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Abstract—Accurate lung tumor delineation plays an important 

role in radiotherapy treatment planning. Since the lung tumor has 
poor boundary in PET images and low contrast in CT images, 
segmentation of tumor in PET and CT images is a challenging 
task. In this study, we effectively integrate the two modalities by 
making fully use of the superior contrast of PET images and 
superior spatial resolution of CT images. Random walk and graph 
cut method are integrated to solve the segmentation problem, in 
which random walk is utilized as an initialization tool to provide 
object seeds for graph cut segmentation on PET and CT images. 
The co-segmentation problem is formulated as an energy 
minimization problem which is solved by max-flow/min-cut 
method. A graph includes two sub-graphs and a special link is 
constructed, in which one sub-graph is for PET and another is for 
CT, and the special link encodes a context term which penalizes 
the difference of the tumor segmentation on the two modalities. To 
fully utilize the characteristics of PET and CT images, a novel 
energy representation is devised. For PET, a downhill cost and a 
3D derivative cost is proposed. For CT, a shape penalty cost is 
integrated into the region and boundary function which helps 
constrain the tumor location during the segmentation. We 
validate our algorithm on a dataset which consists of 18 PET-CT 
images. The experimental results indicate the proposed method is 
superior to the graph cut method solely using the PET or CT is 
more accurate compared with the random walk method, random 
walk co-segmentation method, and non-improved graph-cut 
method. 

Index Terms—Image segmentation, interactive segmentation, 
graph cut, random walks, prior information, lung tumor, positron 
emission tomography (PET), computed tomography (CT). 
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I. INTRODUCTION 

Accurate tumor segmentation plays a significant role in 
image-guided radiation therapy. Due to the variability and 
diversity of medical images, it is a non-trivial and challenging 
task for cancer assessment and treatment planning [1], [2]. For 
effective cancer assessment in clinic, Positron Emission 
Tomography (PET) and Computed Tomography (CT) are two 
commonly used imaging technologies. In PET images, the 
diseased areas, such as tumor and inflammation, appear as ‘hot’ 
areas reflecting high contrast to the normal surrounding tissues. 
The high contrast in PET images makes it easy to distinguish 
the malignant areas from the normal tissues and gives the 
observer a distinct visualization which reduces the observer 
variability [3].  However, due to the low spatial resolution of 
PET, the target boundary definition is poor and fuzzy [see 
Fig.1(a)]. Thus accurate tumor segmentation using PET only is 
problematic. CT images have high spatial resolution and 
provide detailed anatomical information, yet lacking 
metabolism information. Lack of physiological information in 
CT makes it difficult to distinguish between the lesion and the 
normal tissues because the tumor intensity is similar to the 
surrounding tissues [5] [see Fig.1(b)]. Many studies indicated 
that the combination of PET and CT images produce a more 
consistent tumor volumes [6]-[8]. Therefore, PET-CT gained a 
lot of attention in both clinic and the field of image processing 
and has become a standard method for tumor delineation and 
cancer assessment. 

Although PET-CT images have been widely used in clinic, 
automatic segmentation on PET-CT images is still a 
challenging task. The existing methods working for PET-CT 
[10]-[13] have an underlying assumption that the tumor volume 
is identical on PET and CT, attempting to get one tumor 
contour from PET and CT two modalities. However, as PET 
and CT convey different information which is not always 
complementary, but sometimes contradictory, the tumor 
volume may be different on PET and CT [14]. In this work, we 
strive to segment tumor volumes simultaneously by taking the 
advantages from two modalities, the superior contrast of PET 
images and superior spatial resolution of CT images. Two 
different tumor volumes are obtained, the volumes defined on 
PET and the tumor contours defined on CT. Our method is 
based on Boykov’s graph cut method [15]-[19] and Leo 
Grady’s random walk method [20], [21].  Both of the methods 
treat the image as a graph and minimize energy functions on the 
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constructed graph to produce an optimal segmentation. In both 
methods, a weighted graph is constructed.  Nodes of the graph 
correspond to voxels in image and edges are placed between 
nearby voxels [22]. The edge weights are determined by the 
character of the image intensity. We incorporate the two 
methods together by utilizing random walk as an initial 
preprocessor and graph cut as a co-segmentation problem 
solver. Random walk is utilized to provide initial lesion 
detection on PET which will be used as object seed sets for PET 
and CT and also as an initial shape model for tumors in CT 
images. The co-segmentation problem is formulated as an 
energy minimization problem. As a graph-based method, the 
performance of the graph cut method is largely controlled by 
the energy function. We proposed a novel energy function 
which is well adjusted to the characteristic of PET and CT 
images. The energy function for both PET and CT 
segmentation has two terms, region term and boundary term. 
For PET, the region cost consists of three components, a cost 
based on SUV distribution, a downhill cost and a 
three-dimensional (3D) derivate function.  The downhill cost is 
based on the analysis of tumor uptake. The 3D derivative 
feature is formulated using the Hessian matrix combined with 
Gaussian functions. For CT, a shape constraint term is 
integrated into the region cost function. To get consistent 
results between PET and CT, a context term which penalizes 
the difference between them is added to the energy. The 
optimal solution with respect to energy function minimization 
will be achieved in a polynomial time by computing maximum 
flow in the constructed graph. 

