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Abstract 

Sparse Component Analysis (SCA) is demonstrated for blind extraction of three pure component spectra 

from only two measured mixed spectra in 13C and 1H nuclear magnetic resonance (NMR) spectroscopy. 

This appears to be the first time to report such results and that is the first novelty of the paper. Presented 

concept is general and directly applicable to experimental scenarios that possibly would require use of 

more than two mixtures. However, it is important to emphasize that number of required mixtures is 

always less than number of components present in these mixtures. The second novelty is formulation of 

blind NMR spectra decomposition exploiting sparseness of the pure components in the wavelet basis 

defined by either Morlet or Mexican hat wavelet. This enabled accurate estimation of the concentration 

matrix and number of pure components by means of data clustering algorithm and pure components 
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spectra by means of linear programming with constraints from both 1H and 13C NMR experimental data. 

The third novelty is capability of proposed method to estimate number of pure components in demanding 

underdetermined blind source separation (uBSS) scenario. This is in contrast to majority of the BSS 

algorithms that assume this information to be known in advance. Presented results are important for the 

NMR spectroscopy-associated data analysis in pharmaceutical industry, medicine diagnostics and natural 

products research.  

 

Keywords: Chemometrics; NMR spectroscopy; Underdetermined blind source separation; Sparse 

component analysis; Wavelet transform. 

 

1. Introduction 

NMR spectroscopy is of undoubted importance in pharmaceutical and natural products research. It is 

widely used for the structure elucidation, identification and quantification of impurities or metabolites. 

NMR spectroscopy is a powerful tool in drug discovery, especially in fragment-based drug design as an 

alternative to high-throughput screening [1], and in instrumental diagnostics, one of the most developing 

areas of current medicine [2]. It is clear that NMR spectroscopy represents a forefront of progress in 

post-genomic era. Particularly, 1H NMR spectroscopy is used for the structure determination of complex 

molecules and for the quantitative analysis of the most important biological fluids (urine, blood plasma, 

cerebrospinal fluid, bile, tears, etc.) [2]. The 1H NMR spectrum of any biological fluid is a superposition 

of the spectra of great number of compounds. Quantification and identification of the components 

present in the mixture is a traditional problem not only in NMR spectroscopy [3-5] but also in infrared 

(IR) spectroscopy [6,12], EPR spectroscopy [7,8], mass spectrometry [9,10,12], Raman spectroscopy 

[11], etc. Identification of the spectra of mixtures proceeds in majority of the cases by matching the 
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mixture's spectra with a library reference compounds, [3, 6-8]. This approach is ineffective with the 

accuracy strongly dependent on the library's content of the pure component spectra. Provided that 

available number of linearly independent mixtures is equal or greater than the number of components, it is 

possible to separate mixture's spectra into component spectra using only the measurements of the 

mixture's spectra. This problem is generally known as blind source separation (BSS) and is for described 

case (more measured mixture's spectra than component spectra) solved by algorithms of independent 

component analysis (ICA), [11-18]. ICA assumes that pure components are statistically independent and 

that at most one is normally distributed. The two requirements: to have more linearly independent 

mixtures than pure components and to have statistically independent pure components seem to be most 

critical for the success of the BSS approach to blind extraction of the pure components, [6,8,9,12]. 

Significant amount of efforts has been devoted to relax statistical independence assumption: (i) raw data 

preprocessing technique by first or second order derivative has been proposed in [6,12] to reduce level of 

statistical dependence among pure components. This technique belongs to the generalization of the ICA 

known as dependent component analysis (DCA), [16,21-23]; (ii) an algorithm for blind decomposition of 

EPR spectra has been derived in [8] minimizing contrast function that exploits sparseness rather than 

statistical independence among the pure components; (iii) the so called mean field ICA has been 

proposed in [9] to cope with statistically dependent components. However, all discussed algorithms still 

require the number of linearly independent measurements to be greater or equal to the unknown number 

of pure components. Linear independence requirement can be found questionable because it implies 

concentrations of the pure components to be different in different mixtures. This does not have to be 

always fulfilled. Thus, a BSS method capable to extract pure components from reduced number of 

mixtures (that is less than the number of pure components) appears to be of great importance. This leads 

to underdetermined BSS (uBSS) problem that is not solvable under standard ICA assumptions, [24-27]. 

Additional a priori information about pure components such as sparseness is required to solve it. Here, 

we propose a sparse component analysis (SCA) approach to solve related uBSS problem by having at 
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disposal two mixtures only, [24-27]. It combines geometric approach known as clustering in wavelet 

domain to estimate concentration or mixing matrix and linear programming in Fourier/frequency domain 

to estimate pure components. As opposed to the majority of the ICA/SCA- based BSS algorithms, no a 

priori information about the number of pure components is required because it is also estimated from 

data during the clustering phase in the time-scale domain. The algorithm assumes that in average only 

one pure component exist at the each time-scale. This assumption is satisfied with high probability for 

both 1H and 13C NMR spectra when either Morlet of Mexican hat wavelet is chosen as the basis function. 

