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Abstract 

Polynomial rooting direction finding (DF) algorithms are a computationally efficient alternative 

to search based DF algorithms and are particularly suitable for uniform linear arrays (ULA) of 

physically identical elements provided mutual interaction among the array elements can be either 

neglected or compensated for. A popular polynomial rooting algorithm is Root MUSIC (RM) 

wherein, for an N-element array, the estimation of the Directions Of Arrivals (DOA) requires the 

computation of the roots of a 2N-2- order polynomial for a second order (SO) statistics-, and a 

4N-4- order polynomial for a fourth order (FO) statistics- based approach, wherein the DOA are 

estimated from L pairs of roots closest to the unit circle, when L signals are incident on the array. 

We derive SO- and FO statistics reduced polynomial rooting (RPR) algorithms capable to 

estimate L DOA from L roots only. We demonstrate numerically that the RPR algorithms are at 

least as accurate as the RM algorithms. Simplified algebraic structure of RPR algorithms leads to 

better performance than afforded by RM algorithms in saturated array environment, especially in 
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the case of fourth order methods when number of incident signals exceeds number of elements, 

and under low SNR and/or small sample size conditions. 

 

Key words: Direction finding, Polynomial rooting algorithms, Second order statistics, Fourth 

order statistics. 

 

I. INTRODUCTION 

Super-resolution DF algorithms for linear arrays fall into two broad categories: search based 

algorithms, as exemplified by MUSIC [1][2] and root based algorithms such as Root-MUSIC 

[3][4], ESPRIT [2]. Search algorithms make no assumptions about the algebraic structure of the 

array steering vectors but require that they be known to great accuracy, especially if a high 

degree of angular resolution is called for. In that case they can also be computationally quite 

demanding. In practice the determination of the array steering vector amounts to an accurate 

measurement of the magnitude and phase of the array element patterns, sometimes referred to as 

array manifold calibration. Normal accuracies attained in such measurements are a few tenths of 

a dB in amplitude and about 1 degree in phase, which generally is insufficient for the design of 

high- resolution DF systems. Admittedly an alternative technique would be to rely on numerical 

computer simulations (either computing the element patterns directly or inferring them from the 

array geometry and the computed impedance or scattering matrix). However our experience with 

comparisons of numerical simulations using the latest commercially available software with 

experimental data indicates that presently this is not yet a fruitful approach [5].  

Root- based algorithms on the other hand require no array calibration and afford substantial 

computational efficiency over search algorithms. They require that the elements be uniformly 
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spaced and physically identical, which a search algorithm such as MUSIC does not. The more 

significant restriction however is that the array steering vector must have the form of an array 

factor of a linear array of uniformly spaced elements. Unfortunately due to inter element mutual 

coupling this idealized form of the steering vector is practically unattainable without 

compensation. Indeed, when root-based DF algorithms are applied to a real array without some 

form of compensation, significant angle estimation errors can result [6]. Compensation for the 

effects of mutual coupling can be realized by employing extra “dummy” elements to equalize the 

active element radiation patterns [7][8]. Under the assumption that the element radiation patterns 

are sufficiently equalized, the nonnegative pseudo-spectrum function becomes a polynomial and 

the DF problem is reduced to a polynomial rooting problem [3][4], ESPRIT [2]. In case of a 

covariance- based RM algorithm, for an N-element array, the degree of the polynomial equals 

2N-2, so that 2N-2 roots have to be calculated. In case of a FO statistics- based RM algorithm, 

the degree of the polynomial equals 4N-4 and, consequently, 4N-4 roots have to be calculated. 

