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SUMMARY  48 

Proper determination of tissues is one of the challenging problems is modern 49 

medicine and histology. Currently, interpretation of the results mainly depends on the 50 

experience of histologist, leading to high percentage of results misinterpretation. 51 

Bearing in mind potential application, we proposed the set of procedures that allow us 52 

to obtain precise, mathematically determined parameters for tissue discrimination. First, 53 

the method was tested on simulated set of images and compared with several other 54 

algorithms. As the set of experimentally obtained input data, auto-fluorescence images 55 

of needle cross-sections (Picea omorika) and stamens of common centaury (Centaurium 56 

erythraea), were used. Determination of cell types is based on inherent features of plant 57 

cells – autofluorescence. As each cell type consists of various fluorescent components 58 

in different quantities for each type of tissue, its integral emission spectrum can be used 59 

as the fingerprint for identification. Cross-sections were imaged using 4 sets of filters 60 

for detection of fluorescence (both excitation and emission). Such filter set is standard 61 

equipment for most fluorescence microscopes. One additional image was transmission 62 

image using the same optics. By applying 0 -norm constrained nonnegative matrix 63 

factorisation in a space induced by explicit feature maps, it is possible to identify up to 64 

11 tissues in needles and 5 in stamens (actual number of tissues). In comparison to other 65 

image analysis methods, the greatest advantage is the fact that number of extracted 66 

components significantly exceeds the number of initial images, while most other 67 

techniques can extract only as much components as the number of initial images.  68 
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1. INTRODUCTION 72 

The progress in development of fluorescence probes for various metabolic 73 

parameters of the cell (concentration of ions, pH, cell currents, free radicals, 74 

immunostaining etc.) has provided significantly better insight for understanding of 75 

processes in cells, but also emphasized the need for proper identification of cells and 76 

tissues.  77 

In the past two decades, there is a noticeable increase of interest in analysis of 78 

spectral data in the emerging  new discipline in analytical chemistry – the 79 

chemometrics. The main concept is the idea that each composite spectrum of the 80 

specimen can be represented as the linear combination of pure components. Challenges 81 

are, however, numerous. The first is the fact that in most cases analysis starts as blind 82 

source separation problem (BSS). In such scenario spectra and abundances of the 83 

components as well as their number are unknown. Separation of pure components 84 

becomes even harder if the pure components are not statistically  independent , but 85 

highly correlated . This is especially notable in fluorescence spectroscopy. The problem 86 

becomes  even more difficult  if  spatial distribution of the components is  taken into 87 

account . Thus the starting point is blind, and proper method should identify the exact 88 

number of pure components, taking into account their interdependence  and estimate 89 

their spatial distribution.  90 

Depending on the properties of input spectra various methods can be used for 91 

solution of the problem described above. Factor analysis, including related methods, is 92 

particularly suitable for fluorescence and FTIR spectra [1, 2]. Its drawback is the fact 93 

that if the number of components is n, the number of required spectra for the analysis is 94 

at least 2n+1. Blind source separation (BSS) methods such as independent component 95 
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analysis (ICA), sparse component analysis (SCA) and/or nonnegative matrix 96 

factorisation (NMF) have found application in analysis of electron paramagnetic 97 

resonance (EPR), nuclear magnetic resonance (NMR), electroencephalography (EEG) 98 

and spectroscopic modalities [3-5]. 99 

If the desired number of pure components is the same as the number of input 100 

component mixtures (experimentally obtained spectra or images), some other 101 

algorithms are suitable. Among them, the best known is independent component 102 

analysis (ICA). ICA based methods are however incapable to solve underdetermined 103 

BSS problems, often present in image analysis. Moreover, ICA algorithms assume 104 

statistical independence between the components and that, due to sum-to-one 105 

constraints as well as due to overlapping of the abundances, is  violated in multispectral 106 

and hyperspectral image analysis [6]. Furthermore,  ICA does not utilize non-negativity 107 

that should be considered in fluorescence spectroscopy because of its physical 108 

background. SCA and sparseness constrained NMF algorithms can handle 109 

underdetermined BSS problems but exhibit difficulties in discrimination between pure 110 

components with similar spectral, concentrations or density profiles. Described 111 

problems are partially addressed in algorithms popular in remote sensing and the 112 

analysis of satellite images that are based on pure pixel assumption [7]. The 113 

representatives of such methods are N-FINDR [8], simplex volume maximization 114 

(SVMAX) [9] and vertex component analysis (VCA) [10]. However, all these 115 

algorithms demand that number of components is less than or equal to number of 116 

spectral bands and that is violated in fluorescence microscopy imaging of plant tissues. 117 

