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Abstract

We introduce a new iterative Krylov subspace-based eigensolver for the simu-
lation of macromolecular motions on desktop multithreaded platforms equipped
with multicore processors and, possibly, a graphics accelerator (GPU). The
method consists of two stages, with the original problem first reduced into
a simpler band-structured form by means of a high-performance compute-
intensive procedure. This is followed by a memory-intensive but low-cost
Krylov iteration, which is off-loaded to be computed on the GPU by means
of an efficient data-parallel kernel.

The experimental results reveal the performance of the new eigensolver.
Concretely, when applied to the simulation of macromolecules with a few
thousands degrees of freedom and the number of eigenpairs to be computed
is small to moderate, the new solver outperforms other methods implemented
as part of high-performance state-of-the-art packages for multithreaded ar-
chitectures.
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Significance and Novelty of this paper

In this paper we further enhance the appeal of the Krylov subspace-based
methods to model the functional motions of large-scale macromolecular ma-
chines. We introduce a new iterative solver that combines an initial trans-
formation of the original data into band-structured problem, followed by the
classical Krylov iteration applied to this reduced problem. There are two
advantages of the new “band-Krylov” method:

1. It transfers a large fraction of the iteration cost into the initial, efficient
reduction to band form.

2. Subsequently, it applies the low-performance Krylov iteration on a
smaller problem which implies a lower cost of this stage and, addition-
ally, the possibility of accommodating the data closer to the processor
floating-point units (FPUs).

For the second stage, as an additional contribution of this work, we develop
an efficient implementation of a symmetric band matrix-vector product that
significantly accelerates the computation of the Krylov iteration on a graphics
processor unit (GPU).

The results with large-scale macromolecules, featuring several tens of
thousands DOFs, show that combination of these three factors (reduction
to band form, iterative procedure with the reduced band matrix, and accel-
eration of the iteration by means of a fast GPU kernel) offers a more efficient
solution. The figures expose the advantages of the new band-Krylov solver
compared with the original “full-Krylov” method as well as the methods
included in state-of-the-art libraries for high-performance multicore servers
with or without GPUs. Moreover, the new band–Krylov solver can handle
larger problems on the GPU, as the initial reduction to band form can be per-
formed out-of-core from the perspective of the accelerator, while the Krylov
iteration proceeds in-core on a band matrix of reduced size.
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Davor Davidovićd, José R. López–Blancoc, Enrique S. Quintana-Ort́ıa
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1. Introduction

Living cells consist of long chains of aminoacids and nucleotides, usu-
ally assembled into large macromolecular machines that support the main
biological functions. At the molecular level, the biological activity of these
components can be studied via Molecular Dynamics (MD) simulations of
their dynamics and interactions. These studies provide detailed information
on the fluctuations and conformational changes of protein and nucleic acids
macromolecules using available 3D atomic structures. Unfortunately, the
large size of these macromolecules and the long time scale of their motion
turn MD simulations too costly or even prohibitive in practice.

Coarse-grain (CG) models combined with normal mode analysis (NMA)
compose a powerful alternative to simulate collective motions of macromolec-
ular complexes at extended time scales [1, 2]. For example, the experiments
in [3, 4, 5, 6, 7, 8] demonstrate that CG-NMA can efficiently model molecu-
lar flexibility, thus becoming an appealing alternative for expensive atomistic
simulations. Moreover, reformulating NMA in internal coordinates (ICs) [9]
greatly reduces the number of degrees of freedom (DOF), extending the ap-
plicability of NMA to even larger macrocomplexes.

The diagonalization of a large-scale matrix pair (i.e., the solution of
a generalized eigenproblem) is the most expensive operation in IC-NMA.
In [10] we compared two approaches to compute a fraction of the spectrum
of moderate-scale dense symmetric definite generalized eigenproblems, based
respectively on the reduction to tridiagonal form and the Krylov subspace it-
eration. In [11] we particularized this analysis for molecular dynamics (MD)
simulations, showing that the iterative Krylov subspaces are an attractive so-
lution for large-scale macromolecules, with up to 150,000 degrees of freedom
(DOFs), when tackled on a cluster of multicore processors.