Therefore, it is believed that proposed SCA-based approach to blind extraction of the pure components is 

practically important.  

 

2. Theory 

2.1. Underdetermined blind source separation  

The time domain BSS problem is modeled as 

  X AS           (1) 

where R N TX  represents matrix of N measured mixtures across T variables, R N MA represents the 

matrix of basis vectors also called the mixing matrix and matrix RM TS contains M pure components. 

We have neglected the additive noise term in (1) due to the fact that used experimental NMR data 

contain low noise as well as that they were de-noised before blind spectra decomposition is performed. 

For this purpose we have multiplied recorded time-domain NMR data with an exponentially decaying 

window which is a standard procedure used for de-noising of NMR data, [3, 35]. In related problem of 

blind NMR spectra decomposition mixing matrix A is also called concentration matrix. That is because 

coefficients  
1

N

nm n
a


 represent amount of concentration of the pure component sm in the mixtures 
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 
1

N

n n
X , where Xn denotes row vector of X. Note that number of pure components M is in principle 

unknown although many ICA/SCA algorithms assume that it is either known in advance or can be easily 

estimated. This does not seem to be true in practice. Here, we shall treat M as unknown parameter that 

will be estimated together with the concentration matrix in wavelet domain by data clustering algorithm. 

The BSS problem consists of finding the pure component matrix S using mixtures matrix X only, i.e., 

mixing matrix A is assumed to be unknown. ICA algorithms solve the BSS problem provided that source 

signals or pure components are statistically independent and non-Gaussian, as well as that NM, [14-20]. 

Then, a solution of the unsupervised decomposition problem (1) is obtained with scale and permutation 

indeterminacy: 

   WXS ˆ           (2) 

with WA=PΛ, where W represents the de-mixing matrix, P is a general permutation matrix and Λ is a 

diagonal matrix. This implies that ICA-based solution of the unsupervised decomposition problem is 

unique up to the ordering, scale and sign. ICA algorithms find de-mixing matrix W though minimization 

or maximization of the related contrast function I(W,X) that represent statistical (in)dependence measure 

between  
1

ˆ
M

m m
s . Thus, learning of W is achieved by minimizing mutual information between  

1
ˆ

M

m m
s . 

We recommend [15,16] for detailed description of how the ICA algorithms are constructed. Brief 

description of the ICA algorithms commonly used in analytical chemistry is also given in [12]. When 

N<M the BSS problem is underdetermined because there are less measured mixtures N available than 

unknown pure components M. In order to solve the uBSS problem additional a priori information about 

the pure components must be available, [24-27]. A priori information that is used most often is 

sparseness of the source signals in suitably chosen basis, [24-27]. 
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2.2. Sparse component analysis  

SCA exploits sparseness of the pure components in some a priori basis or representation domain. A 

sparse signal is a signal whose most samples are nearly zero, and just few percent take significant values. 

While NMR data are not sparse in time domain they are sparse in frequency (Fourier) domain or time-

scale domain. For example if pure component would be harmonic (sine or cosine) signal with frequency 

  it would contain many non-zero values in time domain but would be perfectly sparse in frequency 

domain, i.e., there would be only one non-zero component at frequency . Signal that has at least k<<T 

zero components is called k-sparse. For the solution of related uBSS problem it is however important 

that pure component signals sm are mutually sparse. This assumption is satisfied with high probability 

when each pure component signal is sparse for itself i.e. in such situation it is very likely that only few 

(one or two) pure component signals will be active (non-zero) at each coordinate in the chosen 

representation domain. Thus, pure components with no (or only very few) overlaps in spectral domain 

are considered sparse enough to enable solution of related uBSS problem: blind extraction of pure 

components from smaller number of mixtures.  The SCA approach proposed here differs from the SCA 

method proposed in [8] by the fact that it maximally exploits redundancy of the linear data model (1) in 

the chosen basis. The SCA method in [8] solves BSS problem by finding de-mixing matrix W by 

minimizing cost function that measures sparseness of the sources, however it still requires N=M. On the 

other side the SCA approach used here, and referred in [24-27], breaks down BSS problem into two 

separate problems: estimation of the mixing or concentration matrix A using geometric concept known as 

data clustering [24-29], and estimation of the magnitude spectra of the pure components (based on 

estimated A) by solving resulting underdetermined system of linear equations through linear 

programming [24,25,30,31], 1 -regularized least square problem [32,33] or 2 -regularized linear 

problem, [34]. In the case of the NMR spectroscopy it is customary to assume that Fourier basis yields 

sparse representation, however wavelet basis with properly chosen wavelet function can yield even 
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sparser representation. This is because the time domain NMR signals are not pure sinusoids but harmonic 

signals with amplitude decaying exponentially with some time constant , [35]. The real part of the time 

domain NMR signal can be written as 

    /( ) sin( )e ts t t           (3) 

where  represents some arbitrary phase. Provided that wavelet function can be found to resemble 

structure of the time domain NMR signal (3), real continuous wavelet transform (CWT), [36], at the 

proper scale a and time shift b 

    1( , ) ( )
a

t b
S a b s t dt

a






 
  