Analysis of fluorescence images resembles in some manner to the paradigm for 118 

analysis of emission fluorescence spectra. The main principle is to obtain the series of 119 
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emission spectra after irradiating the sample with different excitation wavelengths. As 120 

fluorophores [11] provide different quantum yields (and consequently emission 121 

intensities) when excited with determined wavelength, series of excitations will indicate 122 

their presence as the changes of integral spectrum (caused by changes in its relative 123 

contributions to integral spectrum). Fluorescence microscopes are usually equipped with 124 

several excitation/emission filter sets, providing in our case 4 fluorescent images and 125 

one transmission image. 126 

To discriminate pure components with similar emission spectra we propose 127 

unsupervised (a.k.a. blind or automatic) decomposition of 5-channel image by means of 128 

0 -constrained NMF algorithm in a space induced by explicit feature maps (EFM). The 129 

nonlinear EFM mapping increases number of spectral bands and makes spectral profiles 130 

of the pure components less correlated. That in combination of sparseness and 131 

nonnegativity constraints enables separation of large number of spectrally similar pure 132 

components from small number of available spectra.  133 

Another feature of the cell that can be used as the parameter for tissue determination 134 

is the shape of the cells. Images can be segmented according to textural features, using 135 

variety of methods, and then apply described technique to distinguish various 136 

biochemical changes (fluorescence properties) in tissues built from the same cells in 137 

mean of shape. As the quantitative measure of cell shape, the 2-D generalization of 138 

Higuchi’s fractal dimension can be applied as recent novelty, but classical Haralick 139 

texture features (that include entropy, standard deviation and about 20 other parameters) 140 

can be applied as well [12]. Our tests were performed on whole, raw images. Applied 141 

0 -constrained NMF algorithm was so effective, that there was no need for any pre-142 

processing based on textural features extraction as the pre-processing step. Without the 143 
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example obtained from real and complex enough measurements this improvement 144 

remains presumable assumption. 145 

The drawback of the 0 -constrained NMF algorithm is also characteristic for other data 146 

driven algorithms mentioned before - reproducibility of the results is influenced by 147 

matching between the model and true experimental image [7] and, in case of the NMF 148 

algorithms, by non-convexity of the related factorization problem. The former case 149 

relates to pixel-to-pixel variability of spectral signature and presence of sensor noise [7]. 150 

Thus, if the algorithm is applied on several similar images the extracted components 151 

among the samples are similar (especially several leading components) but not always 152 

the same. This problem could be overcome by analysis of several images 153 

simultaneously using simple augmentation of images and then simultaneous analysis of 154 

all the images. These limits make more difficult further application of learning methods 155 

that could additionally automate the process. Besides of that limitation, the 156 

classification can be still done leaving only the final step of the interpretation of results 157 

(which cluster represents which tissue) to the observer.   158 

All the tissues (11, plus background in case of needle and 5 in case of stamen) were 159 

successfully determined, based solely on chemical properties of the cells (presence of 160 

fluorophores), without any pre-knowledge about the number of tissues, or its 161 

fluorescence properties. It is important to notice that the algorithm did not artificially 162 

made false positive identification of tissues that are not anatomically correct.   163 

In order to additionally check this claim, we have tested the method on simulated set 164 

of images and compared proposed method with the several other popular methods 165 

including independent component analysis (ICA) and principal component analysis 166 

(PCA) (on image set with extended dimensionality). This problem can be present in 167 
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real, experimental data sets because the same material (the same spectral properties) can 168 

be presented in various intensities, thus the suitable method must provide proper 169 

determination of qualitative properties of the image elements. 170 

With the introduction of even more complex samples, 0 -constrained NMF 171 

algorithm can be applied following any of numerous pre-processing techniques that can 172 

facilitate the analysis by selecting specified regions of interest that can be separately 173 

analysed. With such freedom in choice of analytical techniques, possibilities are limited 174 

by sample complexity and the ability of instruments to record larger set of input images. 175 

Such devices, micro-spectrometers, are still mainly custom-made but the development 176 

of experimental techniques is in constant progress.  177 

 178 

 179 

2. MATERIALS AND METHODS 180 

 181 

Fluorescence microscopy 182 

 183 

Fresh needles of P. omorika were collected, tight cross-sections were made by a 184 

razor blade, put on microscopic glass, and examined using Zeiss Axio Observer Z1 185 

microscope, equipped with AxioCamMR3 camera (8 bit per channel) (Zeiss, Göttingen, 186 

Germany).  187 

Stamens of common centaury (Centaurium erythraea Rafn) were removed from the 188 

flowers and imaged without any particular preparation. The same optics was used for all 189 

recorded images with total magnification of 50 x. The exposition time was set to 190 

provide the optimal dynamic range. The applied excitation/emission filter sets for 191 
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fluorescence images were: 358/461 nm (DAPI), 492/518 nm (FAM), 488/510 nm (38 192 