In this paper we further enhance the appeal of the Krylov subspace-based
methods by introducing a new iterative solver that combines an initial trans-
formation of the original data into band-structured problem, followed by the
classical Krylov iteration applied to this reduced problem. The advantages
of the new “band-Krylov” method lie in that i) it transfers a large fraction
of the iteration cost into the initial, efficient reduction to band form; and ii)
it then operates the low-performance Krylov iteration on a smaller problem
which implies a lower cost of this stage and, additionally, the possibility of
accommodating the data closer to the processor floating-point units (FPUs).
For the second stage, as an additional contribution of this work, we develop
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an efficient implementation of a symmetric band matrix-vector product that
significantly accelerates the computation of the Krylov iteration on a graphics
processing unit (GPU).

Overall, we expect that the combination of these three factors (fast and
efficient reduction to band form, iterative procedure with the reduced band
matrix, and acceleration of the iteration by means of a fast GPU kernel)
offers a more efficient solution for moderate- to large-scale problems as the
number of iterations required for convergence grows. The results with large-
scale macromolecules, featuring several tens of thousands DOFs, expose the
advantages of the new band-Krylov solver compared with the original “full-
Krylov” method as well as the methods included in linear algebra libraries
for high-performance multicore servers with or without GPUs.

The rest of the paper is structured as follows. In Section 2 we summarize
the principles behind macromolecular motion simulation in internal coordi-
nates, identifying the key numerical problem appearing in this approach. In
Section 3 we revisit some popular numerically-stable methods for the solution
of eigenvalue problems, and we provide a list of existing libraries and pack-
ages that implement these methods for current multicore architectures and
GPUs. This section also discusses the properties of these methods from the
point of view of computational cost and performance, motivating the intro-
duction of the new fast cache-efficient band–Krylov eigensolver in Section 4.
The experimental results follow in Section 5 using a recent hybrid platform
consisting of a 6-core Intel Xeon “Sandy Bridge” processor, connected to
an NVIDIA “Kepler” graphics card. Finally, the paper is closed with a few
concluding remarks in Section 6.

2. Capturing Macromolecular Dynamics in Internal Coordinates

Macromolecular motions can be described in normal mode analysis (NMA)
by approximating the potential (Hessian) and kinetic energies as quadratic
functions of the atomic positions and velocities, respectively. This in turn al-
lows the decomposition of the motion into a series of vectors that encode the
potential displacement directions and can be obtained from the modes (i.e.,
the eigenvalues) of the second derivative of the potential and kinetic energy
matrices. The low frequency modes, in particular, correspond to soft collec-
tive conformational changes, which are related to functional motions [12, 13],
and feature a close relation with atomistic MD [14, 15, 16].
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iMod [9] exploits classical NMA formulations in internal coordinates
(ICs) while extending them to model large-scale macromolecular structures.
In this representation, the potential energy of the system is expressed as

A =
1

2
q HqT , (1)

where the vector q contains the displacement from the equilibrium confor-
mation (q = qe − q0);

H = (Hα,β) =
∂2V

∂qα∂qβ
(2)

is the Hessian matrix; and the α and β subindices represent any IC to com-
pute the partial derivatives. Furthermore,

V =
∑
i<j

Fij(r
e
ij − r0ij)2, (3)

where Fij is the spring stiffness matrix, and rij denotes the distance between
atoms i and j.

Additionally, the kinetic energy is given by:

B =
1

2
q̄ T q̄T , (4)

where q̄ = d q/dt, and the kinetic energy matrix is defined as

T = (Tα,β) =
∑
i

mi
∂ri
∂qα
· ∂ri
∂qβ

. (5)

Here, the mass of the i-th atom is mi, while ri stands for the corresponding
Cartesian position vector. In general, the solution of the Lagrange equation
of motion (L = T − V ) can be encoded in the lowest frequency components
of the eigenproblem defined by the matrix pair (A,B); see [11] for details.

3. Solution of Symmetric Definite Eigenproblems

The IC-NMA method described in Section 2 requires the solution of a
generalized symmetric definite eigenproblem of the form

AX = BXΛ, (6)
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where A ∈ Rn×n and B ∈ Rn×n are both dense symmetric positive definite,
corresponding respectively to the Hessian and kinetic energy matrices that
control the dynamics of the macromolecular complex; Λ ∈ Rs×s is a diagonal
matrix with the s sought-after smallest eigenvalues (or modes) of the matrix
pair (A,B) on its diagonal entries; and the columns of X ∈ Rn×s contain
the associated unknown eigenvectors [17]. Furthermore, for accurate macro-
molecular motion simulation n ≥ 10,000, but typically only the s smallest
eigenpairs (i.e., the eigenvalues and eigenvectors for the low energy modes)
are necessary, with s ≈ 2–10% of n.

