth and decay of the transient absorption at 520 nm (corresponding to cation 13) and 580 nm 

(corresponding to QM 12), respectively (right). 

 

Table 2. Rate constants for the quenching of cation 13 with nucleophiles (kq or k13→9 / s
-1 M-1).a 

Nucleophile kq / s
-1 M-1 

CH3OH 9.8 × 103 

H2O 1.6 × 103 
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NaN3 2.1 × 108 

a Measurements performed in air-saturated TFE. 
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Scheme 2. 

 

Cation 13 can also be formed in the CH3CN solution in a thermal acid-catalyzed reaction and 

detected by UV-vis spectroscopy. To the CH3CN solution was added H2SO4, (c = 0.25 M) 

resulting in an immediate color change to red. The difference absorption spectrum has a 

maximum at 520 nm (see the Supporting info) with another band at longer wavelengths (≈700 

nm) and resembles the transient absorption of 7 measured in TFE and 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP) after decay of the short-lived species assigned to QM 12. The 

transient in CH3CN decays (τ = 0.63 ± 0.02 min) probably giving CH3CN adduct 14, resulting in 

a colorless solution. However, within 45-60 min, a new species is formed absorbing at 500-700 

nm, resulting in green color of the solution. The latter is tentatively assigned to QM 12 formed in 

a thermal acid-catalyzed reaction (Scheme 3). 
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Scheme 3. 

Antiproliferative investigation was conducted with 7 on three human cancer cell lines HCT 116 

(colon), MCF-7 (breast), and H 460 (lung) with and without exposure to irradiation (350 nm and 

420 nm). In addition, the cells were irradiated in the absence of compounds to check for the 

cytotoxic effect of irradiations. The results are compiled in Table 3. Irradiation of the cells at 350 

nm that were not treated with 7 induced up to maximum 25% of inhibition of tumor cell growth, 

whereas 420 nm did not cause any significant inhibition of tumor cell growth. On the other hand, 

exposure of the cells treated with 7 to irradiation induced higher cytotoxic effect than cells that 

were kept in dark. Consequently, higher photocytotoxicity of the compound allows for potential 

biological applications. However, for the actual photo-chemotherapeutic applications (except for 

maybe some forms of skin cancer) the compounds should bear chromophores absorbing at > 600 

nm. Photochemicaly induced higher cytotoxicity of 7 suggests that the enhanced antiproliferative 

activity is due to the photo-generation of QMs. Although the exact mechanism of the enhanced 

antiproliferative activity was not determined, it is presumed that it is due to the reactivity of 12 or 

13 with DNA,5,6 as well as some particular proteins (e.g. enzymes).2-4 Since the LFP experiments 

did not indicate formation of the triplet excited state, singlet oxygen probably did not induce 
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antiproliferative activity. The investigation of biological action of different anthrol derivatives is 

currently under way and will be published separately.  

Table 3. IC50 values (in µM) for 7.a 

Cell lines HCT 116 MCF-7 H 460 

Not irradiated 21±0.3 20±0.5 19±1 

3 × 5 min 350 nm 2±0.4 4±3 3±1 

3 × 5 min 420 nm 2±0.4 2±0.1 2±0.2 

a IC50; the concentration that causes 50% growth inhibition. Irradiation of the cells at 350 nm that 

were not treated with 7 induced up to maximum 25% inhibition of tumor cell growth, whereas 

irradiation of untreated cells at 420 nm showed no effect. For the calculation of IC50 see the 

experimental. 

 

 

Conclusion 

The presented results show that dehydration of 2-anthrol derivative 7 to QM 12 can be initiated in 

a photochemical reaction, and probably involves deprotonation of the phenol OH as the first step, 

followed by expulsion of the alcohol OH-. However, we could not time-resolve the formation of 

QM 12 (it is formed within the laser pulse). Therefore, we cannot rule out mechanisms that 

involve (i) excited state intramolecular proton transfer (ESIPT) from the phenol OH to the benzyl 

alcohol that is coupled with dehydration, or (ii) formation of a benzoxete intermediate that has a 

lifetime of < 50 ns and subsequently ring opens to form the QM. 