GFP) and 558/580 nm (DsRED). Additional transmission image was obtained by 193 

illuminating the sample with white light. No additional staining was performed; the 194 

imaging was based only on autofluorescence. 195 

 196 

 197 

 198 

 199 

IMAGE ANALYSIS 200 

 201 

Sparse nonnegative matrix factorization in explicit feature maps induced space 202 

 203 

Unsupervised (a.k.a blind) approaches to multichannel image decomposition are 204 

commonly based on the linear mixture model (LMM) of multichannel image [13, 14]: 205 

 206 

                                                     X=AS              (1) 207 

where 
0

R N T

X  represents multi-spectral fluorescent image consisting of N spectral 208 

bands and T=PQ pixels, 
0

R N M

A represents mixing matrix or matrix of spectral 209 

responses and 
0

R M T

S represents matrix of spatial distributions of the M pure 210 

components present in the image scene. Each row of X and S is a 1D image 211 

representation obtained from corresponding spectral image by some 2D1D mapping 212 

called vectorization. Blind decomposition of pure components  1

1

MT
m m

R 


s  using 213 

multichannel image matrix X only is also known as blind source separation (BSS) 214 
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problem [15]. Since we are concerned with an unsupervised image decomposition 215 

problem X, A and S are assumed to be nonnegative according to physical properties of 216 

fluorescence. In the case in which the number of pure components M is greater than 217 

number of fluorescent images N related BSS problem (1) is underdetermined. In 218 

addition it is ill-posed because matrix factorization suffers from indeterminacies:  219 

X=AS=ADD-1S for any square invertible matrix D.  Hence, it has an infinite number of 220 

solutions. Meaningful solutions are characterized by the permutation and scaling 221 

indeterminacies in which case D=P, where P represents permutation and  represents 222 

diagonal scaling matrix. Constraints are necessary to be imposed on A and S to obtain 223 

solution of (1) unique up to permutation and scaling indeterminacies only. For 224 

underdetermined BSS (uBSS) problems, of interest herein, the necessary constraint (in 225 

addition to nonnegativity) is sparseness of the pure components. In particular, when 226 

spatial resolution of the microscope is high enough, it is grounded to assume that at each 227 

pixel is present one pure component only. That is reflected to hard sparseness constraint 228 

expressed in term of 0 -norm as 0 =1, whereas the 0  quasi-norm counts number of 229 

non-zero coefficients of pure components   1

M

m m
s . Thus, nonnegativity and sparseness 230 

constraints can be combined to yield sparseness constrained NMF algorithm (sNMF). In 231 

particular, 0 -constrained NMF (NMF_L0) can be used to estimate pure 232 

components  1

M

m m
s  [16]. In examined samples however, one pixel corresponds to one 233 

type of the calls, but not necessarily one type of fluorophore, as the cells are highly 234 

complex. However, the differences are sufficient enough to fulfil the presumption. 235 

MATLAB implementation of the NMF_L0 algorithm is available at [17]. Nevertheless, 236 

NMF as well as other BSS algorithms experience difficulties to separate pure 237 
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components with (very) similar spectral profiles [13, 7]. In such a case it is possible to 238 

perform pixel-wise nonlinear mapping of the multichannel image X [13]: 239 

 240 

                              1 1
0 0 1,...,N N

t tR R t T 
    x x                    (2) 241 

 242 

whereas N N  and perform sNMF in mapped space according to LMM: 243 

 244 

                                            X AS                           (3) 245 

 246 

The linear mixture model (3) is constrained by nonnegativity: A 0  , S 0  and 247 

sparseness 
0

S that stands for number of nonzero coefficients of S . Very often sum-to-248 

one constraint  1 1
1

T

t t
s  is used in hyperspectral image analysis [7]. However, as 249 

pointed out in Section III-B in [7], due to pixe-to-pixel spectral signature variability (the 250 

same material can at different locations have different spectra) and due to presence of 251 

artefacts sum-to-one constraint is often violated in practice. However, sparseness and 252 

nonnegativity constraints are more natural and often yield better unmixing results, see 253 

Section VI in [7]. That is why NMF_L0 method has been applied to (3).   254 

Even though nonlinear mapping can have various forms we have applied 255 

approximate explicit feature map (EFM) obtained by factorization of Gaussian kernel 256 

   2 2, exp   x y x y  where 2 denotes kernel bandwidth. To this end, the so 257 

called kernel trick [18] has been used:      , ,  x y x y  and    , x y  stands 258 
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for inner product of nonlinear mappings. By using multi-index notation obtained EFM 259 

is expressed as: 260 

 261 

                          
2
2

2

, 0

1 2
e

!