Numerically-reliable eigensolvers for (6) initially transform this general-
ized equation into a standard symmetric eigenproblem:

CY = Y Λ, (7)

where C = U−TAU−1 ∈ Rn×n is symmetric, Y = UX ∈ Rn×s, and U ∈ Rn×n

is the Cholesky factor of B (i.e., B = UTU with U upper triangular) [17].
Thus, the standard eigenproblem (7) shares its eigenvalues with those of (6),
while the original eigenvectors can be easily recovered from X = U−1Y ,
which only requires the solution of a few triangular linear system.

Since all the methods described next share the initial transformation into
a standard eigenvalue problem and the back-transform to obtain the original
eigenvectors, we will omit these two operations from the following discussion.

3.1. Direct eigensolvers

A popular approach to solve (7) commences by initially reducing C to a
symmetric tridiagonal matrix T ∈ Rn×n via an eigenvalue-preserving simi-
larity transform:

QTCQ = T, (8)

defined by the orthogonal matrix Q ∈ Rn×n. This is followed by a subse-
quent refinement to extract the eigenvalues from the associated symmetric
tridiagonal eigenproblem:

TZ = ZΛ, (9)

where Z ∈ Rn×s comprises the sought-after eigenvectors of T . Finally, the
eigenvectors of the standard problem are recovered from Y = QZ. From
the numerical perspective, the most involved part of this approach is the
solution of the tridiagonal eigenproblem (9), which can be reliably tackled,
e.g., via the QR algorithm or the MRRR method [17], both available as
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part of LAPACK [18]. On the other hand, from the computational point
of view, the most expensive component in terms of floating-point arithmetic
operations (flops) is the reduction of C to tridiagonal form (8). In particular,
this reduction costs O(n3) flops while, in general, the subsequent solution of
the tridiagonal eigenproblem only requires O(n2) flops [17]. Recovering Y
from Z only adds O(n2s) flops to these figures.

We next describe two alternative approaches to obtain the tridiagonal
matrix T and the associated orthogonal factor Q, and refer to numerical
software packages for this purpose.

3.1.1. One-stage reduction to tridiagonal form

LAPACK’s routine sytrd performs the transformation (8) in a sin-
gle stage via Householder reflectors. Specifically, at a given iteration j =
1, 2, . . . , n− 2, this procedure computes a reflector Hj that annihilates all el-
ements below the first subdiagonal of the j-th column of the current matrix
C(j−1), with C(0) = C, accumulating this transform as

C(j) = HT
j C

(j−1)Hj = HT
j (HT

j−1H
T
j−2 · · ·HT

1 CH1 · · ·Hj−1) Hj, (10)

so that Q = H1 · · ·Hn−3Hn−2 yields the desired reduction in (8). To attain
high performance, the application of these reflectors is partially delayed, ag-
gregating groups of b (block size) transforms, so as to permit a more efficient
update of C via a blocked algorithm [17]. The overall cost of performing
the reduction (8) using routine sytrd is 4n3/3 flops, provided b � n. Fur-
thermore, the back-transform Y = QZ can be computed using LAPACK’s
routine ormtr, at a cost of 2n2s additional flops, without ever forming Q.

Following the traditional approach, the LAPACK routines for this proce-
dure extract parallelism for (general-purpose) multicore processors by rely-
ing on a multithreaded implementation of BLAS. Alternative multithreaded
implementations of these procedures have been recently proposed for (many-
core) GPUs as part of the MAGMA [19] library.

3.1.2. Multi-stage reduction to tridiagonal form

The problem with the one-stage reduction just described is that half of
the flops performed by routine sytrd are cast in terms of the symmetric
matrix-vector product (symv), which delivers a small fraction of the peak
performance on current multicore and manycore architectures.
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The multi-stage methods shift a major part of the computations necessary
for the reduction into symmetric rank-2b updates (syr2k), basically equiv-
alent to the efficient matrix-matrix product. In exchange, these methods
incur a considerable increase of the computational cost. Let us consider, for
simplicity, a two-stage algorithm. The idea is to initially transform C into
a symmetric band matrix W ∈ Rn×n, with bandwidth w, via an orthogonal
similarity transform Q1, to then further reduce W into the tridiagonal ma-
trix T using an additional orthogonal similarity transform Q2. The first stage
mostly consists of fast rank-2b stages, while the type of operations appearing
in the second stage are the same as those in the slow reduction to tridiagonal
form. Provided w � n, this two-stage calculation of T roughly costs 4n3/3
flops, i.e., the same as the one-stage algorithm. However, the construction
of the orthogonal matrix Q̂ = Q1Q2 that performs the full transformation
QT

2 (QT
1CQ1)Q2 = QT

2WQ2 = T , necessary to recover the eigenvectors of Y
from those of Z, becomes considerably more expensive, requiring 2n3 + 2n2s
additional flops.

