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Abstract 

α -divergence based nonnegative tensor factorization (NTF) is applied to blind multi-spectral 

image (MSI) decomposition. Matrix of spectral profiles and matrix of spatial distributions of the 

materials resident in the image are identified from the factors in Tucker3 and PARAFAC 

models. NTF preserves local structure in the MSI that is lost, due to vectorization of the image, 

with nonnegative matrix factorization (NMF)- or independent component analysis (ICA)-based 

decompositions. Moreover, NTF based on PARAFAC model is unique up to permutation and 

scale under mild conditions. To achieve this, NMF- and ICA-based factorizations respectively 

require enforcement of sparseness (orthogonality) and statistical independence constraints on the 

spatial distributions of the materials resident in the MSI, and that is not true. We demonstrate 
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efficiency of the NTF-based factorization in relation to NMF- and ICA-based factorizations on 

blind decomposition of the experimental MSI with the known ground truth. 

 

OCIS codes: 100.6890; 100.3190; 150.6910; 100.2960; 170.3880. 

 

Blind or unsupervised multi-spectral and hyper-spectral image (HSI) decomposition attracts 

increased attention due to its capability to discriminate materials resident in the MSI/HSI without 

knowing their spectral profiles [1,2]. However, most of blind decomposition schemes rely on 

two-dimensional (2D) representation of the MSI/HSI although it is inherently three-dimensional 

(3D). In this letter we represent a MSI/HSI as a three-way array or a 3D tensor 1 2 3

0

I I I× ×
+∈X ℝ with 

elements 
1 2 3i i i

x where i1=1,..., I1, i2=1,..., I2, i3=1, ..., I3 and 0+ℝ is a real manifold with nonnegative 

elements. Each index is called way or mode and number of levels on one mode is called 

dimension of that mode. MSI/HSI is a set of I3 spectral band images with the size of I1×I2 pixels. 

Two ways of X are for rows and columns and one way is for spectral band. This is standard 

notation that is adopted for use in multiway analysis, [3].
 
2D representation of MSI has two 

disadvantages: (i) 3D tensor X  has to be mapped through 3-mode flattening, also called 

unfolding and matricization, to matrix 3 1 2

(3) 0

I I I×
+∈X ℝ whereas local structure of the image is lost; 

(ii) matrix factorization (3) =X AS  employed by linear mixing models [1,2] suffers from 

indeterminacies because 1

(3)

− =ATT S X  for any invertible T, i.e. infinitely many (A, S) pairs can 

give rise to X(3). Meaningful solution of the factorization of X(3) is characterized with TT
-1

=PΛΛΛΛ 

where P is permutation matrix and ΛΛΛΛ is diagonal matrix. These permutation and scaling 

indeterminacies are standard for blind decompositions and are obtained by imposing sparseness 
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(orthogonality) constraints on S by NMF algorithms [4] and statistical independence constraints 

by ICA algorithms [1,5,6]. Orthogonality constraints imply that materials resident in the image 

do not occupy the same pixel footprint that is not correct assumption especially in airborne and 

spaceborne remote sensing. Statistical independence assumption is also not correct for MSI and 

HSI data especially when materials are spectrally similar what occurs in the case of the low-

dimensional MSI with coarse spectral resolution [7]. Only very recently tensor factorization 

methods were employed to MSI/HSI analysis for the purpose of dimensionality reduction, de-

noising, target detection and material identification [8-10]. For the purpose of MSI 

decomposition we adopt two widely used 3D tensor models: Tucker3 model [11]
 

and 

PARAFAC/CANDECOMP model [12,13]. The Tucker3 model is defined as 

 

   (1) (2) (3)

1 2 3≈ × × ×X G A A A       (1) 

 

where 1 2 3

0

J J J× ×
+∈G ℝ is core tensor and { }3

( )

0 1

n nI Jn

n

×
+ =

∈A ℝ are factors and ×n denotes n-mode product 

of a tensor with a matrix A
(n)

. The result of  ( )n

n
×G A is a tensor of the same order as G  but the 

size Jn replaced by In. PARAFAC model is a special case of Tucker3 model when G  is 

superdiagonal tensor with all elements zero except those for which all indices are the same. 

