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Metabolic profiling of biological samples involves nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry coupled with powerful statistical tools for complex data 

analysis. Here, we report a robust, sparseness-based method for the blind separation of analytes 

from mixtures recorded in spectroscopic and spectrometric measurements. The advantage of the 

proposed method in comparison to alternative blind decomposition schemes is that it is capable of 

estimating the number of analytes, their concentrations, and the analytes themselves, from 

available mixtures only. The number of analytes can be less than, equal to or greater than the 

number of mixtures. The method is exemplified on blind extraction of four analytes from three 

mixtures in 2D NMR spectroscopy and five analytes from two mixtures in mass spectrometry. The 

proposed methodology is of widespread significance for natural products research and the field of 

metabolic studies, whereupon mixtures represent samples isolated from biological fluids or tissue 

extracts.  

Current achievements and progress in the field of systems biology and functional genomics depend 

sensitively on the level of development of associated analytical techniques.1 Metabolic profiling of 

biological fluids, cells and tissues provides insight into physiological processes, where it addresses 

multiple aims. These include disease diagnostics, xenobiotic toxicity, and nutrition- and environmental-

influenced responses of living systems.2 Information-rich techniques such as NMR spectroscopy and 

mass spectrometry (MS) represent powerful diagnostic tools for metabolomic and metabonomic studies, 

particularly through the identification and quantification of chemical entities directly correlated with 

certain disorder or disease (biomarkers).3 One of the main disadvantages of 1H NMR spectroscopy is 

signal overlapping, which increases with the number of components, their complexity and/or similarity. 

This shortcoming can be significantly reduced by spreading to the second dimension. While 2D NMR 

spectroscopy is commonly used for the structure elucidation of biomacromolecules, there are limited 

examples of its application in metabolic analysis. 2D homonuclear and heteronuclear NMR 

spectroscopy was applied to the studies of central nervous system and muscles,4 but recently also to 

analyze healthy and cancerous tissues.5 Despite significant improvement in many aspects, through 

Page 2 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

isotopic labeling and chemoselective tagging,6 2D NMR spectra are still challenged by limited 

resolution. Thus, a high level of data complexity generated in metabolic studies requires adequate data 

analysis. A multivariate data analysis methodology capable of blind extraction of a single component 

(analyte) spectrum out of a mixture would significantly improve and accelerate metabolic fingerprinting, 

biomarker searches and natural products analysis. Known as blind source separation (BSS), it has been 

reported previously in NMR,7 infrared (IR)8, electronic paramagnetic resonance (EPR)9 and Raman10

spectroscopy as well as mass spectrometry.11 However, in all these examples, algorithms of independent 

components analysis (ICA)12
 were used. These techniques assume that components are statistically 

independent and their number is less than or equal to the number of mixtures available. When the 

spectra of different analytes overlap significantly, the statistical independence assumption is only 

partially fulfilled,11 causing ICA to fail. Moreover, ICA can not solve BSS problems characterized by 

more components than available mixtures. When mixtures represent samples of biological fluids, plant 

or tissue extracts with a few hundreds of analytes, overlapping of resonant peaks is a common 

phenomenon.3 Moreover, the number of components present and their concentrations are not known in 

advance. This adversely affects the accuracy of the ICA-based blind extraction of analytes. The same 

comment applies to the band target entropy method (BTEM) applied to the analysis of multicomponent 

2D NMR spectra.13 These lead to the underdetermined blind source separation (uBSS) scenario,12,14,15 

where an unknown number of components ought to be extracted, having only a smaller number of 

mixtures spectra at ones disposal, whereas the number of mixtures ought to be greater than one. We 

have recently demonstrated blind extraction of analytes from a smaller number of mixtures in FT-IR 

spectroscopy,16 mass spectrometry17 and 1H and 13C NMR spectroscopy,18 exploiting sparseness 

between the components in some representation domain.  However, the mutual sparseness assumption is 

severely violated when the number of components, their complexity or their similarity increases, leaving 

us unable to deal with biologically relevant problems. Here, we have proposed and verified an approach 

toward the solution of a problem considered within the chemometrics community "too ill-posed and 

thus, unsolvable."13 The method relies on an assumption that components are mutually sparse (do not 
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overlap) at a small number of points only. Thus, it is well founded to expect it to be successful in blind 

extraction of analytes from a small number of complex mixtures. In combination with daily 

improvements of analytical tools, this approach could potentially yield a viable method for biomarker 

identification and extraction from biological samples. The method is exemplified on blind extraction of 

analytes from the mixtures recorded in 2D NMR spectroscopy and mass spectrometry. Since it is 

derived to solve general-purpose BSS problems, its applications clearly extend beyond the blind 

extraction of analytes. As but one application example of great importance in systems biology, we point 

to the reconstruction of transcription factors in gene regulating networks.3,19,20 

THEORY AND ALGORITHM 

Linear mixture model. Blind extraction of the analytes is based upon the linear mixture model (1)7-11,

16-18 

=X AS  (1) 

where 1 2 1...n nI I I I
C −×∈X represents a matrix of, in the general case, complex data. The In rows contain 

mixtures measured by some (n-1)-dimensional spectroscopic modality; 0+
nI J

R
×∈A is an unknown 

nonnegative real matrix of concentration profiles of the unknown number of J analytes; and 