There exists a complete implementation of the two-stage method in the
SBR toolbox [20], which can leverage a multithreaded implementation of
BLAS to exploit the hardware concurrency of current multicore processors.
For these same architectures one can also leverage the codes in the PLASMA
library [21]. A reimplementation of this approach to tackle large-scale prob-
lems, which do not fit into the memory of the GPU, was done in [22].
ELPA [23] and MAGMA [24] implement a variant of the two-stage method,
for clusters and multi-GPU platforms, respectively. Both implementations
exhibit significantly lower computational cost compared with the original
SBR algorithm, but they are still significantly more expensive than the one-
stage approach.

3.2. Iterative (Krylov subspace-based) eigensolvers

Alternatively, the solution of symmetric eigenproblems can be tackled by
means of a Krylov subspace-based method [17], an inexpensive choice for the
solution of large-scale dense eigenproblems on multicore architectures and
GPUs [25].

When applied to C, starting from an initial random vector v1 ∈ Rn, all
Krylov subspace-based methods construct a basis of the Krylov subspace
spanned by this matrix, defined as

K(C, v1, n) = span{v1, Cv1, . . . , Cn−1v1} = span{v1, v2, . . . , vn}. (11)
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If C is symmetric and positive definite, this matrix can be reduced to tridiago-
nal form via similarity orthonormal transform defined by V = [v1, v2, . . . , vn];
i.e.,

V TCV = T =


α1 β1 0

β1 α2
. . .

. . . . . . βn−1

0 βn−1 αn

 , V TV = I. (12)

Thus, equating the columns in CV = V T , the Lanczos three-term recurrence
is obtained

Cvk = βk−1vk−1 + αkvk + βkvk+1, (13)

with β0v0 = 0. Given the orthonormality of V , and operating properly on the
recurrence, we obtain the expressions to compute the components of matrix
T , which are the foundation of the Lanczos method:

αk = vTkAvk,
rk = βkvk+1 = (C − αkI)vk − βk−1vk−1,
βk = ||rk||2

(14)

such that the reduction in the m-th iteration is given, in matrix form, by

CVm = VmTm + rme
T
m (15)

This method exhibits low computational cost per iteration (in general, 2n2

flops) and, moreover, does not require an appreciable additional storage
space. But the main feature of the Lanczos method is that the extremal
eigenvalues of matrix Tm are good approximation of the extremal eigenval-
ues of matrix C, specially if there are not clustered, improving this condition
when m increases. Empirically, it has been proved that if the number of
sought-after eigenvalues of C is equal to s the size of the Krylov subspace has
to be m ≥ 2s. For macromolecular simulations it is convenient to compute
the largest s eigenvalues of the pair (B,A), instead of the smallest s eigen-
values of the correlated problem (A,B) as, for these particular applications,
the former have the appealing property of being extremal and well-separated,
ensuring fast convergence of the iteration.

Krylov subspace methods are implemented as part of ARPACK [26]. This
numerical package features a “reverse communication” interface so that the
user is in charge of providing an efficient implementation of symv. We note

8



that this is the only operation that “interacts” with the matrix in ARPACK,
concentrating the bulk of the operations performed in this library. Efficient
implementations of symv are offered as part of most tuned implementations
of BLAS, including Intel MKL for multicore processors and CUBLAS for
GPUs.

3.3. Discussion of existing methods

The methods described in the previous two subsections present a number
of advantages and drawbacks that we next review in order to motivate our
alternative solver.

The algorithms based on the two-stage (or multi-stage) reduction to tridi-
agonal form are mostly composed of compute-bound kernels (concretely, the
level 3 BLAS syr2k) which, in general, attain very high performance on cur-
rent multicore and manycore architectures. However, their high cost often
turns them too expensive for the solution of eigenproblems when only a re-
duced number of eigenvalues/eigenvectors is required [10]. A large fraction of
this overhead is rooted in the need to explicitly build the orthogonal matrix
Q̂, which requires the additional 2n3 flops.

