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Abstract 

The paper presents sparse component analysis (SCA)-based blind decomposition of the 

mixtures of mass spectra into pure components, wherein the number of mixtures is less than 

number of pure components. Standard solutions of the related blind source separation (BSS) 

problem that are published in the open literature require the number of mixtures to be greater 

than or equal to the unknown number of pure components. Specifically, we have 

demonstrated experimentally the capability of the SCA to blindly extract five pure 

components mass spectra from two mixtures only. Two approaches to SCA are tested: the 

first one based on 1  norm minimization implemented through linear programming and the 

second one implemented through multilayer hierarchical alternating least square nonnegative 

matrix factorization with sparseness constraints imposed on pure components spectra. In 

contrast to many existing blind decomposition methods no a priori information about the 

number of pure components is required. It is estimated from the mixtures using robust data 

clustering algorithm together with pure components concentration matrix. Proposed 

methodology can be implemented as a part of software packages used for the analysis of mass 

spectra and identification of chemical compounds. 

Keywords: Mass spectrometry, Chemometrics, Blind source separation, Sparse component 

analysis, Nonnegative matrix factorization. 
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INTRODUCTION 

During the past decade, mass spectrometry (MS) has been rapidly developing to meet ever-

increasing requirements of natural sciences. It has been successfully applied on complex 

biological samples with numerous analytes having diverse physico-chemical properties and 

being present in different concentrations.1 MS is closely related to the study of proteins and 

proteosomes in post-genome times, and MS proteomics has been suggested to become an 

early primary screening approach to disease diagnosis.2 Moreover, mass spectrometry is 

occupying a central position in the methodologies developed for determination of the 

metabolic state. Profiling of metabolites in biological fluids is useful in screening for disease 

biomarkers.3,4 Also, MS is used in pharmaceutical industry to study metabolism of 

xenobiotics, since is known that many drugs may easily undergo metabolic activation to form 

chemically reactive metabolites capable to modify cellular macromolecules.5 Mass 

spectrometry has also been used for the determination of protein-protein interactions6 and 

natural product biosynthetic processes.7  

All these examples comprise multi-component mixtures and components of biological or 

pharmaceutical samples should be separated before MS detection. Efficiency of this 

separation is not always satisfactory; it is always time- and money consuming and can be 

described as a bottleneck of particular analysis. Extraction of the pure component spectra 

from the mixtures of their linear combinations is therefore of great interest. Classical 

approach to extraction of the spectra of pure components is to match the mixture's spectra 

with a library of reference compounds. This approach is ineffective with the accuracy strongly 

dependent on the library's content of the pure component spectra and can not reflect the 

variation of the spectral profile due to environmental changes. Alternatives to library 

matching approach are blind decomposition methods, wherein pure components' spectra are 

extracted using mixtures spectra only. Blind approaches to pure components spectra 

extraction have been reported in NMR spectroscopy,8 infrared (IR)9-11 and near infrared (NIR) 

spectroscopy,11-17 EPR spectroscopy,18,19 mass spectrometry,11,16,17 Raman spectroscopy18,19 

etc. In a majority of blind decomposition schemes independent component analysis (ICA)20-22 

is employed to solve related blind source separation (BSS) problem. ICA assumes that: (i) 

pure components are statistically independent, (ii) at most one is normally distributed and (iii) 

number of mixtures is greater than or equal to the unknown number of pure components. The 

two requirements: to have more linearly independent mixtures than pure components and to 

have statistically independent pure components seem to be most critical for the success of the 

BSS approach to blind decomposition of the mixtures spectra into pure components 
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spectra.11,12,15,17 Statistical independence assumption is not very likely to be fulfilled for mass 

spectra because they are correlated i.e. overlapped.16,17 An algorithm for blind decomposition 

of EPR spectra has been derived in15 minimizing contrast function that exploits sparseness 

among the pure components. However, this method as well as all discussed blind spectra 

decomposition methods require the number of mixtures to be equal to or greater than the 

unknown number of pure components. In a number of real world situations it is however not 

easy to acquire mixtures spectra with different concentrations of the pure components spectra. 

