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Abstract. We propose an offset-sparsity decomposition (OSD) method for the enhancement of a color microscopic 
image of a stained specimen. The method decomposes vectorized spectral images into offset terms and sparse terms. 
A sparse term represents an enhanced image, and an offset term represents a “shadow.” The related optimization 
problem is solved by computational improvement of the accelerated proximal gradient method used initially to solve 
the related rank-sparsity decomposition problem. Removal of an image-adapted color offset yields an enhanced 
image with improved colorimetric differences among the histological structures. This is verified by a no-reference 
colorfulness measure estimated from 35 specimens of the human liver and 1 specimen of the mouse liver stained 
with hematoxylin and eosin, 6 specimens of the mouse liver stained with Sudan III, and 3 specimens of the human 
liver stained with the anti-CD34 monoclonal antibody. The colorimetric difference improves on average by 43.86% 
with a 99% confidence interval (CI) of [35.35%, 51.62%]. Furthermore, according to the mean opinion score, 
estimated on the basis of the evaluations of five pathologists, images enhanced by the proposed method exhibit an 
average quality improvement of 16.60% with a 99% CI of [10.46%, 22.73%].  
 
Keywords: color microscopic image enhancement, offset removal, fast proximal gradient, histopathology. 
 
Address all correspondence to: Ivica Kopriva, Ruđer Bošković Institute, Division of Laser and Atomic R&D, 
Bijenička cesta 54, Zagreb 10002, Croatia; Tel: +385-1-4571-286; Fax: +385-1-4680-104; E-mail: ikopriva@irb.hr 

 

1 Introduction 

Visualization of different tissue structures in a histological specimen and the corresponding 

microscopic analysis undertaken by pathologists is still a basic clinical workflow required for an 

assessment of specimens and for diagnosing a disease. That is, pathologists look for visual cues 

to distinguish between healthy and diseased tissue. In this regard, various stains and tags are 

attached to biological tissues to improve the colorimetric difference between the tissue 

components (histological structures), thereby improving their visibility.1,2 For example, it is 

known that in hematoxylin-eosin (H&E)-stained slides, color information is essential to 

discriminate between healthy and diseased tissue.3,4 However, because of the variations in the 
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tissue preparation processes such as collection, preservation, sectioning, staining, and 

illumination, the tissue color and texture can vary considerably between specimens. These 

nonbiological experimental variations are also known as batch effects.5,6 For example, variation 

in the spectral signature of the stained tissue creates noise at image acquisition; this noise is also 

known as biochemical noise.7,3 These variations can change the quantitative morphological 

image features, and this makes it difficult to reach an accurate diagnosis,5 e.g.in the field of 

digital pathology, i.e. computerized image analysis,8 that has entered an era of computer-assisted 

diagnosis and treatment of medical conditions based on an analysis of medical images.2,9-12 For 

example, accurate segmentation of the images of H&E-stained slides is very challenging because 

of the weak (fuzzy) boundaries between histological structures.11 The variations discussed above 

create additional difficulties in this regard. Further, the diagnosis of hepatocellular carcinoma is 

based on the extraction/segmentation of the trabecula, a specific structure of liver cells, whose 

extraction from an H&E-stained specimen of the liver tissue could be sometimes difficult.13 This 

difficulty is attributed to the fact that the extraction of this structure is highly affected by the 

variation of color and/or texture of the tissue.13 Variability in the received colors also creates 

difficulties in an automated diagnosis of gastric cancer performed on H&E-stained gastric tissue 

sections.14 Thus, as emphasized in some studies,15,16 standardization of the H&E staining process 

is one of the key prerequisites of computer-aided systems to produce accurate clinical data for 

use by anatomical pathology diagnosis assisting systems. Furthermore, as shown in a recent 

study,17 pathology experts are sensitive to color variations. Further, specimen-dependent 

variation in the color and/or texture of a tissue causes disagreement in diagnosis between 

pathologists; this disagreement can lead to a difference of up to 20% in the diagnoses.18 
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        The abovementioned problems related to the variations in the quality of the staining process 

were the motivation for the development of an automated image enhancement method, 

particularly for enhancing the colorimetric difference between the histological structures present 

in the images of a stained specimen. Further, in order to be practically relevant, we require such a 

method to be truly unsupervised, i.e., a method that does not require any prior information from 

the user and is completely data driven. Such a method would also need to demonstrate the 

validity and robustness of performance on images of different tissues stained, possibly, by 

various stains. Therefore, we propose an automated image enhancement method that is based on 

the decomposition of an unfolded color image of a stained specimen into a sum of the 

approximately constant offset matrix and the sparse matrix, which denotes an improved image 

with an enhanced colorimetric difference between histological structures. The proposed method 

can be seen as a special (degenerative) case of the rank-sparsity decomposition (RSD) that 

decomposes a matrix into a sum of low-rank and sparse matrices.19,20 The method proposed 

herein decomposes vectorized spectral images into a sum of an approximately constant offset 

vector and a sparse vector. We have named the proposed method the OSD method. In this 

method, the offset term corresponds to the 2 -norm-based regularization, and the sparse term 

corresponds to the 1 -norm-based regularization in an optimization problem related to the 

minimization of the difference between the vectorized spectral images and the model. Further, 

because the proposed method is similar to RSD, the accelerated proximal gradient method21-24 

used for solving the RSD problem can be used for OSD as well. Since for a vector, the nuclear 

norm equals the 2 -norm, related optimization problem in the OSD case is simpler than in the 

RSD case. That is, thresholded singular value decomposition (SVD) required by nuclear norm 

(low-rank) regularization in the RSD problem is trivial to compute for 2 -norm regularization in 
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the OSD problem. The most often suggested application of RSD is related to the detection of rare 

events from surveillance videos.19,25 Therefore, the background is contained in a low-rank matrix 

and the foreground (which accounts for rare events) is held in a sparse matrix. Another often 

suggested application of RSD is related to the removal of shadows and specularities from face 

images,19 thus increasing the accuracy of face recognition. Herein, to the best of our knowledge, 

we propose for the first time, an application of novel OSD to color microscopic images of a 

stained specimen in order to enhance the perception of details (histological structures) and to 

improve the colorimetric difference between the histological structures contained in the image. 