On the other hand, the one-stage reduction to tridiagonal form avoids
the explicit construction of the orthogonal matrix, offering a much reduced
computational cost compared with its two-stage counterparts. Nevertheless,
half of the operations in this method are cast in terms of a memory-bound
kernel (specifically, the level 2 BLAS symv), which offers very low perfor-
mance in today’s architectures. Furthermore, the method incurs in the same
cost independently of the number of eigenvalues that are required (4n3/3
flops to reduce C to T ), though the eigenvectors can be computed at a cost
that is proportional to their number (2n2s flops to obtain Y from Z).

The Krylov subspace methods perform the bulk of its computations in
terms of the memory-bound symv, and therefore can be expected to achieve
only a small fraction of the processor’s peak performance. On the positive
side, they are often the cheapest methods, with a cost of roughly 2n2 flops
per iteration and a fast convergence rate for macromolecular motion simula-
tions [11].

Consider the symv y = Cx, where C ∈ Rn×n is symmetric and x, y ∈ Rn,
and let us denote the (i, j) entry of C by ci,j and the k-th entry of x/y as
xk/yk. The low-performance of this kernel is due to the fact that there is
no reuse of the matrix elements. In particular, for each element of C that is
brought into the FPUs, the operation performs 4 flops (yi += ci,j · xj and
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yj += ci,j · xi), rendering a ratio of 4 flops per memory operation (memop).
On current architectures, where the memory bandwidth is much lower than
the FPUs’ peak performance, the result is a memory-bound operation that
is strongly constrained by the speed of the memory level where the data (i.e.,
the matrix C) resides.

A particularly harmful scenario for the symv kernel and, in consequence,
for the Krylov subspace methods (as well as the one-stage reduction to tridi-
agonal form) is a problem where the data matrix C is too large to fit into the
main memory and, therefore, has to be retrieved from disk at each iteration
of the method. In this situation, the disk (I/O) bandwidth strictly dictates
the performance of the Krylov subspace-based solver, while other parameters
such as the number of cores, frequency, SIMD organization, etc. of the target
architecture play a minor role. Similarly, in a problem with data too large to
fit into the memory of a GPU, the matrix has to be transferred from the main
memory to the graphics accelerator, via the PCI-e bus, once per iteration of
the Krylov solver. In these circumstances, it is the PCI-e bandwidth that
determines the performance of the solver, independently e.g. of the number
of cores in the GPU.

Our approach to tackle this problem consists in reducing the dimension
of the problem matrix involved in the Krylov subspace method so as to be
able to fit the result closer to the FPUs, e.g. in the main memory instead
of the disk, the GPU memory instead of the main memory, or the L3 cache
instead of the main memory. Note that this will not improve the data reuse
factor (flops to memops), but at least it will allow that the memops proceed
at the speed of a faster memory level.

4. A Fast Cache-Efficient Band–Krylov Eigensolver

Our new iterative algorithm is a “mixed” band–Krylov method that ini-
tially performs a reduction of C to a symmetric band matrix W̄ , much like
the two-stage direct eigensolver, to then apply a Krylov subspace method on
the reduced problem.

Concretely, the new method commences by transforming the standard
problem into a symmetric band one:

W̄ Ȳ = Ȳ Λ (16)

where Q̄TCQ̄ = W̄ is an orthogonal similarity transform that produces the
band matrix W̄ , and Y = Q̄Ȳ . A major difference with the two-stage direct
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approach is that, in the direct case, the bandwidth of W was chosen to be
small (usually, around 128–256, depending on the target architecture) so as
to decrease the number of flops in the subsequent stage (low-performance
reduction of band to tridiagonal form) while still ensuring high performance
during the first stage.

Our goal and, consequently, our approach differs in that we choose the
bandwidth w as large as possible, with the only limitation that the resulting
band matrix W̄ , when stored in compact form as an n×(w+1) dense matrix,
fits into the “target” memory level. The cost for this initial reduction is thus
2((n− w)2w + (n− w)3/3) flops, which are cast in terms of efficient Level 3
BLAS kernels. (Compare it with the 4n3/3 flops required for the calculation
of the narrow-banded W in the direct case.)