For L incident signals, the DOA are calculated from the L roots closest to the unit circle. This 

selection process can introduce serious errors in saturated1 array environments, especially under 

low SNR and/or small sample size conditions because the signal roots then do not stay close to 

the unit circle. Unlike RM algorithms, RPR algorithms do not generate extraneous roots2, i.e., all 

polynomial roots correspond to the actual DOA. As is demonstrated in Section IV, this feature is 

of particular advantage in saturated array environments, especially in the case of fourth order 

methods when number of incident signals L exceeds number of elements N, and low SNR and/or 

                                                 
1 By a saturated array we refer to a scenario wherein the number of emitters L is close to either the number of real 
sensors N, in a case of the SO methods, or to the number of virtual sensors 2N-1, in a case of the FO methods. 
2 We comment that RPR algorithms presented herein should not be confused with the algorithms we have recently 
derived in [16]. The latter algorithms rely on different subspace decomposition principles and require the solution of 
polynomials of order 2L instead of L and are, in that sense, computationally more demanding. 
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small sample size conditions, and results in enhanced performance of RPR algorithms over RM 

algorithms. 

 The formulation of the RPR algorithms relies on the solution of an over-determined system of 

linear equations that yields the coefficients of an L degree polynomial. Depending on the 

required accuracy, this system can be solved either by using the Moore-Penrose pseudo-inverse 

or by using a more accurate total-least-square (TLS) approach [13]. Our numerical studies have 

shown that in not too demanding scenarios, where the separation between adjacent signals in the 

angular domain was not very close, the two approaches gave results of comparable accuracy. As 

will be demonstrated in Section IV, this computationally lighter version of the RPR algorithms is 

not inferior to RM algorithms. The RPR algorithms themselves are derived in Sections II and III. 

Results of comparative performance evaluations are presented in Section IV. The conclusions are 

given in Section V.  

 

II. LINEAR ANTENNA ARRAY MODEL 

Polynomial rooting -based super-resolution DF algorithms such as RM [3] offer computational 

efficiency in relation to the search based DF methods [1] when the special geometry of the ULA 

is employed. In this case the problem of estimating the DOA of L signals incident on N-element 

array is described by 

 ( ) ( ) ( )t t t z As ν       (1) 

where ( )tz  is a complex column vector comprised of N signals at the output of the array; A  is 

NL steering matrix of the linear array comprised of the L column vectors ( )la  corresponding 

with the DOA of the l-th source signal; ( )ts is a column vector comprised of the L source signals 
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incident on the array and ( )tν represents additive noise. If mutual coupling among the array 

elements is compensated [9] the steering vector for a ULA simplifies to 

  0 0 0
T2 ( 1)ˆ( ) ( ) 1 ....l l ljk d jk d jk N d

l lf e e e       a     (2) 

where  ,l l l   , sin( ) cos( )l l l   , l and l represent elevation and azimuth of the l-th 

source DOA, 0 2k    is a free space wave number evaluated at the receiver local oscillator 

frequency,  is a wavelength, d is an inter-element spacing and ˆ ( )lf  represents the element 

radiation pattern. In the formulation of the SO MUSIC algorithm [1] one estimates vE , the 

matrix of eigenvectors that span the noise subspace, and forms the nonnegative function  

  ( ) ( ) ( )H H
v v    a E E a ,      (3) 

called pseudo-spectrum, and employs the locations of its zeros to estimate the DOA’s. For 

sufficiently large sample sizes the vE  can be well approximated by the eigenvectors of the 

sample data covariance matrix 

                                                            H

1
ˆ ( ) ( )

T

t
1 T t t


 zzR z z  

 where 'H' denotes Hermitian operation. For the ULA in  (2) the ( )  can be written in 

polynomial form [2] as follows: 

    ( 1)
2 2( ) ( )N

Nz z P z 
        (4) 

where 0jk dz e  and 2 2 ( )NP z  is the 2N-2 degree polynomial in z. From (4) DOA are found from 

the L pairs of complex roots of the polynomial 2 2 ( )NP z  that are closest to the unit circle. The 

corresponding direction cosines are  

 0( ) / / 1,2,...,l langle z k d l L        (5) 
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In view of (4), RM requires the calculation of 2N-2 roots. For large arrays this leads to high 

computational loads and becomes a source of the numerical errors alluded to previously. 

 By analogy with the SO MUSIC pseudospectrum, the quadricovariance version is 

formulated as follows [10][11]: 

   * *( ) ( ) ( ) ( ) ( )
H H

         a a E E a a      (6) 

where  denotes tensorial or Kronecker’s product, the‘*’ denotes the complex conjugate 

operation and Ev represents the matrix of eigenvectors that correspond to the noise subspace. 