From this perspective, the image adaptive offset removal by the OSD method is, up to some 

extent, analogous to the removal of shadows from face images by means of RSD.19 In particular, 

we propose the decomposition of an original color image by executing OSD on vectorized 

grayscale intensity images that correspond to red, green, and blue (RGB) colors. We call this 

method the OSD_rgb algorithm. The OSD-based approach to image enhancement differs from 

the 1 -norm-based sparsity-regularized denoising, implemented by soft-thresholding (ST),26-28 in 

the following important aspects: Sparsity-regularized denoising is based on an additive data 

model consisting of noiseless data and noise. The proposed OSD method models data as an 

additive superposition of the offset term, noiseless data, and noise. The proposed method, 

together with ST and L1-Retinex algorithm29-31, is illustrated in Fig. 1 using an enhancement of 

an image of H&E-stained specimen of the human liver, Fig. 1(a). The color offset term is shown 

in Fig. 1(b), while Fig. 1(c) shows an enhanced image that is captured by the “sparse” term and 

is of actual interest. Fig. 1(d) shows image enhanced by denoising that is based on ST in wavelet 

domain, while Fig. 1(e) shows image enhanced by the L1-Retinex algorithm.29 
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     The assumption upon which the proposed OSD_rgb approach to image enhancement relies is 

that after the removal of the image adaptive color offset, the enhanced image will be sparser than 

the original image. Thus, such an image will contain more information than the original image; 

i.e., its entropy will be lower than the entropy of the original image. This is attributed to the fact 

that sparser the stochastic process is, more is its probability density function concentrated around 

the mode(s). Consequently, the Fisher information, which is a measure of the degree of disorder 

of a system, will increase (the degree of disorder will be lower; i.e., the signal will be more 

predictable).32 Thus, details are expected to be better perceived in the enhanced image than in the 

original image. It is, therefore, expected that the proposed method will reduce the artifacts 

caused by the previously discussed variations and standardize the quality of the acquired 

histopathological images. Thus, the OSD_rgb method can be used as a preprocessing method to 

produce images with an improved colorimetric difference between the histological structures, 

and this should help a pathologist to better perceive visual cues and assess diagnoses. The 

OSD_rgb method can possibly be used in computerized image analysis systems, such as the 

classification and/or segmentation methods discussed in Ref. 3, for a computer-assisted diagnosis 

complementary to human pathologist. However, the ability of the OSD_rgb method to increase 

the classification rate of a computerized image analysis system has not been demonstrated in the 

current study. In particular, the collection of samples with annotations (diagnoses) and the 

selection of features necessary to build predictive models are critical steps that require significant 

effort. In this study, by using a no-reference-image measure of colorimetric information,33 we 

have demonstrated that OSD_rgb method yields an image with an improved colorimetric 

difference between the histological structures. Further, the performance of OSD method is 

compared with that of the L1-Retinex algorithm29-31 and that of the soft thresholding of 
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coefficients in a domain obtained using a double-density dual-tree discrete wavelet transform 

(DDDTDWT).34 DDDTDWT has improved directional selectivity and can be used for 

implementing complex and directional wavelet transforms in multiple dimensions. This makes it 

suitable for image denoising/enhancement problems. The MATLAB code for two-dimensional 

(2D) DDDTDWT has been downloaded from Ref. 35. Denoising has been performed by using 

soft thresholding coefficients at the first resolution level. Further, the threshold has been 

estimated adaptively by using the MATLAB function thselect with an option for Stein’s 

unbiased risk estimator (SURE).36,37 We call this approach to denoising/enhancement as the 

DDDTDWT-SURE-ST method. The L1-Retinex algorithm performs image enhancement on the 

value V component of the image in the hue-saturation-value (HSV) color space.38 The MATLAB 

code that implements the L1-Retinex algorithm, as an alternative to the more general non-local 

retinex method,29,30 is available in Ref. 39.  

     The rest of this paper is organized as follows: The details of the OSD_rgb method are 

presented in Sec. 2. This is followed by an experimental comparative performance analysis in 

Sec. 3 and the discussion in Sec. 4. The summary and conclusions are presented in Sec. 5. 

  

2 Materials and Methods 

2.1 Notations and Related Works 

Within this paper, we use the following notation. An underlined upper-case bold letter, e.g., 

1 2 3
0
I I 
X  , denotes a three-dimensional (3D) RGB image tensor consisting of three spectral 

images corresponding with the red, green, and blue colors, where each image measures I1  I2 

pixels. An upper-case bold letter, e.g., X, denotes a matrix; a lower-case bold letter, e.g., x, 
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denotes a vector; and an italicized lower-case letter, e.g., x, denotes a scalar. The random 

variable e that follows the Gaussian distribution with zero mean and variance 2 is denoted as 

 20,e N  . The standard model of the observed image assumed by many image denoising 

methods is as follows:26-28,40 

 

                   1,2,3n n n n  b s e                                                                             (1) 

 

where 1 21
0

I I
n


b   stands for the intensity of the observed vectorized spectral image at a 

particular color channel, 1 21
0

I I
n


s   stands for a noiseless but unknown image that is to be 

estimated, and  2,n nN e 0 I  stands for the additive white Gaussian noise (AWGN). Under the 

AWGN assumption, an optimal estimate of sn is obtained by solving the log-likelihood problem 

that is regularized by the addition of a wavelet-domain 1 -penalty (a.k.a. sparseness constraint): 

 

          2

2 1
min

n n n
n

 
s

b s s
c

c c c                                                                                       (2) 

 

where 
nbc and 

nsc denote the vectors of coefficients in a wavelet basis. The exact solution of Eq. 