In this regard it is desirable property of blind decomposition methods to solve related BSS 

problem with as few mixtures as possible. Addressing these issues, we have applied sparse 

component analysis (SCA) approach to blind decomposition of five pure components mass 

spectra from two mixtures only. The aim of presented work is to demonstrate utility of SCA 

for solving multi-component related problems in mass spectrometry and to assist 

implementation of signal processing on experimentally obtained data. Results presented here 

can be considered as an important step towards further expansion and even wider application 

of mass spectrometry in all fields of natural sciences. 

 

METHODS AND EXPERIMENTAL 

 

Compounds 

Pure components 1-5 (Fig. 1) used in this study belong to a class of symmetrical enediyne-

bridged compounds derived from glycine, alanine, valine, leucine and phenylalanine. They 

were prepared for the temperature-dependent cycloaromatization studies and their synthesis 

and properties will be published in due course.  

Two mixtures consist of compounds 1-5 were prepared by mixing different volumes of pure 

component's stock solutions (1 mg/mL) to obtain the following ratios: X1 (1:2:3:4:5 = 

6:4:3:2:1) and X2 (1:2:3:4:5 = 1:2:3:4:6).  

 

Mass spectrometry measurements 

Electrospray ionization mass spectrometry (ESI-MS) measurements were performed on a 

HPLC-MS triple quadrupole instrument equipped with an autosampler (Agilent Technologies, 

USA) operating in a positive ion mode. Mass spectra of pure components 1-5, acquired in a 

full scan mode, were recorded by injection of 3 l of 1 mg/mL stock solution in methanol, at a 

flow rate of 0.2 mL/min (mobile phase methanol-0.1 % formic acid, 50:50).  Mass spectra of 
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two mixtures X1 and X2 were obtained by injection of 2 l of mixture solutions prepared as 

described above.  

 

Software environment 

Described SCA-based approaches to blind decomposition of mass spectra were tested using 

custom scripts in MATLAB programming language (version 7.1.; The MathWorks, Natick, 

MA). The linear programming part of the SCA algorithm has been implemented using 

linprog command from the Optimization toolbox. The nonnegative matrix factorization 

part and data clustering parts of the SCA algorithm have been implemented in MATLAB 

programming language by us. All programs were executed on PC running under the Windows 

XP operating system using Intel Core 2 Quad Processor Q6600 operating with clock speed of 

2.4 GHz and 4GB of RAM installed.  

 

 

RESULTS  

 

The positive ion mass spectra of 1-5 show molecular ions at m/z 357 (1), m/z 385 (2), m/z 441 

(3), m/z 467 (4) and m/z 537 (5) accompanied by traces of the corresponding [M+Na]+ ions 

(Figure 2). Also, certain degree of fragmentation occurs in the ion source. Low abundant 

peaks at the m/z 139 and 153 in the spectrum of glycine-related 1 and alanine-related 

compound 2 can be assigned as enediyne-derived fragments shown in Figure 1. Additionally, 

cleavage of two bonds (structure A, Figure 1) gives rise to low abundant ions found in spectra 

of all compounds 1-5 at m/z 180, 194, 222, 236 270, respectively. In the mass spectra of 

compounds 3-5 with bulky side-chains (Val, Leu and Phe) dominant process is cleavage of 

amino acid moiety, apparent in the presence of high intensity ions at m/z 146, 160 and 194, 

and the formation of structure B (Figure 1) with 184, 198 and 232, respectively.  

Mass spectra of compounds 1-5 were used to verify the quality of results obtained by the 

sparse component analysis. Mass spectra of two mixtures consist of all five compounds, 

shown in Figure 3, were used as input for SCA algorithms. To solve related underdetermined 

blind source separation (uBSS) problem two approaches were applied: (i) combination of 

robust data clustering23 and constrained 1 norm minimization24-26; (ii) recently developed 

nonnegative matrix factorization (NMF) algorithm that is known as local or hierarchical 

alternating least squares (HALS) NMF algorithm.27,28 Its main property is to estimate 
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concentration or mixing matrix globally and pure components spectra locally, wherein 

sparseness constraints are imposed on the pure components spectra. Unlike majority of the 