They can be formally obtained from the eigenvalue decomposition of the N2N2 sample data 

quadricovariance matrix Qzz with the entries 

 * *
zz 4, 0Q ( , ) ( ), ( ), ( ), ( ) ( ) exp( ( ) )i k l m sr q cum z t z t z t z t j o p k d      (7) 

where o=i+m, p=k+l and 4,s represents FO cumulant of the incident signal s(t) and the 

coordinates (r, q) are obtained from the mapping C4C2 in accordance with the scheme  r=N(i-

1)+k, q=N(l-1)+m  where CD denotes the field of complex numbers of dimension D. This 

mapping is necessary because quadricovariance is originally defined as a four -dimensional 

tensor [10]. However, the quadricovariance based formulation of DF algorithms is 

computationally very demanding, requiring the estimation of N4 FO cross-cumulants. At the 

same time, it is also redundant because the virtual array of 2N-1 elements can be characterized 

by an (2N-1)x(2N-1) sample data covariance matrix instead of one of size N2xN2. Therefore, 

instead of using a quadricovariance- based formulation of the FO statistics -based DF algorithms, 

we shall exploit the minimum redundancy cumulant array (MRCA) concept  [12], and formulate 

the covariance matrix of the virtual array of 2N-1 elements using the identity 
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2

* * *

4,

( ( ), ( )) ( ), ( ), ( ), ( )s
vv n m i j k l

s

R v t v t cum z t z t z t z t



     (8) 

 

with n,m = 1,…,2N-1 and i,j,k,l=1,…,N. Because the constant  2
4,s s  does not play a role in 

DF algorithms, we shall further simplify (8) to read 

 

 * * *( ( ), ( )) ( ), ( ), ( ), ( )vv n m i j k lR v t v t cum z t z t z t z t     (9) 

 

Exploiting (9), the formulation of the FO statistics- based version of either RM or RPR algorithm 

is straightforward, i.e., the SO statistics- based formulation of each algorithm is immediately 

applicable to FO statistics. Thus the FO pseudo-spectrum (6) can be written as follows: 

( ) ( ) ( )H H
v v     a E E a       (10) 

where ( )v a  represents the steering vector of the virtual array and Ev represents the matrix of 

eigenvectors that correspond to the noise subspace. These can be obtained from the eigenvalue 

decomposition of the (2N-1)x(2N-1) sample data covariance matrix of the virtual array (9). This 

implies that approximately N2/4 times fewer FO cross-cumulants have to be calculated when FO 

statistics- based DF algorithms are formulated using the equivalent covariance matrix of the 

virtual array instead of the quadricovariance matrix of the real array. Indeed, in view of the 

virtual array interpretation the FO pseudo-spectrum (10) reduces to  

2( 1)
4 4( ) ( )N

Nz z P z 
         (11) 
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where 0jk dz e  and 4 4 ( )NP z  is the 4N-4 degree polynomial in z. From (11) the DOA are found 

from the L pairs of complex roots of the polynomial 4 4 ( )NP z  that are closest to the unit circle, as 

in (5). Evidently the FO RM requires the calculation of 4N-4 roots. Just as for SO RM, large 

arrays lead to high computational loads creating potential sources of numerical error. The 

benefits of employing a FO over a SO- based formulation are in the extended aperture of the 

ULA and in the suppression of the additive Gaussian noise [12]. It is worth noting that the 

MRCA approach to FO statistics- based DOA estimation is structurally equivalent to the 

diagonal slice and contracted quadricovariance approaches introduced in [15], i.e., all three 

approaches avoid the estimation of the N4 FO statistics. Asymptotic performance analysis of the 

FO methods has been presented in [15] for the MUSIC-like DOA estimation algorithm. As 

commented in more details in Section IV, numerically estimated DOA errors for SO and FO 

methods are consistent with the results of the asymptotic performance analysis presented in [15].  

