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Abstract 

 

The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and 

trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as 

the GMDH algorithm optimizes only the weights of the topmost (output) node. In order to estimate to what 

extent the approximation accuracy of the obtained model can be improved the particle swarm optimization 

(PSO) has been used for the optimization of weights of all node-polynomials. Since the PSO is generally 

computationally expensive and time consuming a more efficient Levenberg-Marquardt (LM) algorithm is 

adapted for the optimization of the SOPNN. After it has been optimized by the LM algorithm the SOPNN 

outperformed the corresponding models based on artificial neural networks (ANN) and support vector method 

(SVM). The research is based on the meta-modeling of the thermodynamic effects in fluid flow measurements 

with time-constraints. The outstanding characteristics of the optimized SOPNN models are also demonstrated in 

learning the recurrence relations of multiple superimposed oscillations (MSO). 
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1. Introduction 

 

Approximation of complex multidimensional systems by SOPNN, also known as the GMDH polynomial 

neural networks (PNN), was introduced by Ivakhnenko, (1971). The SOPNN are constructed by combining the 

low order polynomials into multi layered polynomial structures where the coefficients of the low-order 

polynomials (generally 2-dimensional 2
nd

 order polynomials) are obtained by polynomial regression (Chapra & 

Canale, 1998) with the aim to minimize the approximation error. GMDH models may achieve reasonable 

approximation accuracy at low complexity and are simple to implement in digital computers (Maric & Ivek, 

2011). The GMDH is resistant to over-fitting since it uses separate data sets for regression and for model 

selection. When applied to real time compensation of nonlinear behavior, the self-organizing nature of GMDH 

may eliminate the complicated structural modeling and parameterization, common to conventional modeling 

strategies (Iwasaki, Takei & Matsui, 2003). 

The performance of the SOPNN is generally evaluated by a single parameter measure (Witten & Eibe, 2005), 

typically by the least square error, which minimizes the model approximation error rather than its complexity. 

When building the models for time-constrained applications the constraints can be efficiently embedded into the 

model selection metrics (Maric & Ivek, 2011). It was shown (Maric & Ivek, 2011) that the raw SOPNN models 

(GMDH PNN) are inferior to multilayer perceptron (MLP) when considering the accuracy with respect to the 

complexity. It was also concluded (Maric & Ivek, 2011) that SVM is not appropriate for building the low 

complexity models for time-constrained applications. 

The SOPNN node-polynomial weights, after calculated by the regression, remain unchanged during the rest of 

the training process resulting in sub-optimal SOPNN models. The accuracy and the prediction of models may be 

improved significantly when trained by the genetic programming and back-propagation (BP). It was shown 

(Nikolaev & Iba, 2003) that the population-based search technique, relying on the genetic programming and the 

BP algorithm, enables to identify the networks with good training as well as generalization performances. The 

BP improves the accuracy of the model but it is known to often get stuck in local minima. The idea of this paper 

is to adapt a more robust procedure for the optimization of the SOPNN relation with respect to its weights.  

The PSO is a nature inspired algorithm, which enables the optimization of model weights by simulating the 

flight of a bird flock (Eberhart & Kennedy, 1995). Since the PSO is simple to implement it has been used in our 

experiments for the estimation of the approximation abilities of raw SOPNN models. After the PSO improved 

significantly the approximation accuracy of various SOPNN models a more complex Levenberg-Marquardt (LM) 

algorithm (Levenberg, 1944; Marquardt, 1963) has been adapted for the optimization of model weights. Although 

widely used for the optimization of ANN, the use of the LM algorithm for the optimization of weights of the 

SOPNN to the best of my knowledge has not been reported in the literature. The LM algorithm converges many 

times faster than the PSO and increases the approximation accuracy of the SOPNN model substantially. This 

paper describes the adaptation of PSO and LM algorithm for the optimization of SOPNN and demonstrates how 

the approximation accuracy of the original GMDH model can be significantly improved after optimizing its 

weights. 

In the following section, the GMDH, PSO and the LM algorithm are described. The PSO and the LM algorithm 

are adapted for the optimization of SOPNN weights. Section 3 describes the procedure for the estimation of the 

execution time for SOPNN and MLP in time constrained applications. A procedure for the compensation of 

thermodynamic effects in flow rate measurements is summarized in section 4 and the results of the simulations 

of the flow rate error compensation procedure by the surrogate models are given in section 5. Finally in section 

6, the outstanding performances of the SOPNN are demonstrated on MSO task that has been widely studied in 

echo state networks (ESN) literature. 

 

2. GMDH, PSO and LM algorithm 

 

2.1. GMDH algorithm 

The GMDH algorithm (Ivakhnenko, 1971) constructs the models by combining the low-order polynomials 

into multi layered polynomial networks. Fig. 1 illustrates a complete two-layer feed-forward SOPNN representing 

a 3-dimensional system, where pλ,i denotes a low-order and low-dimensional polynomial corresponding to the i
th
 

node of the layer λ and xi represents the i
th
 independent variable. 
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First order and second order two-dimensional polynomials are preferred as their cascading does not increase 

rapidly the order of overall polynomial relation and because they are fast to process. In this paper we will restrict 

our attention to a complete second-order two-dimensional polynomial 
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where zλi1 and zλi2 represent the input variables and aλi1,...,aλi6 are the corresponding weights (coefficients) obtained 

by the polynomial regression. Note that zλi1 and zλi2 can be any combination of two different variables from lower 

layers including the independent variables (xi) and the derived regression polynomials (pλi). For example, the input 

variables for the polynomial p2,6 from Fig. 1 are the polynomial p1,1 from the first layer and the independent 

variable x3. 

 

Fig. 1. 
 