Compared to PARAFAC, Tucker3 model is more flexible due to the core tensor G  which allows 

interaction between a factor with any factor in the other modes [14]. In PARAFAC model factors 

in different mode can only interact factorwise. However, this restriction enables uniqueness of 

tensor factorization based the PARAFAC model within the permutation and scaling 

indeterminacies of the factors under very mild conditions [15,16] without need to impose any 
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special constraints on them such as sparseness or statistical independence. Assuming that 

J1=J2=J3=J and 3J I≤  uniqueness condition is reduced to (1) (2 ) (3) 2 3k k k J+ + ≥ +
A A A

, where 

( )nk
A

is Kruskal rank of factor A
(n)

 [15,16]. Due to interaction between the factors there is no such 

theoretical guarantee on the uniqueness of tensor factorization based on Tucker3 model. 

However despite of this, Tucker3 model has been used successfully in HSI analysis for 

dimensionality reduction, de-noising and target detection [8,9]. To identify spatial distributions 

of the materials resident in the MSI/HSI we refer to standard linear mixture model used in 

MSI/HSI data analysis [1,2,10]:  

   (3) ≈X AS         (2) 

 where columns of 3

0

I J×
+∈A ℝ  represent spectral profiles of the J materials resident in the image 

while rows of 1 2

0

J I I×
+∈S ℝ represent spatial distributions of the same materials. As already said, 

without additional constraints there are infinitely many decompositions satisfying model (2). 

From Tucker3 model (1) and linear mixture model (2) matrix of spectral profiles and tensor of 

spatial distributions of the materials are identified as 

  (3)≈A A  

  ( ) 1
(1) (2) (3)

1 2 3

−
≈ × × = ×S G A A X A       (3) 

where 1 2

0

I I J× ×
+∈S ℝ . Second approximation for S  in (3) is less sensitive to numerical errors than 

first one due to the fact that only one reconstructed quantity, array factor A
(3)

, takes places into 

reconstruction of  S .  We can also express 3-mode flattened version of tensor X , this is matrix 

X(3), in terms of 3-mode flattened core tensor G , this yields matrix (3) 0

J JJ×
+∈G ℝ , and array 

factors { }3
( )

1

n

n=
A as [17]:
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T

(3) (2) (1)

(3) (3)
 ≈ ⊗ X A G A A        (4) 

where ⊗ denotes Kronecker's product. In direct comparison between (2) and (4) we arrive at: 

  (3)≈A A    

  ( )T 1
(2) (1) (3)

(3) (3)

−
 ≈ ⊗ = S G A A A X      (5) 

Again, numerically more accurate approximation of S is obtained from second part of (5). 

Various cost functions can be used as discrepancy measure between tensor and its model. In this 

letter we employed α-divergence because it is adaptable to noise statistics [17]
 
and because it has 

been demonstrated in [18] that it outperforms NTF based on least square error function [19]. We 

refer to appendix and [17] for α-divergence based update NTF algorithms, eq.(13) to (15). We 

have compared performance of α-NTF, second order NMF [20] and dependent component 

analysis (DCA) algorithms on real world example: blind decomposition of the experimental 

weak-intensity fluorescent red-green-blue (RGB) image of the skin tumor shown in Figure 1b. 