 

III. SO STATISTICS BASED RPR ALGORITHM 

From (1) and (2) the output signal zn(t) of the ULA is  

  
1

( ) ( ) ( ), 1...l

L
jnq

n l n
l

z t e s t v t n N



          (12) 

where q=k0d. The data covariance matrix elements ( , )zzR n m satisfy 

( )* 2

1 1

( , ) ( ) ( ) l k

L L
j n m q

zz n m lk nm
l k

R n m z t z t e s   

 

        (13) 

where *( ) ( )lk l ks s t s t , 2 represents the noise power and nm is the  Kronecker delta, i.e., it is 

assumed that additive noise is spatially white. Subtracting the noise constituent from the data 

covariance matrix in (13) we get 
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   ( )2

1 1

( , ) l k

L L
j n m q

zz nm lk nm
l k

R n m e s w   

 

                                           (14) 

Now consider an L+1-dimensional column vector c 

   T

1 2 1... Lc c c c           (15) 

and construct the following product with the right side of (14): 

1 1
( 1)*

1 1 1 1

l k k

L L L L
jnq jq j p q

np p l k p
p l k p

w c e s s e e c  
 

  

   

       1, 2,...,n N    (16) 

We now seek a solution to the homogeneous system 

                                                    
1

1

0
L

np p
p

w c




                                                                         (17)       

Since the matrix with elements *
l ks s is positive definite (assuming linearly independent signals) 

(17) will possess nontrivial solutions if and only if  

                                                  
1

( 1)

1

k

L
j p q

p
p

e c


 


 =0                                                                  (18)  

Evidently this corresponds to the zeros of the L-th order polynomial 

                             
1

1
1

1 0

( )
L L

p r
L p r

p r

P z c z c z





 

                                                                         (19) 

 at kjqz e  .Thus the L DOA can be calculated from the roots of the polynomial PL(z) in a 

manner analogous to (5). Since 1c  in (18) can be chosen arbitrarily we may set 1 1c    so that 

(18) becomes 

                          
1

1
2

L

np p n
p

w c w




                                1, 2,...,n N    (20) 

Eqn.(20) can be written in matrix form 

  1p Wc w          (21) 
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where  w1 is first column vector of the NN matrix defined by the double sum in (14) and W is 

comprised of columns  2 ... 1L  , i.e.,   

                         2 1[ .. ]LW w w         (22) 

where w2, …, wL+1 are column vectors and cp is a column vector defined as 

  T
2 1[ ... ]p Lc c c         (23) 

Eq. (21) represents an over-determined system of linear equations. Note that the matrix elements  

wnm are ensemble averages that in practice can not be determined exactly. Instead they must be 

replaced by estimates ˆ npw  obtained from the eigenanalyis of the sample covariance matrix ˆ
zzR . 

To make this notationally explicit we replace (20) by the approximate form   

  
1

1
2

ˆ ˆ 1,2,...,
L

np p n
p

w c w n N




        (24) 

Eq.(24) is best solved in the LMS sense using either total least squares [13] or the LMS 

formulation using the singular value decomposition (Moore-Penrose pseudo-inverse). The DOA 

are then estimated from the roots of the polynomial (19) with the coefficients defined by the 

vector 

  T T[ 1 ]p c c          (25) 

The derivation of the FO statistics version of RPR algorithm is straightforward: the same 

algorithm is simply applied on the sample data covariance matrix of the virtual array vvR  given 

by (9).  

 At this point we would like to comment on the relation between the SO RPR algorithm 

and the Iterative Quadratic Maximum-Likelihood (IQML) algorithm of [14], as well as on the 

relation between the FO RPR algorithm and the FO statistics- based minimum variance 

algorithm described in [11]. Both SO RPR and IQML algorithms estimate DOAs from the L 
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roots of the L-th order polynomial. However, in our algorithm the polynomial coefficients are 

determined by solving the over-determined system of linear equations (21) by means of either 

Moore-Penrose pseudo-inverse or TLS. In the IQML method the coefficients are found via an 

iterative procedure that involves the solution of a quadratic minimization problem at each 

iteration step. Similarly, in case of the FO statistics -based minimum variance algorithm [11] the 

DOAs are found as solutions of a nonlinear optimization problem with accuracy slightly better 

than obtained by MUSIC-like FO methods [11]. Here, we have shown that thanks to the MRCA 

concept, the FO RPR algorithm retains the same algebraic simplicity as the SO RPR algorithm 

and is computationally much simpler than FO minimum variance method proposed in [11]. 