Photogeneration of QMs in the anthrol series that can be initiated by near-visible light is of 

particular importance in biological systems. Preliminary results of antiproliferative investigations 
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conducted for 7 on three human cancer cell lines showed higher activity for the cells that were 

irradiated. Consequently, we believe that anthrol derivatives have potential as a new class of 

photo-chemotherapeutic reagents, or as photo-labeling markers for biological systems. 

 

 

Experimental Section 

Experimental procedure, general 

1H and 13C NMR spectra were recorded at 300, or 600 MHz at rt using TMS as a reference and 

chemical shifts were reported in ppm. Melting points were determined using a Mikroheiztisch 

apparatus and were not corrected. IR spectra were recorded on a spectrophotometer in KBr and 

the characteristic peak values were given in cm-1. HRMS were obtained on a MALDI TOF/TOF 

instrument. For the sample analysis a HPLC was used with C18 (1.8 μm, 4.6×50 mm) column. 

HPLC runs were conducted at rt (~25 °C) and chromatograms were recorded using UV detector 

at 254 nm. Other HPLC data were given in the supporting information, since the parameters vary. 

For the chromatographic separations silica gel (0.05–0.2mm) was used. Irradiation experiments 

were performed in a reactor equipped with 16 lamps with the output at 350 nm or a reactor 

equipped with 8 lamps. During the irradiations, the irradiated solutions were continuously purged 

with Ar and cooled by a tap-water finger-condenser. Solvents for irradiations were of HPLC 

purity. Chemicals were purchased from the usual commercial sources and were used as received. 

2-Hydroxyanthraquinone (4) was prepared from commercially available 2-aminoanthraquinone 

according to the known procedure.22 Solvents for chromatographic separations were used as they 

are delivered from supplier (p.a. grade) or purified by distillation (CH2Cl2). Diethyl ether used for 

the reaction with BuLi was previously refluxed over Na and freshly distilled. 
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3-Bromo-2-hydroxyanthraquinone (5) 

The reaction was carried out in a two-neck round bottom flask (250 mL) equipped with a 

condenser and a dropping funnel. 2-Hydroxyanthraquinone (4, 4.54 g, 20.2 mmol) was dissolved 

in glacial acetic acid (50 mL) by heating using an oil bath. Bromine (5 mL, 97.2 mmol) in glacial 

acetic acid (50 mL) was added to the refluxing reaction mixture over 4 h, and the refluxing was 

continued overnight (16 h). The progress of the reaction was monitored by HPLC (see the SI). 

The next day the reaction mixture is allowed to cool to rt and poured on water (300 mL). A 

saturated solution of Na2SO3 was added to destroy the excess of bromine. The yellow precipitate 

was filtered of, washed with water until neutral (tested with universal indicator paper) and dried 

in a desiccator over KOH overnight. The crude product contained 3-bromo-2-

hydroxyanthraquinone (5) and 1,3-dibromohydroxyanthraquinone in ratio 1:1. These two 

compounds were separated using column chromatography (SiO2, CH2Cl2/EtOAc/HOAc 760:40:1 

to 720:80:1) to obtain 1,3-dibromo-2-hydroxyanthraquinone 5 (2.93 g, 7. 68 mmol, 38% yield) 

and 3-bromo-2-hydroxyanthraquinone (2.45 g, 8.08 mmol, 40% yield) as yellow solid 

substances.  

1,3-Dibromo-2-hydroxyanthraquinone, 1H NMR (300 MHz, DMSO-d6) δ/ppm 8.34 (s, 1H), 

8.18-8.10 (m, 2H), 7.93-7.87 (m, 2H); IR (KBr) νmax/cm-1 3412 (O-H), 3105 (C-H), 3070 (C-H), 

1672 (C=O). 

3-Bromo-2-hydroxyanthraquinone (5),31 yellow solid, mp 235-245 °C; 1H NMR (300 MHz, 

DMSO-d6) δ/ppm 11.97 (s, 1H), 8.22 (s, 1H), 8.17-8.11 (m, 2H), 7.95-7.86 (m, 2H), 7.64 (s, 1H); 

13C NMR (150 MHz, DMSO-d6) δ/ppm 182.0 (s), 180.3 (s), 159.6 (s), 134.5 (d), 134.2 (d), 134.0 

(s), 132.9 (s), 132.8 (s), 132.1 (d), 126.6 (d, 2C), 125.8 (s), 116.6 (s), 112.8 (d); IR (KBr) νmax/cm-
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1 3350 (O-H), 1668 (C=O), 1570 (C=O), 1274 (C-H), 719 (C-H); HRMS (MALDI) calculated for 

C14H7BrKO3
+ 340.9210, found 340.9204. 