1 2 1... nJ I I I
C −×∈S  is a matrix of (potentially complex) data, the J rows of which contain analytes. The linear 

mixtures model (1) is verified in ref. 17 to be a valid description of the mixtures of analytes mass 

spectra. The adopted notation can be used to represent mixtures measured either from one-dimensional 

or from multi-dimensional spectroscopic or spectrometric modalities, which might be necessary if the 

complexity of analytes is very high and/or their number is very large. According to the standard notation 

adopted for use in multiway analysis,21 mixtures recorded by (n-1)-dimensional modalities actually form 

the n-dimensional tensor: 1 2 ... nI I I
C

× × ×∈X . The two-dimensional representation X adopted by the model 
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(1) is obtained from a tensor X  through a mapping process known as n-mode flattening, matricization 

or unfolding. To solve the BSS problem associated with the blind extraction of analytes, the mixtures 

data (1) will often have to be transformed into a new representation domain by means of some linear 

transform T: 

   

  T(X)=AT(S)    (2) 

    

 Examples of such linear transform are wavelet or Fourier transforms.18 The transform T is applied to 

X row-wise. If mixtures are recorded by higher-dimensional spectroscopic or spectrometric modality 

(2D NMR for example) a higher-dimensional transform T is applied to each mixture before it is mapped 

to its one-dimensional counterpart. For example, the blind extraction of four analytes from three 

mixtures of 2D NMR spectra presented in the Results section has been carried out by transforming each 

mixture to a 2D wavelet domain to identify the matrix of concentrations, and then to a 2D Fourier 

domain to identify the spectrum of the analytes. The BSS concept for extraction of analytes requires a 

complex signal format in order to detect samples of single-component activity. This format is not 

supported for some modalities, such as FT-IR spectroscopy or mass spectrometry (MS). In such cases 

we propose a complex equivalent of real data X that is obtained through the analytic representation:22 

 

 ( )jH= +X X X%      (3) 

 

where 1j = −  denotes an imaginary unit and H denotes the Hilbert transform that is applied to X row-

wise. Since a complex format, such as (3), is only necessary to detect points (indicies) of the single 

analyte activity in the chosen basis, any transform that yields a complex signal format can be used for 

this purpose as well. We have used the analytic representation (3) in the experiment, reported in the 

Results section, related to the blind extraction of five analytes from two mixtures of MS data. 
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Sparse representations and single-component-points. The matrix factorization X=AS assumed by 

the linear mixture model (1) suffers from indeterminacies because ATT-1S=X for any invertible T, i.e. it 

implies that infinitely many (A,S) pairs can give rise to X. The meaningful solution of the factorization 

of X is characterized with T=PΛΛΛΛ where P is the permutation matrix and ΛΛΛΛ is a diagonal matrix. These 

standard blind decomposition indeterminacies are obtained by imposing statistical independence 

constraints on S when ICA12,23 is used to solve related BSS problems.7-11 As discussed previously, the 

ICA-related requirements for analytes are not met when mixtures represent complex systems. They can 

contain many analytes and it is therefore very likely that J>In. Therefore, a sparseness-based solution of 

the BSS problem (1) is proposed. It is said that the n-dimensional signal y is k-sparse in basis T if it is 

represented by k<<n coefficients, i.e. it is of special interest to look for the basis T where only a few 

entries of the vector of coefficients T(y) are nonzero. In relation to the BSS problem associated with 

model (1), we comment that the sparseness request applies to the J-dimensional column vectors 
i

s of S 

or T(S), i ∈ {1,…,I1I2In-1}, while rows of S or T(S) correspond to the analytes or their transformations. 

However, it is clear that if the row vectors of S or T(S) are sparse, the column vectors in the 

corresponding representation will be sparse as well. In the absence of noise, if the column vectors of 

either S or T(S) are k=In-1 sparse, i.e. have J-In+1 zero components, a unique solution of the 

underdetermined BSS (uBSS) problem, characterized with J>In, can be obtained.15 Provided that the 

column vectors of either S or T(S) are k=1 sparse, a unique solution of the uBSS problem can be 

obtained, even from In=2 mixtures only. However, for some signals such as those arising in NMR or FT-

IR spectroscopy it is very hard or even impossible to find a basis T where complex samples will be k=1 

sparse. Thus, instead of looking for the basis T that will yield k=1 sparse representation of analytes at all 

sample points (in the most general case there are I1I2…In-1 sample points), we are interested in a 

representation T that will provide us with only P sample points where analytes are k=1 sparse such that 

J≤P<<I1I2…In-1. Since J<<I1I2…In-1 it ought to be possible to find such a small amount of points even 
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when analytes exhibit high degree of mutual similarity/complexity or their number is large. This belief is 

based on two facts: (i) the existence of a basis such as the wavelet basis with multiple degrees of 

freedom that provides signal representation at various resolution levels and different types of wavelet 

function; (ii) the number of detected points of single analyte activity is also governed by the choice of 

angular threshold ∆θ in the direction-based criterion (4), defined below. Thus, for the situation when 

analytes are highly complex or their number is large, the threshold ∆θ can be increased, slightly 

compromising accuracy of the method through detection not of components of single analyte activity but 

single analyte dominance. Yet, if the complexity of the analytes is very high or their number is large it 

might be necessary, for example, to use higher than 2D NMR spectroscopy. The use of points of single-

component activity in the BSS has been exploited in DUET algorithm in ref. 24 for the separation of 

speech signals, wherein it has been assumed that at each point in the time-frequency plane, only one 

speech signal is active. In our approach, we rely on the geometric concept of direction to detect points 