In the second stage of our band–Krylov approach, we simply tackle the
reduced problem (16) by applying a Krylov subspace-based eigensolver, with
a cost of 2nw flops per iteration. Note that with this hybrid methodology, Q̄
does not need to be explicitly constructed but simply applied to Ȳ in order
to obtain the standard eigenvectors, at a cost of only 2(n−w)2s flops. Thus,
compared with the original Krylov method, we reduce the cost per iteration
from 2n2 to 2nw flops, at the expense of the initial transform to band form.
On the other hand, compared with the two-stage direct method, we avoid
the costly formation of Q̂.

In summary, there exists a trade-off between the cost of the two stages
of our band–Krylov eigensolver and the bandwidth. Small/large values of w
shift part of this cost towards/away from the initial transform but yield a
cheap/costly Krylov iteration. Therefore, this parameter has to be chosen
taking into account the convergence rate of the Krylov method.

Let us illustrate this balance via the computation of the s smallest eigen-
values of a random problem of “moderate” dimension n =24,943. Figure 1
compares the estimated (or “expected”) cost of the full- and band-Krylov
solvers for this particular case. To perform this comparison, we consider the
theoretical number of floating-point arithmetic operations (flops) for each
solver:

– 2n2 flops for the full-Krylov solver (all of them casted as BLAS-2 ker-
nels); and

– 2((n− w)2w + (n− w)3/3) flops for the initial reduction to band form
(BLAS-3 kernels), with bandwidth w, plus 2nw flops per iteration
(BLAS-2 kernels), in the band-Krylov solver.
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Figure 1: Theoretical cost of the new band–Krylov eigensolver compared with the conven-
tional Krylov subspace-based method.

Next, we assume that a BLAS-3 flop is 6× faster than a BLAS-2 flop, and
obtain estimations in the figure using this rate and the theoretical flops as the
number of iterations varies. (We note that the performance factor between
BLAS-2 and BLAS-3 was obtained by comparing the experimental flops/sec-
ond rates of the matrix-vector product and the matrix multiplication on the
same platform.)

The results in that figure show that the cost ratio between the two Krylov
subspace-based eigensolvers strongly depends on the convergence rate of the
problem and, to a less extent, on the bandwidth w selected for the band–
Krylov method. In general, the theoretical cross-over point between the two
eigensolvers is in the range of 1,500 iterations, occurring a bit below that
number in case w =3,200 or above it for narrower bandwidths.

5. Performance Evaluation

5.1. Experimental setup

The following experiments were all performed using ieee double-precision
arithmetic on a server equipped with an Intel Xeon i7-3930K processor (6
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cores at 3.2 GHz) and 24 GB of DDR3 RAM, connected to an NVIDIA Tesla
K20 accelerator (2,496 CUDA cores at 706 MHz, with 5 GB of GDDR5 RAM)
via a PCI-e 16× bus.

The codes/libraries were processed with the Intel compiler icc (compo-
serve 2011 sp1.9.293, icc 12.1.3 20120212), and linked to the implemen-
tation of LAPACK/BLAS implementations in Intel MKL (v10.3 update 9)
and NVIDIA CUBLAS (v5.0). The MPI eigensolvers were linked to Open-
MPI (1.6).

5.2. Macromolecules

For the comparison, we employ a case study corresponding to a micro-
tubule (MT) 13:3 macromolecule, with three different instances, leading to
eigenproblems of size n =12,469, 24,943 and 31,178. The atomic structure
of MT was generated from the experimental coordinates (PDB-ID 1TUB),
optimized using molecular dynamics, and kindly provided by M. Deriu [27].
For details on the biological significance of these cases, see [11]. NMA was
performed under the elastic network model approximation with iMod [9], i.e.
without any further energy minimization and considering that the optimized
structure is at the minimum energy conformation. For each one of these
cases, we compute the s = 100, 200, 300, 400, 500 and 1,000 smallest eigen-
values and the associated eigenvectors of the pair (A,B). As argued earlier,
in the Krylov subspace-based eigensolvers, we obtain this information from
the s largest eigenvalues/eigenvectors of the pair (B,A).

The experimentation with other macromolecules offered similar qualita-
tive results. We note that the execution time of ELPA and MAGMA basically
depends on the problem dimension and the number of eigenvalues, but very
little on the specific numerical data. For both Krylov-based eigensolvers, the
execution time per iteration (and the reduction to band form for the band-
Krylov solver) is independent of the numerical values, while the data itself
can in principle affect the convergence rate. However, we did not observe
large variations among different biological problems.