The rest of the paper is organized as follows. In section II, we 
give a brief review on tumor segmentation using PET and CT 
images and characterize the novelty of our approach. In section 
III, we describe the framework of our method and give a 
detailed introduction of random walk and graph cut method, 
including the description of the energy function design. Section 
IV gives detailed description of the experiments and presents 
the experimental results. Section V, we discuss our work and 

the future improvement. Finally, Section VI draws the 
conclusion.  

II. RELATED WORK

PET and CT images have been actively in use for target 
delineation in clinical radiotherapy applications. For PET 
segmentation, the most widely used is thresholding method 
which may use clinically experienced fixed value (i.e., 
(Standardized uptake value) =2.5) or a percentage of the 
maximum  [23] (i.e. 50% of ) as thresholds. Based 
on the thresholding techniques, some approaches, such as 
Fuzzy-C-Means (FCM) [27], Fuzzy Locally Adaptive Bayesian 
(FLAB) [28] and iterative thresholding methods (ITM)[29] 
which has good performance in dealing with indistinct nature of 
tumor  boundary have been extensively developed. 

Recently, graph based methods have attracted a lot of 
attention due to its good performance in image segmentation. 
Ulas et al. [30] demonstrated the effectiveness of segmenting 
lung tumor on PET images using random walk algorithm. 
Cherry et al. [31] showed how to extract heart, liver and regions 
effectively which have similar uptake value to lesions by 
merging a novel monotonic downhill function with the 
conventional graph cut energy regularization. 

However, these methods only conduct on single modality. 
As physically limited spatial resolution and lack of anatomical 
information on PET images, many developers recently attempt 

Fig. 2.  Flowchart of the algorithm 

(a) 

(b) 
Fig. 1.  PET and CT images. (a) One slice of a CT image. (b) The
corresponding PET image. 
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to integrate PET and CT images, striving to achieve more 
precise lesion detection and delineation. Ulas et al. [10] 
proposed an automatic random-walk-based segmentation 
method combining PET, CT and MRI three modalities by the 
hyper graph construction. Han [12] developed an optimal 
graph-based co-segmentation method with the establishment of 
an arbitration graph mechanism, encoding the characterized 
information of PET and CT images and the context information 
between them. Based on Han’s method, Qi [14] reduced the 
size of the constructed graph in Han’s paper from three 
sub-graphs to two and tried to obtain two different tumor 
contours on PET and CT. 

Our work is motivated by Qi’s method [14]. We both 
formulate the co-segmentation problem as an optimal labeling 
of Markov Random Field (MRF) on the constructed graph with 
PET and CT images. Compared to Qi’s method, the innovation 
in our work is the combination of random walk and graph cut 
and the introduction of the novel energy representation which is 
introduced as above. We utilize random walk technique to 
provide initial hot spot detection which is treated as seed points 
required by Graph cut. As far as common knows, graph cut 
algorithm has small cut and shrinking problem in noisy images 
if a small number of seeds are used. The prior tumor appearance 
provided by random walk will avoid the small cut problem 
happening and reduce the user’s intervention. Since random 
walk is more efficacious in handling ambiguities among object 
boundaries, the initial detection by random walk will facilitate 
the accurate identification of target regions for co-segmentation 
on PET-CT images. Moreover, the novel feature terms we 
integrated into the energy function have great significance in 
segmenting tumor from PET and CT. For PET segmentation, 
the downhill term helps to identify the location of the tumor and 
the 3D derivative feature enhances the tumor structures and 
weakens the background field, which all has contribution to 
producing accurate lesion segmentation. For CT segmentation, 
shape constraint gives a penalty to the region outside the tumor 
model area and helps to constrain the tumor region. 