where single analytes are present. This detection criterion was proposed in ref. 25. It requires complex 

representation of signals and was originally applied in the Fourier basis. The criterion is based on the 

notion that the real and imaginary parts of the complex vector of mixtures point either in the same or in 

opposite directions at the sample points of single analyte activity. This is based on the following 

reasoning. Let us denote by 
i

x  the complex column vector of either the mixtures data X (1) or the 

transformed mixtures data T(X) (2) at the sample index i. At the point i, where only one analyte is 

active, it applies for the vector of mixtures: xi=ajsij, where aj is the vector of concentrations of the jth 

analyte across the mixtures and sij is the jth analyte that is active at point i. Since the vector of 

concentrations aj is real, the real and imaginary parts of vector xi must point in the same direction when 

the real and imaginary parts of sij have the same sign or, in opposite directions, when the real and 

imaginary parts of sij have different signs. Thus, the sample point i belongs to the set of single analyte 

points (SAPs) provided that the following criterion is satisfied 
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{ } { }
{ } { }

( ) { }
T

1 2 1cos 1,...,i i

n

i i

R I
i I I I

R I
θ −≥ ∆ ∈

x x

x x
   (4) 

 

where R{
i

x } and I{
i

x } denote the real and imaginary part of 
i

x , respectively. 'T' denotes the transpose 

operation, { }iR x  and { }iI x  denote the 2l -norms of R{
i

x } and I{
i

x } and ∆θ  denotes the angular 

displacement from directions of either 0 or π radians. Equation (4) follows from the definition of the 

inner product { } { } { } { } ( )T
cosi i i iR I R I θ= ∆x x x x . At single analyte points ∆θ=0 and the inequality 

sign in (4) is replaced by an equality sign. Evidently, the smaller ∆θ  is the smaller will be the number of 

candidates for identified as SAPs. However, the accuracy of the estimation of the number of analytes J 

and the concentration matrix A will be greater. In this regard, when mixtures X in (1) represent NMR 

signals we propose the use of the wavelet rather than the Fourier basis, to detect SAPs. If either the 

complexity of the analytes or their number is too great so that the chance of detecting sufficient SAPs is 

reduced (or zero), ∆θ  can be increased. This, in part, will affect the accuracy of the estimation of the 

concentration matrix A due to the fact that chance is increased that, instead of SAPs, we are detecting 

points where some of the analytes are dominant. This is important for not losing information about 

analytes that appear only on the diagonal in 2D NMR spectra and, therefore, are more likely to be 

dominant at a certain number of points rather then single one.   

 

Data clustering-based estimation of the number of analytes and the matrix of concentration 

profiles. A satisfactorily identified set of the SAPs enables the accurate estimation of the number of 

analytes J and the matrix of concentration profiles A. This is due to the fact that analytes in this set are 

k=1 sparse and this condition, in the absence of noise, guarantees that the estimation of A is unique up to 

the permutation and scale.15,25,26 At SAPs the following relation holds: 
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   { } { }, 1 2 11,..., , 1,...,i j j i ns j J i I I I −= ∈ ∈x a     (5) 

 

i.e. samples in the mixtures, which are column vectors of data matrix X, coincide with some of the 

columns of A. Thus, A can be estimated from X employing some of the available data-clustering 

algorithms.26,27 However, in many BSS algorithms it is assumed that the number of analytes J is either 

known or can be estimated easily. This does not seem to be true in practice at all, especially when the 

BSS problem is underdetermined and mixtures represent samples of biological fluids or tissue extracts.3 

Generally speaking, the estimation of the number of analytes is a complex issue known in computer 

science as the intrinsic dimensionality problem.28 A few related methods are described in references 29 

to 31. However, they all assume J≥In. Thus, they are not applicable to the uBSS problem that is of 

central interest here. To estimate the number of analytes for an identified set of SAPs, we propose to use 

the clustering function:16-18 

 

  ( ) ( )2

2
1

,
exp

2

P
i

i

d
f

σ=

 
= − 

 
∑

x a
a        (6) 

 

where d denotes the distance calculated as ( ) ( )2
, 1

i i
d = − ⋅x a x a  and ( )i ⋅x a  denotes the inner or dot 

product. a represents the mixing vector in a two-dimensional subspace that is parameterized as: 

  

 T[cos( ) sin( )]ϕ ϕ=a         (7) 

 

where ϕ  represents the mixing angle that is confined in the interval [0, π/2] due to the non-negativity of 

the mixing coefficients (they represent concentration profiles of the analytes). Parameter σ defines the 

resolving power of the function f(a). When σ is set to a sufficiently small value (in reported experiments 

this turned out to be σ≈0.05) the value of the function f(a) will approximately equal the number of data 
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points close to a. The number of peaks of the function f(a) in the interval [0, π/2] corresponds to the 

estimate of the number of analytes J present in the mixtures. The selection of a two-dimensional 

subspace out of an In-dimensional mixture space greatly simplifies the computational complexity of the 

estimation process due to the fact that an (In-1) dimensional search in the space of mixing angles is 

reduced to a one-dimensional search. The reduction to the two-dimensional subspace is enabled by the 

fact that each analyte is present in some concentration in each of the In mixtures available. It is clear that 

the value of σ reported above is empirical. For another set of mixtures it can yield a different value for J. 