Collective motions of small proteins can often be captured with a dozen
of modes, but this is not the case with large-sized computational challenging
systems, so that the actual number of modes which are necessary depends
on the problem dimension. We have reported that computing a number
of modes that is around 2–10% of the problem dimension were needed to
account for 70-90% of the conformational changes between atomic structures
in different conformations [9]. In practical applications, such as morphing
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between atomic structures in different conformations [9, 28] as well as for
the flexible fitting of atomic structures into electron microscopy denstity
maps [29], we found that, in general, these small percentages of modes suffices
to obtain satisfactory results. The experimentation thus covers the practical
application scenario for extracting the collective motions of relative large
systems hardly accessible with Cartesian approaches.

5.3. Eigensolvers

We include the following eigensolvers in the experimental evaluation:

– FKrylov. The conventional Krylov subspace-based solver described in
Section 3, with the symv products proceeding in the multicore pro-
cessor. In the calls to ARPACK’s routine dsaupd, we set the fol-
lowing parameters: nev=100, 200, 300, 400, 500, 1,000 (number of
eigenvalues), ncv=2.5∗nev (number of vectors of the orthogonal matrix
Vm), tol=1.0E−12 (stopping criterion), and iparam[2]=100 (maxi-
mum number of Arnoldi update iterations allowed). We also devel-
oped a version that computes the symv products on the GPU, using
NVIDIA’s CUBLAS routine for this operation. However, the perfor-
mance advantage of this alternative implementation was limited: For
the smallest problem (n =12,469), the symv products proceed about
9% faster in the GPU. However, these benefits are in practice much
lower as the symv only amounts for part of the computations during
the iteration. On the other hand, the largest two problem sizes did not
fit into the GPU memory and, therefore, the symv products could not
proceed in the accelerator.

– BKrylov. The new band–Krylov subspace-based solver introduced in
Section 4. The calls to ARPACK were performed using the same pa-
rameters as in the previous case. The bandwidth w is chosen in this
case so that as to balance the cost of the initial reduction and the
symmetric band matrix-vector (sbmv) products during the iteration.
In other words, among the possible values of the bandwidth, we se-
lect that which optimizes the performance (i.e., execution time) of the
global solver. A specialized GPU implementation of the sbmv product
was developed as part of our optimization effort, showing a significant
acceleration of this operation over the multi-core counterpart available
in Intel MKL and the version of this operation in NVIDIA’s CUBLAS.
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For example, for the smallest problem size and w =6,400, our GPU rou-
tine required, respectively, about 63% and 44% of the time employed
by Intel MKL and NVIDIA CUBLAS implementations of sbmv.

– ELPA1 and ELPA21 (Eigenvalue SoLvers for Petaflop-Applications, re-
lease 2013.11 v8). These message-passing eigensolvers exploit the mul-
ticore processors of the platform using one MPI rank per core, and do
not off-load any part of the computation to the GPU. ELPA1 performs
a direct reduction to tridiagonal form, in a single stage, and then solves
the associated tridiagonal eigenproblem. ELPA2 proceeds in two-stages:
reduction to band form and from there to tridiagonal form.

– MAGMA2 (Matrix Algebra on GPU and Multicore Architectures, release
1.6.2). This hybrid CPU-GPU two-stage eigensolver exploits both the
multicore processor and the GPU.

For the eigensolvers that employ the GPU (BKrylov and MAGMA) the re-
sults include the cost of transferring the input data and the results between
main memory and GPU.

An additional advantage of the Krylov-based methods is that they con-
sume considerably less memory than their direct alternatives. In particular,
the two largest cases included in the experimentation could not be solved with
ELPA and MAGMA due to lack of memory in the target server. To tackle this, we
executed these solvers for several problem sizes of the same macromolecule
(with n ≤ 15, 000), and then we performed a polynomial approximation of
the execution time using a cubic function in the problem dimension.