III. METHODS

 Our proposed algorithm is based on two graph-based 
methods, random walk (RW) and graph cut (GC). Random 
walk is an initial preprocessor for PET, providing basic tumor 
appearance which is used as seed points for PET and CT. Then 
the task of simultaneous segmentation is formulated as an 
energy minimization problem on graphs corresponding to PET 
and CT images. The graph is constructed involving two 
sub-graphs, one for PET and one for CT. Inter-graph arcs called 
d-link are added to connect correspondent nodes of the two 
sub-graphs. For each sub-graph, a novel energy expression is 
designed. For PET, the weight of arcs encodes region and 
boundary information. The region cost function consists of 
three different kinds of feature extracted from PET images, 
including downhill feature, 3D derivative feature and SUV 
distribution feature. The downhill feature based on the analysis 
of tumor characteristics in PET would help extract the 
ambiguous area which has a similar intensity distribution to the 
tumor such as heart and liver. The 3D derivative feature is able 
to enhance the tumor objects. The SUV distribution feature 

helps to solve the problem of heterogeneity in PET images. For 
CT segmentation, a shape penalty term is incorporated with 
region and boundary information. The inter-graph arcs enforce 
context information between PET and CT, enabling target 
contours to follow salient features of each modality [14].  

A. Random walk for tumor segmentation on PET images 

Random walk, a kind of graph-based segmentation approach, 
is an effectively interactive method. In this section, we give a 
detailed introduction of random walk and its use in initial tumor 
segmentation on PET images. 
Assume a graph  is connected and undirected, we represent 
graph  as  with vertices and 
edges .  is an edge connecting node  and its 
neighborhood  with a weight . The vertices in the graph 
can be divided into two sets,  and , such that 

 and .  is a labeling seed set 
which is defined by users and  contains all unknown nodes. 
The segmentation problem is to find appropriate labeling for 
the unknown nodes. A weighting function maps a change in 
image intensity to edge weight corresponding to the probability 
of the random walker first reaches a seed point. The weighting 
function we employed is the typical Gaussian function derived 
from the suggestion in (Grady, 2006) [20]. 

(1)

where  indicates the intensity at voxel , the value  
represents weighting parameter. It has been demonstrated 
previously that the desired probabilities the random walker 
passes through the edge has the same solution as the 
combinatorial Dirichlet problem. The formulation of Dirichlet 
integral is stated as: 

(a) 

(b) 
Fig. 3. One typical slice of the probabilities at each voxel that a random

walker released from that voxel reaches to the foreground seed. (a) original
PET image (b) the corresponding image with the probabilities 
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(2)

where  denotes the probability at each voxel,  represents the 
combinatorial Laplacian matrix. The matrix is defined as: 

(3)

 where  is indexed by vertices  and ,  is the degree of a 
vertex for all edges  incident on  and has the definition as: 

. 

B. Graph cut for co-segmentation of tumor on PET-CT images 

In this section, we will introduce how to segment tumor 
concurrently on PET and CT images using graph cut technique. 
The rationale is to formulate the segmentation problem as 
finding the optimal labeling by energy minimization. In this 
paper, graph cut is automatic without user’s guidance of the 
desired regions to be segmented. The initial lesion appearance 
detected by random walk and the feature of tumor adjusted to 
the PET energy function will facilitate the identification of the 
object and background seeds. The optimal solution will be 
achieved by solving a maximum flow problem in low-order 
polynomial time. 

