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Abstract 

By applying bank of 2D Gabor filters to blurred image single frame blind image deconvolution 

(SF BID) is formulated as 3D tensor factorization (TF) problem with the key contribution that 

neither origin nor size of the spatially invariant blurring kernel is required to be known or 

estimated. Mixing matrix, original image and its spatial derivatives are identified from the 

factors in Tucker3 model of the multi-channel version of the blurred image. Previous approaches 

to 2D Gabor filter bank-based SF BID relied on 2D representation of the multi-channel version 

of the blurred image and matrix factorization methods such as nonnegative matrix factorization 

(NMF) and independent component analysis (ICA). Unlike matrix factorization-based methods   

3D TF preserves local structure in the image. Moreover, 3D TF based on PARAFAC model is 

unique up to permutation and scale under very mild conditions. To achieve this, NMF and ICA 

respectively require enforcement of sparseness and statistical independence constraints on the 

original image and its spatial derivatives. These constraints are generally not satisfied. The 3D 

TF-based SF BID method is demonstrated on experimental defocused RGB image. 
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OCIS codes: 100.1830; 100.3010; 100.3190; 100.6640; 100.6890. 

 

The purpose of blind image deconvolution (BID) is to reconstruct the original image from an 

observation degraded by spatially invariant blurring process and noise. Neglecting the noise term 

the process is modeled as a convolution of a point spread function (PSF) H(s,t) with an original 

source image F(i1,i2) as: 

  1 2 1 2( , ) ( , ) ( , )
M M

s M t M
i i s t i s i t

=− =−
= − −∑ ∑G H F     (1) 

where M denotes the PSF support size and 1 2

0, I I×

+∈G F ℝ . If PSF is known a number of algorithms 

are available to reconstruct original image F [1]. When PSF is not available BID algorithms are 

important [2,3]. BID methods can be divided into those that estimate the blurring kernel H first 

and then restore original image by some of the non-blind methods [1], and those that estimate the 

original image F and blurring kernel simultaneously. In order to estimate the blurring kernel a 

support size has either to be given or estimated. Also, quite often a priori knowledge about the 

nature of the blurring process is assumed to be available in order to use appropriate parametric 

model of the blurring process [2].
 
That is not always fulfilled in practice. Methods that estimate 

blurring kernel and original image simultaneously use either statistical or deterministic priors of 

the original image, the blurring kernel and the noise [2], which leads to a computationally 

expensive maximum likelihood (ML) estimation. Also, exact distributions of the original image 

required by ML algorithm are usually unknown. Therefore, an approach was proposed in [4] 

based on quasi ML with an approximate of the probability density function. It however assumed 

that original image has sparse distribution. To fulfill this assumption it was proposed in [4] to 

apply sparsifying transform to blurred image. This requires training data. Multivariate data 
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analysis methods such as nonnegative matrix factorization (NMF) [5] and independent 

component analysis (ICA) [6-8] can be used to solve BID problem as a blind source separation 

(BSS) problem where unknown blurring process is absorbed into a mixing matrix. To realize 

multi-channel version of the blurred image an approach based on a bank of 2-D Gabor filters was 

proposed in [9]. It has been the basis of the single frame (SF) BID algorithms in [5,7]. The key 

insight in [9] was that original image F(i1-s,i2-t) can be approximated by Taylor series expansion 

around F(i1,i2) giving 
1 21 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ...i ii s i t i i s i i t i i− − = − − −F F F F , which enables to re-write 

(1) as: 
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and 
2i

F  are spatial derivatives in i1 and i2 directions respectively. When Gabor filters are applied 

on blurred image a new set of observed images is obtained as: 
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where  
3

' ( , )i s t  H represents convolution of the appropriate i3-th Gabor filter with H(s,t). In the to 

be reported experiment I have used bank of 2D Gabor filters with two spatial frequencies and 

four orientations, whereas real and imaginary parts of the 2D Gabor filters were used as separate 

filters. Thus, in overall multi-channel version of the blurred image consisted of I3=17 images. 