To obtain a robust estimator of the number of analytes J, we have proposed in ref. 16 to 18 to decrease 

value of σ until the estimated number of analytes is increased by 1 or 2. False analytes will be either a 

repeated version of some of the true analytes or their linear combinations. Thus, they can be detected 

after blind extraction as the ones that are highly correlated with the rest of the extracted analaytes. It is 

also clear that if the concentration profiles of the analytes are very similar it will be increasingly more 

difficult to discriminate them. In such a case, the solution might be to evaluate clustering function in 3D 

or even higher-dimensional space, because this will decrease probability that different analytes have the 

same concentration profiles across an increased number of mixtures. This however adds to the 

computational complexity of the algorithm due to the fact that the one-dimensional search in the domain 

of mixing angles is replaced by a search in a higher-dimensional space. After the number of analytes J is 

estimated, the matrix of concentration profiles A is estimated on the same set of SAPs employing some 

of data clustering methods.27 In the subsequent experimental setup, hierarchical and k-means clustering, 

implemented through the clusterdata and kmeans commands from MATLAB's Statistical toolbox, have 

been used for this purpose.    

 

Estimation of analytes in over-, even- and under-determined scenarios. When the estimated 

number of analytes J is less than or equal to the number of mixtures In, the resulting BSS problem is 

respectively over- or even-determined. Analytes can be estimated through the simple matrix pseudo-

inverse: 
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  S=A†X        (8a) 

or  

  T(S)=A†
T(X)       (8b) 

 

where A† denotes the Moore-Penrose pseudo-inverse of A. Whether (8a) or (8b) is employed depends on 

the type of the spectroscopic modality that is used. If NMR spectroscopy is used it is customary to 

estimate analytes in the Fourier domain, in which case (8b) is preferred with T representing the Fourier 

transform (note that for NMR data A is identified in the wavelet domain). If mass spectrometry or FT-IR 

spectroscopy are used it is customary to estimate analytes in the recording domain (8a). For reasons of 

clarity, we emphasize again that the transform T is applied to X row-wise. If mixtures are recorded by 

higher-dimensional spectroscopic or spectrometric modality (2D NMR for example) a higher-

dimensional transform T is applied to each mixture before it is mapped to its one-dimensional 

counterpart.  The accuracy of the pseudo-inverse approach (8a)/(8b) with A identified on a set of SAPs 

greatly outperforms the one obtained by ICA, as reported in ref. 25. When the number of analytes J is 

greater than the number of mixtures In, the resulting BSS problem is underdetermined. In such a case, 

the inverse problem has many solutions and simple pseudo-inverse approach (8a)/(8b) can no longer be 

applied. Provided that either si or T(si) are k=In-1 sparse, i.e. have J-In+1 zero components, it is possible 

to obtain the solution of the resulting uBSS problem through 1l  norm minimization,14,15 once the 

number of analytes J and concentration matrix A are estimated. The analyte extraction problem is then 

reduced to solving the resulting underdetermined system of linear equations, that is carried out as linear 

programming14,32,33 or the 1l -regularized least square problem.34,35 Provided that the concentration 

matrix A is estimated accurately, the result in ref. 23 states that the minimum of the 1l  norm yields an 

accurate solution of the uBSS problem even if analytes are In-sparse, i.e. have J-In zero components. It 

means that In analytes can co-exist at each sample point. When multiple analytes occupy each sample 
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point of generally complex mixture, we respectively notice the relation between the real and imaginary 

parts of xi as:   R{xi }=AR{si} and I{xi}=AI{si},  i ∈ {1,...,I1I2In-1}. Written in matrix formulation it 

reads as 

 

  
{ }
{ }

{ }
{ }

i i

i i

R R

I I

    
=    

       

x sA 0

0 Ax s
       (9a) 

or 

  
i i
=x As          (9b) 

 

where in (9a) 0 is the matrix with the same dimensions as A and all entries equal to 0. We introduce 

dummy variables u,v≥0 such that 
i
= −s u v . Assuming that 

 
=  
 

u
z

v
 and  = − A A A  linear 

programming based solution with equality constrains is obtained as 

 

 

2

, 1 2 11
ˆ arg min subject to 1,...,

i

J

i j i i i nj

i

z i I I I −=
= = ∀ =

≥

∑
z

z Az x

z 0    (10) 

Linear programming (10) favors solution with the minimal 1l  norm. With high probability, this is the 

sparsest solution of (9b).33-35 Hence, if analytes satisfy the desired degree of mutual sparseness, the k≤In 

solution of (10) will successfully recover them.  Analytes are obtained from the solution of the linear 

program (10) as 
i

s , where u is obtained from the upper half of ˆ
i

z  and v is obtained from the lower half 

of ˆ
i

z . The real part of si is obtained from the upper half of 
i

s  while the imaginary part of si is obtained 

from the lower half of 
i

s . If noise is present in the uBSS problem, a more robust solution for ˆ
i

z (thus 

also si) is obtained by solving the 1l -regularized least square problem:34  
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2

1 2 11
2

1
ˆ arg min 1,...,

2
i

i i i i n
i I I Iλ −= − + ∀ =

z

z Az x z    (11) 

 

Solution of (11) minimizes the 2l -norm of the error between data 
i

x  and its model 
i

Az , trading the 

degree of error for the degree of sparseness of the solution. The degree of compromise is balanced by the 

value of the regularization factor λ. There are other methods developed over last few years for solving 

underdetermined systems of linear equations. Most notable are methods that minimize the 
p

l -norm 

(0<p≤1) of the solution coefficients (analytes) such as the iterative recursive least square (IRLS) 

algorithn,36 methods that optimize null-space of the concentration matrix A,37 and methods that work 

with a smooth approximation of the 0l -quasi norm of the solution coefficients.38 We have checked the 

IRLS algorithm and the smoothed 0l -quasi norm algorithm on the experimental problem considered 

below. These methods did not bring any improvement relative to the performance achieved by the 

interior point method employed to solve the 1l -regularized least square problem (11) or the linear 

programming method employed to solve (10).  