I. Graph construction 

Two sub-graphs  for PET,  for CT, and a connector 
which is called d-link constitute the whole graph. Each 
sub-graph contains n-links and t-links, encoding the 
neighboring costs and regional costs. d-links enforce the 
context information between PET and CT. The graph is shown 
in Fig.4. For each voxel ,  is the 
corresponding voxel in CT. The intensity value for voxel  is 
noted by . Label  indicates that the voxel belongs to the 
target object ( ) or to the background ( . The energy 
term for each sub-graph PET and CT is expressed as  and 

.  denotes the context cost penalizing the difference 

between PET and CT. The total cost function is defined in the 
following way. 

(4)

Our goal is to minimize the energy such that the optimal 
segmentation of PET-CT images is attained. 

II. Cost function for PET

To introduce our energy function, we start with the
expression of PET cost function. The cost has a region term 
consisting of a SUV cost, a downhill cost and a 3D derivative 
cost and a boundary term. The SUV term  is based on the 
SUV distribution of PET images. The downhill term  is 
adjusted to the downhill feature of tumor on PET and the 3D 
derivative cost  utilizes the derivative feature of PET 
images. The boundary term  is based on the gradient 
of the image. The energy function for the segmentation of PET 
is defined as follows. 

Di

where  denotes the neighboring relationship between 
voxels in PET graph . The detailed definition of every 
function term is presented as follows. 
1) Region term

The region term  is the likelihood assigning label  
to the voxel . Instead of user identifying object seeds, the 
pre-segmented tumor appearance (which is conducted by 
random walk) is considered as target regions desired to be 
segmented. Therefore, for every voxel inside the 
pre-segmented field,  and .  
In this paper, there is no need to define the background seed 
sets for PET segmentation because a downhill cost which we 
defined can be able to extract the ambiguous area which has the 
similar SUV value to the tumor. For the spheres outside the 
initial identified region, it is important to note that the tumor 
may contain regions of necrosis or cystic change such that FDG 
uptake throughout the tumor is heterogeneous. To solve the 
problem of heterogeneity, we design the cost function based on 
the prior knowledge and the feature of SUV distribution of 
tumor. Based on prior knowledge, it is highly possible that the 
voxels having SUV value higher than 50% of maximum SUV 
belong to the tumor. We denote  the maximum SUV value. 
For every voxel with a lower value than 15% of  , it is 
more likely belonging to the background. The function is 
defined as: 

Dis

Fig.4. The constructed graph with two sub-graphs  and  and d-link
arcs encoding the context penalties 
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(7)

where  is the maximum region cost 
allowed;  and  are the 
higher and lower threshold value.  is the parameter controlling 
the curvature of the function.  controls the center point of the 
function.  is the scaling constant which maintains the role of 
the SUV cost. We employ the function instead of the linear 
function because it is monotonically increasing, more versatile 
and more robustness to the heterogeneity. 
2) 3D Derivative term

The 3D derivative cost is a function using three-dimensional 
derivative features which is calculated from a tumor volume as 
well as the volume intensity [31], [32]. The basic idea is to 
characterize the tissue not only on its intensity values but also 
its local intensity structures. Although the shape of tumor is 
irregular, the approximate tumor volume which is a nodule can 
be regarded as a blob-like structure. The 3D filter we employed 
here can effectively respond to specific blob-like objects. The 
three-dimensional filter is based on the gradient vector and 
Hessian matrix of the volume intensity function combined with 
isotropic Gaussian functions.  

Let  be an intensity function of an image, where 
. The characteristic of structures can be analyzed 

using the second-order approximation of . The 
second-order structures can be formulated as follows: 

(8)

where  and  denote the gradient vector and the 
Hessian matrix at . The second-order structures of local 
intensity variations around each point of a volume can be 

described by the original intensity, the gradient vector, and the 
Hessian matrix. In this paper, we use the Hessian matrix to 
measure the 3D edge structure. 