  

IV. NUMERICAL RESULTS 

 In this section we systematically evaluate numerically the performance of the SO and FO 

RPR and RM algorithms. All results produced by RPR algorithms are obtained by using the 

Moore-Penrose pseudo-inverse so that the RPR algorithm retains its simple computational 

structure. We mention that we have also employed the TLS -based versions in all the examples 

reported herein and the results were not significantly different from the Moore-Penrose pseudo-

inverse approach. 

 In Figure 1 we compare the performance of the SO RM and SO RPR algorithms for a 

single signal incident at 700 on a 30-element ULA with an inter-element spacing of /2. The 

sample size was 10000 and SNR=25dB. The root locus diagram associated with the estimated 

DOA positions for RM is shown on the left of side of Figure 1 and for the RPR algorithm on 

right. The DOA estimation error for both algorithms was less than 0.010. However, while RM 

algorithm required calculation of 2N-2=58 roots, only one root had to be calculated by the RPR 
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algorithm. In Figures 2 and 3 we compare the accuracy of the SO RPR and SO RM algorithms in 

terms of the root mean square error (RMSE) as a function of the SNR for one and three signals 

incident on a four-element ULA from directions of 700 and (700, 500, 300), respectively. The 

sample size was 1000. While RM algorithm shows better performance for one source, the RPR 

algorithm shows better performance for three sources. Equivalent conclusions can be drawn from 

an examination of Figures 4 and 5, which show the RMSE as a function of the sample size for 

both algorithms for one and three sources, respectively, and an SNR of 10dB. In all examples the 

RMSE was derived using 100 runs. Figures 3 and 5 corroborate our statement that extraneous 

roots, characteristic of the RM algorithm, cause errors in the scenarios that involve either low 

SNR or a saturated array. 

 In Figures 6,7,8 and 9 we illustrate the performance of FO RPR and FO RM algorithms. 

In Figure 6 one signal is impinging from 700 on a 10-element ULA with an inter element spacing 

of /2. The sample size was 10000 and SNR=25dB. The root locus diagram for the FO statistics- 

based RM algorithm is shown on the left side of Figure 6 and for the FO statistics- based RPR 

algorithm on the right side. The DOA error for both algorithms was less than 0.010. However, 

while RM algorithm required calculation of 4N-4=36 roots, only one root had to be calculated by 

the RPR algorithm.  Figures 7 , 8, and 9 show the RMSE as a function of the SNR for one, three, 

and six signals impinging on a four-element ULA from directions of 700, (700,500,300) and 

(1300,1100,900,700,500,300), respectively. The sample size was again 1000. Similarly to SO RPR, 

RM exhibited slightly better performance for one source, but the RPR exhibited significantly 

better performance for six sources. For three sources RM performed better under low-SNR 

conditions. The seemingly illogical results shown in Figure 9, where the RMSE error of the FO 

RM algorithm is increasing with the increasing SNR, is explained by the presence of extraneous 



 13

roots characteristic of the RM. When array is over-saturated, i.e., when the number of emitters is 

greater than number of real sensors, the roots corresponding to the real emitters do not stay close 

to the unit circle and it can be difficult to distinguish them from the extraneous roots. This is 

especially true when the SNR becomes low. To support this statement we show in Figure 13 

seven pairs of roots generated by the FO RM algorithm for six incident signals with SNR=0dB. 