 
      (4) 

will yield sparser representation of the NMR signal than Fourier transform. It is the Morlet wavelet that 

has this property. The real part of the Morlet mother wavelet (defined at scale a=1 and shift b=0) is of 

the form [36] 

    
2 2/2 /2

1/4 1/4

1 1
( ) cos( )e sin( 2) et tt t t   

 
       (5) 

The other wavelet that resembles the structure of the NMR signal (3) is the Mexican hat wavelet [36] 

     
22 /2( ) 1 e tt t          (6) 

To support statement that Morlet wavelet resembles waveform structure of the time-domain NMR signal 

and yields its sparse representation we show in Figure 1a real part of the time domain experimental 1H 

NMR signal that represents one pure component. Figure 1b shows Morlet wavelet at the scale that 

corresponds with the time domain 1H NMR signal shown in Figure 1a. Figures 1c and 1d show absolute 

value of the wavelet coefficients in the time-scale domain, scaled by 104, obtained by transforming time 
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domain 1H NMR signal shown in Figure 1a by means of CWT and Morlet wavelet. Figure 1c shows 

wavelet coefficients as a function of scale a for the time shift index set to b=0. The resolution level or 

scale a* at which CWT yields maximally sparse representation is determined by finding the maximal 

absolute value of the wavelet coefficients at the time shift value frozen to b=0. This yields scale value of 

a*110. The CWT of the same pure component shown in Figure 1a with the resolution level frozen to a* 

yields a transform that is very sparse in time shift, b, domain, i.e. only few coefficients are non-zero when 

time shift index b is close to zero. That is shown in Figure 1d. We would like to point out that we have 

checked many other types of wavelets in blind extraction of pure components. However, the basis with 

Morlet and Mexican hat wavelet was the only one that enabled successful extraction of three pure 

components from two mixtures of 1H NMR spectra in demanding experiment reported in section 4.  

Model (1) is written in time-scale domain as 

       , ,a b a bx As        (7) 

where x(a,b) and s(a,b) denote column vectors comprised of transformed individual components 

 
1

( )
N

n n
x t


and  

1
( )

M

m m
s t


. For the solution of the related uBSS problem with N<M, majority of clustering 

algorithms require that signal s(a,b) is (M-N+1)-sparse with M-N+1 zero components or with no more 

than N/2 nonzero components. By setting the number of mixtures to be N=2 this implies k=M-1, i.e., the 

assumption is that pure components do not overlap in transformed time-scale domain. This assumption is 

recently relaxed by a concept known as k-plane clustering, [28,29]. Robustness with respect to noise and 

outliers is achieved by assuming that pure components are in average (M-N+1)-sparse. Hence, it is 

allowed that pure components at certain number of time-scale coordinates violate (M-N+1)-sparseness 

assumption. We shall assume that pure components in transformed time-scale domain are in average 

k=M-1 sparse. This implies that at the majority of time scale coordinates (a,b) only one pure component 

sm(a,b) out of M will be non-zero. It is however important to say that k=M-1 sparseness assumption will 
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probably be violated when pure components represent complex chemical compounds with high degree of 

similarity, such as biomolecules from proteomic research or isolated from natural sources or structurally 

related compounds usually obtained during natural product synthesis. In such scenarios it will be 

necessary to increase number of mixtures N from two to three or more. This number depends on level of 

overlap between pure components in the representation (wavelet) domain. For example, if JM pure 

components are non-zero at the majority of (a,b) coordinates, than the number of mixtures should satisfy: 

N=J+1. Nevertheless, it will be demonstrated on demanding experimental problem that k=M-1 

sparseness-based concept works not only for 13C NMR data but also for the 1H NMR data. Because the 

number of coordinates in time-scale domain that deviates from the k=M-1 sparseness assumption was 

reasonably small, in comparison to the overall number of coordinates, it did not significantly influence 

accuracy of the clustering-based estimation of the mixing matrix.  