BSS algorithms that assume the number of pure components to be known, proposed approach 

estimates it from the mixtures spectra.23 Data clustering algorithm also yields as a result 

estimate of the concentration or mixing matrix. Constrained 1  norm minimization is used 

afterwards to solve underdetermined system of linear equations in order to estimate pure 

components mass spectra. To implement constrained 1  norm minimization we have tested 

two approaches: linear programming method with equality constraints and interior point 

method aimed to solve 1 -regularized least square problem29. Both approaches yielded results 

of basically same quality. HALS NMF algorithms with sparseness constraints were employed 

in multilayer form for which it has been found to improve sparseness of the solutions.30,31 In 

addition to that we have used for the initial value of the data concentration matrix in the first 

layer of the NMF algorithm the estimate of the concentration matrix obtained by data 

clustering algorithm. This additionally improved separation quality in relation to one obtained 

by constrained 1  norm minimization approach. 

 

Sparse component analysis 

As many decomposition methods proposed approach is based on static linear mixture model  

 

   X AS         (1) 

 

where 0R N T
X  represents matrix of N measured mixtures spectra across T m/z variables, 

0R N M
A represents the matrix of concentration profiles also called the mixing matrix and 

matrix 0RM T
S contains M pure components mass spectra across T m/z variables. Due to the 

nature of the problem all quantities in (1) are nonnegative. As already pointed out, the number 

of pure components M is in principle unknown although many BSS/ICA algorithms assume 

that it is either known in advance or can be easily estimated. This does not seem to be true in 

practice, especially when the BSS problem is underdetermined. Here, we shall treat M as 

unknown parameter that will be estimated by the clustering algorithm described in Data 

clustering section. In addition to estimate the number of pure components, used data 

clustering algorithm also estimates the concentration matrix. Estimate of the concentration 

matrix is necessary for the 1  norm minimization approach, but it is shown to be useful for 
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the initialization of to be described HALS NMF approach. In overall, the BSS problem related 

to blind mass spectra decomposition consists of: (i) estimating the number of pure 

components spectra and concentration matrix by data clustering algorithm; (ii) estimating the 

matrix of the pure components spectra S by 1  norm minimization algorithm; (iii) as an 

alternative to (ii) estimating the concentration matrix A and the matrix of the pure 

components spectra S by HALS NMF algorithm in multilayer mode. All three tasks are 

executed using matrix of mixtures spectra X only. In addition to that, we allow the number of 

pure components spectra M to be greater than the number of mixtures spectra N. Hence, blind 

mass spectra decomposition problem becomes uBSS problem. 

 

Data clustering 

In mass spectra decomposition problem considered in this paper we have assumed that pure 

components spectra are in average k=M-1 sparse. This implies that at each m/z coordinate in 

average only one pure component is active i.e. nonzero. By looking at the morphology of the 

mass spectra, see for examples references 9 and 10, this assumption appears to hold in 

practice. It allows to reduce number of mixtures to N=2, hence reducing the computational 

complexity of the used data clustering algorithm23 by reducing dimension of the concentration 

subspaces, that equals average number of active components, to 1. Then, the appropriately 

chosen function, see eq.(3), will effectively cluster data, wherein the number of clusters 

corresponds with the estimate of the number of pure components M. If the number of m/z 

coordinates that violates k=M-1 sparseness assumption is relatively large this will influence 

accuracy of the estimation of the concentration matrix due to the repositioning of the cluster 

centers. It will not however influence in the same amount the accuracy of the estimation of the 

number of clusters. Thus, performance of the 1  norm minimization algorithms that require 

the estimate of the concentration matrix in order to proceed to the next phase and solve 

underdetermined system of linear equations will be affected significantly if mass spectra are 

not sparse enough. On the other hand HALS NMF approach will be significantly less 

sensitive to the level of sparseness of the mass spectra because it only requires from the 

clustering algorithm the estimate of the number of pure components spectra. However, 

because estimate of the concentration matrix is available as the by-product of the data 

clustering algorithm it can be very useful in the initialization of the HALS NMF algorithms as 

well. This is due to the fact that simultaneous minimization of chosen cost function with 

respect to A and S is non-convex problem with many local minima. Hence, quality of the 
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decomposition highly depends on the strategy employed for selection of initial values of A 

and S. 