5.4. General comparison of the methods

Table 1 reports the execution of the eigensolvers for all three instances of
the macromolecule MT and required number of eigenvalues s. These results
expose that the band–Krylov eigensolver is the best or second-to-best option
for all practical scenarios. In general, the fastest eigensolver is FKrylov

for small values of s, BKrylov for moderate s, and MAGMA for large s, with
the threshold values that define “small”, “moderate” and “large” depending
on the problem size n. ELPA1 exhibits execution times which are mostly
independent of the number of required eigenvalues. ELPA2 outperforms ELPA1

1http://elpa.rzg.mpg.de/.
2http://icl.cs.utk.edu/magma/.
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Size Solver Number of eigenvalues s
n 100 200 300 400 500 1,000

12,469

FKrylov 5.78 11.51 18.78 28.74 44.86 129.00
BKrylov 9.63 11.23 15.84 21.65 31.02 103.60
ELPA1 114.95 115.35 115.65 116.10 116.41 118.36
ELPA2 67.95 80.41 107.02 116.90 146.35 219.29
MAGMA 22.16 23.64 22.22 23.89 24.29 22.66

24,493

FKrylov 22.98 40.36 64.29 90.45 121.97 426.39
BKrylov 58.32 56.18 62.45 70.43 102.31 285.01
ELPA1 881.48 871.76 873.00 868.57 869.47 880.73
ELPA2 396.42 433.95 529.21 584.80 704.89 993.46
MAGMA 97.51 99.57 127.96 123.56 120.95 115.19

31,178

FKrylov 30.99 60.68 95.42 132.74 173.62 426.39
BKrylov 105.28 113.39 120.95 136.83 155.12 285.01
ELPA1 1,714.47 1,688.21 1,689.41 1,674.20 1,675.82 1,696.50
ELPA2 717.79 764.79 903.62 1,005.14 1,197.91 1,661.71
MAGMA 157.25 158.17 237.92 218.83 210.24 202.40

Table 1: Execution times (in seconds) of the different eigensolvers. The cells in red and
blue identify, respectively, the best and second-to-best solver.

for small values of s but its cost rapidly grows with the number of eigenvalues,
in the end being clearly slower than any other eigensolver.

Figure 2 performs a quantitative comparison of the new band–Krylov
eigensolver against the remaining implementations, plotting the ratios be-
tween the execution times of the latter normalized to those of BKrylov. We
discard ELPA1 and ELPA2 from the following discussion since, as argued ear-
lier, they are clearly inferior. For the smallest problem size, FKrylov offers
an execution time that is only 60% that of BKrylov for s = 100 eigenvalues.
However, as s grows to 200, 300, 400, 500 and 1,000, FKrylov is outper-
formed by BKrylov in ratios that vary as 1.03, 1.19, 1.33, 1.45 and 1.25,
respectively. The ratios between the execution times of the band–Krylov
solver and the MAGMA routine for this small problem move in the opposite
direction, decreasing with s = 100→1,000 as 2.30, 2.10, 1.40, 1.10, 0.78 and
0.21. Furthermore, the differences between these two eigensolvers in general
decrease as the problem dimension grows and, thus, for the largest problem
size, the ratios for growing values of s = 100 →1,000 become 1.49, 1.39,
1.96, 1.59, 1.35 and 0.71. In summary, these results illustrate that the new
eigensolver outperforms alternative existing methods for problems of mod-
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Figure 2: Experimental comparison of the different eigensolvers. Performance ratios corre-
spond to execution times normalized with respect to that of the band–Krylov eigensolver.

erate dimension when the number of eigenpairs to be computed is small to
moderate.

6. Concluding Remarks

We have presented a mixed eigensolver that combines the high-performance
reduction to band form typical of direct multi-stage methods with the low-
cost iteration of Krylov subspace methods. By appropriately choosing the
bandwidth of the intermediate matrix that represents the problem, our hy-
brid band–Krylov eigensolver can thus shift part of its cost towards (away
from) the initial band reduction and away from (towards) the Krylov itera-
tion. The balance between these two stages is achieved taking into account
the problem dimensions, convergence rate of the problem, target architecture,
and efficiency of the underlying method. The solver is completed with a tai-
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lored symmetric band matrix-vector product that off-loads this operation to
the GPU, resulting in a significant acceleration of the Krylov iteration.

The results using a server equipped with recent multi-core Intel Xeon tech-
nology and an NVIDIA Tesla “Kepler” show the performance superiority of
the new band–Krylov eigensolver for the simulation of macromolecules with a
few thousands degrees of freedom when the required number of eigenpairs is
small to moderate. As an additional advantage, the new band–Krylov solver
can handle larger problems on the GPU, as the initial reduction to band
form can be performed out-of-core from the perspective of the accelerator,
while the subsequent Krylov iteration proceeds in-core on a band matrix of
reduced size.
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