(2) is then obtained by soft-thresholding as follows:26,27,41 

 

                  2 max 2,0
n n n

S  s b bc c c                                                                      (3) 
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such that the max operator is applied entry-wise. An estimate of sn is obtained through the 

inverse wavelet transform D: ˆ
nn  ss Dc . While an optimal value of the regularization constant  

in Eqs. (2) and (3) is proportional to 2
n  SURE enables its estimate from 

nbc . In Eq. (2), we 

assume that 
nsc is sparse, but this depends how well the chosen basis represents the data (image). 

From this perspective, 2D DDDTDWT,34 because of its directivity, represents a good choice for 

the transformation domain. In addition to fixed transforms, we can considered the learned 

ones.42,43 

       The retinex methodology assumes that an observed image is a multiplication of the 

illumination and reflection intensity terms, whereas the reflection term represents an enhanced 

image. Therefore, the retinex method is applied to the value V channel in the HSV color space as 

follows: 

 

                1 2 1 2 1 2( , ) ( , ) ( , )i i i i i iv i r                                                                                (4) 

 

where (i1,i2) denotes the pixel location; i, the illumination (“shadow”) term; and r, the reflection 

term that is of actual interest. By taking logarithm  log logv v , etc., we can obtain an additive 

impact of the illumination as follows:31 

 

                 log 1 2 log 1 2 log 1 2( , ) ( , ) ( , )i i i i i i v i r                                                                  (5) 

 

logr  is then estimated as a solution of the optimization problem; see also Sec. 6 (Sec. 6.1.3 and 

Eq. (6.13)) in Ref. 29: 
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     
log

log log log log log log1 2 2
ˆ min ,w w f     

r
r r i r r i                                            (6) 

 

where logw r  stands for the nonlocal gradient of logr , see also Definition 3.7 in Ref. 29, and 

log,w f i  stands for the nonlocal filtered gradient of logi , see also Definition 3.12 in Ref. 29. As 

proposed in Ref. 29, in an example related to shadow removal from an image of a natural scene, 

we select  =  = 0.5 and a hard thresholding filter f with a threshold set to 0.015. Then, r is 

estimated as      log logˆ ˆ ˆexp / max expimadjustr r r ,31,39 where imadjust represents a 

MATLAB image enhancement command. A retinex-enhanced color image is then obtained by 

transforming the enhanced value channel component r̂  image from the HSV back to the RGB 

color space.   

 

2.2 Offset-Sparsity Decomposition 

In contrast to Eqs. (1), (4), and (5), we propose the following model for the intensity of the 

observed spectral images of a color microscopic image: 

  

              1, 2,3n n n n n   b s a e                                                                             (7) 

 

where the term sn
 denotes the noiseless but unknown image, while the term an represents an 

offset that in the spirit of Ref. 19 will model shadows present in the image due to various batch 

effects.5 The proposed OSD method aims to estimate an and sn by using only bn. After 
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matricization,  1 2 1 2
31

0 0 1

I I I I
n n n

 
  

  a A   and tensorisation  3

1
(:,:, ) n n

n


A A , A  represents 

the image-adapted color offset. 1 2 3
0
I I 
S  , formed analogously from  1 2

31
0 1

I I
n n


 

s  , represents 

an enhanced color microscopic image with, in comparison with the original image B , an 

improved colorimetric difference between the histological structures present in the specimen. 

Under the AWGN assumption, the optimal estimates of an and sn are obtained by solving the log-

likelihood problem regularized by the addition of 2 - and 1 -penalties as follows: 

 

              
 

2

2 2 1,

1
ˆ ˆ, min

2n n
n n n n n n n

      
 a s

a s b a s a s                                                       (8) 

 

Problem (8) can be considered a special case of the RSD problem:19-21 

 

                

2

* 1,

1ˆ ˆ, min
2 F

      
 A S

A S B A S A S                                                       (9) 

 

where B = A + S with the dimensions I1  I2. Therefore, 
*

A  denotes the nuclear norm of a 

matrix (sum of its singular values) that is used in Eq. (9) as a convex relaxation of the NP-hard 

rank minimization problem.23 The problem (9) is also known as robust principal component 

analysis, in Ref. 19, which aims to recover a low-rank matrix A in the presence of the corruption 

S with a sparse structure and possibly large values. Problem (9) admits a unique solution with the 

value of the regularization parameter set to 1 21 max( , )I I .19,20 The fast proximal gradient 
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(FPG) optimization method is used for solving problem (9).21 To this end, let us denote X = 

(A,S),   * 1
g   X A S ,   21

2 F
f   X B A S . Then, Eq. (9) can be written as follows: 

 

                   ˆ min ( ) ( )F f g 
X

X X X X                                                                          (10) 

 

A computationally efficient solution of problem (10) is obtained using proximal gradient 

algorithms, as shown in Refs. 21–24, that minimize the sequence of the quadratic approximations 

to F(X), denoted as Q(X,Y), formed at specially chosen points Y for Lipschitz constant L > 0: 

 

                    2
, ,

2 F

L
Q f f g     X Y Y Y X Y X Y X                                     (11) 

 

By defining    1
h f

L
 Y Y Y , we can reduce the minimization of Eq. (11) to the 

following:21-24 

 

                 2
arg min , arg min

2 F

L
Q g h

     
 X X

X Y X X Y                                              (12) 

 

By setting  1
1

1k
k k k k

k

t

t





  Y X X X , where k denotes the iteration index, for a sequence, the 

 2
11 1 4 2k kt t     convergence of Eq. (12) is made quadratic.44,22 When   1

g  X S , Eq. 