 Because solution of the BSS problem is generally characterized by scale 

indeterminacy we have assumed the unit norm constraint (in the sense of 2 norm) on the 

columns of the concentration matrix A, i.e.,  2 1
1

M

m m
a . As already pointed out, in this 

paper we do assume the number of mixtures to be N=2. Thus, the normalized mixing vectors 

 
1

M

m m
a lie in the first quadrant on the unit circle, i.e., they are parameterized as:  

 

  T[cos( ) sin( )] 1,...,m m m m M  a ,      (2) 

 

where m represents mixing angle that is confined in the interval [0, /2]. By assuming 1-

dimensional concentration subspaces the clustering algorithm in ref. 23 is outlined by the 

following steps: 

1) We removed all data points close to the origin for which applies:  2 1
( )

T

t
t 


x , where   

represents some predefined threshold. This corresponds with the case when pure components 

spectra are close to zero. 

2) Normalize to unit 2  norm remaining data points x(t), i.e.,       
2 1

T

t
t t t


x x x , where 

T T denotes number of data points that remained after the elimination process in step 1. 

 3) Calculate function f(a), where a is defined with (2): 

  

    
 2

2
1

( ),
exp

2

T

t

d t
f



 
  

 


x a
a      (3) 

 

where    
2

( ), 1 ( )d t t  x a x a  and  ( )t x a  denotes inner product. Parameter  in (3) is 

called dispersion. If set to sufficiently small value, in our experiments this turned out to be 

0.065±0.01, the value of the function f(a) will approximately equal the number of data 

points close to a. Thus, by varying mixing angles 0/2 we effectively cluster data. 

However, it is clear that reported value is empirical. For another set of mixtures, depending on 

the concentration profiles of the pure components, it can yield either overestimated or 

underestimated number of pure components. To obtain robust estimator we propose to 
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decrease value of  until estimated number of pure components is increased for 1 or 2. False 

pure components will be either repeated versions of some of the true pure components or their 

linear combinations. Thus, they can be detected after blind extraction phase as the ones that 

are highly correlated with the rest of the extracted pure components. 

4) Number of peaks of the function f(a) corresponds with the estimate of the number of pure 

components spectra M̂ . Locations of the peaks correspond with the estimates of the mixing 

angles   
ˆ

1
ˆ

M

m m



, i.e., mixing or concentration vectors  

ˆ

1
ˆ

M

m m
a , where ˆ

ma is given with (2). 

The hat sign introduced here is used to denote estimate of the related quantity. Hence, at the 

end of data clustering phase estimates of the number of pure components M and concentration 

matrix A are obtained.  

 

1  norm minimization 

SCA enables to find a possible good approximation of the true solution to an underdetermined 

system of linear equations subject to sparseness constraints. When in (1) N<M, the null-space 

of A is nontrivial, and the inverse problem has many solutions. Therefore, additional 

constraint such as sparseness between the components of the column vectors  
1

( )
T

t
t


s  is 

necessary. A sparse signal is a signal whose most samples are nearly zero, and just few 

percent take significant values. Signal that has at least kM zero components is called k-

sparse. Therefore, it is possible to obtain solution of the resulting uBSS problem through as 

1  norm minimization,24-26 once the number of pure components M and concentration matrix 

A are estimated using geometric concept known as data clustering.23 The pure components 

extraction problem is reduced to solving resulting underdetermined system of linear 

equations. This last step is carried out as linear programming24,32,33 or  for example as 1 -

regularized least square problem.29,34 Linear programming solution is obtained as 

 

 

 
ˆ

1
( )

ˆˆ( ) arg min subject to ( ) ( ) 1,...,

( )

M

mm
t

t s t t t t T

t


   




s

s As x

s 0    (4) 

where Â  denotes estimate of the true mixing matrix A obtained by previously described data 

clustering algorithm. Pure component spectra are obtained from the solution of linear program 
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(4) as  ˆ ts . If the noise is present in blind decomposition problem more robust sparse solution 

for  
1

( )
T

t
t


s  is obtained by solving 1 -regularized least square problem:29,34  

 

  
2

12( )

1 ˆˆ( ) arg min ( ) ( ) ( ) 1,...,
2t

t t t t t T    
s

s As x s    (5)

  

We have tested both linear programming method (4) and interior point method29,35 used to 

implement (5). The two algorithms yielded results with basically similar quality what implies 

that noise level in the used experimental data was low.  