The Hessian matrix is given by 

(9)

where the partial second-order differentiation is interpreted 
as a convolution with derivatives of Gaussians: 

(10)

(11)

where  is a Gaussian parameter which controls the 
response of the derivative function to the specific local tumor 
structures and  is a parameter. Since the tumor is anomalous, 
tumor structures can exist at various scales. In order to make 
filter responses tunable to a width of interest, the Hessian 
matrix is combined with Gaussian convolution. By adjusting 
the standard deviation of Gaussian convolution, local structures 
with a specific range of widths can be enhanced. The filter 
responses decrease as  increases unless appropriate 
normalization is performed. Let the eigenvalues of  be 

 ( ).  gives the maximum 
second-derivative value. The eigenvalues specify the blob-like 
local structures.  The 3D derivative cost is defined as follows. 

where  is the scaling parameter.  is the maximum 
region cost allowed. 
3) Downhill term

The novel downhill cost which is integrated into the energy 
function is based on the analysis of tumor activity on PET. On 
FDG-PET images, the lesions with high metabolism have high 
uptake, so the tumor is clearly identified. However, the 
transition from the tumor SUV to the background SUV is 
gradual. Thus, the SUV value of a homogeneous tumor is 
considered as 3D decreasing monotonically [33]. It means the 
further a voxel from the maximum intensity site of the tumor, 
the lower the SUV value. So if a voxel has a high SUV value 
and keeps a constrained distance from the maximum point, the 
possibility that it belongs to the tumor region is higher. The 
downhill region is defined as : 

(12)

The downhill cost is as follows: 

(13)

where  is the coordinate of the voxel with maximum 
SUV value within the tumor domain, , the coordinate of a 
voxel .  is the Euclidean distance. ,  is the given 
parameter. The downhill region effectively extracts the liver, 
heart and the ambiguous area. Another advantage is that the 

(a) 

(b) 
Fig. 5. one example slice of a 3D derivative feature image (a) original PET
image (b) 3D derivative feature image. The image shows that the heart area
with high uptake value which is similar to the tumor SUV uptake is weakened
and the lesions are enhanced. 
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voxels in the exterior of the downhill region can be considered 
as background seeds for CT segmentation. Fig.6(b) shows one 
slice with the detected downhill region. 

Algorithm 1. Downhill region detection 

Input: PET image and the segmentation result produced by 
random walk 
Output: downhill region image 
Begin 

1) Within the tumor area which is specified by random walk,
we find the voxel with maximum SUV in PET images 

2) Starting at the maximum voxel, it searches the
neighboring voxels, if the SUV value of the voxel is less 
than the thresholds, the distance from the current point 
to the maximum point is computed, denoted by . 

, 
3) If the voxel satisfies the following condition, then it is

specified as the points in the downhill region. 
, 

Output the detected downhill region. 
End 

4) Boundary term
The boundary term measures the penalty of assigning 

different labels to the neighboring voxels  and . We employ 
a gradient-based cost which has a similar form as the 
well-known graph cut method [5]. The boundary cost is 
described as following: 

(14)

where  denotes the squared gradient 
magnitude between  and ,  is a given Gaussian parameter. 

 is the scaling coefficient. 

III. Cost function for CT

The energy function for CT comprises a region term 
, a boundary term  and a shape penalty 

term . The region term and the boundary term are 
derived from conventional graph cut energy term. The shape 
term is independent of image information. CT energy function 
has the following formulation. 

Disp

1) Region term
The hard region cost has the same form as that defined for 

PET. If voxel  is in the interior of the pre-defined tumor 
region,  and . The 
background seed set is determined by the exterior area of the 
downhill region which we introduce in Section B.II.(4). 
Similarly,  and  are 
defined for every voxel in the background set. For the area 

outside the background and foreground fields, the intensity 
distribution of CT image is assumed as the Gaussian Mixture 
Model. Instead of being hard constraints, object seed sets are 
also used to compute the parameter of the Gaussian model. The 
mean intensity value of all voxels in pre-defined object is 
denoted by  and the corresponding standard deviation is . 

(16)

Dis

where ,  is the scaling parameter. 
2) Shape term

The shape term [34] is independent of image information. 
The region recognized by random walk is used as the shape 
model to locate the tumor site. The basic idea of the shape 
penalty term is to consider the distance from the current voxel 
to the model area as the penalty of assigning label  to 
voxel, the larger the distance, the larger the cost. The shape 
constraint function has the following form. 

(18)

where  is the distance from voxel  to the current 

shape  which is identified by random walk，  is the constant 

parameter. If  is inside object , , otherwise, 
 equals to the Euclidian distance from voxel  to the 

center of the shape .  is the radius of a circle. Fig.7(a) 
shows an example slice of the cost image for region term.  