(12) has a closed-form solution   1k k

L

S h  SS Y . When   *
g X A , Eq. (12) has a closed-
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form solution  1
T

k LS  A U V , where TU V stands for the SVD of  kh AY . Rank 

minimization, implied by the minimization of a nuclear norm, is not suitable for solving Eq. (8), 

which is a special case of problem (9), when matrices B, A, and S are reduced to vectors. 

However, since for a vector 
2 *n na a , the nuclear norm minimization from Eq. (9) is reduced 

to the 2 -norm minimization in Eq. (8), Eq. (8) for   2ng x a  has, like Eq. (9), a closed-form 

solution  ( 1)
T

n k LS  a u v , where Tu v  is the SVD of  n
kh ay . However, in the case of a 

vector, the SVD is trivial to compute. For a row vector  n
kh ay , u = 1,  

2

n
kh  ay , and 

   
2

n nT
k kh h a av y y . Thus, the closed-form solution of a vector equivalent to Eq. (12) related 

to the minimization of 
2na  is computationally very efficient: 

 

                                   ( 1)
2 2

n n n
n k L k k kS h h h  a a aa y y y                                            (13) 

 

The closed-form solution of a vector equivalent to Eq. (12) for   1ng  x s  is a standard soft-

thresholding solution of the 1 -norm regularized least square problem:26,27 

 

                                      ( 1)
n

n k k

L

S h  ss y                                                              (14) 

 

Thus, we can formulate a computationally efficient solution of the OSD problem (Eq. (8)) by 

using the FPG method, used in Ref. 21 to solve the RSD problem (Eq. (9)). To this end, 

Algorithm 2 in Ref. 21 is adopted to solve Eq. (8) such that the SVD computation step is trivial 
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to compute; see Eq. (13). As in the case of the RSD problem defined in Eq. (9), the sparsity-

related regularization constant  in the OSD problem (Eq. (8)) is set to 

 1 2 1 21 max 1, 1I I I I     . We summarize the OSD FPG method in Algorithm 1. 

      To avoid the color artifacts, the enhancement of the color images is preferably executed in 

the CIE L*a*b* color space instead of the RGB color space. In the case of the OSD_rgb approach 

to color image enhancement, which operates independently on the color channels in RGB color 

space, color artifacts are avoided because of the following reason: Even though the optimization 

problem implied by Eq. (8) is solved for each channel independently, the data fidelity terms, 

 321

2 1
2 n n n

n




 b a s , prevent enhanced spectral images  3

1n n
s  to deviate significantly from the 

experimental spectral image  3

1n n
b . Because of the same reason, the intensity offsets  3

1n n
a  

that are extracted independently in each spectral channel yield, when merged together, the image 

adapted color offset term. In addition to Fig. 1, this can be seen in Figs. 2 and 3 in Section 3. We 

summarize the OSD_rgb algorithm in Algorithm 2. 

 

Algorithm 1 The OSD FPG algorithm. 

Input: observed vectorized spectral image 1 21
0

I I
n


b  , sparsity regularization constant  , regularization constant 

, Lipschitz constant L. 

 1. an(0) = 0; an(-1) = 0; sn(0) = 0; sn(-1) = 0; t0 = t-1 = 1. 

2. while not converge do 

3.    1 1
( ) ( ) ( 1) ( ) ( ) ( 1)

1 1
,n nk k

k n k n k n k k n k n k n k
k k

t t

t t
 

 

 
     a sy a a a y s s s  

4.    1
n n n n

k k k k nh
L

   a a a sy y y y b .  

5.       ( 1)
2 2

n n n
n k L k k kS h h h  a a aa y y y  
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6.    1
n n n n

k k k k nh
L

   s s a sy y y y b  

7.   ( 1)
n

n k k

L

S h  ss y  

8. 
2

1

1 4 1

2
k

k

t
t 

 
  

9. 1k k   

10. end while 

Output: ( 1) ( 1),n n k n n k  a a s s . 

 

Algorithm 2 The OSD_rgb algorithm for the enhancement of a color microscopic image of the stained specimen. 

Input: 1 23
0

I I
B  unfolded color image of the stained specimen with vectorized grayscale images  1 2

31
0 1

I I
n n


 

b   

measuring I1  I2 pixels. Sparsity regularization constant in Eq. (8): 1 21 I I  , regularization constant in Eq. 

(8):  = 10-3, threshold constant in Eqs. (13) and (14): L = 2. 

for n = 1:3 
       (an, sn ) = Algorithm 1 (bn, , , L). 
end for 
 

Set: 
1

2

3

 
   
  

a

A a

a

, 
1

2

3

 
   
  

s

S s

s

. 

 
Output: 1 23

0
I I
S   unfolded enhanced color image of the stained specimen. 1 23 I IA  unfolded image with the 

color offset term. The enhanced color image is obtained by tensorizing S: 1 2 3
0
I I 
S  . 

 

2.3 Performance Measure 

To quantify the performance of image enhancement algorithms, appropriate measures have to be 

defined. In the case of a color microscopic image of the stained specimen, the primary concern is 

the improvement of the colorimetric difference between the histological structures.2 To this end, 
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we estimate the colorfulness attribute, as discussed in Ref. 33, directly from the image. It 

measures the amount of chrominance information that humans perceive. This attribute plays an 

important role in the quality of the color image of the stained specimen.17, 2 The colorfulness 

measure is defined as follows:33 
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                                                   (15) 

 

where α = Red - Green color images; β = 0.5  (Red + Green) - Blue color images; and 2
 , 2

 , 

 , and   represent the variance and mean along the  and  opponent color axes, 

respectively. In addition to the colorfulness measure, which is objective, we have asked five 

independent pathology experts to evaluate the images of routinely stained specimens as well as 

the enhanced images. The images were graded on the scale from 1 to 5. Grade 5 refers to quality 

that yields the best perception of details in histological structures. This enabled us to obtain the 

mean opinion score (MOS) quality measure for images of stained specimens as well as for 

enhanced images. Even though they are not of primary concern, we have also estimated the 

sharpness and contrast measures, as discussed in Ref. 33, from the original and enhanced images. 