 

2.3. Data clustering algorithm  

By assuming the average number of active sources to be 1 (i.e. that in majority of time-scale coordinates 

only one out of M pure components is non-zero), estimation of the mixing matrix A can be organized in 

K-means clustering fashion, [37]. Provided that at each time-scale coordinate only one pure component is 

non-zero the following applies: 

 

   x(a,b)=amsm(a,b)        (8) 

where am represents the column vector of the mixing matrix that corresponds with the concentration 

profiles of the pure component sm across the N mixtures. Hence, if we assume that column vectors am are 

normalized to 2 -unit norm they can be estimated from mixtures data. K-means clustering algorithm 
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assumes that number of clusters M in data set (this corresponds with the number of pure components) is 

known. It is also assumed that initial values of M cluster centers am are given. Then set of binary 

indicators rtm {0, 1} is assigned to each data point xt in accordance with: 

 

   

2

1 arg min

0 .

j t j
tm

if m
r

otherwise

  
 


x a
      (9) 

The cluster centers am are updated according to 

 

   
tm tt

m

tmt

r

r




x
a          (10) 

The two phases (9) and (10) of re-assigning data points to clusters and re-computing the cluster means 

are repeated until there is no further change in the assignment or some predefined number of iterations is 

exceeded.      

 However, in the sequel we shall adopt clustering algorithm described in [28] due to its robustness 

to outliers (data points that violate k=M-1 sparseness assumption) and small number of a priori 

information required by the algorithm. Because we have discussed that solution of the BSS problem by 

means of ICA algorithms is characterized by scale indeterminacy we shall assume the unit norm 

constraint (in the sense of 2  norm) on the columns of the mixing matrix A, i.e.,  2 1
1

M

m m
a . Since we 

have assumed the number of mixtures to be N=2 the normalized mixing vectors  
1

M

m m
a lie in a plane on 

the unit circle, i.e., they are parameterized as T[cos( ) sin( )]m m m a . The clustering algorithm is 

outlined by the following steps: 
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 1) In the time-scale domain we find scale a* that yields the maximal amplitude of the 

 coefficients. We transform data with the fixed scale a* along the time shift index b. 

 2) We remove all data points close to the origin for which applies: *

2
( , )a b x , where  

 represents some predefined threshold. This corresponds with the case when all pure components 

 are close to zero i.e. when no pure component exists. It is clear from (8) that such points are 

 irregular from the point of view of determination of the vector of concentration profiles because 

 it would imply pure component is not contained in any mixture at all. It is evident that proper 

 setting of  requires some a priori information related to signal-to-noise ratio. Thus, de-noising 

 of recorded NMR data enables to reduce  and not to loose weak pure components. Hence, a 

 priori information about the ratio between strongest and weakest pure component contained in 

 the mixture is also useful for proper setting of .  It is however also possible to look at the 

 elimination of small data points as de-noising procedure itself.   

 3) Normalize to unit 2  norm remaining data points x(a*,b), i.e.,      * * *

2
, , ,a b a b a bx x x . 

 This step does not influence the quality of the results due to the fact that in any BSS problem 

 uniqueness of the estimation of the mixing matrix and pure components is possible up to the 

 scale only. 

 4) Calculate function f(a), T[cos( ) sin( )] a  

    
 2 *

2
1

( , ),
exp

2

T
t

t

d a b
f



 
  

 
 


x a

a       (11) 

 where    
2* *( , ), 1 ( , )t td a b a b  x a x a  and  *( , )ta b x a  denotes inner product. 

 T T denotes  number of data points that are remained after elimination process in step 2.  
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 Parameter  in (11) is called dispersion. If set to sufficiently small value, in our experiments this 

 turned out to be 0.05, the value of the function f(a) will  approximately equal the number of 

 data points close to a. Thus by varying mixing angle 0/2 we effectively cluster data.  The

 mixing angle is confined in the interval [0, /2] due to the fact that mixing vectors have 

 chemical interpretation as concentration that is a positive quantity. Thus, they must stay in the 

 first quadrant.   

 5) Number of peaks of the function f(a) on interval [0, /2] corresponds with the estimated 

 number of pure components M̂ . Locations of the peaks correspond with the estimates of the 

 mixing angles   
ˆ

1
ˆ

M

m m



, i.e., mixing vectors  

ˆ

1
ˆ

M

m m
a , where Tˆ ˆ ˆ[cos( ) sin( )]m m m a . The hat 

 sign introduced here is used to denote estimate of the related quantity. Given statements are 

 based on the fact that mixing vectors are actually cluster centers (see description given 

 previously for the application of K-means data clustering algorithm to estimation of the mixing 

 matrix). Parameterization of the mixing vector in terms of mixing angle helps to determine the 

 positions of local maxima of the clustering function (11). In order for this approach to estimation 

 of mixing matrix and number of pure components to work it is understood that: (i) all pure 

 components are presents in each mixture in some amount; (ii) there are no two pure components 

 with the same concentration profiles because in such situation the two corresponding mixing 

 vectors would be parallel and the two pure components would be indistinguishable i.e. they 

 would be represented by their linear combination. 