 

3-Bromo-2-hydroxyanthracene (6) 

NaBH4 (454 mg, 12 mmol) was dissolved in 1M Na2CO3 (aq) (30 mL), i-propanol (5 mL) was 

added (foaming suppressor) and the mixture was heated until boiling point was achieved. 3-

Bromo-2-hydroxyanthraquinone (5, 910 mg, 3 mmol) was added in three portions. The reaction 

mixture was refluxed for 15 min (longer reflux time usually produced more debromination 

product, 2-hydroxyanthracene). The reaction was quenched by careful addition of ice-cooled 

water (30 mL) followed by the addition of 3M HCl until acidic reaction was achieved (tested by 

universal indicator paper). The product was collected by filtration, washed with water (until 

neutral reaction of the filtrate was achieved) and dried in evacuated desiccator (10 mbar) over 

KOH overnight. The crude product was purified on a column of silica gel using dichloromethane 

as eluent to give pure product 6 (656 mg, 2.4 mmol, 80% yield over two steps) as yellow powder: 

mp 225-232 °C; 1H NMR (300 MHz, CDCl3) δ/ppm 8.27 (s, 1H), 8.24 (s, 1H), 8.22 (s, 1H), 7.93 

(t, J = 7.2 Hz, 2H), 7.50 (s, 1H), 7.48-7.38 (m, 2H), 5.64 (s, 1H); 13C NMR (300 MHz, DMSO-

d6) δ/ppm 150.9 (s), 132.0 (d), 131.7 (s), 131.5 (s), 129.7 (s), 128.0 (d), 127.7 (s), 127.4 (d), 

125.7 (d), 125.1 (d), 124.6 (d), 123.1 (d), 114.7 (s), 107.8 (d); IR (KBr) νmax/cm-1 3512 (O-H), 

3049 (C-H); HRMS (MALDI) calculated for C14H9BrO+ 271.9831, found 271.9829. 

2-Hydroxy-3-(diphenylhydroxymethyl)anthracene (7) 

The reaction was carried out in a two-necked round bottom flask (50 mL) under a N2 inert 

atmosphere, equipped with a N2-balloon and a septum. The flask was charged with 3-bromo-2-

hydroxyanthracene (6, 286 mg, 1.00 mmol) and dry Et2O (10 mL) and cooled in an ice-methanol 
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bath (-15 to -10 °C). BuLi (2.5 M in hexanes, 1.2 mL, 3.00 mmol) was added dropwise over 15 

min changing the color to brown. The reaction mixture was then emerged from the ice bath and 

stirred for 15 min at rt whereby all solid compound was dissolved giving a clear brown solution. 

The reaction mixture was then again cooled to -10 °C, and benzophenone (900 mg, 4.94 mmol) 

in dry Et2O (4 mL) was added. Stirring was continued 1 h at -10 °C, then the reaction mixture 

was allowed to reach rt and the stirring was continued overnight. The reaction was quenched by 

careful addition of water (15 mL) and transferred to the separation funnel. A solution of 1M 

NaOH (20 mL) and water (100 mL) was added and the aqueous layer was extracted with hexane 

(2×20 mL) in order to remove unreacted benzophenone and the product of the reaction of 

benzophenone with BuLi. The aqueous layer was then acidified with 10% acetic acid and 

extracted with Et2O (3×25 mL). The ether extracts were combined and dried over anhydrous 

MgSO4. After filtration and removal of the solvent, the crude product was purified on a column 

of silica gel using dichloromethane as eluent to give pure 7 (763 mg, 2.03 mmol, 40% yield) in 

the form of yellow-orange solid. mp 199-200 °C; 1H NMR (300 MHz, DMSO-d6) δ/ppm 10.22 

(s, 1H), 8.28 (s, 1H), 8.26 (s, 1H), 7.95 (t, J = 7.0 Hz, 2H), 7.44-7.24 (m, 14 H), 6.70 (s, 1H); 13C 

NMR (300 MHz, DMSO-d6) δ/ppm 153.5, 145.9, 145.7, 136.5, 132.1, 131.8, 129.8, 128.6, 128.1, 

128.0, 127.7, 127.6, 127.3, 127.1, 126.7, 126.6, 126.4, 126.2, 125.6, 124.2, 122.3, 108.5, 81.6, 

74.2, 54.9; IR (KBr) νmax/cm-1 3367 (O-H), 3051 (C-H), 3024 (C-H), 1447 (C-H); HRMS 

(MALDI) calculated for C27H19O
+ 359.1430, found 359.1433. 