Sharpness is the attribute related to the preservation of fine details (edges) in a color image. As 

described in Ref. 33, the Sobel edge detector is applied to each RGB color component. Then, 

binary edge maps are multiplied with the original values to obtain three grayscale edge maps. 

These grayscale edge maps are used for measuring the Weber contrast in a small window (3  3 

pixels in the case of this study): 
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where k1 and k2 denote the number of blocks across image dimensions, and Imax,i,j and Imin,i,j 

represent the maximal and minimal intensity value in each window, respectively. The sharpness 

measure for the color image is then obtained as follows:33 

 

                 
3

1
c sharpness c

c

sharpness EME grayedge


                                                                 (16) 

 
 
where the weighting coefficients for the red, green, and blue components are as follows: 1 = 

0.299, 2 = 0.587, and 3 = 0.114. Contrast is defined as the ratio of the maximum and the 

minimum intensity of the entire image.33 Therefore, for a color image, it is calculated on the 

luminance component L* in the CIE L*a*b* color space.  

 

3 Experiments and Results 

The OSD_rgb image enhancement method has been evaluated comparatively on 35 specimens of 

the human liver and 1 specimen of the mouse liver stained with H&E, 6 specimens of the mouse 

liver stained with Sudan III, and 3 specimens of the human liver stained with the anti-CD34 

monoclonal antibody. The detailed diagnostic information is given in Table 1. Descriptions of 

the experimental setup are given below. 

 

Table 1 Information on specimens used for evaluating the performance of the OSD_rgb image enhancement 
method. 
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Stain Human liver: Diagnosis and 
number of specimens 

Mouse liver: Diagnosis and 
number of specimens 

H&E 
Total: 36 

Fatty liver: 14; hepatocellular 
carcinoma: 8; metastasis of colon 
cancer: 12; metastasis of pancreatic 
adenocarcinoma: 1 

Fatty liver: 1 

Sudan III 
Total: 6 

 Fatty liver: 6 

Anti-CD34 
antibody 

Total: 3 

Fatty liver: 3  

 
 

3.1 Ethics Statements 

This study was approved by the Bioethics Committee of the Ruđer Bošković Institute (BP-

2290/2-2012) and the Clinical Hospital Dubrava Ethics Committee (October 10, 2013). 

 

3.2 Samples of Human Liver Tissue 

All tissue samples of the human liver (N = 38) were obtained from the repository of Department 

of Pathology and Cytology, Clinical Hospital Dubrava, Zagreb. After surgical liver resection or a 

liver needle biopsy, the tissue was routinely processed (fixed in 4% formalin for 24–48 h, 

embedded in paraffin blocks, cut on a microtome into 4–5-μm-thick tissue sections, and stained 

with H&E). The pathologists then diagnostically evaluated the samples as follows: fatty liver, 

hepatocellular carcinoma, liver metastasis of colon cancer, or pancreatic adenocarcinoma (see 

Table 1). The sections were deparaffinised and rehydrated according to the standard protocols.45 

Antigen retrieval was performed by microwaving the sections at 750 W in a 10-mM citrate 

buffer (pH 6.0) for 2  5 min, followed by the acquisition of a color microscopic image or 

immunohistochemical staining.  
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3.3 Immunochemical Staining 

Staining of the human liver section with the CD34 antigen is used for discriminating blood 

vessels from other similar structures within the liver tissue. After antigen retrieval, endogenous 

tissue peroxides were quenched by immersion in 0.3% H2O2 
in PBS for 30 min at room 

temperature, followed with three buffer washes. Dako EnVision/DAB kit (Dako, Denmark) was 

used for blocking no-specific antibody binding. The primary anti-CD34 antibody (Clone 

QBEnd10, Dako, Denmark) was applied in dilution 1:50 in PBS and incubated for 1 h in a 

humidified chamber. Then, the sections were washed two times in PBS and incubated with a 

secondary antibody (peroxidase-labeled polymer conjugated to goat anti-mouse 

immunoglobulins in a Tris-HCl buffer) for 1 h. The activity of the peroxidase molecules was 

visualized with 3,3-diaminobenzidine (Dako) followed by counterstaining with hematoxylin. The 

sections were analyzed under a light microscope (Olympus BX51 with a DP50 camera, Japan; 

magnification: 200 or 400), and the images were taken at almost the same position as the 

images of the H&E-stained sections. 

 

3.4 Animal Studies 

Eight-week-old male CBA mice were purchased from animal facilities at Ruđer Bošković 

Institute. Animals were maintained in standard conditions on chow diet or on a high-fat diet 

containing 58% fat, 16.4% proteins, and 25.6% carbohydrates (Mucedolla, Italy) for a period of 

20 weeks. At the end of the experiment, the animals were euthanized by an overdose of 

Ketamidor 10% (Richter Pharma AG, Wels, Austria). The liver was immediately removed, fixed 

in Bouin’s solution (picric acid, saturated aqueous solution – 75 ml; formalin, 40% aqueous 

solution – 25 ml; acetic acid, glacial – 5 ml) for at least 4 h, washed in PBS, and preserved by 
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immersion in 30% (w/v) sucrose (Kemika, Zagreb, Croatia) in PBS overnight. Small pieces of 

the liver tissue were immersed in an OCT compound (Sakura, Netherland), frozen in isopentane, 

cooled by liquid nitrogen, and cryosectioned at 8 μm in a freezing cryostat (Leica, Austria). After 

incubation in a series of tap and distilled water and ethanol, the frozen sections were incubated in 

a Sudan III working solution (0.1% Sudan III solution in 70% alcohol) for 30 min and then, 

washed in distilled water. The sections were then counterstained with hematoxylin and viewed 

under a light microscope. 