(a) 

(b) 
Fig. 6. one example slice of a downhill region image (a) original PET image
(b) downhill region image overlaid on the original PET image. The region in
pink is detected by the downhill function. It effectively extracted the spine
field which has a similar intensity to the tumor. The region outside the
detected downhill region is labeled as the background seed set. 
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3) Boundary term
A gradient based function similar to that defined for PET is 

utilized, which takes the form 

(19)

 
where  denotes the squared gradient 

magnitude between and  ,  and  are given parameters. 

that just encloses the object.  is the scaling constant. 

IV. Context function

To make the best incorporation of the information in PET 
and CT, a context term is introduced. The context energy 
function takes the form as follows [ ]: 

(20)

where  is a scaling constant,  is the penalty for an 
inconsistent segmentation.  and  are the normalization of 

the region cost in PET and CT images. The cost is normalized 
between [0,1]. The normalization is to make sure that if the two 
voxels in PET and CT images belong to the same label set 
(either to foreground or background), they will have similar 
region cost. If a pair voxel (u,u’) has similar region cost, a 
larger context cost will be assigned to penalize the 
inconsistency between PET and CT. The context cost enables 
our method to follow the prominent features form each 
modality and obtain two different volumes on PET and CT. 

IV. EXPERIMENTS VALIDATION

In this section, we applied our proposed algorithm upon the. 
Our method segments two tumor volumes from PET and CT 
images.  

In this subsection, the effectiveness of the proposed 
algorithm in delineating uptake regions from PET images was 
shown. The proposed method was carried out on 18 sets of 
PET-CT images for validation. For quantitative assessment, the 
segmentation performance on PET images was evaluated by 
comparing the computed results against the reference standard. 
The reference standard is produced by averaging from the two 
manual contours delineated by experts. In this work, we only 
use the segmentation results on PET for quantitative validation. 

A. Datasets 

Our co-segmentation approach was evaluated in a data set 
which consists of 18 3-D FDG PET-CT images obtained from a 
dual PET and CT scanner. These 18 sets are from different 
patients with non-small cell lung cancer (NSCLC). For each 
slice of PET images, the matrix size is  with a voxel size 

. For CT image, the matrix size is 
 with a voxel size . PET will be 

registered with CT image to obtain one-to-one node 
correspondence. The Gross Tumor Volume (GTV) was 
obtained by two experts manually on the PET images by the 
guidance of the corresponding CT image. 

B. Initialization 

In the preprocessing step, registration and initialization are 
required. Affine transform is used to register PET image with 
CT image to obtain one-to-one voxel correspondence. As 
random walk is an interactive method, user defines seeds of the 
object and background for guidance of the desired content to be 
extracted. Since random walk doesn’t have small cut problem, a 
small number of seeds also works on the method. The flowchart 
of the proposed algorithm is shown in Fig.2. First, anatomical 
and functional image are filtered by gradient anisotropic 
diffusion filter which is used to smooth images but preserve the 
edge. Then random walk is conducted on PET images and the 
initial results are obtained. Downhill region is detected on PET 
images and the area outside the downhill region is used as 
background seed set for CT segmentation. PET energy and CT 
energy and context cost is computed, encoded on the 
constructed graph. The entire energy is minimized by solving a 
max-flow/min-cut problem in the constructed graph in a 
polynomial time.  

C. Parameter setting 

In the experiments, the parameter was empirically employed 
for all analyzed datasets. For random walk segmentation, the 
weighting parameter  is set as 40. For the segmentation on 
PET, we set the maximum region cost as , 
indicating that if the possibility a voxel belongs to the desired 
area is very small, the cost of labeling it as the target region is 
very large. In PET segmentation, the regional term plays a more 
important role than the boundary term so that we set  for 
data term. The parameter for the 3D derivative cost  is set as 
0.1. The factor for the downhill term is set as . For the 
smoothness term, , . For the CT segmentation, 

(a) 

(b) 
Fig. 7. one example slice of a cost image for region term in (a) PET image (b) 
CT image 
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the boundary term has a great impact on delineated results, thus 
we set  for the regional term and the coefficient 
for shape term . For the boundary term, , 

. In the context cost function, the scaling coefficient 

was set as , the inconsistent penalty was set as . 