The GMDH algorithm assumes two independent data sets: a training set of M samples 

M

1i}),{( == titit yxD , (2) 

where each sample consists of a data vector ( )tiKtititi xxx ,...,, 21=x , K

tix R∈ , and the corresponding dependent 

variable R∈tiy , as well a validation data set of N samples 

N
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with data vector ( )viKvivivi xxx ,...,, 21=x , K

vix R∈ , and the corresponding dependent variable R∈viy . The 

algorithm uses the training data set (2) to fit the coefficients of the regression polynomial (1) and the validation set 

(3) to verify the approximation error of the polynomial. The polynomials are then ranked according to some 

predefined metrics (Maric & Ivek, 2011). 

In order to calculate the coefficients, aλi1,...,aλi6, in (1) by the polynomial regression, a set of 6 simultaneous 

linear equations 
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must be solved, where M is a total number of training samples, tmy  is the m
th

 sample value of the dependent 

variable from the training data set (2) and tm

ipλ  is the value of the i
th
 polynomial at layer λ corresponding to the m

th
 

data vector from the training data set (t). In our implementation of the GMDH algorithm the above set of linear 

equations is solved by the Gauss elimination method using forward elimination, back substitution, and pivoting 

(Chapra & Canale,1998). 

As illustrated in Fig. 1. the total number of possible nodes in each layer is increasing rapidly by the increase of 

the layer number and can be easily calculated by the following simple iterative equation 
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N , where λ=0,1,… denotes the corresponding layer, Nλ is the total number of nodes 

at layer λ and the second term in the equation equals zero for λ=0. To prevent the combinatorial explosion the 

maximum number of nodes retained per layer is generally limited. The nodes retained at lower layers are 

combined multiple times to produce the nodes at higher layers. To speedup the algorithm the retained 

polynomials may be tabulated. 

 

2.2. Particle Swarm Optimization of SOPNN Weights 

Let Nℜ∈a be the vector, {ai}, i=1,...,N, in N-dimensional space. Let the SOPNN polynomial relation P(x,a) 

be the particle whose position in the space is defined by the vector a. Particle swarm optimization (Eberhart & 

Kennedy, 1995) minimizes the nonlinear fitness function: 
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where K is the total number of training vectors, xk denotes the k
th
 M-dimensional input training vector, yk=y(xk) is 

the corresponding training value and a denotes N-dimensional vector representing the coefficients of all nodes of 

the SOPNN polynomial P(xk,a). Before starting the PSO the position a and the velocity v of each particle are 

initialized by: 

NiKkLUrLa iikiiki ,...,1,,...,1,0 ==−+=  (6) 

and 

( ) NiKkLUsv iikiki ,...,1,,...,1,120 ==−⋅−=  (7) 

where 
0

kia  and 
0

kiv  are the corresponding i
th

 component of the k
th
 particle’s initial position and velocity, Li and Ui 

are the corresponding lower and upper boundaries for the i
th
 dimension of the search space, and rki and ski denote 

the random numbers from the range [0,1]. For each particle k, the best particle position Ak and the best fitness 

value Ek are initialized by setting them equal to the initial position and the initial fitness value of the particle, 

respectively. The pointer to the particle α having the best fitness value, Eα, of all particles is also initialized. 

According to (Shi & Eberhart, 1998) the particles are manipulated iteratively by using the following equations: 
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where 
j

kiv   and 
j

kia  denote the corresponding i
th

 component of the k
th

 particle’s velocity and position in j
th

 

iteration,  w denotes the inertia weight (0.8<w<1.2), c1 and c2 are constants and Rki and Ski are random numbers 

in the range [0,1]. 

 

2.3. LM Optimization of SOPNN Weights 

 

2.3.1.  Adaptation of LM algorithm to SOPNN 

The optimization problem can be formulated in the following way: given the set of K samples each consisting 

of N–dimensional input data vector x and the dependent variable y, ( ){ }Kkyxxx kNkkk ,...,1,,,...,, 21 = , minimize the 

nonlinear fitness function (5) by optimizing all the weights {a1,...,aM} of the SOPNN polynomial relation P. In 

each iteration step the LM algorithm calculates the increment vector δ, δ1,...,δM, and estimates the new weight 



 6

vector a=a+δ, a1+δ1,...,aM+δM, in order to decrease the value of the fitness function (5). To calculate the 

increments, i.e. to estimate the improved polynomial weight vector (a=a+δ) for the next iteration, the polynomial 

P is calculated by 

( ) ( ) ( ) ( )
M

M

kk
kk

a

P

a

P
PP δδ ⋅

∂

∂
++⋅

∂

∂
+≈+

axax
axδax

,
...

,
,, 1

1

, (10) 

where the polynomial P(xk,a+δ) denotes the new approximation of the dependent variable y. After substituting 

a+δ for a and (10) for P(xk,a) in (5) we obtain: 
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By setting the partial derivatives of (11) with respect to increments δj, j=1,...,M, equal to zero, a set of M 

simultaneous linear equations with M unknowns (δ1,...,δM) is obtained 
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or in vector notation: 

( ) ( )[ ]aPyJδJJ −= TT  (13) 

where J denotes the Jacobian matrix i.e. the first order partial derivatives of P with respect to a. After introducing 

an adjustable nonnegative damping factor γ and the diagonal matrix of J
T
J we obtain the Levenberg-Marquardt 

equation 
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summarizing the set of M linear equations with M unknowns 
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where Pk denotes the SOPNN polynomial relation P (xk,a). 

 

2.3.2.  Calculation of partial derivatives 

As can be seen from Fig. 1, each layer contains the corresponding number of nodes.  The i
th

 node in the layer 

λ, n(λ, i), λ =1,2,..., is characterized by the corresponding weights { }61,..., ii aa λλ  of the basic polynomial (1), where 

the inputs 1izλ  and 2izλ  denote either the polynomials from lower layers or the independent variables. In our 

algorithm the polynomials and the corresponding partial derivatives are calculated recursively.  

Partial derivatives of the polynomial Pλi with respect to the weights of its topmost node n(λ, i)  are: 
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Partial derivatives of the polynomial Pλi with respect to j
th
 weight of any lower layer node n(x, y) are calculated by: 
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The calculation of partial derivatives by chain rule is illustrated for the hypothetical example of the SOPNN 
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Fig. 2. 