We refer to [5,7] for more detailed description of the 2D Gabor filter bank. In my previous 

contributions [5,7] multi-channel version of the blurred image G was represented in 2D as 

3 1 2

(3)

I I I×∈G ℝ  i.e. G(3) was a set of I3 images of the size I1×I2 pixels, where first image 

corresponded with the vectorized blurred image G and the rest of I3 images corresponded with 
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vectorized images obtained after filtering blurred image with 2D Gabor filters. In this letter I 

represent multi-channel version of the blurred image as a three-way array or a 3D tensor 

1 2 3I I I× ×∈G ℝ  with elements 
1 2 3i i i

g where i1=1,..., I1, i2=1,..., I2, i3=1, ..., I3. Each index is called way 

or mode and number of levels on one mode is called dimension of that mode. Two ways of G  

are for rows and columns and one way is for image index. This is standard notation adopted for 

use in multi-way analysis [10].
 
2D representation of the multi-channel blurred image has two 

disadvantages: (i) 3D tensor G  has to be mapped through 3-mode flattening, also called 

unfolding and matricization, to matrix (3)G whereas local structure of the image is lost; (ii) 

matrix factorization (3) (3)=G AF  employed by linear mixing models (2) and (3) suffers from 

indeterminacies because 1

(3) (3)

− =ATT F G  for any invertible T. It implies that infinitely many 

(A, F(3)) pairs can give rise to G(3). In my notation J rows of F(3) represent vectorized version of 

the original image F and its spatial derivatives, i.e. 1 2

(3)

J I I×∈F ℝ . J represents unknown number of 

latent variables (original image and its spatial derivatives) in the linear mixture models (2) and 

(3). Meaningful solution of the factorization of G(3) is characterized with T=PΛΛΛΛ where P is 

permutation matrix and ΛΛΛΛ is diagonal matrix. These standard blind decompositions 

indeterminacies are obtained by imposing sparseness constraints on F(3) by NMF algorithms [5] 

and statistical independence constraints by ICA algorithms [7]. Sparseness constraints imply that 

original image F and its spatial derivatives 
1i

F , 
2i

F , etc. do not occupy the same pixel and that is 

in general case not true. Statistical independence assumption is also not true as already observed 

in [5,7,8]. To improve statistical independence between the original image and its spatial 

derivatives I have used in [7] wavelet packets based transform to find out narrow subband where 

latent variables are least dependent. Due to this further convolution (multiscale filtering), as 
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correctly observed in [8], much more terms in Taylor series expansion are required to get good 

reconstruction than when no filtering is used. When using 3D TF approach to BID no such 

complications arise, because no constraints on latent variables need to be imposed in order to 

achieve unique factorization. For the purpose of blind decomposition of multi-channel image 

tensor G  we adopt Tucker3 model [11]: 

 

   (1) (2) (3)

1 2 3≈ × × ×G R A A A       (4) 

 

where 1 2 3J J J× ×∈R ℝ is core tensor, { }
3

( )

1

n nI Jn

n

×

=
∈A ℝ are factors and ×n denotes n-mode product of 

a tensor with a matrix A
(n)

. The result of  ( )n

n
×R A is a tensor of the same order as R  but the size 

Jn replaced by In. PARAFAC model [12], also called CANDECOMP [13], is a special case of 

Tucker3 model when R  is superdiagonal tensor with all elements zero except those for which all 

indices are the same. Compared to PARAFAC, Tucker3 model is more flexible due to the core 

tensor which allows interaction of a factor with any factor in the other modes [14]. In PARAFAC 

model factors in different modes can only interact factorwise. However, this restriction enables 

uniqueness of tensor factorization based the PARAFAC model within the permutation and 

scaling indeterminacies of the factors under very mild conditions [15,16]. There is no need to 

impose constraints on them such as sparseness or statistical independence. Assuming that 

J1=J2=J3=J and 3J I≤  uniqueness condition is reduced to (1) (2 ) (3) 2 3k k k J+ + ≥ +
A A A

, where 

( )nk
A

is Kruskal rank of factor A
(n)

 [15,16]. Due to interaction between the factors there is no such 

theoretical guarantee on the uniqueness of tensor factorization based on Tucker3 model. 