D. Evaluation of PET Segmentation 

1) Evaluation metrics
To measure the segmentation performance, Dice Similarity 

Coefficient (DSC) was used to evaluate the accuracy of the 
segmented result against the ground truth. DSC measures how 
the segmented volume matches the reference standard. We 
denote the segmented results and the ground truth by  and . 
The Dice Similarity Coefficient is computed as: 

(21)

2) Comparison with graph cut solely on PET or CT
To determine the performance of co-segmentation of PET 

and CT images, we compare the proposed method with graph 
cut solely conducted on PET or CT images. The three methods 
are all applied to the 18 datasets with identical initialization. 
The cost functions in the three methods have the same 
parameter setting. DSC is computed to provide quantitative 
analysis. 

3) Comparison with other methods
In this paper, graph cut and random walk are combined 

together and devised a novel energy function for both PET and 
CT. To evaluate the combination significance of the two 
methods, we compare the proposed method with random walk 
(RW) conducted solely on PET images and improved graph cut 
co-segmentation method which has the novel energy 
regularization but without the random walk method (denoted 
by IGC). To evaluate the effectiveness of the energy 
representation incorporated into the conventional functions, our 
algorithm is compared with the traditional graph cut 
co-segmentation method (TGC) in which only the conventional 
energy functions are utilized to adjust to the limited features of 
images. In this comparison, the same foreground and 
background seed sets are used as initialization. 

(a) 

(b) 
Fig. 8. Quantitative results and comparative performance evaluation based on
the computed DSC values. (a) DSC values (b) mean DSC and the standard
deviantion of the three methods.        

(a) 

(b) 
Fig. 9. Quantitative results and comparative performance evaluation based on 
the computed DSC values. (a) DSC values (b) mean DSC and the standard 
deviantion of the three methods.   

TABLE I 
QUANTITATIVE DSC RATE USING THE PROPOSED METHOD 

COMPARED WITH FIVE OTHER METHODS: GRAPH UCT SOLELY 
USING PET, GRAPH CUT SOLELY USING CT, RANDOM WALK 

METHOD, IMPROVED GRAPH CUT, TRADITIONAL GRAPH CUT. 
RESULTS ARE REPORTED AS MEAN  STANDARD DEVIATION 

Rank Methods DSC 
1 Our method 0.847 0.045 
2 PET only 0.744 0.072 
3 CT only 0.628 0.063 
4 RW 0.670 0.162 
5 TGC 0.730 0.075 
6 IGC 0.797 0.088 
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4) Robustness to seed Initialization
To assess the reliability of the proposed method to the 

location and quantity of the seed points, the observer was asked 
to do the second initialization. The second initialization was 
conducted with the information from the first initialization and 
intended to change the location of seed points and decrease 
10% of the seeds quantity. All 18 datasets were experimented 
using the second initialization. The DSC scores were computed 
to evaluate the stability of the proposed method to seeds. 

E. Results 

The DSC rates were computed and compared amongst the 
four methods. Fig.9 exhibits the performance comparison 
among the proposed method and the other methods. The figure 
demonstrates that the proposed method has consistent 
performance for all 18 datasets. And quantitative evaluation of 
our method in comparisons indicates that the delineation 
volumes obtained from the proposed algorithm have higher 
accuracy than the graph cut method solely using the PET or CT. 

V. DISCUSSION 

The proposed method combines two popular graph-based 
methods, random walk and graph cut method to segment tumor 
simultaneously on PET and CT. The novel feature lies on the 
problem-specific objective function and the combination of the 
two graph-based algorithms. 

Fig. 11.  Three typical segmentation examples are shown in each column.
First column: our proposed co-segmentation results on PET (red) and ground
truth (green) are overlaid. Second column: co-segmentation from CT (red)
and ground truth (green). Third column: all segmentations and ground truth
are overlaid on the PET images. 

(a)      (b)      (c) 

(d)      (e)     (f) 

(g)      (h)    (i) 

(j)      (k)        (l) 

(m)     (n)     (o) 

(p)    (q)    (r) 

Fig. 12. Three different comparative segmentation results of lesions are shown 
in each column. (a)-(c) segmentation results conducted by traditional 
co-segmentation graph cut method. (d)-(f) segmentation  results by our 
proposed method.  (g)-(i) segmentation results by random walk (j)-(l)ground 
truth. (m)-(o) segmentation results which is conducted solely on CT images
(p)-(r) the results by graph cut conducted solely on PET images.  