 

 



 8

2.3.3.  LM algorithm in pseudo code 

In order to speedup the minimization of the fitness function the nonnegative damping factor γ is adjusted at the 

beginning of each optimization cycle. The algorithm starts with the best polynomial obtained from GMDH 

algorithm P(xk,a) and calculates the corresponding error e0=e(a) by using (5), sets the maximum allowed damping 

factor γM, maximum number of iterations iM and initializes the damping factor γ=γ0 and the coefficient ν>1. The 

following pseudo code illustrates the simplified flow diagram of the LM algorithm (Marquardt, 1963): 

Begin with: i=0, γ= γ0, e0=e(a) Eq. (5) 

1. Set γ1=γ 

2. Calculate δ1, and e1=e(a+δ1); Eq. (15) and (11) 

3. Set γ2= γ/ν 

4. Calculate δ2 and e2=e(a+δ2); Eq. (15), and (11) 

5. If e1<e0< e2 Then γ=γ1, e0=e1, a=a+δ1 and  GoTo 12. 

6. If e2<e0< e1 Then γ=γ2, e0=e2, a=a+δ2 and GoTo 12. 

7. If e0<e1 and e0< e2 Then γ=γ1·ν, 

8. If γ>γM Then GoTo 13. 

9. γ1=γ 

10. Calculate δ1, and e1=e(a+δ1); Eq. (15) and (11) 

11. If e1<e0 Then γ=γ1, e0=e1, a=a+δ1 

12. i=i+1, If i≤iM Then GoTo 1. 

13. End 

 

The idea of the LM algorithm is very simple but its adaptation to SOPNN is somewhat complicated by the 

recursive calculation of the polynomials and its derivatives. 

 

 

3. SOPNN and MLP models for time-constrained applications 

 

In certain cases the execution of the procedures based on “first principles” may be unfeasible in real time. In 

these cases, it is reasonable to construct the corresponding meta-model (Jin, Chen & Simpson, 2000) by 

maximizing the approximation accuracy for the given computational complexity. To derive a meta-model from 

the original high-complexity model by machine learning technique it is necessary to generate sufficient training 

and validation examples from the original model. SVM (Vapnik, Golowich & Smola, 1997) and ANN (Ferrari & 

Stengel, 2005) can be efficiently used for the approximation of multidimensional nonlinear functions.  

In measurement and control applications (Maric & Ivek, 2011) it is often necessary to maximize the 

approximation accuracy for the given computational complexity. The computational complexity can be measured 

by the corresponding execution time (ET). Our models are tailored for the flow computer based on low computing 

power microcomputer (8-bit/16-MHz) with implemented floating point (FP) subroutines for single precision 

addition, multiplication, division and the exponential function. In this section we will briefly summarize the 

procedure for the estimation of the ET of SOPNN and MLP models in low computing power systems (Maric & 

Ivek, 2011). 

 

3.1. Computational Complexity of SOPNN 

 

The ET of the SOPNN is defined by the total number of polynomial nodes and the maximum ET of the basic 

low order polynomial (1). The maximum ET of the SOPNN (Maric & Ivek, 2011) can be estimated by 

( )mulmuladdaddSOPNN TNTNNT ⋅+⋅⋅≤  (16) 

where N denotes the total number of polynomial nodes, while Nadd and Nmul denote the corresponding total number 

of FP additions and FP multiplications, necessary to calculate the basic polynomial (1), and  Tadd = 50 µs and Tmul 

= 150 µs are the corresponding maximum execution times of the FP addition and FP multiplication. If we rewrite 

the polynomial (1) by Horner’s rule, its calculation is reduced to Nadd = 5 FP additions and Nmul = 5 FP 

multiplications i.e. 

( ) ( )
25322614211 iiiiiiiiiiii zaazzazaazap λλλλλλλλλλλλ +++++= . 
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3.2. Computational Complexity of MLP 

 

We trained the feed-forward MLP consisting of one output neuron and M-1 neurons in the hidden layer, each 

neuron employing the sigmoid activation function. The MLP scheme is shown in Fig. 3. The maximum ET of the 

calculation procedure for the simple MLP with N inputs, one output neuron and M-1 neurons in the hidden layer 

can be estimated by (Maric & Ivek, 2011) 

  ( )( )( ) ( )divaddmuladdmlp TTTMTTNMT +++++−≤ exp11  (17) 

where Texp, and Tdiv denote the maximum execution time for the FP exponential function and FP division, 

respectively. The maximum ETs for the above FP operations in the flow computer are: Texp = 3470 µs and Tdiv = 

430 µs. 

 

 
 

 

Fig. 3. 

 

 

4. Compensation of flow rate error 

 

We investigated the combined effect of the Joule-Thomson (JT) coefficient and the isentropic exponent of a 

natural gas on the accuracy of flow rate measurements based on differential devices (Maric & Ivek, 2010). The 

measurement of the flow rate of a natural gas (ISO-20765-1, 2005) flowing in a pipeline through the orifice plate 

with corner taps (ISO-5167-2, 2003) is illustrated in Fig. 4. 

 

 
 

Fig. 4. 

