
Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Applying OOC Techniques in the Reduction to
Condensed Form for Very Large Symmetric

Eigenproblems on GPUs

Davor Davidović1 Enrique S. Quintana-Ortí2

1Centre for Informatics and Computating
Rudjer Bošković Institute

2Depto. de Ingeniería y Ciencia de Computadores
Universitat Jaume I

PDP, 2012



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Why large-scale eigenproblems?

Large-scale eigenproblem arises in different fields:

molecular dynamics,

computational quantum chemistry,

finite element modeling,

multivariate statistics.

Require a hugh amount of the memory space and
computational power



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Why large-scale eigenproblems?

Large-scale eigenproblem arises in different fields:

molecular dynamics,

computational quantum chemistry,

finite element modeling,

multivariate statistics.

Require a hugh amount of the memory space and
computational power



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Motivation

Problems with the Large-scale eigensolvers on the GPU

GPU implementations exist but can not handle problems
that oversize the GPU memory!

Small GPU memory: increase the number of I/O memory
transfers!
PCI-e bottleneck:

High latency
Slow bandwidth compared to GPU theoretical peak
performance
To override the problem → reduce the number of transfers
and increase the memory chunks

Solution in applying out-of-core (OOC) techniques



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Eigenvalue problem

Problem statement

The eigenproblem is defined as:

AX = ΛX ,

where A is symmetric and Λ is diagonal with the
sought-after eigenvalues and X contains the associated
eigenvectors.



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Techniques for solving eigenvalue problems

Standard algorithm for finding eigenvalues

1 Reduce starting matrix to tridiagonal form
2 Apply fast algorithm (i.e. MR3) to find eigenvalues of the

tridiagonal matrix → less expensive

One-stage reduction to tridiagonal form

Reduction of full dense matrix to tridiagonal form using
orthogonal transforms

QT AQ → T ,

where T is tridiagonal, and Q is accumulation of
orthogonal transforms

Most of execution time spent in level 2 BLAS operations →

50% of total flops!



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Techniques for solving eigenvalue problems

Standard algorithm for finding eigenvalues

1 Reduce starting matrix to tridiagonal form
2 Apply fast algorithm (i.e. MR3) to find eigenvalues of the

tridiagonal matrix → less expensive

One-stage reduction to tridiagonal form

Reduction of full dense matrix to tridiagonal form using
orthogonal transforms

QT AQ → T ,

where T is tridiagonal, and Q is accumulation of
orthogonal transforms

Most of execution time spent in level 2 BLAS operations →

50% of total flops!



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Techniques for solving eigenvalue problems

Two-stage reduction to tridiagonal form

1 First reduce full dense matrix to banded form

QT
1 AQ1 → B1

Note: All performed in level 3 BLAS operations (blocked
operations - higher efficiency)

2 Reduce the banded matrix to tridiagonal form

QT
2 B1Q2 → T



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Techniques for solving eigenvalue problems

Two-stage reduction to tridiagonal form

1 First reduce full dense matrix to banded form

QT
1 AQ1 → B1

Note: All performed in level 3 BLAS operations (blocked
operations - higher efficiency)

2 Reduce the banded matrix to tridiagonal form

QT
2 B1Q2 → T



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

What can we do?

Goals

Re-implement existing two-stage algorithms to apply OOC
techniques to solve large scale eigenvalue problems

Disk = main memory (CPU)
Main memory = global memory (GPU)

Optimize memory transfers and maximize amount of
computation on GPU

Make an algorithm that can operate on any problem size
(scalable in problem dimension)



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Successive Band Reduction

SBR toolbox

Software package for reduction of dense symmetric
matrices to banded or tridiagonal form
Routines for multi-stage reduction to tridiagonal form

xSYRDB: Full → band form
xSBRDB: Band → narrower band form
xSBRDT: Band → tridiagonal form



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR reduction from full to band form

0

One iteration of the xSYRDB
routine

1 Factorize panel
A0 → Q0R0 and construct
W ,Y factors
s. t. Q0 = I + WY T

2 Apply orthogonal matrix
Q0 to A1 := QT

0 A1

3 Apply Q0 to A2 := QT
0 A2Q0



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR reduction from full to band form