 

EXPERIMENTAL SECTION 

NMR measurements. We used 6-O-(N,O-bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl)-D-

glucopyranose (1), 6-O-(N,O-bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl-L-phenylalanyl)-D-

glucopyranose (2), 6-O-(N-tert-butyloxycarbonyl-L-prolyl-L-phenylalanyl-L-valyl)-D-glucopyranose (3) 

and 6-O-(N,O-bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl-L-phenylalanyl-L-valyl)-D-glucopyranose 

(4)39 to prepare three mixtures with different ratios of 1-4: X1 (1:2:3:4 = 1.1:1.7:2.7:1), X2 (1:2:3:4 = 

2.5:1.7:1.3:1) and X3 (1:2:3:4 = 1:4:2.7:2.2). To test the ability of the ICA-based approach, which 

requires the number of mixtures to be equal or greater than the number of analytes, the fourth mixture 

X4 (1:2:3:4 = 3.2:1:2.3:3.5) has been prepared and treated as described above. Compounds 1-4 and 

mixtures X1-X4 were dissolved in 600 µL of DMSO-d6 and NMR spectra recorded with a Bruker 
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AV300 spectrometer, operating at 300.13 MHz and 298 K. The 1H-1H COSY spectra were obtained in 

the magnitude mode with 2048 points in the F2 dimension and 512 increments in the F2 dimension. 

Each increment was obtained with 4 scans and a spectral width of 6173 Hz. The resolution was 3.01 and 

6.02 Hz per point in the F1 and F2 dimensions, respectively. 

 

Mass spectrometry measurements. The compounds used for the analysis and procedures regarding 

MS measurements are described in ref. 17. 

 

Software environment. The BSS method described was tested on the decomposition of 2D COSY 

NMR spectra and mass spectra using custom scripts in the MATLAB programming language (version 

7.1.; The MathWorks, Natick, MA). The data clustering part of the SCA algorithm was implemented 

using the clusterdata and kmeans commands from the Statistics toolbox. The clusterdata command was 

used with the following set of parameters: distance: cosine; linkage: complete; maxclus: J, where J 

represents number of analytes estimated previously from the peaks of the clustering function (6)/(7). The 

linear programming part of the SCA algorithm was implemented using the linprog command from the 

Optimization toolbox and the interior point method.34,40 The two-dimensional wavelet transform was 

implemented using the swt2 command from the Wavelet toolbox. All programs were executed on a PC 

running under the Windows XP operating system using an Intel Core 2 Quad Processor Q6600 operating 

with a clock speed of 2.4 GHz and 4GB of RAM installed.   

 

RESULTS AND DISCUSSION 

Setting up an experiment 

To demonstrate the efficiency of the proposed multivariate data analysis method, a "control" experiment 

was set up. Since we are targeting complex mixtures, it was important to choose a group of compounds 

that will comply with complexity requirement. It was also important to have known and well-

characterized compounds to verify accuracy of estimation. Among many options, we have selected the 

Page 14 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

15 

glycopeptides 1-4,39 where the N-terminally protected dipeptide (Tyr-Pro, 1), tripeptides (Tyr-Pro-Phe, 

2) and (Pro-Phe-Val, 3) and tetrapeptide (Tyr-Pro-Phe-Val, 4) are linked to the C-6 group of D-glucose 

(Figure 1a). Crude compounds 1-4 were mixed to obtain three mixtures with different concentrations of 

components (see Experimental Section for details). 

As seen from their structures, compounds 1-4 are structurally analogous, and consequently their 

spectral profiles are, to a large extent, similar (Figure 1b). Additionally, the presence of a reducing sugar 

gives rise to both α- and β-pyranose forms in the solution, while the presence of the proline residue 

causes cis-trans isomerization of the X-Pro peptide bond. All together, accurate assignment of all 

resonances requires 2D NMR measurements. Even so, COSY spectra obtained from mixtures consisted 

of compounds 1-4 (Figure 2) showed overlapping, which undoubtedly hampered assignment. Thus, the 

proposed mixture model passed the complexity requirement and seemed adequate for the data analysis. 

 

Blind extraction of four analytes from three mixtures in 2D NMR spectroscopy. Figures 1 to 4 

and Table 1 demonstrate the experimental blind extraction of four pure-component COSY spectra from 

three mixtures by means of the described sparseness-based multivariate data analysis method. The 

COSY spectra of compounds 1-4 are presented in Figure 1b, while Figure 2 shows the COSY spectra of 

the three mixtures. The structural similarity of the selected compounds accounts for the complexity and 

overlapping in the sugar resonance region, as well as in the amino-acid amide and side-chain resonance 

areas. A convenient way to quantify this overlapping is to calculate normalized correlation coefficients 

between the spectra of the analytes 1-4 (Table 1a). It is clear that compound 1 is highly correlated with 

(similar to) compound 2 (0.5509). Compound 2 is additionally correlated with 4 (0.5120), while 

compounds 3 and 4 are highly mutually correlated, with a coefficient of 0.7965. Clearly, these 

correlation coefficients reflect structural and spectral similarities between the studied compounds and 

allow simplified numerical analysis of often complex NMR spectra.  