Hence, at the end of data clustering phase estimated number of pure components M̂ is obtained. This is 

an important contribution because estimation of the number of pure components is very complex issue 

and it is related to what in computer science is known as intrinsic dimensionality problem, [38]. Several 

methods for estimating the number of pure components exist, [39-41]. However, all of them assume 
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NM. Thus, they are not (at least directly) applicable to uBSS problem considered here. To estimate 

number of pure components robustly we used the root-mean-squared-error (RMSE) criterion between 

original and reconstructed data [9,10,12]   

  
 

2ˆ

1 1 1
ˆ ˆ( ) ( )

ˆ( )

N T M

n nm mn t m
x t a s t

RMSE M
NT

  



  

     (12) 

where ˆ
nma  denotes estimated coefficient of the mixing matrix and ˆ

ms  denotes estimated pure component. 

Thus, by slightly varying dispersion parameter  in (11) we obtain different values for the estimated 

number of pure components. We have to allow that some of them will not correspond with the true 

components but can be outliers caused by chemical noise or other types of imperfections that exist in 

experimental world. Hence, we propose information-theoretic criteria called negentropy, [15], to 

measure information content of to be estimated pure components and rank them according to estimated 

negentropy measure.  Negentropy is differential entropy defined relatively to the entropy of the Gaussian 

process. Approximation of negentropy for random process x is obtained as 

   
   

2 2

3 4( ) ( )
( )

12 48

C x C x
J x          (13) 

where C3(x) and C4(x) are third order and fourth order cumulants of the random process x, [42]. Because 

we shall calculate negentropy of the magnitude spectra of the estimated pure components in frequency 

domain we use the definition for the cumulants for the non-zero mean random process x 

      3 2 3
3( ) 3 2C x E x E x E x E x          

        4 3 2 2 4
4 ( ) 4 12 6C x E x E x E x E x E x E x                 (14) 

where E[x] in (14) denotes mathematical expectation of x. The Gaussian random process is the least 
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informative among the random processes with unbounded support and has highest entropy. Hence, 

random processes that are informative are non-Gaussian with the non-zero negentropy measure. We 

intuitively expect that pure components are informative. Thus, the estimated pure components that 

correspond to the true pure components are expected to have significantly larger negentropy than the 

negentropy of the outliers. 

 

2.4. Linear programming-based solution of the underdetermined system of linear equations 

 Unlike the case of even- or over-determined BSS problems that are solved by finding the mixing matrix 

A by means of ICA algorithms, solution of the uBSS problems is considerably more difficult. The reason 

is that even when A is known solution of the linear system of equations (1) or (7) is not unique, because 

there are more unknowns (M) than equations (N). If pure components are (M-N+1)-sparse, a unique 

solution is obtained at the minimum of the 1  norm of s, [24-27, 30-34]. We could formulate linear 

programming based solution in the time-scale basis (7). However, the results of the NMR data analysis 

are customary presented in frequency domain in which case the pure components estimated in the time-

scale basis ought to be inverse transformed back to time domain and then to frequency domain. In order 

to reduce computational complexity of the proposed blind spectra decomposition algorithm we take 

advantage of the result presented in [30] and estimate the pure components directly in frequency domain. 

The result in [30] states that minimum of the 1  norm yields accurate solution of the uBSS problem even 

if pure components are (M-N)-sparse. It means that it is allowed that two pure components (or N pure 

components in the general case) can co-exist at each frequency. We now write model (1) in frequency 

domain because it is of actual interest in the NMR data analysis. Provided that at the majority of 

frequencies only one pure component is present the following relation between magnitude spectrum of 

the mixtures and pure components holds 
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   ( ) ( )a a x As         (15) 

where 
T

1 2 2
( ) ( ) ... ( )a Nx x     x , 

T

1 22
( ) ( ) ... ( )a Ms s     s and 

2
x denotes 2  norm of 'x'. 

Assuming A is estimated in time-scale domain by means of described data clustering algorithm we obtain 

sa() in (15) as the solution of linear program 

  
 

ˆ

1
( )

ˆˆ ( ) arg min s.t. ( ) ( )

( )

a

M

a m a am

a

s


   




 




s

s As x

s 0

     (16) 

Problem (16) can be solved by several methods but linear programming is known to yield unique solution 

due to the convexity of the linear program, [24,25]. Algorithms were suggested in [26,30,33,34] as 

substitutes for the linear programming in the case of large scale problems or when the noise can not be 

neglected. Representative for such a case is 1 -regularized least square problem:  

 

  
2

12( )

1 ˆˆ ( ) arg min ( ) ( ) ( )
2a

a a a a t


     
s

s As x s      (17)

   

that can be solved by interior point method [33]. We have tested both linear programming method (16) 

and interior point method used to solve (17). The two algorithms yielded results with basically similar 

quality implying that noise level in de-noised experimental data was low. Therefore, reported 

experimental results were obtained by means of linear programming.  

 As explained in the concluding paragraph in section 2.2 the assumption that only one out of M 

pure components is present at each frequency will probably be violated when pure components represent 

complex chemical compounds. In such scenarios it will be necessary to increase number of mixtures N 

from two to three or more. This number depends on how many pure components are expected to coexist 
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at the majority of frequency coordinates. In such situation the relation (15) between magnitude frequency 

responses does not hold any more. When multiple pure components occupy each frequency point  we 

notice relation between real and imaginary part of x as:  R{x()}=AR{s()} and I{x()}=AI{s()}. 