One iteration of the xSYRDB
routine

1 Factorize panel
A0 → Q0R0 and construct
W ,Y factors
s. t. Q0 = I + WY T

2 Apply orthogonal matrix
Q0 to A1 := QT

0 A1

3 Apply Q0 to A2 := QT
0 A2Q0



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR reduction from full to band form

One iteration of the xSYRDB
routine

1 Factorize panel
A0 → Q0R0 and construct
W ,Y factors
s. t. Q0 = I + WY T

2 Apply orthogonal matrix
Q0 to A1 := QT

0 A1

3 Apply Q0 to A2 := QT
0 A2Q0



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR Toolbox

Flops count

The total cost of the reduction to band form: 2n3/3 flops

The bulk of the computation is cast in terms of BLAS3
operations (better than one-stage approach)

The most time consuming step is applying orthogonal
matrix Q0 to A2

A2 := QT
0 A2Q0 = A2 + YW T A2 + A2WY T + YW T A2WY T

Good candidate to be executed on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR Toolbox

Flops count

The total cost of the reduction to band form: 2n3/3 flops

The bulk of the computation is cast in terms of BLAS3
operations (better than one-stage approach)

The most time consuming step is applying orthogonal
matrix Q0 to A2

A2 := QT
0 A2Q0 = A2 + YW T A2 + A2WY T + YW T A2WY T

Good candidate to be executed on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR Toolbox

Flops count

The total cost of the reduction to band form: 2n3/3 flops

The bulk of the computation is cast in terms of BLAS3
operations (better than one-stage approach)

The most time consuming step is applying orthogonal
matrix Q0 to A2

A2 := QT
0 A2Q0 = A2 + YW T A2 + A2WY T + YW T A2WY T

Good candidate to be executed on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

SBR Toolbox

Flops count

The total cost of the reduction to band form: 2n3/3 flops

The bulk of the computation is cast in terms of BLAS3
operations (better than one-stage approach)

The most time consuming step is applying orthogonal
matrix Q0 to A2

A2 := QT
0 A2Q0 = A2 + YW T A2 + A2WY T + YW T A2WY T

Good candidate to be executed on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

OOC reduction to band form on hybrid GPU platforms

To compensate memory transfer with the computation, blocks
(band size) have to be large enough

One step of the OOC reduction
to band form

1 Set blocks Ã := [A0A1] and
Â := A2

2 QR factorization of
Ã = QiRi and construction
of Wi and Yi

3 Two-sided update of
Â := QT

i ÂQi



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

OOC reduction to band form on hybrid GPU platforms

To compensate memory transfer with the computation, blocks
(band size) have to be large enough

0

One step of the OOC reduction
to band form

1 Set blocks Ã := [A0A1] and
Â := A2

2 QR factorization of
Ã = QiRi and construction
of Wi and Yi

3 Two-sided update of
Â := QT

i ÂQi



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

OOC reduction to band form on hybrid GPU platforms

To compensate memory transfer with the computation, blocks
(band size) have to be large enough

0

One step of the OOC reduction
to band form

1 Set blocks Ã := [A0A1] and
Â := A2

2 QR factorization of
Ã = QiRi and construction
of Wi and Yi

3 Two-sided update of
Â := QT

i ÂQi



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

OOC reduction to band form on hybrid GPU platforms

To compensate memory transfer with the computation, blocks
(band size) have to be large enough

0 A0

One step of the OOC reduction
to band form

1 Set blocks Ã := [A0A1] and
Â := A2

2 QR factorization of
Ã = QiRi and construction
of Wi and Yi

3 Two-sided update of
Â := QT

i ÂQi



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid (in-core) QR decomposition

QR factorization of Ã rich in small-sized BLAS2 operations

Bad performance when Ã is big, even on multi-core
systems

Solution: Implement panel QR factorization

Ã is divided into panels → do panel factorization on the
CPU, and update on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid (in-core) QR decomposition