 

 

A detailed description of the flow rate equation with the corresponding iterative computation scheme is given in 

(ISO-5167-2, 2003). The calculation of the natural gas flow rate depends on multiple parameters: 
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( )dDpTPqq uuuuuu ,,,,,,, κγρ∆=  (18) 

where qu, ρu, γu and κu represent the corresponding mass flow rate, density, viscosity and the isentropic exponent 

calculated at upstream pressure Pu and temperature Tu, while ∆P, D and d denote the differential pressure across 

the orifice plate, internal diameter of the pipe and the orifice, respectively. In case of upstream pressure and 

downstream temperature measurement, as suggested by (ISO-5167-2, 2003), the flow rate (18), changes to: 

( )dDpTPqq ddddud ,,,,,,, κγρ∆=  (19) 

where qd, ρd, γd and κd denote the corresponding mass flow rate, density, viscosity and the isentropic exponent 

calculated in “downstream conditions” i.e. at the upstream pressure pu and the downstream temperature Td. For 

certain natural gas compositions and operating conditions the flow rate qd may differ significantly from qu and 

the corresponding compensation for the temperature drop effects, due to JT expansion, may be necessary in 

order to preserve the requested measurement accuracy (Maric & Ivek, 2010). Precise compensation of the flow 

rate error needs double calculation of the properties of a natural gas and the flow rate what makes the 

compensation unfeasible in real time in low computing power embedded systems. To reduce the computational 

burden we aim to derive a low-complexity flow rate correction factor model that will enable direct compensation 

of the flow rate error caused by the measurement of the downstream temperature. The correction factor model 

has to be simple enough in order to be executable in real time and accurate enough to ensure the requested 

measurement accuracy. 

The flow rate correction factor K can be obtained precisely by dividing the true flow rate qu calculated in the 

upstream conditions, (18), by the flow rate qd calculated in the “downstream conditions” (19): 

d

u

q

q
K = . (20) 

For the given correction factor (20), the flow rate at upstream pressure and temperature (18) can be calculated 

directly from the flow rate computed in “downstream conditions” (19), i.e. du qKq ⋅= . The relative flow rate 

measurement error Er can be estimated by comparing the uncompensated (qd) and precisely calculated (qu) flow 

rate i.e. ( ) uudr qqqE −= . Our objective is to derive the surrogate model of the flow rate correction factor. Given 

the surrogate model (Ksm) for the flow rate correction factor (20), the true flow rate qu can be approximated by: 

dsmsm qKq ⋅= , where qsm denotes the flow rate corrected by the surrogate model (Ksm) of the real correction factor 

K. The relative measurement error Esm can be estimated by comparing the approximate (qsm) and the precisely 

calculated (qu) flow rate i.e. 

( ) uusmsm qqqE −=  (21) 

The correction is modeled by SOPNN and MLP, having equivalent computational complexities, and the 

corresponding approximation errors are compared. Note that natural gas properties, like density, isentropic 

exponent and viscosity, need to be calculated and are involving the natural gas characterization parameters in the 

flow rate calculation, like molar fractions of the components, superior calorific value and relative density. The 

procedures for the correction of the flow rate error and for the estimation of optimal set of input parameters (Table 

1) needed for the correction factor modeling are elaborated in (Maric & Ivek, 2010). 

 

Table 1 
Optimal Set of input Parameters for Natural Gas Flow Rate Correction Factor Modelling 
 

Index Parameter description Range of application 

0 XCO2 - mole fraction of carbon dioxide 0 ≤ XCO2 ≤ 0.20 

1 XH2 - mole fraction of hydrogen 0 ≤ XH2 ≤ 0.10 

2 p - absolute pressure in MPa 0 < p ≤ 12 

3 T - temperature in K 263 ≤ T ≤ 368 

4 ∆p - differential pressure in MPa 0 ≤ ∆p ≤ 0.25p 

5 ρ - density in kg/m3 intermediate result 

6 ρr - relative density 9.55 ≤ ρr ≤ 0.80 

7 HS - superior calorific value in MJ/m3 30 ≤ HS ≤ 45 

8 β - orifice to pipe diameter ratio: d/D 0.1 ≤ β ≤ 0.75 
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The next section describes the correction factor modeling and the results of the simulation of the flow rate error. 

 

 

5. Flow rate error compensation modeling 

 

For the purpose of meta-modeling, the precise calculation of the natural gas flow rate correction factor is 

implemented in software and run on a digital computer. The training data set, validation data set and 10 test data 

sets, each consisting of 20000 samples of correction factor, were randomly sampled across the entire space of 

application (Table 1) in accordance with (Maric & Ivek, 2010). The ranges of application are shown in Table 1. 

The maximum tolerable ET and the maximum acceptable root relative squared error (RRSE) (Maric & Ivek, 

2011) of the correction factor surrogate model in our flow computer prototype are limited to 30 ms and 5%, 

respectively. For the given maximum ET of the model, maximum ET of the FP operations, and 9 input 

parameters, the maximum acceptable number of SOPNN nodes and MLP neurons can be calculated by (16) and 

(17), respectively. In order to build the models with equivalent ET not exceeding 30 ms, the MLP (Fig. 3) is 

limited to 5 neurons with the maximum ET,  Tmlp ≤ 27.75 ms, estimated by (17). The complexity of the 

corresponding SOPNN model (Fig. 5) is limited to maximum 27 polynomial nodes with the maximum ET, 

TSOPNN ≤ 27.00 ms, estimated by (16). 

L 08

L 07

L 06

L 05

L 04

L 03

L 02

L 01

L 00

x 0 x 1

P 0

L 09

L 10

L 11

x 2 x 3 x 4 x 5 x 6 x 7 x 8

P 1

P 3

P 2

P 4

P 5

P 6

P 7

P 8

P 9

P 10

P 11

P 12

P 13

P 14

P 15

P 16

P 17

P 18

P 19

P 20

P 21

P 22

P 23

P 24

P 25

P 26

 

Fig. 5. 
 

The approximation accuracy of the derived models are tested on 10 randomly generated test data sets for the 

flow rate correction factor, each consisting of 20000 samples, and the results are shown in Fig. 6. The 

corresponding mean RRSE and standard deviation are given in Table 2. The results obtained from 10 independent 

test data sets clearly indicate that the models are not over-fitted. 