 

3.5 Color Microscopic Image Acquisition and Processing 

The RGB color images of the slides were acquired at the room temperature, in the mounting 

medium (10% glycerol in PBS), under the fluorescence microscope Olympus BX51 with a DP50 

camera having a numerical aperture of the objective lens of 1/120, a magnification of 200 or 

400, and Viewfinder Lite 1.0 image acquisition software. Each acquired color microscopic 

image was stored as a 3D tensor 1 2 3
0
I IR  
X  consisting of three grayscale images (corresponding 

to red, green, and blue colors) measuring I1  I2 pixels (I1 = 2074, I2 = 2776). Prior to processing, 

the images were downsampled by a factor of two by using the MATLAB imresize command. 

Thus, the size of the processed images was 1037  1388 pixels. For the purpose of the image 

analysis, the image tensor X  was unfolded into a matrix 1 23
0

I IR 
X . That is, the grayscale 

images were vectorized and stored as row vectors measuring 1  I1I2 elements. The images were 

analyzed with software written in the MATLAB (the MathWorks Inc., Natick, MA) script 

language. The OSD_rgb algorithm took 32.12 s, the L1-Retinex algorithm took 5254 s, and the 

2D DDDTDWT-SURE-ST algorithm took 7.36 s for the processing. 
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3.6 Comparative Results 

Here, we present the results of the comparative performance analysis between the OSD_rgb 

algorithm, the L1-Retinex algorithm,29 and the 2D DDDTDWT-SURE-ST algorithm.34,36 

Because 2D DDDWT requires the number of pixels along each dimension to be a power of 2, a 

block measuring 1024  1024 pixels had to extracted from the original image measuring 1037  

1388 pixels. Comparative results obtained by the three methods are shown in Fig. 2 for three 

images stained using H&E, and in Fig. 3 for three images stained using H&E, anti-CD34 

monoclonal antibody, and Sudan III, respectively. In addition to the enhanced images, we show 

the offset images estimated by the OSD_rgb method and the shadow images estimated by the L1-

Retinex method. The values of the estimated quality measures, calculated relatively to the 

corresponding values estimated from the original images, are reported in Tables 2 and 3. Images 

enhanced by the OSD_rgb method had the highest colorfulness measure, which is crucial for 

increasing the colorimetric difference between histological structures. The L1-Retinex method 

yielded very sharp images but with extremely low colorfulness measure. The 2D DDDTDWT-

SURE-ST algorithm yielded enhanced (denoised) images with the highest contrast and an 

increased colorfulness measure with respect to the original images. Finally, according to the 

relative MOS measure, the OSD_rgb-enhanced images enabled the best perception of details; 

this is in agreement with the highest value of the colorfulness attribute for the OSD_rgb-

enhanced images. 
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Table 2 Relative values, in percentage, of quality measures for images shown in Fig. 2. For each image, the best 
value for each measure is in bold.  

  OSD_rgb   L1-
Retinex 

  DDDTDWT-
SURE-ST 

 

 (d) (e) (f) (j) (k) (l) (p) (q) (r) 

Colorful 38.6 50.24 62.92 -40.57 -49.53 -30.55 11.62 10.61 -3.66 

 MOS 10 13.63 13.63 -20.00 -50.00 -36.36 -15.00 -13.63 -4.54 

Sharpness 0.14 0.25 0.38 68.44 71.18 28.34 -21.76 -21.11 -23.60 

Contrast -9.84 -10.33 -12.43 -65.28 -39.13 -49.11 0.52 3.8 5.92 

 

Table 3 Relative values, in percentage, of quality measures for images shown in Fig. 3. For each image, the best 
value for each measure is in bold.  

  OSD_rgb   L1-
Retinex 

  DDDTDWT-
SURE-ST 

 

 (d) (e) (f) (j) (k) (l) (p) (q) (r) 

Colorful 39.51 107.47 62.47 -37.32 -39.86 19.88 5.12 38.43 6.9 

 MOS 25.00 15.00 56.25 -55.00 -70.00 -6.25 0.00 15.00 0.00 

Sharpness 1.84 0.82 0.31 16.94 83.42 80.16 -21.55 -12.48 -29.84 

Contrast -14.1 -8.29 -8.42 -57.05 -37.07 -39.11 10.9 0 2.97 

 

We present in Fig. 4 the relative values of colorfulness, MOS, sharpness, and contrast measures 

estimated from 45 images enhanced by the OSD_rgb, L1-Retinex, and 2D DDDTWT-SURE-ST 

algorithms as well as from 45 stained images described in Table 1. In addition to images shown 

in Figs. 1–3, the original and the OSD_rgb-enhanced images are shown in Figs. 5–7. Table 4 

contains the mean values and the 99% confidence interval (CI), estimated from the relative 

values by using the MATLAB command ttest. The OSD_rgb method yields a statistically 

significant improvement of colorfulness (mean value: 43.86% and 99% CI: [41.59%, 59.13%] 

and MOS (mean value: 16.60% and 99% CI: [10.46%, 22.73%]). It yields a statistically 

insignificant improvement of sharpness and yields a small but statistically significant decrease in 
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contrast. The L1-Retinex algorithm yields a statistically significant improvement of sharpness 

and a large, statistically significant decrease in colorfulness, contrast, and MOS. The 2D 

DDDTDWT-SURE-ST yields a small but statistically significant improvement of colorfulness, a 

small but statistically significant decrease in MOS, and a statistically significant decrease in 

sharpness. Overall, the OSD_rgb method is the only one that significantly improves the 

colorfulness attribute, and this is crucial for increasing the colorimetric difference between the 

histological structures present in the image of the stained specimen. This is indirectly confirmed 

by the highest value of the relative MOS measure for the OSD_rgb method.  