Evidently extraneous roots close to 1500 are closer to the unit circle than the roots corresponding 

to the real signal at 1300. A conclusion equivalent to the one that may be drawn from the plots in 

Figures 7 to 9 can also be drawn from an examination of Figures 10 to 12, which show the 

RMSE as a function of the sample size for both algorithms for the case of one, three and six 

sources, respectively. The SNR was 10dB. These numerical results are consistent with 

asymptotic performance analysis of the SO and FO MUSIC algorithm, [15], i.e., SO and FO 

method exhibit similar performance for high SNR. However, at low SNR, the variance of the 

DOA estimate grows as the fourth power of the inverse of the SNR for FO methods and with the 

power of two for SO methods. This, for example, explains results shown in Figures 3 and 8.  

 

V. CONCLUSIONS 

The number of roots that must be calculated for SO and FO statistics- based RM algorithms is, 

respectively 2N-2 and 4N-4. In addition to increasing the computational load, the extraneous 

roots necessarily present in RM type algorithms lead to poor performance in saturated array 

environments and under low SNR and/or small sample size conditions. For the novel SO and FO 

statistics -based RPR algorithms presented in this paper, the number of roots that needs to be 

calculated equals precisely to the number of incident signals. Consequently, for large arrays, 

RPR algorithms can lead to a significant reduction of the computational load, and, as shown in 
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this paper, indirectly, to a reduction of numerical errors in DOA estimation. It is demonstrated 

through numerical simulations that in saturated array environments, especially in the case of 

fourth order methods when number of incident signals L exceeds number of elements N, and low 

SNR and/or small sample size conditions the RPR algorithms significantly outperform the RM 

algorithms.  
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Figure 1.  DOA estimated by SO RM algorithm (left) and RPR algorithm (right) for one source 

impinging from 700 on 30-element ULA. 

Figure 2.  RMSE error vs. SNR value for one source impinging from 700 on four-element ULA. 

Data record length was 1000 samples. SO RM algorithm ‘*’ and SO RPR algorithm ‘’. 

Figure 3.  RMSE error vs. SNR value for three sources impinging from directions of 300, 500 

and 700 on four-element ULA. Data record length was 1000 samples. SO RM algorithm ‘*’ and 

SO RPR algorithm ‘’. 

Figure 4.  RMSE error vs. sample size value for one source impinging from 700 on four-element 

ULA. SNR value was 10dB. SO RM algorithm ‘*’ and SO RPR algorithm ‘’. 

Figure 5.  RMSE error vs. sample size value for three sources impinging from directions of 300, 

500 and 700 on four-element ULA: SNR value was 10dB. SO RM algorithm ‘*’ and SO RPR 

algorithm ‘’. 

Figure 6.  DOA estimated by FO RM algorithm (left) and FO RPR algorithm (right) for one 

source impinging from 700 on 10-element ULA. 

Figure 7.  RMSE error vs. SNR value for one source impinging from 700 on four-element ULA. 

Data record length was 1000 samples. FO RM algorithm ‘*’ and FO RPR algorithm ‘’. 

Figure 8.  RMSE error vs. SNR value for three sources impinging from directions of  300, 500 

and 700  on four-element ULA. Data record length was 1000 samples. FO RM algorithm ‘*’ and 

SO RPR algorithm ‘’. 

Figure 9. RMSE error vs. SNR value for six sources impinging from directions of 

1300,1100,900,700,500 and 300 on four-element ULA. Data record length was 1000 samples. FO 

RM algorithm ‘*’ and FO RPR algorithm ‘’. 
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Figure 10.  RMSE error vs. sample size value for one source impinging from 700 on four-

element ULA. SNR value was 10dB. FO RM algorithm ‘*’ and FO RPR algorithm ‘’. 

Figure 11.  RMSE error vs. sample size value for three sources impinging from directions of 

300, 500 and 700 on four-element ULA. SNR value was 10dB. FO RM algorithm ‘*’ and FO RPR 

algorithm ‘’. 

Figure 12.  RMSE error vs. sample size value for six sources impinging from directions of 

1300,1100,900,700,500 and 300 on four-element ULA. SNR value was 10dB. FO RM algorithm 

‘*’ and FO RPR algorithm ‘’. 

Figure 13. Root locus diagram generated by FO RM algorithm with six sources impinging from 

directions of 1300,1100,900,700,500 and 300 on the four-element ULA. Data record length was 

1000 samples and SNR=0dB. 
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