Fig.10. Quantitative results for the proposed method using two different 
initialization, measured by DSC metrics. 
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A. Significance of the combination of random walk and graph 
cut. 

In the graph cut method, a common problem is the small cut 
behavior since the method tries to minimize the total energy. In 
this paper, we use random walk as an initial processor to 
provide the prior tumor contours which are used as the seed 
points for graph cut. The integration of random walk effectively 
avoids the small cut problem of graph cut. Compared to graph 
cut method, random walk needs a smaller number of seeds 
which reduces user’s intervention. It is also able to 
accommodate the uncertainties in the seed initialization. Since 
random walk has advantage in capturing weak object 
boundaries, the combination makes it significant in dealing 
with fuzzy boundaries of tumor. 

B. Significance of the novel function 

In this paper, graph cut method is improved by the 
introduction of the novel energy function. The downhill 
function takes the advantage of the feature of the tumor 
intensity distribution and the distance to the tumor site. This 
function helps to locate the tumor and extract the surrounding 
tissues which have similar intensity distribution to tumor. The 
3D derivative feature utilizes the largest eigenvalue of the 
Hessian matrix to represent the salient character of PET images. 
CT lacks metabolism information and has low contrast, so that 
it is difficult to distinguish between the disease areas and the 
normal tissues. To locate the tumor site in CT image, we 
introduce a shape constraint function which utilizes the prior 
information of the tumor as a shape model to constrain the 
tumor region growing. This function translates the Euclidean 
distance to the cost, the large the distance from the voxel to the 
shape model, the large the cost. 

C. Possible improvement 

The identification of the foreground and background seed 
points can be automated. Ulas et al. [3] have developed a seed 
automatic detection algorithm. The algorithm proposed in [3] 
set a threshold for the PET SUV value to define the object seeds 
first. Then neighboring voxels are searched to find voxels with 
SUV values lower than another threshold. Those voxels are 
defined as background seeds. However, the heart and liver with 
high uptake SUV value which is similar to the tumor intensity 
will be wrong detected as the foreground seeds, leading to a 
wrong guidance to the segmentation. In the future, the detailed 
information of the lung structure will be extracted from PET 
and CT images. The location and the size of the organs are 
contained in the structure information. This structure 
information will facilitate the identification of the foreground 
seeds and do not yield ambiguity. 

Multi-modality has become a standard method in clinical 
pathological analysis, each kind of the imaging techniques 
capture different characteristics of human body. Although the 
co-segmentation makes use of the superior tumor contrast from 
PET images and the exquisite anatomical information from CT 
images, PET and CT cannot provide enough complementary 
inform to each other. In the future, we plan to apply our 
framework to joint segmentation of MRI, PET and CT. The 
combination of the three modalities, and even more modalities, 
will produce a more accurate segmentation tumor results. 

In this study, the parameters for the weighting function were 
set empirically. In the future, we will try to employ learning 
methods to find appropriate factor on the training datasets. 

VI. CONCLUSION

In this paper, we aim to segment the tumor simultaneously 
on PET and CT by effectively integrating the physiological 
information from PET and anatomical information from CT. 
The key novelty of our method is the incorporation of random 
walk and graph cut method and the cost function we design for 
graph cut segmentation on PET and CT. The integration of the 
two methods can avoid the small cut problem in graph cut and 
has good performance in capturing fuzzy boundary of the tumor 
on PET images. The novel energy function we proposed 
effectively utilizes the features from both PET and CT images. 
Each feature has contributions to tumor segmentation. The 
SUV distribution feature makes our method perform well on 
segmentation of both homogeneous and heterogeneous tumor. 
The downhill feature can extract the surrounding tissues with 
high uptakes similar to tumor SUV and its exterior can be used 
as the background seeds for CT segmentation. The 3D local 
structure enhancement feature has the advantage of specifying 
the blob-like tumor objects. The shape term in the energy 
function for CT segmentation helps locate the tumor site. The 
results demonstrated the effectiveness of the proposed novel 
energy functions when compared our method to the traditional 
graph cut method. The significant improvement is achieved 
when compared to other segmentation methods. 
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