2-Methoxy-3-(diphenylhydroxymethyl)anthracene (7OMe) 

The reaction was carried out in a two-neck round bottom flask (25 mL) under N2 atmosphere. 2-

Hydroxy-3-(diphenylhydroxymethyl)anthracene (7, 18 mg, 48 μmol) was dissolved in acetone (8 

mL) and K2CO3 (50 mg, 362 μmol) was added. The resulting suspension was heated at reflux 
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resulting in a change of the color from pale yellow to yellow. MeI (50 μL, 803 μmol) was then 

added and the reaction mixture was stirred 5h at rt (the color returns to pale yellow). The reaction 

mixture was then filtered and the filtrate evaporated on a rotary evaporator. The residue product 

was purified on short column of silica gel (10×1 cm) using CH2Cl2 as eluent to give pure 2-

methoxy-3-(diphenylhydroxymethyl)anthracene (7OMe, 11 mg, 31 μmol, 64% yield) in the form 

of pale yellow solid. 1H NMR (600 MHz, CDCl3) δ/ppm 8.25 (s, 1H), 8.12 (s, 1H), 7.92 (d, J = 

8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.44-7.40 (m, 2H), 7.34-7.28 (m, 11H), 7.11 (s, 1H), 5.19 

(s, 1H), 3.79 (s, 3H); 13C NMR (150 MHz, CDCl3) δ/ppm 155.9 (s), 146.3 (s), 136.8 (s), 132.3 

(s), 131.8 (s), 130.7 (s), 130.1 (d), 128.1 (d), 128.0 (d), 127.8 (d), 127.7 (d), 127.5 (d), 127.3 (s), 

127.0 (d), 125.6 (d), 124.6 (d), 123.5 (d), 105.7 (d), 82.1 (s), 55.6 (q); IR (KBr) νmax/cm-1 3448 

(O-H), 2920 (C-H), 2851 (C-H), 1458 (C-H); HRMS (MALDI) calculated for C28H22O2
+ 

390.1614, found 390.1624. 

 

Irradiation experiments 

Preparative photomethanolysis 

In a quartz vessel was placed a CH3OH–H2O (4:1) solution of compound 7 (100 mL, c ~ 4×10-5 

M) and irradiated in a Rayonet reactor using 16 lamps at 350 nm for 30-120 min. Prior to, and 

during the irradiation, the solution was continuously purged with a stream of Ar and cooled by a 

coldfinger condenser. After 90 min of irradiation, the solvent was removed on a rotary evaporator 

and the residue was dried (water was removed as azeotrope with toluene). The photoproduct was 

purified on a column of silica gel (4×1 cm) using CH2Cl2 as eluent to obtain pure 9 (13 mg, 33 

μmol, 84% yield) in the form of pale yellow film on the walls of the flask. 1H NMR (600 MHz, 

CDCl3) δ/ppm 8.68 (s, 1H), 8.20 (s, 1H), 8.19 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H,), 7.86 (d, J = 8.4 
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Hz, 1H), 7.68 (s, 1H), 7.46-7.42 (m, 4H), 7.41-7.31 (m, 8H), 3.35 (s, 3H); 13C NMR (150 MHz, 

CDCl3) δ/ppm 153.9 (s), 140.6 (s), 132.6 (s), 132.4 (s), 132.1 (s), 130.5 (d), 129.0 (d), 128.1 (d), 

128.0 (d), 127.9 (d), 127.5 (d), 126.9 (s), 126.7 (d), 125.5 (d), 124.2 (d), 123.0 (d), 110.1 (d), 53.1 

(q); IR (KBr) νmax/cm-1 3421 (O-H), 3055 (C-H), 2970 (C-H), 2924 (C-H), 2953 (C-H), 1448 (C-

H); HRMS (MALDI) calculated for C27H20O
+ 360.1509, found 360.1506. 