QR factorization of Ã rich in small-sized BLAS2 operations

Bad performance when Ã is big, even on multi-core
systems

Solution: Implement panel QR factorization

Ã is divided into panels → do panel factorization on the
CPU, and update on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid (in-core) QR decomposition

QR factorization of Ã rich in small-sized BLAS2 operations

Bad performance when Ã is big, even on multi-core
systems

Solution: Implement panel QR factorization

Ã is divided into panels → do panel factorization on the
CPU, and update on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid (in-core) QR decomposition

QR factorization of Ã rich in small-sized BLAS2 operations

Bad performance when Ã is big, even on multi-core
systems

Solution: Implement panel QR factorization

Ã is divided into panels → do panel factorization on the
CPU, and update on the GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid QR

GPU CPU 
dA Aworkspace



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Hybrid two-sided update

Two-sided update

Applying Q to Â from both sides:

Â := QT ÂQ = (I + WY T )T Â(I + WY T )

= Â + YW T Â + ÂWY T + YW T ÂWY T .
(1)

How to efficiently compute the update

The two-sided update can be divided into 4 steps:
1 (SYMM) X1 := ÂW ,
2 (GEMM) X2 := 1

2X T
1 W ,

3 (GEMM) X3 := X1 + YX2,
4 (SYR2K) Â := Â + X3Y T + YX T

3 .



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

First step X1 := ÂW

Copy Working Copy and executeUpdate

Computing X1

1 Choose b so that blocks
of size k × b, b2 and
n × k fit into the GPU
memory

2 Divide X1, Â and W into
blocks, copy W on the
GPU

3 Copy Âij to GPU and
update X1i

X1i = X1i + Âij ∗ Wj .

4 Return X1i to the CPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Steps 2 and 3

Step 2: X2 := 1
2X T

1 W

X2 requires k × k storage and can fit into GPU memory

Copy block X1i to the GPU at the time and update X2:

X2 = X2 + X1iWi ,

Step 3: X3 := X1 + YX2

X3 requires n × k space on the GPU and is update one
block at the time

Y overwrites W in the GPU memory

Copy X1i to the GPU, update X3i and return it to the CPU
memory

X3i = X1i + YiX2.



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Steps 2 and 3

Step 2: X2 := 1
2X T

1 W

X2 requires k × k storage and can fit into GPU memory

Copy block X1i to the GPU at the time and update X2:

X2 = X2 + X1iWi ,

Step 3: X3 := X1 + YX2

X3 requires n × k space on the GPU and is update one
block at the time

Y overwrites W in the GPU memory

Copy X1i to the GPU, update X3i and return it to the CPU
memory

X3i = X1i + YiX2.



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Step 4: Âij := Âij + X3iY T
j + YiX T

3j

Working Copy and executeUpdate

Update block Âij

1 Copy X3i on the GPU and
execute:

Âij = Âij + X3iY
T
j

2 Copy X3j on the GPU and
execute:

Âij = Âij + YiX
T
3j

3 Return Âij to the CPU
memory



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Step 4: Âij := Âij + X3iY T
j + YiX T

3j

Working Copy and executeUpdate

Update block Âij

1 Copy X3i on the GPU and
execute:

Âij = Âij + X3iY
T
j

2 Copy X3j on the GPU and
execute:

Âij = Âij + YiX
T
3j

3 Return Âij to the CPU
memory



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Step 4: Âij := Âij + X3iY T
j + YiX T

3j

Working Copy and executeUpdate

Update block Âij

1 Copy X3i on the GPU and
execute:

Âij = Âij + X3iY
T
j

2 Copy X3j on the GPU and
execute:

Âij = Âij + YiX
T
3j

3 Return Âij to the CPU
memory



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Experimental environment

Target platform

peco.act.uji.es small cluster at Univeristat Jaume I

8 nodes, each with 2 Intel Xeon QuadCore E5520, 24 GB
memory

GPU NVIDIA Tesla C2050, 2.6 GB global memory (ECC
on)