 

HALS NMF 

The second approach to SCA employs NMF algorithms, wherein mixing matrix A and source 

matrix S are estimated simultaneously, usually through ALS methodology.27,28,36 Majority of 

algorithms used for adaptive NMF are based on the alternating minimization of the squared 

Euclidean distance expressed by the Frobenius norm with respect to two sets of parameters 

 nma  and  mts :27,28,36 

 

    2

2

1
( ) ( )

2
FD J J    S S A AX AS X AS S A     (6) 

 

where JS(S) and JA(A) represent sparseness constraints imposed on S and A, while S and A 

represent corresponding regularization constants. Decomposition implied by (1) that is based 

on minimization of the squared Euclidean distance only has many solutions. Thus, constraints 

are necessary to obtain solutions for A and S that are meaningful. For this purpose sparseness 

constraints are imposed on A and S in a majority of cases. Consequently, we shall impose 

sparseness constraints on rows of S:  
1

M

m m
s . In addition to that, to solve uBSS problem we 

shall employ minimization of the of the local cost functions:27,28 

 

   
2( ) ( ) ( ) ( )

2 1

1
1,...,

2
m m m m

F m m m m mD m M   sX a s X a s s   (7) 

with respect to  mts  where 
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  ( )m
j j

j m

 X X a s         (8) 

 

Constant ( )ms  regulates level of sparseness of the pure component mass spectra  
1

M

m m
s . 

Assuming that columns of A are normalized to 2  unit norm, minimization of (7) with respect 

to  
1

M

m m
s  yields the following learning rules 

 

  ( )

T ( ) ( )1
11 m

m m
m m T

  
   s

ss a X 1       (9) 

 

As opposed to pure components spectra the concentration matrix is learned globally through 

minimization of (6) without any constraints imposed on it. This yields the following learning 

rule for A 

 

   T T
M


   A XS SS I        (10) 

 

wherein after each iteration A is normalized to 2  unit column norm. In (10) IM is an MM 

identity matrix and 11T is row vector with all entries equal to one. In (9) and (10) 

[]+=max{,} (e.g., =10-16) is used to prevent negative solutions for A and S. Regularization 

constant  in (10) is used to improve ill-conditioning of the matrix SST and changes as a 

function of the iteration index k as  0 expk k    (with 0 = 100 and  = 0.02 in the 

experiments). Additional improvement in performance of the NMF algorithms can be 

obtained when they are applied in the multilayer mode,30,31 whereas sequential decomposition 

of the nonnegative matrices is performed as follows. In the first layer, the basic approximation 

decomposition is performed (1) (1)
0R N T
 X A S . In the second layer result from the first layer 

is used to build up new input data matrix for the second layer (1)
0R M T
 X S yielding 

(1) (2) (2)
0R M T
 X A S . After L layers the data decomposes as follows 

 

  (1) (2) ( ) ( )L LX A A A S         (11) 
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DISCUSSION 

Model validation 

First, we test validity of the linear mixture model (1) that forms the basis for proposed blind 

spectra decomposition approach. For this purpose we have tested mixtures of pure 

components 1 and 2 (mass spectra shown in Figures 4a and 4b). Mass spectrum shown in 

Figure 4c was created computationally by linearly combining pure components 1 and 2 in 

50:50 ratio. Mass spectrum shown in Figure 4d has been obtained experimentally, by injection 

of 2 l of 50:50 mixture of pure components 1 and 2. As can be clearly seen, main peaks 

located in the mass spectrum of each pure component are located at the same positions in both 

computed and recorded mixture. This implies high degree of equivalence between 

experimental recorded mixture and its linear mathematical model. This statement is further 

supported by the correlation coefficient between computed and recorded mixtures, which is 

0.972. Thus, it can be concluded that linear mixture model (1) is valid and can be used in 

blind spectra decomposition methods. 