Written in matrix formulation it reads as 

  

  
 

 

 

 

( ) ( )

( ) ( )

R R

I I

 

 

    
    
       

x sA 0

0 Ax s
       (18a) 

or 

      x As          (18b) 

 

To satisfy nonnegativity constraints on variables that is required by linear program we introduce dummy 

variables u,v0 such that  s u v , 
 

  
 

u
z

v
 and    A A A . Linear programming based solution 

with equality constrains, that is equivalence of (16) when pure components do not overlap, is obtained as 

  

 
 

     

 

2

1
ˆ arg min s.t.

M

mm
z



   




 




z

z Az x

z 0



     (19) 

Pure components are obtained from the solution of linear program (19) as         s u v . 

Equivalent formulation of the noise robust solution (17) is obtained as:  
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   
 

     
2

12

1
ˆ arg min

2

      
z

z Az x z      (20) 

 

 3. Experimental 

3.1. Software environment 

Described SCA-based approach for blind decomposition of 1H and 13C NMR spectra that includes data 

clustering and linear programming algorithm was tested using custom scripts in MATLAB programming 

language (version 7.1.; The MathWorks, Natick, MA). The linear programming part of the SCA 

algorithm has been implemented using linprog command from the Optimization toolbox. Continuous 

wavelet transform, eq.(4)-(7), was implemented using cwt command for the Wavelet toolbox. All 

programs were executed on desktop personal computer running under the Windows XP operating system 

using Intel Core 2 Quad Processor Q6600 operating with clock speed of 2.4 GHz and 4GB of RAM 

installed.  

 

3.2. NMR measurements  

Compounds Boc2-Tyr-NH2 (pure component 1), Boc-Phe-NH2 (pure component 2) and Boc-Phe-NH-

CH2-CCH (pure component 3) were used for the preparation of two mixtures: X1 (1:2:3 = 20 mg: 20 

mg: 7 mg) and X2 (1:2:3 = 10 mg: 25 mg: 15 mg). Mixtures were dissolved in 600 L of DMSO-d6. 

NMR experiments were carried out on a Bruker AV600 spectrometer equipped with a 5 mm BBO probe 

with z-gradient. The liquid-state 1H and 13C NMR spectra (600.13 MHz for 1H and 150.90 MHz for 13C) 

were measured in DMSO-d6 at 298 K using standard 1H and APT techniques. Assignments of the NMR 

spectra of pure components 1-3 are given bellow.  

Boc2-Tyr-NH2 (pure component 1) 
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13C NMR (Figure 2a): 27.2 (CH3 OBoc), 28.1 (CH3 NHBoc), 36.8 ( Tyr), 55.5 ( Tyr), 77.9 (C 

NHBoc), 82.9 (C OBoc), 120.8 ( Tyr), 130.1 ( Tyr), 135.9 ( Tyr), 149.1 151.3 (CO Boc), 155.2 ( 

Tyr), 173.5 (CO Tyr). 

1H NMR (Figure 3a): 1.31 (s, 9H, CH3 NHBoc), 1.48 (s, 9H, CH3 OBoc), 2.74, 2.95 (dd, 2H, ,' Tyr, 

3J, = 10.4 Hz, 3J,' = 4.3 Hz, 2J,' = 13.8 Hz), 4.08 (m, 1H,  Tyr), 6.81 (d, 1H, NH Tyr, 3J,NH = 8.9 

Hz), 7.01, 7.38 (br s, 2H, NH2 Tyr), 7.07 (d, 2H,  Tyr, 3J, = 8.4 Hz), 7.28 (d, 2H,  Tyr, 3J, = 8.4 

Hz). 

Boc-Phe-NH2 (pure component 2) 

13C NMR (Figure 2b): 28.1 (CH3 Boc), 37.5 ( Phe), 55.5 ( he), 77.9 (C Boc), 126.1 ( Phe), 127.9 ( 

Phe), 129.1 ( Phe), 138.3 ( Phe), 149.1, 151.3 (CO Boc), 173.6 (CO Phe). 

1H NMR (Figure 3b): 1.30 (s, 9H, CH3 Boc), 2.74, 2.96 (dd, 2H, ,' Phe,  3J, = 10.3 Hz, 3J,' = 4.1 

Hz, 2J,' = 13.6 Hz), 4.10 (m, 1H,  Phe), 6.78 (d, 1H, NH Phe, 3J,NH = 8.7 Hz), 7.01, 7.36 (br s, 2H, 

NH2 Phe), 7.25 (m, 5H, arom Phe). 