For the purpose of tumor demarcation it is of interest to extract spatial map of the tumor as 

accurately as possible. DCA algorithm combines JADE ICA algorithm [6] and innovation 

transform based preprocessing [21] to enhance statistical independence among materials present 

in the MSI and improve accuracy of the ICA. The MSI contains three spectral bands and three 

materials: tumor, surrounding tissue and the ruler added to the scene to give perspective about 

the size of the tumor. High-intensity image of the same tumor is shown in Figure 1a. It was used 

for estimation of the binary spatial maps of tumor and surrounding tissue necessary for the 

estimation of the receiver-operating-characteristic (ROC) curves. Spatial maps of the tumor 

extracted from Figure 1b are shown in Figures 1c to 1e. Implementation of Tucker 3 α-NTF 

algorithm was based on MATLAB Tensor Toolbox provided at [22]. Tensor of spatial 
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distributions of materials was identified by means of second part of (3). SO NMF and DCA 

algorithms were based on 2D MSI representation (2). According to ROC curves shown in Figure 

2 α-NTF algorithm exhibited best performance i.e. yielded largest area under the ROC curve. 

State-of-the-art intensity based image segmentation algorithm, that is the level set method [23], 

has been also applied to the gray scale version of Figure 1b. The result in Figure 1f shows 

evolution curve after 1000 iterations. Due to weak boundaries the method failed to converge. α-

NTF, SO NMF and DCA algorithms were implemented in MATLAB on a 2.4 GHz Intel Core 2 

Quad Processor Q6600 based desktop computer with 4GB RAM. Computation times are given 

respectively as: 4783s, 30s and 3.6s. In the implementation of the innovation-based DCA 

algorithm a 10
th

 order linear prediction filter has been used. 

 This work was partially supported through grant 098-0982903-2558 funded by the 

Ministry of Science, Education and Sports, Republic of Croatia.  

 

Appendix - elements of Tucker3 α-NTF algorithm 

Multiplicative update rules for core tensor G  and factors { }3
( )

1

n

n=
A in (1) are obtained by 

minimizing α-divergence as: 

 
( ) T T T

T T T

1
.

.
(1) (2) (3)

1 2 3

(1) (2) (3)

1 2 3

ˆ/
α α × × × ←  

× × ×  

X X A A A
G G

Ε A A A
⊙     (A1) 

 

( ) T

T

1
.

.
( )

( )( ) ( )

T ( )

ˆ/ n

nn n

n

α α  
   

←  
 
 

A

A

X X G

A A
11 G

⊙      (A2) 
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where ⊙ denotes element-wise multiplication and / denotes element-wise division. In (A2) 1 

denotes a vector whose every element is one. Numerator in (A2) is calculated as 

 ( ) ( )T T. .
( ) ( ) T

( )
( )

ˆ ˆ/ /n m

m n n
n n

α α

≠
   = ×      AX X G X X A G  

where ( )n
G represents n-mode flattened version of the core tensor G . Denominator in (A2) is 

computed as 

 
T T

T ( ) T ( )

( )

n m

m n
n

≠ = × A1 G G 1 A  

where T ( )m

m n≠×G 1 A  denotes m-mode products between core tensor G  and matrices T ( )m1 A  for 

all m=1, ..., N and m n≠ .  
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Figure Captions: 

Figure 1 (color online). Experimental fluorescent MSI (RGB) image of skin tumor: a) high-

intensity version; b) weak-intensity version. Spatial maps of the tumor extracted from Figure 1b 

by means of: c) α-NTF algorithm [18] with α=0.1; d) SO NMF algorithm [5]; e) DCA algorithm 

[7 and 21]. f) evolution curve calculated by level set method on gray scale version of Figure 1b 

after 1000 iterations. Dark red color indicates that tumor is present with probability 1, while dark 

blue color indicates that tumor is present with probability 0. 

 

Figure 2 (color online). ROC curves calculated for spatial maps of the tumor shown in Figures 

1c to 1e:  red squares - α-NTF algorithm based on Tucker3 model with α=0.1; blue stars - DCA 

algorithm [12]; green triangles - SO NMF algorithm [43].  
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Fig. 1, OL, Kopriva & Cichocki 
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Fig. 2, OL, Kopriva & Cichoki 

 