  

Fig. 6. 
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Table 2 
Average RRSE of the correction factor for 10 test data sets when approximated by MLP and SOPNN models 
 

 
Root relative squared error: Errs in % 

MLP-LM SOPNN SOPNN-PSO SOPNN-LM 

Mean value 3.036 4.558 3.690 1.214 

Standard 

deviation 
0.02525 0.04099 0.04158 0.00968 

 

The MLP-LP in Fig. 6 and Table 2 denotes the feed forward MLP (Fig. 3) with 4+1 neurons trained by the LM 

algorithm. The SOPNN represents the 27-node self-organized model (Fig. 5) trained by the GMDH algorithm 

using the compound measure  ( ) ( ) ( )2

0

2

0 1 exeexewrrsrrswCE TTcEEcE ⋅−+⋅=  for model selection (Maric & Ivek, 

2011), which combines the constraints upon model approximation error (Errs≤Errs0) and ET (Texe≤Texe0) by the 

weighting coefficient (0≤cw≤1). SOPNN-PSO and SOPNN-LM represent the same SOPNN model optimized by 

the PSO and the LM, respectively. From Fig. 6 and Table 2 it can be seen that MLP trained by the LM algorithm 

(MLP-LM) achieves about 33% lower root relative squared error than the non-optimized SOPNN model having 

approximately the same complexity. Optimization of the SOPNN model by PSO (SOPNN-PSO) is time 

consuming. The procedure is computationally intensive due to the high dimensional search space (27*6=162 

weights) requesting large number of particles and iterations. The unknown lower and upper boundaries of the 

search space are complicating the procedure additionally. To overcome the problem the optimization has been 

divided into epochs each consisting of 2000 generations. At the beginning of each epoch the boundaries are fixed 

around the position of the best particle from the previous epoch in the following way: Li=Ai(1-µ), Ui=Ai(1+µ), 

where Ai denotes the position of the best particle in the i
th
 dimension, Li and Ui denote the lower and the upper 

boundary of the i
th

 dimension of the search space and µ is a positive number. The µ has been varied from 0.01 to 

1.5 and the best results, in this particular application, are obtained for µ=1.2. The SOPNN-PSO improves the 

SOPNN accuracy for about 20%. Since the PSO shows very slow but constant improvement of the model, the LM 

algorithm for the optimization of the SOPNN weights has been implemented in order to speed-up the 

convergence. 

The SOPNN-LM converges rapidly. It decreased the SOPNN error almost four times (73.3%) and 

outperformed all other models. It achieved 60% better accuracy than the corresponding MLP-LM. In each cycle of 

the LM algorithm, the damping coefficient has been automatically adjusted for maximum decrease of the RRSE 

and the model converges rapidly to its optimum weights. The same effect of the LM optimization on model error 

has been observed for models at all layers. Fig. 7 illustrates the average error in logarithmic scale obtained for the 

eight best ranked models from each layer, before (SOPNN) and after they have been optimized by the LM 

algorithm (SOPNN-LM). 

 

  

Fig. 7. 

 

The results show that the SOPNN polynomial relation offer substantially better approximation abilities than it 

can be concluded from the characteristics of raw models obtained directly from the GMDH algorithm. We have 

obtained similar results by modeling the procedures for the calculation of various thermodynamic properties of 

natural gas including molar heat capacities, speed of sound, etc.  

The model generated by the GMDH algorithm is generally far from optimal since the weights of each node-

polynomial, after calculated by the regression, remain unchanged throughout the rest of the learning process. The 

GMDH algorithm is trying to maximize the approximation accuracy of the model by embedding the system 

internal dependencies into the model structure. To achieve this it performs the regression of the polynomial 
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weights of the uppermost node only. In this way the GMDH algorithm controlled by the imposed metrics 

produces the model that generally achieves the structure, the weights and the approximation accuracy that can be 

considered as a very good starting point for further optimization. Next Section demonstrates the outstanding 

ability of the SOPNN to model the polynomial-type recurrence relations. 

 

 

 

6. Multiple Superimposed Oscillations Modeling 

 

In this section we discuss the learning of the recurrence relations from time series by using SOPNN. We 

analyze the performances of SOPNN on multiple superimposed oscillations (MSO) task that has already been 

attempted with varying degrees of success by using ANN and SVM (Xue, Yang & Haykin, 2007; Schmidhuber, 

Wierstra, Gagliolo & Gomez, 2007; Holzmann & Hauser, 2010; Ceperic, Gielen & Baric, 2012). The following 

multiple sinusoids are modeled:  

( ) ( )nny 311.0sin2.0sin2 += , (22) 

( )nyy 42.0sin23 += , (23) 

( )nyy 51.0sin34 += , (24) 

( )nyy 74.0sin45 += , (25) 

where n=1,…,700. Note that the frequencies of the sinusoids are not integer multiples of each other. As described 

in (Ceperic, Gielen & Baric, 2012) the first 400 samples (n=1,...,400) are used to train the model, while the rest of 

data (n=401,...,700) is used to test the model. The data is generated in double floating point (FP) number 

precision. We have limited the complexity of our SOPNN to maximum 20 nodes (N), where each node-

polynomial can be calculated by only 5 FP additions and 5 FP multiplications. In the worst case the maximum 

total number of 100 FP additions and 100 FP multiplications would be necessary to calculate the SOPNN output, 

which is far below the computational complexities of the corresponding models described in the above mentioned 

references. As in (Ceperic, Gielen & Baric, 2012), we limited the maximum dimension (D) of the input space to 

50 what corresponds to maximum 50 delayed output samples in the recurrent configuration. 

 

6.1. Comparison with other approaches 

 

Table 3 shows the mean square error (MSE) and the normalized root mean square error (NRMSE) (Holzmann 

& Hauser, 2010) on the test data set, obtained by the non-optimized GMDH model (SOPNN) and by the same 

model after it has been optimized by the proposed LM algorithm (SOPNN-LM). In Table 3, D denotes the 

dimensionality, i.e. the corresponding total number of delayed output signals, and N denotes the total number of 

nodes in SOPNN. From Table 3 it can be seen that the dimension (D) of the input space and the number of nodes 

(N) of the SOPNN are increasing with the number of sinusoids in the MSO in order to preserve high prediction 

accuracy. 