Boc-Phe-NH-CH2-CCH (pure component 3) 

13C NMR (Figure 2c): 28.0 (CH2 propargyl), 28.1 (CH3 Boc), 37.5 ( Phe), 55.5 ( Phe), 73.0 (CH 

propargyl), 77.9 (C Boc), 81.0 (C propargyl), 126.1 ( Phe), 127.9 ( Phe), 129.2 ( Phe), 138.0 ( Phe), 

155.2 (CO Boc), 171.4 (CO Phe). 

1H NMR (Figure 3c): 1.29 (s, 9H, CH3 Boc), 2.72, 2.93 (dd, 2H, ,' Phe,  3J, = 10.3 Hz, 3J,' = 4.2 

Hz, 2J,' = 13.6 Hz), 3.12 (t, 1H, CH propargyl, 4JH,H = 2.4 Hz), 3.87 (m, 2H, CH2 propargyl), 4.14 (m, 

1H,  Phe), 6.90 (d, 1H, NH Phe, 3J,NH = 9.1 Hz), 7.25 (m, 5H, arom Phe), 8.38 (t, 1H, NH propargyl, 

3JNH,H = 5.2 Hz). 

 

4. Results and discussion 
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To test the above described approach, structurally similar amino acid derivatives Boc2-Tyr-NH2 (pure 

component 1), Boc-Phe-NH2 (pure component 2) and Boc-Phe-NH-CH2-CCH (pure component 3) 

were chosen in this study. Although 13C NMR spectra, shown in Figures 2a to 2c, are relatively easy to 

distinguish, there are certain overlapping present in the region 20-40 ppm and 120-140 ppm (see also 

assignments in the section 3.2).  As clearly seen in Figures 3a to 3c 1H NMR spectra reflect high degree 

of similarity, thus providing sufficiently challenging experimental ground for mathematical algorithm. 

Both 13C and 1H NMR spectra were included in the experimental performance evaluation to demonstrate 

versatility of the approach proposed for blind decomposition of the NMR spectra. 

 

4.1. Case 1: 13C NMR spectra 

Mathematically less demanding case of 13C NMR spectra was carried out first. 13C NMR spectra of the 

three pure components are shown in Figures 2a to 2c. Figures 4a and 4b show 13C NMR spectra of the 

two mixtures, Eq.(15). Mixtures were designed to fulfill requirements important from both experimental 

(chemistry/spectroscopy) and mathematical point of view. First, one component (3 in X1) is present in 

low concentration, while two are equally distributed and second, all three components are present in 

nearly the same concentration (X2). Presence of component in low concentration is often the case in 

NMR analysis of mixtures obtained by chemical synthesis. Separation of pure components that are 

present in the similar concentrations in the mixtures is a challenge for blind decomposition algorithms due 

to the fact that unknown concentration matrix becomes ill-conditioned. It is evident that region around 

30 ppm (Boc groups) and aromatic region (120-140 ppm) are the most "signal crowded" parts of the 

spectra.  Figure 5 shows clustering function, Eq.(11), in the mixing angle domain, wherein continuous 

wavelet transform, Eq.(4), with the Morlet wavelet, Eq.(5), has been used to transform mixtures from 

time to time-scale domain. When dispersion factor is set to =0.0425 the number of the pure components 
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is estimated as 3 with the data reconstruction error, Eq.(9), RMSE=2.5. The clustering function shown in 

Figure 5 illustrates this case. Two peaks that are well distinguished corresponds with the pure 

components 1 and 2 that were present in higher concentration in the mixtures, while less distinguished 

peak corresponds with the pure component 3 that is present in the lower concentration in the mixture. 

Numbers at the ordinate indicate the overall number of (a*,b) points clustered at each of the peaks. 

Evidently, this number is more than four time greater for the pure components 1 and 2 than pure 

component 3. The magnitude spectra of the estimated pure components that correspond to the three true 

pure components (Figures 2a to 2c) are shown in Figures 6a to 6c. Comparison with spectra of true pure 

components proves high degree of matching. Larger discrepancy is only found between the true third 

pure component, Figure 2c, and its estimate, Figure 6c. This is a consequence of high spectral similarity 

between the second and the third pure component but also of significantly lower concentration of the 

third pure component in the mixture X1. Normalized correlation coefficients between true and estimated 

pure components spectra are respectively given as 0.871, 0.954 and 0.819. Clearly, the accuracy of the 

estimation of pure components would be improved if three instead of two mixtures would be used. This 

would however increase the computational and experimental complexity of blind decomposition 

procedure. Nevertheless, quality of the results obtained from two mixtures only, as indicated by the 

values of normalized correlation coefficients, can be considered satisfactorily.    

 

4.2. Case 2: 1H NMR spectra 

Blind decomposition of the 1H NMR spectra has not been considered as experimental ground for BSS 

analysis so far, owing to the significant overlapping between the pure components spectra. Therefore, we 

assume that blind decomposition of more than two pure components that are structurally similar from 

two mixtures only should be of great practical importance in 1H NMR spectroscopy. 1H NMR magnitude 
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spectra of the three pure components are shown in Figures 3a to 3c. Negentropy measures, Eq.(13) and 

(14), calculated on the magnitude spectra of the three pure components were: 1.9551017, 2.7931016 

and 2.6271016. The magnitude spectra of the two mixtures, Eq.(15), are shown in Figures 7a and 7b. 