However, despite of this Tucker3 model has been used successfully in hyperspectral image 
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analysis for dimensionality reduction, de-noising and target detection [17,18]. To identify 

original image and its spatial derivatives we refer to linear mixture model used in (2) and (3):  

   (3) (3)≈G AF         (5) 

where columns of 3I J×∈A ℝ  represent weighting coefficients of the J images resident in the 

multi-channel image G(3) while rows of 1 2

(3)

J I I×∈F ℝ represent vectorized versions of the original 

image and its spatial derivatives. Without constraints there are infinitely many decompositions 

satisfying model (5). From Tucker3 model (4) and linear mixture model (5) matrix of weighting 

coefficients and tensor of source image and its spatial derivatives F  are identified as 

  (3)≈A A  

  ( )
†

(1) (2) (3)

1 2 3≈ × × ≈ ×F R A A G A      (6) 

where 1 2I I J× ×∈F ℝ and '†' denotes Moore-Penrose pseudo-inverse. What remains after 3-mode 

multiplication of the image tensor G  with pseudoinverse of array factor A
(3)

 is first part of (6). 

According to (5) this must be F . Second part of (6) is much less sensitive on numerical errors 

due to the fact that only one reconstructed quantity, array factor A
(3)

, takes places into 

reconstruction of F . This completes derivation of 3D TF-based SF BID algorithm that is defined 

without using any a priori information about the blurring process or source image. To estimate 

array factor A
(3) 

from image tensor G  based on Tucker3 model (4) I have used tucker_als 

function made available as a part of MATLAB Tensor Toolbox [20]. F  is then reconstructed 

through 3-mode multiplication of the image tensor G  and pseudoinverse of A
(3)

.  tucker_als 

function relies on mean squared error minimization implemented in alternating least square 

fashion [19]. I demonstrate performance of 3D TF-based SF BID on experimental RGB image 

shown in Figure 1 with dimensions of 384×512 pixels i.e. I1=384 and I2=512. It has been 
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recorded by digital camera in manually defocused mode. This image yields spatially invariant 

degradation that complies with fundamental property of convolution equation (1). Thus, it can be 

used for the proof-of-principle of proposed SF BIF algorithm. The same image has been used 

previously in [5,7] in gray scale version. Here, I use color version to demonstrate versatility of 

the 3D TF SF BID method. Color image is deconvolved by applying described algorithm to each 

spectral image separately. Figure 2 shows deconvolution result obtained by 3D TF SF BID 

algorithm. This result was obtained by setting the number of latent variables in (4) to J=5. 

However, varying J between 3 and 16 yielded result of the, in principle, same quality. Figure 3 

shows results obtained by wavelet packets based subband decomposition ICA (WP SDICA) 

algorithm [7] where restoration errors are in part due to image vectorization process and mainly 

due to multiscale filtering necessary to satisfy statistical independence constraint imposed on the 

latent variables in the linear mixture model (5). Due to space limitation I did not carry out 

comparative performance analysis between TF SF BID method and blind Richardson-Lucy and 

NMF-based methods. However, based on results reported in [7] it might be concluded that TF-

based method would compare favorably against them. 

 This work was partially supported through grant 098-0982903-2558 funded by the 

Ministry of Science, Education and Sports, Republic of Croatia.  
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Figure Captions: 

Figure 1.  RGB experimental image obtained by digital camera in manually defocused mode. 

Figure 2. RGB image restored by 3D TF SF BID algorithm. 

Figure 3. RGB image restored by WP SDICA BID algorithm [7].  
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Fig. 1, OL, Kopriva 

 

Fig. 2, OL, Kopriva 
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Fig. 3, OL, Kopriva 

 