 

Table 3 

Mean square error in the prediction of the next sample of the MSO test data set (y2, y3, y4, y5; n=401,...,700) by the 

corresponding non-optimized (SOPNN) and optimized (SOPNN-LM) N-node, D-dimensional SOPNN model 

generated by the GMDH algorithm using the corresponding training data set (y2, y3, y4, y5; n=1,...,400) 

 
   SOPNN SOPNN-LM 

MSO D N MSE NRMSE MSE NRMSE 

y2 4 3 1.28E-04 9.16E-03 3.07E-27 5.53E-14 

y3 10 8 1.16E-05 2.75E-03 3.89E-25 5.04E-13 

y4 16 13 6.47E-05 5.52E-03 2.28E-24 1.04E-12 

y5 50 16 2.66E-04 1.01E-02 6.06E-25 4.84E-13 

 

Xue, Yang & Haykin, 2007, use four reservoirs each with 100 neurons to approximate the two sine problem 

(22) with “decoupled echo state network with lateral inhibition”. The MSE they obtained on test data set was 
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3·10
-4

 and is almost 23 orders of magnitude higher than the MSE obtained by the corresponding y2 SOPNN-LM 

model. Also, a huge complexity of their model is incomparable to low complexity of our 3-node, 4-dimensional y2 

SOPNN-LM model (Table 3). Schmidhuber, Wierstra, Gagliolo & Gomez, 2007, use PI-EVOLINO and EVOKE 

networks to model the MSO data sets. They reported the following normalized root mean square errors: y2: 

NRMSE=4.15E-3, y3: NRMSE=8.04E-3, y4: NRMSE=1.01E-1 y5: NRMSE=1.66E-1. The NRMSE errors they 

reported are at least 9 orders of magnitude worse than the results obtained by the optimized SOPNN-LM (Table 

3). Also, the generalization results they obtained for two sinusoids y2 by the EVOKE networks, which are based 

on SVM, are even much worse. The huge complexity of their models cannot be compared with the simplicity of 

SOPNN models. Ceperic, Gielen & Baric, 2012, use recurrent sparse support vector regression machines trained 

by active learning in time-domain combined with the optimization of SVM hyper parameters to model the MSO 

data sets. They reported the following errors: 

• y2: MSE=3.57E-8, NRMSE=1.88E-4, using 13 SV; 

• y3: MSE=2.33E-6, NRMSE=1.23E-3, using 15 SV; 

• y4: MSE=1.75E-5, NRMSE=2.86E-3, using 15 SV; 

• y5: MSE=9.16E-5, NRMSE=5.94E-3, using 15 SV, 

which are considerably better than the errors reported in (Xue, Yang & Haykin, 2007) and (Schmidhuber, 

Wierstra, Gagliolo & Gomez, 2007) but still the orders of magnitude worse than the errors obtained by the 

corresponding optimized SOPNN-LM model shown in Table 3. Also the computational complexity (Maric & 

Ivek, 2011) of the SVM model with 13 or 15 support vectors is much higher than the complexity of the 

corresponding SOPNN-LM model with 3, 8, 13 or 16 2-dimensional, 2
nd

 order node-polynomials (1).  

Holzmann & Hauser, 2010, achieved very good results using echo state networks (ESN) with arbitrary infinite 

impulse response filter neurons and a delay&sum readout. They used a reservoir of 100 specialized neurons 

tuned to different frequencies, which are able to generate a superposition of sinusoids. They did not report the 

results in numerical form but from graphical presentation of the NRMSE in logarithmic scale it can be seen that 

their errors for y2 (NRMSE>2E-9), y3 (NRMSE>2E-7), y4 (NRMSE>1E-5) and y5 (NRMSE>5E-5) are more than 

4 orders of magnitude higher than the corresponding SOPNN-LM errors (Table 3). Again, the huge complexity 

of ESN models cannot be compared with the simplicity of the corresponding SOPNN. 

 

6.2. Generalization abilities of SOPNN 

 

Table 4 shows the MSE and the NRMSE for the next sample prediction obtained on various combinations of 

sinusoids from y5 MSO by using the same model (Fig. 8) generated and optimized on y5 training data. Note that 

the dimension of each test data set in Table 4 is equal to 50 as determined by the model (SOPNN-LM-y5), which 

is built and optimized by using 50-dimensional training data set obtained from the first 400 samples (n=1,...,400) 

of y5 MSO (25). The output from the 16
th
 node-polynomial P15 in Fig. 8 is the next predicted output (x50) 

calculated from 50 delayed outputs x0,…,x49, where x0 denotes the oldest and x49 the most recent output from 50-

samples window. In the next step the outputs x1,...,x50 are used to predict the output x51 and so on. From Fig. 8 it 

can be seen that the SOPNN model uses only 12 out of 50 delayed outputs to predict the next output. As can be 

seen from Table 4, the same SOPNN-LM-y5 model is able to accurately predict any subset of sinusoids from y5 

MSO (25). It is extremely superior to any model tailored to a specific MSO by various ANN and SVM 

approaches. 

In order to demonstrate another superior characteristic of SOPNN, let us consider for example the following 

MSO signal obtained after changing the amplitudes and phase shifts of all the corresponding sinusoids of y5 MSO 

(25) e.g.: 

( ) ( )
( ) ( )

( )n

nn

nny a

74.032.0sin8.2

51.01sin35.142.01.2sin1.2

311.07.0sin8.12.03.1sin2.15

−

−+−++

−−−+=

. (26) 

The next sample prediction errors MSE=1.91E-22 and NRMSE=4.45E-12 have been obtained by the same 

SOPNN-LM-y5 model after predicting the data set (y5a, n=401,...,700) arranged as 50 delayed output samples in a 

recurrent configuration. Fig. 9 illustrates the modeled values for y5a (26) and the corresponding model error for the 

first 300 steps calculated by the SOPNN-LM-y5 (Fig. 8). 
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Table 4 

MSE and RMSE in the prediction of the next sample of the MSO and single sinusoid test data obtained by the 

same 50-Dimensional SOPNN generated and optimized on y5 training data 

 
Test data set SOPNN-LM-y5 

MSO MSE NRMSE 

y2 5.31E-26 2.30E-13 

y3 8.16E-26 2.31E-13 

y4 9.76E-26 2.14E-13 

y5 6.06E-25 4.84E-13 

sin(0.2n) 5.76E-26 3.39E-13 

sin(0.311n) 5.09E-26 3.21E-13 

sin(0.42n) 4.63E-26 3.04E-13 

sin(0.51n) 4.56E-26 3.01E-13 

sin(0.74n) 2.56E-26 2.26E-13 
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Fig. 9. 
 