Irradiation in the presence of NaN3 

In a quartz vessel was placed CH3CN solution (70 mL) of compound 7 (15 mg, 40 μmol), and 

solution of NaN3 (1 g, 15 mmol) in water (30 mL) was added. Upon addition of NaN3 solution 

changed color to yellow, probably due to deprotonation of the anthrol OH (caused by hydrolysis 

of the azide). The solution was irradiated in a reactor using 12 lamps at 350 nm for 2 h. Prior to, 

and during the irradiation, the solution was continuously purged with a stream of Ar and cooled 

using a coldfinger condenser. After the irradiation, the reaction mixture was poured on water 

(150 mL) and extracted with diethyl ether (3×20 mL). The organic extracts were combined and 

washed with water (2×100 mL). The organic phase was separated and dried over anhydrous 

MgSO4, filtered and the solvent was removed on a rotary evaporator. The crude product was 

chromatographed on a short column of silica gel (10×1 cm) using CH2Cl2 as an eluent to obtain 

pure product 10 (6 mg, 15 mmol, 38% yield) in the form of thin yellowish film on the walls of 

the flask. 1H NMR (600 MHz, CDCl3) δ/ppm 8.23 (s, 1H), 8.18 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 

7.86 (d, J = 8.4 Hz, 1H), 7.44-7.41 (m, 8H), 7.39 (s, 1H), 7.30 (m, 4H), 6.92 (s, 1H); 13C NMR 

(150 MHz, CDCl3) δ /ppm 152.4 (s), 140.9 (s), 132.54 (s), 132.46 (s), 131.4 (s), 130.9 (d), 130.4 

(s), 128.6 (d), 128.4 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.6 (d), 127.1 (d), 126.8 (s), 125.6 (d), 

124.5 (d) 123.2 (d), 111.3 (d), 29.6 (s); IR (KBr) νmax/cm-1 3421 (O-H), 3057 (C-H), 2924 (C-H), 

2853 (C-H), 2104 (N≡N); HRMS (MALDI) calculated for C27H20O
+ 360.1509, found 360.1523. 
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Irradiation in the presence of 2,2,2-trifluoroethanol (TFE) 

In a quartz vessel was placed a CH3CN solution (90 mL) of compound 7 (13 mg, 35 μmol) and 

2,2,2-trifluoroethanol (10 mL) was added. The solution was irradiated in a reactor using 12 lamps 

at 350 nm for 30 min. Prior to, and during the irradiation, the solution was continuously purged 

with a stream of Ar and cooled using a cold finger condenser. After the irradiation, the solvent 

was evaporated on rotary evaporator. The crude product was chromatographed on a short column 

of silica gel (10×1 cm) using CH2Cl2 as an eluent to obtain the pure product 11 (6 mg, 13 μmol, 

37% yield) in the form of thin yellowish film on the walls of the flask. 1H NMR (600 MHz, 

CDCl3) δ/ppm 8.22 (2s, 2H), 7.92 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.72 (s, 1H), 

7.49-7.45 (m, 4H), 7.43-7.35 (m, 9H), 3.77 (q, 3JH,F = 8.1 Hz, 2H), 13C NMR (150 MHz, CDCl3) 

δ/ppm 152.9 (s), 139.7 (s), 132.64 (s), 132.58 (s), 132.4 (s), 130.9 (d), 130.4 (s), 128.6 (d), 128.5 

(d), 128.3 (d), 128.1 (d), 127.6 (d), 127.0 (d), 126.9 (s), 125.8 (d), 125.5 (q, 1JC,F = 251 Hz), 

124.5 (d), 123.2 (d), 111.0 (d), 62.7 (q, 3JC,H = 34 Hz), 29.6 (s); IR (KBr) νmax/cm-1 3435 (O-H), 

3059 (C-H), 2924 (C-H), 2953 (C-H), 1281 (C-F), 1165 (C-F); HRMS (MALDI) calculated for 

C27H20O
+ 360.1509, found 360.1504. 