Clustering functions described by the equations (6) and (7), are shown in the mixing angle domain in 

Figure 3 for three two-dimensional subspaces X1X2, X1X3 and X2X3, i.e. all combinations of two 
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mixtures were used for the estimation of the number of analytes present in the mixtures. The clustering 

functions were calculated on a set of 203 SAPs, (equation (5)), detected in the symmlet 8 wavelet 

domain using direction based criterion (4) with angular displacement set to ∆θ =1 degree. The value of 

the dispersion factor σ in (5) has respectively been set to 0.04, 0.06 and 0.05. The meaning of 203 SAPs 

is that only one of components 1-4 was active at only 203 out of 65536 points available. The four peaks 

in clustering functions suggest the existence of four analytes in the mixtures. The small variation of the 

dispersion factors parameter confirms the statement that any two-dimensional mixtures subspace can be 

used for the estimation of the number of analytes.  

The spectra of the pure components estimated from three mixtures X1-X3 (Figure 2) are shown in 

Figure 4. Since the concentration matrix is estimated accurately on a subset of SAPs, the 1l -regularized 

least square method, eq.(11), yielded good estimates of the analytes spectra, even when two components 

occupy the same frequency. The similarity between the spectra of pure and estimated analytes is 

quantified in Table 1b, where normalized correlation coefficients between the true and estimated 

analytes spectra are shown. The closer these numbers are to those in Table 1a, the better is the extraction 

of the components from the mixtures. Inspection of the data shows that all four components were 

successfully separated from three mixtures; even highly correlated components 3 and 4 are assigned 

reliably.  

To demonstrate the importance of the wavelet basis for providing sparse representation of the NMR 

signals, we have estimated the set of SAPs in the Fourier domain with angular displacement criterion set 

to ∆θ =2 degrees, i.e. two times greater than in the case of wavelet basis. However, only 23 SAPs were 

detected in this case and the estimation of the matrix of concentration profiles was less accurate. 

Consequently, the 1l -regularized least square method failed to provide good estimates of the analytes 

spectra. This is quantified in Table 1c, where normalized correlation coefficients between pure analytes 

spectra and spectra of the estimated analytes in Fourier domain are shown. While the accuracy of the 

estimation of components 1-3 generally follows that in Table 1b, component 4 is estimated incorrectly. 
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This is a consequence of a high degree of similarity (correlation factor) in combination with a low 

number of SAPs detected in the Fourier domain. Therefore, the importance of the wavelet basis for 

providing sparse representation of the NMR signals is clearly verified.  

 Finally, significant degrees of correlation between spectra of the pure analytes would cause the 

ICA-based approach to fail even if the number of mixtures would be equal to the number of analytes. 

This is due to the fact that significant correlation between spectra of the pure analytes violates the 

statistical independence assumption required by ICA. This has been demonstrated by using the JADE 

ICA algorithm41 to separate the same four analytes but from four mixtures, whereupon normalized 

correlation coefficients between pure and estimated analytes spectra are shown in Table 1d. 

As discussed previously, only a few methods or algorithms have been developed for the extraction of 

analytes from multicomponent spectral data without any known a priori information. The majority of 

these blind decomposition methods require the number of mixtures to be greater than or equal to the, in 

principle unknown, number of pure components. Some of these methods, like the band-target entropy 

minimization (BTEM), have been applied on the extraction of components in 2D NMR (COSY and 

HSQC) spectroscopy from multicomponent mixtures.13 However, seven mixtures were used for the 

reconstruction of three pure components of simple structure. Moreover, as stated by the authors, the 

BTEM approach is inapplicable when the number of experimentally measured spectra is less than the 

number of observed components. Here, as well as in recent publications,16-18 we have demonstrated that 

the sparseness-based approach successfully estimates pure components when the number of available 

mixtures is less than the unknown number of components. 

 

Blind extraction of five analytes from two mixtures in mass spectrometry. The proposed 

sparseness-based multivariate data analysis method for blind analyte extraction relies on the detection of 

a large enough set of SAPs in a suitably chosen basis, using direction-based criterion (4). As discussed 

previously, the direction based criterion (4) requires complex signals. To circumvent this difficulty for 

the case of real signals, arising for example in mass spectrometry or FT-IR spectroscopy, we have 

Page 17 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

18 

proposed the use of the analytic representation (3) of the real signals to detect the positions of the SAPs. 

We have recently described blind extraction of five pure components mass spectra from only two 

mixtures by means of sparse component analysis.17 The structures of the pure components, their mass 

spectra and the mass spectra of the two mixtures are available as Supporting information (Figures S-1, 

S-2 and S-3, respectively). The same data set was used to validate the sparseness-based multivariate data 

analysis method proposed herein. By setting the angular displacement criterion to ∆θ =2 degrees, 290 

SAPs were detected using the analytical representation (3). The clustering function (Figure S-4) showed 

five peaks corresponding to five analytes present in the mixtures. The estimated mass spectra are 

presented in Figure S-5 and are consistent with the results already obtained in Ref. 17. This is due to the 

fact that the mass spectra of the analytes were weakly correlated (see Table S-1 in the supporting 

information). However, this validates an approach for the detection of SAPs in the case of real signals, 

which is based on the use of an analytic representation (3).  