Figure 8 shows clustering function, Eq.(11), in the mixing angle domain wherein continuous wavelet 

transform, Eq.(4), with the Mexican hat wavelet, Eq.(6), has been used to transform two mixtures from 

time to time-scale domain. When dispersion factor is set to =0.04 the number of the pure components is 

estimated as 4 with the data reconstruction error, Eq.(9), RMSE=1.3210-11. When dispersion factor is 

set to =0.035 the number of the pure components is estimated as 5 with the data reconstruction error 

RMSE=8.110-13. The clustering function shown in Figure 8 illustrates this later case. In direct 

comparison with Figure 5, that shows the clustering function for 13C NMR spectra, it is evident that it 

becomes more difficult to distinguish peaks in the case of 1H NMR spectra. The reason for this is more 

often violation of the k=M-1 sparseness assumption on pure components in the wavelet domain i.e. 1H 

spectra of the pure components overlap more often than 13C spectra. This influences directly accuracy of 

data clustering methods described in section 2.3. Again, accuracy of data clustering could be increased by 

using three or four mixtures instead of two only. That, however, would increase experimental and 

computational complexity of blind spectra decomposition process. Nevertheless, results obtained for 

estimation of the pure components spectra, as indicated by the values of normalized correlation 

coefficients, can be considered satisfactorily. The magnitude spectra of the estimated pure components 

that correspond to the three true pure components are shown in Figures 9a to 9c. Again, despite of the 

structural similarities and NMR peak overlapping, estimated 1H spectra of three pure components exhibit 

good matching with the true component spectra. Normalized correlation coefficients between true and 

estimated pure components spectra are respectively given as 0.906, 0.938 and 0.818. In addition to 

violation of  the k=M-1 sparseness assumption, artifacts present in the experimental data, including 

chemical noise, will contribute to the presence of artificial or dummy peaks in the clustering function. 
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This problem is especially emphasized when some of the pure components are contained in the low 

concentration in the mixtures. Thus it becomes very difficult to choose the proper value of dispersion 

constant  in the clustering function (11) and presence of dummy peaks in the clustering function is very 

likely to occur. As already mentioned, such case is illustrated in Figure 8. Therefore, selection criterion 

such as information-theoretic one called negentropy, is of great importance to distinguish estimated pure 

components that correspond to the true ones from those that correspond to artifacts. We call these later 

pure components the outliers. Negentropy measures, Eq.(13) and (14), calculated on the magnitude 

spectra of the estimated pure components shown in Figures 9a to 9c were: 1.5421016, 6.6021016 and 

1.3791012. Figures 9d and 9e show magnitude spectra of two components that are classified as outliers. 

As it is seen their magnitudes are between one and two orders of magnitudes smaller than magnitudes of 

the estimates of the true pure components. More importantly, their negentropies were: 1.536106 and 

1.89 and that is 10 orders of magnitude or more different that the negentropies of the estimated pure 

components that correspond to the true pure components. Thus, negentropy criterion can serve as a basis 

to discriminate estimates that correspond to the true pure components from those that ought to be 

classified as outliers. Note also relatively large discrepancy like in 13C spectra between the third true pure 

component, Figure 3c, and its estimate, Figure 9c. This can be rationalized by the same wording like for 

13C spectra.  

 

5. Conclusions 

SCA-based approach has been proposed for blind extraction of more than two pure components spectra 

in 1H and 13C NMR spectroscopy measuring two mixtures only. However, presented concept is general 

and directly applicable to experimental scenarios that possibly would require use of more than two 

mixtures. This appears to be the first time to report such results, because other blind decomposition 

methods require the number of mixtures to be equal or greater than the unknown number of pure 
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components. Proposed SCA-based approach solves the resulting underdetermined BSS problem by 

splitting it into two problems: blind estimation of the number of pure components and the mixing or 

concentration matrix by means of data clustering in the time-scale domain, and estimation of the 

magnitude pure components spectra in frequency domain by means of linear programming. This is 

enabled by exploiting sparseness among the pure components in time-scale domain that is achieved owing 

to the use of CWT with the Morlet and Mexican hat wavelets as the basis functions. To cope with the 

presence of outliers caused by chemical noise or other types of imperfections that exist in experimental 

data, information-theoretic based criteria called negenetropy has been introduced to rank the estimated 

pure components in term of their information content. Having in mind the importance of NMR 

spectroscopy for structure determination in natural products research as well as for quantification in 

pharmaceutical industry and medicine diagnostics, reported results present considerable contribution to 

further development of data analysis approaches in many areas of natural sciences.  
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