Fig. 9 shows the results of the prediction of y5a test data by SOPNN-LM-y5 model starting with y5a data 

vector, which consists of 50 delayed outputs preceding the output sample n=401. Fig. 9(a) shows the prediction 

of y5a test data by SOPNN-LM-y5 for the prediction horizon from 0 to 300 samples. Fig. 9(b) shows the 

corresponding prediction error for the same prediction horizon. The model preserves high accuracy even if 

changing the amplitudes and phases of the sinusoids from which the y5 MSO signal is composed. Note that 

maximum absolute prediction error did not exceed 8·10
-10

 in the whole prediction horizon.  

Fig. 10 shows the absolute model error in logarithmic scale when predicting test data for y5 MSO (25) and y5a 

MSO (26) by the same SOPNN-LM-y5 model in the prediction horizon from 0 to 3000 samples. 
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Fig. 10. 

 

From Fig. 10 it can be seen that the prediction error is increasing exponentially when increasing the 

prediction horizon. When using SOPNN-LM-y5 to predict the y5a MSO test data (black line), the corresponding 

maximum errors are more than 50 times higher than the errors obtained on y5 MSO test data (gray line). But, as 

can be concluded from Fig. 9 and Fig. 10, the y5a MSO prediction error still remains extremely low in a wide 

prediction horizon. Similar error characteristics are obtained by SOPNN-LM-y5 model when predicting any 

subset of sinusoids from y5 MSO. 

From Table 4 and Figs. 9 and 10 it can be seen that unlike any other above mentioned approach the SOPNN, 

optimized by the LM algorithm, has extraordinary generalization abilities. It can accurately predict in a wide 

prediction horizon any subset of sinusoids from the MSO signal it has been trained for, even if their amplitudes 

and phases are significantly changed. The same equations can be also used to accurately predict any sinusoid or a 

subset of superimposed sinusoids from y5 MSO (25). The equations and the coefficients of the SOPNN-LM-y5 

model (Fig. 8) are given in Appendix A for testing purposes. 

 

 

7. Conclusion 

 

The paper presents an efficient adaptation of the Levenberg-Marquardt algorithm for the optimization of the 

SOPNN. The paper points out that LM algorithm makes the SOPNN very competitive for the approximation of 

complex systems and procedures, particularly in real-time applications, since high approximation accuracy is 

generally achieved with low complexity models. In computationally intensive real-time applications the complex 

procedures may be replaced by simplified SOPNN surrogates and thus become feasible in real-time. The paper 

particularly emphasizes a high accuracy/complexity ratio of the optimized model and the simplicity of its 

implementation in software. 

The LM algorithm has been tested by modeling the computationally intensive procedure for the correction of 

the flow rate error. It was shown that the approximation characteristics of the original SOPNN can be improved 

substantially when optimizing the model weights by the LM algorithm. The SOPNN outperformed the 

corresponding MLP model when both optimized by the LM algorithm and having approximately equal 

computational complexities. Similar results have been obtained by modeling the procedures for the calculation of 

various thermodynamic properties of a natural gas. 

The SOPNN proves to be extremely efficient in learning polynomial-type recurrence relations from time series. 

When optimized by the LM algorithm the SOPNN outperformed the ANN and the SVM in MSO modeling. 

When modeling a MSO recurrence relation the optimized SOPNN displays outstanding generalization ability, 

uncommon to ANN and SVM models, and can accurately predict any subset of superimposed sinusoids from the 

MSO signal it has been trained for. The model prediction error remains very low even if changing the amplitudes 

and phases of the superimposed sine waves. SOPNN is also able to learn with extreme accuracy the recurrence 
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relations of multiple products of sine waves, modulated MSO, damped MSO, etc. The ability to learn the 

recurrence relation and to accurately predict the future values from past known samples opens the possibilities of 

using the SOPNN in modeling the dynamic behavior of complex systems. 

 

 

Appendix A 
 

The concatenated polynomial relation of the SOPNN model from Fig. 8 

P = P15(P14(P13(P12(P11(P10(P9(P8(P7(P6(P5(P4(P3(P2(P0(x48,x49),P1(x47,x49)),x41),x0),x33),x48),x15),x2),x41),x33), 

 P1(x47,x49)),x46),x37),x43),x14) 

can be computed by 16 basic polynomials, 

P0(x48,x49), P1(x47,x49), P2(P0,P1), P3(P2,P41), P4(P3,x1), P5(P4,x33), P6(P5,x48), P7(P6,x15), P8(P7,x2), P9(P8,x41), 