 

Table 4 Mean values and 99% confidence intervals (CI) of the estimated relative image quality measures. The best 

values are in bold. 

 Colorfulness  MOS  Sharpness  Contrast  

 Mean 
[%] 

99% CI 
[%] 

Mean 
[%] 

99% CI 
[%] 

Mean 
[%] 

99% CI 
[%] 

Mean 
[%] 

99% CI 
[%] 

OSD_rgb 43.86 [35.35, 
51.62] 

16.60 [10.46, 
22.73] 

1.45 [-1.97, 
4.86] 

-10.78 [-13.16, 
-8.4] 

 L1-Retinex -26.31 [-33.67, 
-18.95] 

-37.40 [-47.27, 
-27.54] 

50.36 [41.59, 
59.13] 

-45.73 [-50.21, 
-41.25] 

DDDTDWT-
SURE-ST 

6.84 [2.51, 
11.17] 

-3.67 [-6.62, -
0.71] 

-21.56 [-23.23, -
19.89] 

5.16 [2.61, 
7.71] 

 

3.7 Description of Prognostic Information 

The increased prognostic value of the OSD_rgb enhanced images is justified by a better 

perception of the details of the histological structures present in the specimen. To this end, 

visibility of the histological details in the OSD_rgb enhanced images is compared with that in the 

microscopic images of the liver specimens stained with H&E dye in Fig. 3(a), monoclonal 

antibody to CD34 antigen in Fig. 3(b), and Sudan III dye in Fig. 3(c). Blue nuclei, pink 

cytoplasm, pale brown cell membrane, gray extra-cellular space, and pink collagen fibers are 
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more clearly visible in the OSD_rgb-enhanced image in Fig. 3(d) than in the image of H&E-

stained section in Fig. 3(a). Likewise, the location of the monoclonal antibody binding to the 

specific antigen on the endothelial cells, which is marked by brown, is easier to determine on the 

OSD_rgb-enhanced image in Fig. 3(e) than in the anti-CD34-stained image shown in Fig. 3(b). 

Moreover, it is known that the slides produced by a frozen section are of a lower quality than 

those produced by formalin fixed paraffin embedded tissue processing. Therefore, the staining of 

the cryosection yields a fuzzy image such as that of the cryosection of the mouse fatty liver 

stained with Sudan III shown in Fig. 3(c). However, in the OSD_rgb-enhanced image shown in 

Fig. 3(f), it is possible to see vacuoles with triglycerides (orange), nucleus (blue), and extra-

cellular space (pink).  

 

4 Discussion 

Tissue samples obtained by different methods can vary in shape, size, and/or quality. Because of 

the used method and variations in the conditions of histological processing (such as fixation, 

dehydration, antigen retrieval, and sectioning), tissue color and texture can also vary. To address 

the abovementioned issues, the OSD_rgb method for an automated (unsupervised) enhancement 

of the color images of a stained specimen is proposed and demonstrated herein. It performs 

additive decomposition of the vectorized color images of an RGB color image of a stained 

specimen into a color offset term and a “sparse” term that stands for the enhanced image, as 

shown in Fig. 1 and Eq. (7). The proposed method is virtually free of user intervention and yields 

images of the stained specimen with an improved colorimetric difference between the 

histological structures as measured by the colorfulness attribute. This, according to the MOS, 

contributes decisively to the quality improvement of the OSD_rgb-enhanced images when 
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compared with the original images as well as with images enhanced with the L1-Retinex and the 

2D DDDTDWT-SURE-ST methods. This is expected to lead to a better recognition of the 

histological structures present in the specimen. This, in turn, is required for a quantitative 

assessment of histology and a further diagnosis of the disease. The performance of the OSD_rgb 

method is demonstrated on 36 images of the H&E-stained specimens of the human and mouse 

livers, 6 images of the Sudan III-stained specimens of the mouse liver, and 3 images of the anti-

CD34-stained specimens of the human liver with a variety of diagnoses, as shown in Figs. 2, 3, 

and 5–7. As shown in Fig. 4 and Table 4, the OSD_rgb method yields a statistically significant 

and consistent improvement of the colorfulness attribute as well as MOS. This is important for 

the standardization of the staining processes that are still frequently used in diagnostic pathology. 

It is conjectured that the OSD_rgb method can be used for enhancing images stored in various 

databases available for educational and learning purposes. It could also be applied in a routine 

clinical workflow and for an accurate pathology assessment of other tissues and/or organs. 

Therefore, the applicability of the OSD_rgb method to other types of staining, e.g., reticulin by 

silver impregnation should be tested.46 Furthermore, it is conjectured that the proposed OSD 

method can be useful in enhancing images with a large dynamic range that, consequently, causes 

a loss of important details such as edges. In such a case, the OSD-based removal of the offset 

term is expected to yield more accurate edge detection results.  

 

5 Conclusion 

We have developed a new method for the automated enhancement of a color microscopic image 

of a stained specimen in histopathology and have named it the OSD_rgb method. This method 

was demonstrated on images of specimens stained with H&E, Sudan III, and anti-CD34 
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monoclonal antibody. The OSD_rgb method, compared to the original images of stained 

specimens, improved the colorimetric difference by an average of 43.86% with 99% CI of 

[35.35%, 51.62%]. On the basis of MOS, we concluded that the OSD_rgb-enhanced images, 

compared with the original images of the stained specimens, improved quality by an average of 

16.60% with 99% CI of [10.46%, 22.73%]. Therefore, we conclude that the OSD_rgb method 

can complement pathologists in looking for visual cues and in assessing a diagnosis.  
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Caption List 
 
Fig. 1 Flow chart of the OSD approach to the enhancement of a color microscopic image of the 

stained specimen. Information on image quality metrics such as mean opinion score (MOS), 

colorfulness, sharpness, and contrast, can be found in Section 2.3. (a) H&E stained specimen of 

human liver with metastasis from colon cancer: MOS = 4.2, colorfulness = 0.446, sharpness = 

9.38, contrast = 1.77. (b) Color offset term obtained by OSD_rgb algorithm. (c) Image enhanced 

with OSD_rgb algorithm: MOS = 5, colorfulness = 0.619, sharpness = 9.42, contrast = 1.57.  (d) 

image enhanced with the DDDTDWT-ST-SURE algorithm: MOS=3.8, colorfulness=0.443, 
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sharpness=7.08, contrast=1.87. (e) image enhanced with the L1-Retinex algorithm: MOS=2.8, 

colorfulness=0.305, sharpness=13.75, contrast=1.05. 