This result should be considered in the wider context of the utility of mass spectrometry for metabolic 

profiling. Chromatographic separation of analytes present in mixtures prior to MS analysis is a standard 

procedure, but suffers from some drawbacks. Different samples (mixtures) require different separation 

techniques (column packages, mobile phases) and determining optimal conditions for the separation is 

usually a time- and resource-consuming process.3 On the other hand, direct infusion of the complex 

sample into the mass spectrometer is generally not applicable, owing to the ionization suppression and 

the formation of adducts in the ion source.1 There are a few successful examples that are, however, 

limited to the analysis of plant extracts.1 The presented multivariate data analysis method based on the 

detection of SAPs can reduce the need for the accurate separation prior to MS analysis and represents an 

innovative approach for the metabolic analysis based on mass spectrometry. Furthermore, we plan to test 

this approach on less "controlled" and more biologically relevant experiments, to determine possibilities 

and limitations of the presented multivariate data analysis method. 
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Conclusion 

We developed and demonstrated a sparseness-based method for blind estimation of analytes exhibiting a 

high level of complexity and structural similarity, whereupon their number is greater than the number of 

mixtures available. The method relies on the realistic assumption about the existence of a representation 

domain or basis where a small number of data sample points can be found at which analytes do not 

overlap. Although of general importance, the method was developed to solve an important problem in 

metabolic studies: the blind extraction of analytes from a possibly smaller number of mixtures of NMR 

or mass spectra. We exemplified the method through the estimation of four analytes from three mixtures 

in 2D NMR spectroscopy and five analytes from two mixtures in mass spectrometry. The advantages of 

the proposed sparseness-based approach over the presently used multivariate data analysis methods are 

expected to be of greatest significance in applications such as metabolic profiling of biological fluids 

and tissues in search for new biomarkers, analysis of plant and microbial extracts in seeking new 

biologically active compounds and the reconstruction of transcription factors in gene regulating 

networks.  
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Supporting information available: Structures of analytes 5-9, Figure S-1; mass spectra of analytes 5-

9, Figure S-2; mass spectra of two mixtures, Figure S-3; clustering function calculated on a set of 290 

SAPs using analytic representation (3), Figure S-4; mass spectra of five estimated analytes, Figure S-5; 
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normalized correlation coefficients for pure analytes 5-9 and analytes 5-9 estimated on 290 SAPs 

detected by using analytical representation (3), Table S-1. 
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FIGURE CAPTIONS 

Figure 1. a) Structures of glycopeptides 1-4; b) COSY NMR spectra of pure analytes 1-4. 

Figure 2. COSY NMR spectra of three mixtures X1-X3. 

Figure 3. Clustering functions calculated on 203 SAPs in wavelet domain for three two-dimensional 

mixture subspaces: X1X2, X1X3 and X2X3. Positions of four peaks P1 to P4 in each function are marked. 

Figure 4. COSY NMR spectra of estimated analytes 1-4.  

 

TABLE CAPTION 

Table 1. Normalized correlation coefficients for (a) pure analytes 1-4; (b) analytes 1-4 estimated on 203 

SAPs detected in symmlet 8 wavelet domain; (c) analytes 1-4 estimated on 23 SAPs detected in Fourier 

domain; (d) analytes 1-4 estimated by means of JADE ICA algorithm from four mixtures.* Significant 

degree of correlation between spectra of true analytes caused failure of the ICA-based extraction of 

analytes, Table 1d.  

 

 

 

 

Page 21 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

22 

References 

(1) van der Greef, J.; Stroobant, P.; van der Heijden, R. Curr. Opinion Chem. Biol. 2004, 8, 559-565. 

(2) Ellis, D. E.; Dunn, W. B.; Griffin, J. L.; Allwood, J. W.; Goodacre, R. Pharmacogenomics 2007, 

8, 1243-1266. 

(3) Lindon, J. C.; Nicholson, J. K. Ann. Rev. Anal. Chem. 2008, 1, 45-69. 

 (4) Méric, P.; Autret, G.; Doan, B. T.; Gillet, B.; Sébrié, C.; Beloeil, J.-C. Magn. Reson. Mat. Phys. 

Biol. Med. 2004, 17, 317-338. 

(5) Thomas, M. A.; Lange, T.; Velan, S. S.; Nagarajan, R.; Raman, S.; Gomez, A.; Margolis, D.; 

Swart, S.; Raylman, R. R.; Schulte, R. F.; Boesiger, P. Magn. Reson. Mat. Phys. Biol. Med. 2008, 21, 

443-458. 

(6) Ye, T.; Mo, H.; Shanaiah, N.; Gowda, G. A. N.; Zhang, S.; Raftery, D. Anal. Chem. 2009, 81, 

4882-4888. 

(7) Nuzillard, D.; Bourg, S.; Nuzillard, J. M. J. Mag. Res. 1998, 133, 358-363. 

(8) Visser, E.; Lee. T. W. Chemometrics Intell. Lab. Syst. 2004, 70, 147-155. 

(9) Ren, J. Y.; Chang, C. Q.; Fung, P. C. W.; Shen, J. G.; Chan, F. H. Y. J. Mag. Res. 2004, 166, 82-

91. 

(10) Shashilov, V. A.; Xu, M.; Ermolenkov, V. V.; Lednev, I. K. J. Quant. Spectrosc. Radiat. Transf. 

2006, 102, 46-61. 

(11) Shao, X.; Wang, G.; Wang, S.; Su, Q. Anal. Chem. 2004, 76, 5143-5148. 