 

Concept demonstration 

Mathematically demanding problem that can be frequently encountered in everyday research 

is selected to test real capability of SCA approach to blind decomposition of mass spectra. 

Based on present knowledge and applications of blind approaches to pure components spectra 

extraction, our judgment was that use of only two mixtures consisting of as many as five 

components was a challenging task. Choosing two three-component mixtures would be far 

less demanding and also far away from real complexity of multi-component data analysis in 

mass spectrometry and as well as from true capability of the SCA algorithms. Therefore, it 

was important to show that useful information can be obtained from a single experiment and 

this aim was successfully accomplished through a described approach. Number of pure 

components and concentration matrix are estimated from two mixtures, shown in Figure 3, 

with the described clustering algorithm. When dispersion factor in eq.(3) is set to =0.06 the 

number of the pure components is estimated as M=5. The estimated concentrations were X1 

(1:2:3:4:5=86.06:66.54:50.61:34.91:18.14) and X2 

(1:2:3:4:5=13.94:33.46:49.39:65.09:81.86). Based on the given concentrations of the pure 

components in the mixture, as described in the section compounds, it is easy to recalculate 

concentrations in terms of percentage: X1 (1:2:3:4:5=85.7:66.7:50:33.6:14.3) and X2 

(1:2:3:4:5 =14.3:33.3:50:66.7:85.7). We consider the agreement between true and estimated 

concentrations satisfactory. The corresponding clustering function given by eq.(3) is shown in 
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Figure 5. Figure 6 shows results obtained by data clustering algorithm (3) and linear 

programming algorithm (4). The degree of similarity between true pure components, shown in 

Figure 2, and extracted pure components, shown in Figure 6, expressed as normalized 

correlation coefficients is: 0.8836 (component 1), 0.7673 (component 2), 0.7160 (component 

3), 0.9726 (component 4) and 0.9601(component 5). These numbers can be easily illustrated 

by comparing Figures 2 and 6. The highest correlations found for components 4 and 5 are 

entirely in agreement with mass spectra (Figure 6(d) and (e)); all fragment peaks found for 

pure components are present in extracted spectra with even the same relative intensities. Next, 

extracted mass spectrum of component 1 (Figure 6(a)) missed some of the fragment ions (m/z 

139 and 153), while extracted mass spectrum of component 2 (Figure 6(b)) contains traces of 

component 1, found in higher intensities of peaks at the m/z 139 and 153. These finding are in 

agreement with somewhat lower correlation coefficients. Finally, it is evident that the mass 

spectrum of component 3 (Figure 6(c)) is extracted with the lowest accuracy; besides 

characteristic ions at the m/z 441 and 146, it contains also ions corresponding to the 

component 4 at the m/z 467 and 198.  

Although results obtained by the linear programming algorithm were very good and 

components were extracted with high accuracy, we considered HALS NMF algorithm to see 

whether it can further improve quality of extracted pure components. This has been especially 

motivated by relatively poor extraction of component 3. Learning rules (9) and (10) can be 

combined with multilayer mode of operation (11), constituting multilayer HALS NMF 

algorithm, to increase performance of the NMF algorithms. Furthermore, performance of the 

NMF algorithm critically depends on the strategy employed to select initial values for A and 

S. The reason is that cost functions (6) and (7) are convex with respect to A or S but not with 

respect to both of them. This increases chance, especially in a case of large scale problems, 

that NMF algorithm will be stuck in local minima yielding poor performance. Therefore, we 

propose the following initialization strategy to reduce these problems. For the first layer it 

includes number of random guess for S and initial value for A obtained as the result of data 

clustering algorithm. For the second and higher layers it includes random guesses fro both S 

and A. As it is demonstrated in Figure 7 this brings additional improvement of the quality of 

the pure components extraction in relation to the one obtained by linear programming 

algorithm. Figure 7 shows results obtained by HALS NMF algorithm, eq. (6) to (11), with 