 

 

Fig. 2 Images of the H&E-stained specimen of (a) and (b) human fatty liver; (c) hepatocellular 

carcinoma. (d)–(f): Images enhanced with OSD_rgb algorithm corresponding to stained images 

(a)–(c), respectively. (g)–(i): Color offset images obtained by OSD_rgb algorithm corresponding 

to stained images (a)–(c), respectively. (j)–(l): Images enhanced with L1-Retinex algorithm 

corresponding to stained images (a)–(c), respectively. (m)–(o): Shadow images obtained by L1-

Retinex algorithm corresponding to stained images (a)–(c), respectively. (p)–(r): Images 

enhanced with DDDTDWT-ST-SURE algorithm corresponding to stained images (a)–(c), 

respectively. 

 

Fig. 3 (a) Image of the H&E-stained specimen of human liver with hepatocellular carcinoma. (b) 

Image of anti-CD34-stained specimen of human fatty liver. (c) Image of Sudan III-stained 

specimen of mouse fatty liver. (d)–(f): Images enhanced with OSD_rgb algorithm corresponding 

to stained images (a)–(c), respectively. (g)–(i): Color offset images obtained by OSD_rgb 

algorithm corresponding to stained images (a)–(c), respectively. (j)–(l): Images enhanced with 

L1-Retinex algorithm corresponding to stained images (a)–(c), respectively. (m)–(o): Shadow 

images obtained by L1-Retinex algorithm corresponding to stained images (a)–(c), respectively. 

(p)–(r): Images enhanced with DDDTDWT-ST-SURE algorithm corresponding to stained 

images (a)–(c), respectively. 
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Fig. 4 Relative values of (a) colorfulness measure, (b) MOS measure, (c) sharpness measure, and 

(d) contrast measure. Forty-five images were enhanced by algorithms according to the following 

legend: squares: OSD_rgb algorithm, circles: L1-Retinex algorithm, and diamonds: 2D 

DDDTDWT-SURE-ST algorithm.  

 

Fig. 5 (a)–(d): H&E-stained specimen of human fatty liver. (e)–(h): OSD_rgb-enhanced images 

corresponding to images of stained specimens (a)–(d), respectively. Specimens of human fatty 

liver: (i) and (j): anti-CD34-stained; (k) H&E-stained. (l) H&E-stained specimen of human liver 

with metastasis of colon cancer. (m)–(p): Images enhanced with OSD_rgb algorithm 

corresponding to images of stained specimens (i)–(l), respectively. (q) H&E-stained specimen of 

human fatty liver. (r) H&E-stained specimen of human liver with metastasis of gastric cancer. (s) 

and (t) H&E-stained human liver with hepatocellular carcinoma. (u)–(x): Images enhanced with 

OSD_rgb algorithm corresponding to images of stained specimens (q)–(t), respectively. 

 

Fig. 6 (a)–(d): H&E-stained specimen of human fatty liver. (e)–(h): OSD_rgb-enhanced images 

corresponding to images of stained specimens (a)–(d), respectively. (i)–(l): Sudan III-stained 

specimens of mouse fatty liver. (m)–(p) OSD_rgb-enhanced images corresponding to images of 

stained specimens (i)–(l), respectively. (q) H&E-stained specimen of human fatty liver. (r) H&E-

stained specimen of mouse fatty liver. (s) H&E-stained human liver with metastasis of colon 

cancer. (t) Sudan III-stained specimen of mouse fatty liver. (u)–(x): Images enhanced with 

OSD_rgb algorithm corresponding to images of stained specimens (q)–(t), respectively. 
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Fig. 7 (a)–(c): H&E-stained specimens of human liver with hepatocellular carcinoma. (d) H&E-

stained specimen of human liver with metastasis of colon cancer. (e)–(h): OSD_rgb-enhanced 

images corresponding to images of stained specimens (a)–(d), respectively. (i)–(l): H&E-stained 

specimen of human liver with metastasis of colon cancer. (m)–(p): OSD_rgb-enhanced images 

corresponding to images of stained specimens (i)–(l), respectively. (q)–(t): H&E-stained 

specimen of human liver with metastasis of colon cancer. (u)–(x): Images enhanced with 

OSD_rgb algorithm corresponding to images of stained specimens (q)–(t), respectively.  

 

Algorithm 1 The OSD FPG algorithm. 

 

Algorithm 2 The OSD_rgb algorithm for the enhancement of a color microscopic image of the 

stained specimen. 

 

Table 1 Information on specimens used for evaluating the performance of the OSD_rgb image 

enhancement method. 

 

Table 2 Relative values, in percentage, of quality measures for images shown in Fig. 2. For each 

image, the best value for each measure is in bold. 

 

Table 3 Relative values, in percentage, of quality measures for images shown in Fig. 3. For each 

image, the best value for each measure is in bold. 
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Table 4 Mean values and 99% confidence intervals (CI) of the estimated relative image quality 

measures. The best values are in bold. 
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Figure 1. 

 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 

 