(12) Cichocki, A.; Amari, S.I. Adaptive Blind Signal and Image Processing; John Wiley: New York, 

2002. 

Page 22 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

23 

(13) Guo, L.; Wiesmath, A.; Sprenger, P.; Garland, M. Anal. Chem. 2005, 77, 1655-1662. 

 (14) Bofill, P.; Zibulevsky, M. Sig. Proc. 2001, 81, 2353-2362. 

(15) Georgiev, P.; Theis, F.; Cichocki, A. IEEE Trans. Neural Net. 2005 16, 992-996. 

(16) Kopriva, I.; Jerić, I.; Cichocki, A. Chemometrics Intell. Lab. Syst. 2009, 97, 170-178. 

(17) Kopriva, I.; Jerić, I. J. Mass Spect. 2009, 44, 1378-1388. 

(18) Kopriva, I.; Jerić, I.; Smrečki, V. Anal. Chim. Acta. 2009, 653, 143-153.  

(19) Kitano, H, Science 2002, 295, 1662-1664. 

 (20) Liao, J. C.; Boscolo, R.; Yang, Y.-L.; Tran, L. M.; Sabatti, C.; Roychowdhury, V. P. PNAS 2003, 

100, 15522-15527. 

(21) Kiers, H. A. L. J. Chemometr. 2000, 14, 105-122. 

(22) Gabor, D. Trans. Inst. Electr. Eng. 1946, 93, 429-456. 

(23) Comon, P. Sig. Proc. 1994, 36, 287-314. 

(24) Jourjine, A.; Rickard, S.; Yilmaz, O. in Proc. Int. Conf. on Acoust., Speech, Signal Processing, 

2000, 5, pp. 2985-2988. 

(25) Reju, V. G.; Koh, S. N.; Soon, I. Y. Sig. Proc. 2009, 89, 1762-1773.  

(26) Naini, F. M.; Mohimani, G. H.; Babaie-Zadeh, M.; Jutten, Ch. Neurocomputing 2008, 71, 2330-

2343. 

(27) Gan, G.; Ma, Ch.; Wu, J. Data Clustering - Theory, Algorithms and Applications; SIAM: 

Philadelphia, 2007. 

(28) Fukunaga, K.; Olsen, D.R. IEEE Trans. Comput. 1971, C-20, 176-183. 

Page 23 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

24 

(29) Malinowski, E. R. Anal. Chem. 1977, 49, 612-617. 

(30) Levina, E.; Wagman, A. S.; Callender, A. F.; Mandair, G. S.; Morris, M. D. J. Chemometr. 2007, 

21, 24-34. 

(31) Westad, F.; Kermit. M. Anal. Chim. Acta. 2003, 490, 341-354. 

(32) Takigawa, I.; Kudo, N.; Toyama, J. IEEE Trans. Signal Proc. 2004, 52, 582-591. 

(33) Donoho, D. L.; Elad, M. Proc. Nat. Acad. Sci. USA, 2003, 100, 2197-2202. 

(34) Kim, S. J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, S. IEEE J. Sel. Topics Signal Proc. 2007, 

1, 606-617. 

(35) Tropp, J. A.; Gilbert, A. C. IEEE Trans. Inf. Theory. 2007, 53, 4655-4666. 

(36) Cahrtrand, R.; Staneva, V. Inverse Problems. 2008, 24, 035020 (14pp). 

(37) Kim, S.G.; Yo, Ch.D. IEEE Trans. Signal Proc. 2009, 57, 2604-2614. 

(38) Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. IEEE Trans. Signal Proc. 2009, 57, 289-301. 

 (39) Jerić, I.; Horvat, Š. Eur. J. Org. Chem. 2001, 1533-1539. 

(40) http://www.stanford.edu/~boyd/l1_ls/. 

(41) Cardoso, J. F.; Soulomiac, A. Proc. IEE F. 1993, 140, 362-370. 

 

 

 

Page 24 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

25 

 

Figure 1 

Page 25 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

26 

 

Figure 2 

Page 26 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

27 

 

 

Figure 3 

 

Page 27 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

28 

 

Figure 4 

 

 

 

 

Page 28 of 29

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

29 

 

 

 

Table 1: 

entry  An1 An2 An3 An4 

a An1 

An2 

An3 

An4 

1 

0.5509 

0.1394 

0.3730 

0.5509 

1 

0.3051 

0.5120 

0.1394 

0.3051 

1 

0.7965 

0.3730 

0.5120 

0.7965 

1 

b Ân1 

Ân2 

Ân3 

Ân4 

0.8931 

0.5634 

0.1945 

0.4386 

0.4753 

0.8579 

0.5048 

0.6124 

0.2638 

0.2795 

0.8990 

0.8060 

0.4132 

0.5366 

0.7953 

0.8381 

c Ân1 

Ân2 

Ân3 

Ân4 

0.8924 

0.5482 

0.0931 

0.3108 

0.6009 

0.8469 

0.4101 

0.3411 

0.2754 

0.3107 

0.8432 

0.8236 

0.4602 

0.5695 

0.7249 

0.7331 

d Ân1 

Ân2 

Ân3 

Ân4 

0.7189 

0.6873 

0.6606 

0.6322 

0.7090 

0.7571 

0.7325 

0.7232 

0.6805 

0.6524 

0.7142 

0.7474 

0.7939 

0.7790 

0.8177 

0.8342 
*An1-An4 pure analytes 1-4; Ân1- Ân4 estimated analytes 1-4.  
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