 

Quantum yield of the photomethanolysis reaction 

Quantum yield of the photomethanolysis reaction was determined by use of three actinometers 

simultaneously: valerophenone,24 ferrioxalate25 and KI/KIO3.
32 A solution of ferrioxalate 

actinometer was handled in dark. The measurement was performed in five quartz cells with the 

same dimensions (square, for UV-vis measurement, ca. 3 mL), that were during the irradiations 

wrapped in black paper, except from the front side to ensure the controlled absorption of the light 
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from one side only (no absorption of the radiation reflected from the walls of the reactor). The 

solution of compound 7 in CH3OH-H2O (4:1), as well as the solution of valerophenone in 

CH3CN-H2O (4:1) were freshly prepared and their concentrations adjusted to have absorbances 

0.4–0.8 at 254 nm. After adjustment of the concentrations and measurement of the corresponding 

UV-vis spectra, 2.5 mL of the solution was transferred to the quartz cell and the solutions were 

purged with a stream of N2 (20 min each), and then, sealed with a cap. Freshly prepared solution 

of potassium trioxalatoferrate(III) (0.012 M K3[Fe(C2O4)3]×3H2O in 0.05 M H2SO4) (2.5 mL) 

and the solution containing potassium iodate (0.1 M) and potassium iodide (0.6 M) in borate 

buffer (pH = 9.25) (2.5 mL) were placed in the third and the forth quartz cell, respectively. 

Potassium trioxalatoferrate(III) (2.5 mL) was placed in the fifth cell which was not irradiated 

(blank sample). Before the irradiation, A352 for the solution of KI/KIO3 was measured. The cells 

were placed in a holder which ensured equal distance of all samples from the lamp and irradiated 

at the same time in the reactor with 1 lamp at 254 nm for 30 s. Before and after the irradiation, 

the samples were taken from the cells by use of a syringe and analyzed by HPLC to determine 

conversion of 7 to 9 and valerophenone to acetophenone. The conversion did not exceed 30% to 

avoid change of the absorbance, or filtering of the light by the product. A352 of KI/KIO3 

actionometer solution was measured to determine the concentration of I3
- using ε 352 = 27600 M-

1cm-1.32 To both solutions of ferrioxalate actinometer (irradiated and blank) a solution of 

phenantroline was added (0.5 mL, 0.1% phenanthroline in buffer containing 1.65 M NaOAc and 

0.5 M H2SO4) and A510 was measured. The concentration of FeII was determined using ε510 = 

11100 M-1cm-1.25 From the conversion (valerophenone) and concentration of the photoproducts 

(in ferrioxalate and KI/KIO3) irradiance was calculated. The similar values were obtained for all 

three actinometers. These values and the value of conversion 7 → 9 were used to calculate the 
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quantum yield of photomethanolysis for compound 7. The mean value of three measurements 

was reported. All equations for the calculation of quantum yields are given in the supporting info. 

 

Steady State and Time-Resolved Fluorescence Measurements 

The steady state measurements were performed a luminescence spectrometer. The samples were 

dissolved in CH3CN, or CH3CN-H2O (1:1) and the concentrations were adjusted to have 

absorbances at the excitation wavelength (330, 350, or 370 nm) < 0.1. Solutions were purged 

with nitrogen for 30 min prior to analysis. The measurements were performed at 20 °C. 

Fluorescence quantum yields were determined by comparison of the integral of the emission 

bands with the one of quinine sulfate in 0.05 M aqueous H2SO4 (F = 0.53). The measurements 

were performed in triplicate and the mean value reported. Typically, three absorption traces were 

recorded (and averaged) and three fluorescence emission traces, exciting at three different 

wavelengths. Three quantum yields were calculated and the mean value reported. 

Fluorescence decays were obtained on an instrument equipped with a light emitting diode 

(excitation wavelength 375 nm), using time-correlated single photon counting technique in 1023 

channels. Histograms of the instrument response functions (using LUDOX scatterer), and sample 

decays were recorded at 410, 420, 450 and 550 nm until they reached 2 × 103 counts in the peak 

channel. The half width of the instrument response function was ≈ 0.2 ns. The time increment per 

channel was 0.02441 ns. Obtained histograms were fitted as sums of exponential using Gaussian-

weighted non-linear least-squares fitting based on Marquardt-Levenberg minimization 

implemented in the software package of the instrument. The fitting parameters (decay times and 

pre-exponential factors) were determined by minimizing the global reduced chi-square χ2. 
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Additional graphical method was used to judge the quality of the fit that included plots of 

surfaces ("carpets") of the weighted residuals vs. channel number. 