100 layers with regularization constants ( ) 0.5
p

m s  after 500 iterations per layer. Now, in 

direct comparison between Figures 2(c) and 7(c) it can be seen that pure component 3 has 



 13 

been extracted more accurately than by linear programming algorithm, see Figure 6(c). The 

molecular [M+H]+ ion can now be assigned undoubtedly, although fragment ion at the m/z 

198 still remains in the extracted mass spectrum. The results of other pure components are of 

the similar quality as those obtained by linear programming algorithm that is shown in Figure 

6. This is confirmed by the values of normalized correlation coefficients between true and 

estimated pure components which are: 0.9084 (component 1), 0.7432 (component 2), 0.7389 

(component 3), 0.9732 (component 4) and 0.9698 (component 5). 

It is however fair to say that, due to the random guess of S, the HALS NMF algorithm does 

not converge toward solution presented in Figure 7 each time. Our computational studies 

indicate that this happens 3 to 4 times out of 10 attempts.  

From an analytical point of view, these results are very important. Number of components 

present in the mixture can be determined without previous separation, which is a great 

advantage when dealing with multi-component systems. With this knowledge extracted mass 

spectra can be treated even if they are not extracted with absolute accuracy. By inspection of 

mass spectra shown in Figures 6 or 7, it is clear that the molecular [M+H]+ ions of all 

components can be designated, which is necessary starting point for further structural 

analysis. It is also important to emphasize that accuracy of pure components extraction can be 

increased by increasing the number of mixtures from two to three or more. This is due to the 

fact that level of sparseness required between pure components to obtain unique solution of 

blind decomposition is k=M-N+1. Hence, if pure components violate k=M-1 sparseness 

requirement number of mixtures N ought to be increased. This could be important for 

mixtures with even greater number of components, mixtures of similar components or those 

present in low concentrations (or traces). However, in this paper our goal was to demonstrate 

that challenging blind pure components extraction problem can be solved even when only the 

minimal requirements are met, i.e. having at disposal as few as N=2 mixtures only.  

To sum it up, the presented SCA approach brought information that are of great importance 

and can be used to guide further experiments and research of complex systems by mass 

spectrometry.  
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CONCLUSIONS 

SCA-based approach using 1  norm minimization and multilayer HALS NMF algorithm was 

successfully applied for blind extraction of more than two pure components spectra in mass 

spectrometry measuring two mixtures only. This appears to be the first time to report such 

result in the chemical literature, because other blind decomposition methods require the 

number of mixtures to be equal to or greater than the unknown number of pure components. 

Unlike many existing BSS methods that assume the number of pure components to be known 

in advance, proposed SCA-based method estimates it by data clustering algorithm. Proposed 

SCA-based approach can be used as a part of software packages for the analysis of mass 

spectra and identification of the chemical compounds. It could be of great importance for the 

analysis of multi-component samples obtained from either reaction mixtures or biological 

sources. 
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Figure 1. Structures of compounds 1-5 (pure components 1-5). 

 

 

Figure 2. Pure components mass spectra.  

 

 

Figure 3. Mass spectra of mixtures X1 and X2. 
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Figure 4. a) and b): mass spectra of pure components 1 and 2 with main peaks located; c) 

mass spectrum of mixture computed as linear combination of pure components 1 and 2 in 

50:50 ratio;  d) mass spectrum obtained experimentally from 50:50 mixture containing pure 

components 1 and 2. 

 

 
 

 
 

Figure 5. Clustering function, eq.(3), for two mixtures shown in Figure 3. Dispersion factor 

was set to =0.06. Five peaks indicate existence of five pure components spectra in two 

mixtures. 
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Figure 6. Mass spectra of five pure components extracted by data clustering and linear 

programming algorithm (4).  

 
 

 
 

Figure 7. Mass spectra of five pure components extracted by data clustering and multilayer 

HALS NMF algorithm (6) to (11).  

 
 

 

 