Compilers and libraries

GotoBLAS, gfortran

Lapack 3.1.1

CUDA 4.0, CUBLAS

SBR Toolbox



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Testing parameters

Testing parameters

The flops count for reduction to band form: 2n3/3

The total flops count for reduction from full to tridiagonal:
4n3/3

We have used non-pinned (pageable) memory

Testing were done on one node using 8 cores and one
GPU in DP



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Performance: Full to tridiagonal reduction

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000

G
F

LO
P

S

Matrix dimension

OOC GPU vs SBR in-core CPU

SBR 2-stage
SBR 3-stage

OOC GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Performance: Full to tridiagonal reduction

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000

G
F

LO
P

S

Matrix dimension

OOC GPU vs in-core GPU

SBR 2-stage GPU
MAGMA dsytrd

OOC GPU



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Performance: Full to band reduction

30

40

50

60

70

80

90

0 50000 100000 150000 200000

G
F

LO
P

S

Matrix dimension

Full to band reduction with different band sizes

512
1024
2048
3072
4096



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Performance: Full to band reduction

40

50

60

70

80

90

100

110

0 50000 100000 150000 200000

G
F

LO
P

S

Matrix dimension

Full to band reduction with different band sizes (pinned memory)

512
1024
2048
3072
4096



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Ration between copy and execution (full → band form)



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Outline

1 Introduction

2 SBR Toolbox

3 OOC Reduction to Band Form
Hybrid in-core QR Algorithm
Hybrid OOC Two-sided Update

4 Experimental Results

5 Conclusion



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Conclusion

Current status

We have implemented algorithm that uses OOC
techniques for reducing full dense matrix to band form

Our algorithm matched the performance of the in-core
algorithm when the problem is large enough

The algorithm is independent of the problem size

Ongoing tasks

Overlapping copying with the computation on the GPU

Block QR algorithm on the GPU for large matrices

Multi-stage approach implementation on the GPU
(reduction from band to narrower band)

Accumulation of the Q when the eigenvectors are also
required



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Conclusion

Current status

We have implemented algorithm that uses OOC
techniques for reducing full dense matrix to band form

Our algorithm matched the performance of the in-core
algorithm when the problem is large enough

The algorithm is independent of the problem size

Ongoing tasks

Overlapping copying with the computation on the GPU

Block QR algorithm on the GPU for large matrices

Multi-stage approach implementation on the GPU
(reduction from band to narrower band)

Accumulation of the Q when the eigenvectors are also
required



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Conclusion

Current status

We have implemented algorithm that uses OOC
techniques for reducing full dense matrix to band form

Our algorithm matched the performance of the in-core
algorithm when the problem is large enough

The algorithm is independent of the problem size

Ongoing tasks

Overlapping copying with the computation on the GPU

Block QR algorithm on the GPU for large matrices

Multi-stage approach implementation on the GPU
(reduction from band to narrower band)

Accumulation of the Q when the eigenvectors are also
required



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Conclusion

Current status

We have implemented algorithm that uses OOC
techniques for reducing full dense matrix to band form

Our algorithm matched the performance of the in-core
algorithm when the problem is large enough

The algorithm is independent of the problem size

Ongoing tasks

Overlapping copying with the computation on the GPU

Block QR algorithm on the GPU for large matrices

Multi-stage approach implementation on the GPU
(reduction from band to narrower band)

Accumulation of the Q when the eigenvectors are also
required



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Conclusion

Current status

We have implemented algorithm that uses OOC
techniques for reducing full dense matrix to band form

Our algorithm matched the performance of the in-core
algorithm when the problem is large enough

The algorithm is independent of the problem size

Ongoing tasks

Overlapping copying with the computation on the GPU

Block QR algorithm on the GPU for large matrices

Multi-stage approach implementation on the GPU
(reduction from band to narrower band)

Accumulation of the Q when the eigenvectors are also
required



Motivation Introduction SBR Toolbox OOC Reduction to Band Form Experimental Results Conclusion

Thank you for your attention!


	Motivation
	Introduction
	SBR Toolbox
	OOC Reduction to Band Form
	Hybrid in-core QR Algorithm
	Hybrid OOC Two-sided Update

	Experimental Results
	Conclusion