 

Determination of pKa and pKa * for 2-anthrol (8) 

UV-vis titration 

A stock solution of the compound 8 was prepared by dissolving 0.50 mg of 8 in 500 μL CH3CN. 

195 μL of the stock solution was diluted to 200 mL with CH3CN-H2O (1:9) to adjust the 

concentration of the compound to 5.0 × 10-6 M (for titration I). For titration II, 7.93 mg of 8 was 

dissolved in 200 mL CH3CN/H2O (2:8). 150.0 mL of each solution was titrated with a diluted 

solution of NaOH (until pH 12.7 was reached). The pH was measured by a pH-meter and UV-vis 

spectra were recorded on an instrument. The measurement was performed at 25 °C. The resulting 

UV-vis spectra were processed by multivariate nonlinear regression analysis using Specfit 

program. 

Fluorescence titration  

A stock solution of the compound 8 was prepared by dissolving 1 mg of 8 in 1000 μL CH3CN. 

855 μL of the stock solution was diluted to 200 mL with CH3CN-H2O (1:9) to adjust the 

concentration of the compound to 2.2 × 10-5 M. 150.0 mL of the solution was basified with a 

diluted solution of NaOH (until pH 12.3 was reached) and titrated with a diluted solution of 

H2SO4 (until pH 0.5 was reached). The pH was measured by a pH-meter and fluorescence spectra 

were recorded on an instrument (slits 2×2.5 nm). The measurement was performed at 25 °C. The 

resulting fluorescence spectra were processed by multivariate nonlinear regression analysis using 

Specfit program. 

 



23 

 

Laser Flash Photolysis (LFP) 

All LFP studies were conducted at the University of Victoria LFP facility employing a YAG 

laser, with a pulse width of 10 ns and excitation wavelength 355 nm. Static cells (0.7 cm) were 

used and solutions were purged with nitrogen or oxygen for 20 min prior to measurements. 

Absorbances at 355 nm were ~ 0.4. 

 

Antiproliferative investigation 

The experiments were carried out on three human carcinoma cell lines HCT 116, MCF-7 and H 

460. Cells were cultured as monolayers and maintained in Dulbecco's modified Eagle medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 2mM L-glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin in a humidified atmosphere with 5% CO2 at 37 °C. 

The cells were inoculated in parallel on two 96-well microtiter plates on day 0, at 1.5×104 

cells/mL. Test agents were added in ten-fold dilutions (10-8 to 10-4 M) on the next day and 

incubated for further 72 h. Working dilutions were freshly prepared on the day of testing. One of 

the plates was left in the dark, while the other was irradiated in a reactor (6 lamps 350 nm or 420 

nm, 5 min) 4, 24, and 48 hours after the addition of the compounds. After 72 h of incubation the 

cell growth rate was evaluated by performing the MTT assay33 (for the irradiated and non-

irradiated cells) which detects dehydrogenase activity in viable cells. The absorbance (A) was 

measured on a microplate reader at 570 nm. The absorbance is directly proportional to the 

number of living, metabolically active cells. The percentage of growth (PG) of the cell lines was 

calculated according to one or the other of the following two expressions: 

If (mean Atest – mean Atzero) ≥ 0, then PG = 100 × (mean Atest – mean Atzero) / (mean Actrl – mean 

Atzero). 
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If (mean Atest – mean Atzero) < 0, then: PG = 100 × (mean Atest – mean Atzero) / Atzero, where the 

mean Atzero is the average of absorbance measurements before exposure of cells to the test 

compound, the mean Atest is the average of absorbance measurements after the desired period of 

time and the mean Actrl is the average of absorbance measurements after the desired period of 

time with no exposure of cells to the test compound. In the experiments where the cells were 

irradiated, Actrl represents irradiated control cells. After irradiation at 350 nm 25% growth 

inhibition compared to Actrl without irradiation was observed, while after the irradiation at 420 nm 

no significant growth inhibition was observed. 

The results are expressed as IC50, which is the concentration necessary for 50% of inhibition. The 

IC50 values are calculated from concentration-response curves using linear regression analysis by 

fitting the test concentrations that give PG values above and below the reference value (i.e. 50%). 

Each test was performed in quadruplicate in at least two individual experiments. 
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