P10(P9,x33), P11(P10,P1), P12(P11,x46), P13(P12,x37), P14(P13,x43), P15(P14,x14), 

where the basic polynomials are calculated by 

( ) 215,

2

24,

2

13,22,11,0,21, zzazazazazaazzP iiiiiii +++++=  

using the following optimized double precision coefficients: 

a0,0=2.4089806255330348e-001, a0,1=-2.0609933517875878e-002, a0,2=1.7531109297004226e+000, 

a0,3=1.8381037377004718e-009, a0,4=4.6419038970178617e-005, a0,5= -8.6782752584535839e-008, 

 
a1,0=-6.6581136153327869e-001, a1,1=-2.5039829582659459e-009, a1,2=1.1149843617468462e+000, 
a1,3=-6.7607152698616724e-012, a1,4=2.9528090425706862e-005, a1,5=-1.5739033560547226e-011, 
 
a2,0=-7.8345182851489101e-002, a2,1=3.0222771938049342e+000, a2,2=-1.4659393406572994e+000, 
a2,3=3.1719446468444557e-001, a2,4=7.8358643543900208e-001, a2,5=-9.9744717755725765e-001, 
  
a3,0=-7.1836925226834172e-002, a3,1=8.2254766389549738e-001, a3,2=-5.8661286884162590e-002, 
a3,3=-9.4478934614005779e-007, a3,4=1.0203172272677782e-004, a3,5=-7.1603355247232822e-012, 
  
a4,0=-7.8622868604762711e-002, a4,1=8.3924346238730552e-001, a4,2=-2.3551250558386455e-001, 
a4,3=5.8200253943802276e-008, a4,4=4.5880465656650697e-009, a4,5=-3.2699243420244513e-008, 
  
a5,0=-5.7663794534583354e-002, a5,1=8.5302808485752646e-001, a5,2=-1.7417718227724835e-001, 
a5,3=-7.0354372488410098e-008, a5,4=5.3723532859500584e-005, a5,5=-8.4611612366864986e-011,  
 
a6,0=-1.0373663629806662e-001, a6,1=8.5125981079556934e-001, a6,2=-6.4996174285114006e-001, 
a6,3=4.8155545589541646e-010, a6,4=-6.7537943733023871e-005, a6,5=-1.1056387926085760e-009,  
 
a7,0=-8.2497971373195644e-002, a7,1=8.9229466216913467e-001, a7,2=1.7609360498148038e-002, 
a7,3=5.2983902284172561e-008, a7,4=2.1005689852310062e-011, a7,5=2.1265022979134083e-009,  
 
a8,0=-7.9273328703511364e-002, a8,1=8.9884511364949637e-001, a8,2=6.0847463081777652e-002, 
a8,3=1.1340108864742532e-007, a8,4=7.9841230450439977e-010, a8,5=2.3588069735832587e-008,  
 
a9,0=-6.4817529180249148e-002, a9,1=8.9631687643991975e-001, a9,2=-3.5335719981528518e-001, 
a9,3=-1.9340241083767072e-007, a9,4=-4.4699594154393525e-005, a9,5=9.3368507730513902e-011,  
 
a10,0=-8.6117614268338985e-002, a10,1=9.4290247056516585e-001, a10,2=3.2597051000195628e-003, 
a10,3=1.0750613301384445e-009, a10,4=-3.0999033115579099e-005, a10,5=6.4343070771435519e-012,  
 
a11,0=-3.0294545534514258e-002, a11,1=1.0343523735701383e+000, a11,2=1.5009384616591143e-001, 
a11,3=-1.5912006880327145e-009, a11,4=1.6831199002889785e-004, a11,5=-1.4626868034716834e-010, 
 
a12,0=-4.5010467101454295e-002, a12,1=9.4652096952271103e-001, a12,2=-3.7223918066824557e-001, 
a12,3=-2.0759958560079309e-009, a12,4=-3.9017659043448758e-010, a12,5=1.9822967708575749e-009, 
 
a13,0=-4.3242875776603580e-002, a13,1=9.9731718722116014e-001, a13,2=6.0688857337153193e-002, 
a13,3=-3.4003929112323072e-009, a13,4=-2.2978021794518529e-011, a13,5=-7.5532778919304302e-010, 
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a14,0=-3.3716883954380848e-002, a14,1=1.0001258995629190e+000, a14,2=3.7500419296080839e-001, 
a14,3=1.7889822638343193e-009, a14,4=-6.2592651157127744e-010, a14,5=-3.3383808879078198e-009, 
 
a15,0=-3.3337185503942837e-002, a15,1=1.0819274725734265e+000, a15,2=3.3496218434058894e-002, 
a15,3=4.8130435297607735e-009, a15,4=-1.9617688051299804e-014, a15,5=-1.2826297843293008e-013. 

 

The variables x0, …,x49 correspond to the delayed output samples in recurrent configuration where x0 denotes the 

oldest and x49 the most recent sample as described in Section 6. 
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Figure captions 

 
Fig. 1. Illustration of SOPNN construction. 

 

Fig. 2. Hypothetical example of SOPNN. 

 

Fig. 3. Feed forward MLP scheme. 

 

Fig. 4. A schematic diagram of the natural gas flow rate measurement using an orifice plate with corner taps. 

 
Fig. 5. SOPNN model of flow-rate correction factor satisfying the constraint on maximum ET. 
 
Fig. 6. Root relative squared error for MLP and SOPNN models  measured on 10 randomly generated test data 
sets. 

 
Fig. 7. Average RRSE calculated before and after optimization by the LM algorithm of the eight best SOPNN 
models from each layer 

Fig. 8. SOPNN modeled and optimized by using (y5, n=1,...,400) 50-dimensional training data set. The output 
from P15 is calculated from 50 delayed outputs x0,…,x49, and represents the next predicted output x50. Note that x0 
is the oldest and x49 is the most recent output from 50-sample window. 

Fig. 9. Illustration of the modeled values and the model error for the first 300 test data samples (y5a, 
n=401,…,700) obtained by the model SOPNN-LM-y5 (Fig. 8) with 50 delayed outputs in recurrent configuration: 
(a) modeled values for y5a, (b) model error for y5a. Note that SOPNN-LM-y5 is learned on y5 (25) training data and 
used to predict y5a (26) test data. 

 
Fig. 10. Illustration of the absolute prediction error in Log scale for the first 3000 test data samples of y5 and y5a, 
(n=401,…,3400), obtained by the model SOPNN-LM-y5 with 50 delayed outputs in recurrent configuration. 

 