r

r

r r







 

    
  

x

α

α

x x
α

             (4) 262 

 263 

where 0
Nα  , 1 ... N   α , 1! !... !N α  and 1

1 ... N
Nx x x . Approximate EFM of 264 

order d is obtained for 0rd<. In the experiments conducted herein d=2. Thus, N=5 265 

channels image has been mapped onto 21
N d

N
N

 
  
 

 channels image. Before 266 

mapping original image has been scaled such that   ,

, 1
0 1

N T

nt n t
x


   and variance of the 267 

kernel has been set to 2=1.  268 

 269 

 270 

Simulated images 271 

 272 

In order to check the reliability of proposed procedure in controlled conditions, 273 

the set of simulated images was analysed. Biological-like structure and the gradient 274 

image were drawn in Adobe Photoshop and the logic (true-false) maps were made for 275 

each type of the tissues. Resolution of images was 512 x 512 pixels in 4 separated 276 

channels. For more realistic appearance, the gradient image that simulates variations of 277 

quantum yields of fluorophores was multiplied element wise with simulated images. 278 

Values for all simulated tissues in various channels were simulated to resemble real 279 

excitation spectra.  280 
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This test is important because it proves whether the algorithm is capable to 281 

properly interpret and recognize the tissues built from the same fluorescence material. 282 

The calculations were done using Matworks Matlab R2014a, and Matlab based software 283 

FastICA. Spectral parameters used for simulation, starting images and the results of the 284 

analyses are listed in supplementary material. 285 

 286 

 287 

 288 

Image preparation for figures 289 

 290 

For colour rendering of initial fluorescence images, self developed Java based 291 

program BioCIE was applied [19]. It converts numerical value of wavelength (nm) to 292 

red, green and blue channel intensities and creates the RGB image. Conversion is done 293 

according to CIE convention. Advantage in comparison to standard method that 294 

considers grayscale images as channels is the ability to use any number of input images. 295 

Extracted pure components were considered as channels in RGB images, offering the 296 

possibility to accurately render the contributions of best suitable components as tissue 297 

properties. 298 

 299 

 300 

3. RESULTS AND DISCUSSION 301 

 302 

The test image comprises of 15 various tissues resembling the biological structures. 303 

Major difficulty for tested algorithm was the presence of gradient which can occur in 304 
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biological structures where the same building material can be present in various 305 

quantities in different areas of image. In the case of low dimensionality image set, it 306 

emerges to be difficult for all the algorithms to distinguish whether the structure is 307 

qualitatively the same or not. The results are presented in Figure 1. 308 

The first class of algorithms based on factor analysis exhibited very low 309 

performances. The obtained results are almost the copies of initial images. Neither 310 

gradient nor  the fine structure of the simulated tissues were recognized. 311 

The ICA provided generally speaking good results, but the closer examination show 312 

that some of the structures that are different were recognized as one structure (Figure 313 

1A, central region, numbers 14 and 15). The gradient was well recognized on some 314 

parts of the image, but emerged in false positive discrimination on the other sectors. 315 

According to this, we conclude that ICA algorithm was partially applicable. 316 

The method we proposed in the paper provided the best result in this comparison, 317 

achieving to observe fine differences on simulated membranes successfully avoiding the 318 

gradient trap. Not perfect, with small misinterpretation in of the most similar tissues, but 319 

the most reliable. It should be kept in mind that the problem was underdetermined, and 320 

that the simulation was more difficult for solving (very strong gradient, very similar 321 

simulated spectra and number of tissues higher than expected in real experiments). 322 

 323 
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 324 

Figure 1. A – test image with results that are expected. B – 4 images that were used as 325 

the entry set of images. C – Results obtained using factor analysis, without rotation of 326 

factor scores, using orthogonal varimax method and oblique promax method 327 

(dimensionality extended by addition). D – results of ICA analysis, 4 components 328 

mixed as RGB channels (3 combinations). E – results obtained using the procedure 329 

described in our paper. Numbers on image A were used arbitrary to mark the simulated 330 

tissues and facilitate the discussion of results. 331 

 332 
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The results could be discussed from the spectroscopic point of view as well. The ICA 333 

algorithm performed well if we speak about the images. But, as the number of extracted 334 

components is only 4, while 15 tissues exist, the observed components are 335 

misinterpreting the real spectra that correspond to specific tissues. Proposed method has 336 

the additional advantage from this point of view as it extracts the number of components 337 

much closer to the actual number of components.  338 

After the methods proved their reliability on test set of images, the analysis was 339 

performed on real experimental data. 340 

Transparency and fluorescence images (4) of leaf cross-sections and stamens were 341 

used as the input set of data for the further analysis are presented in the Figure 2. 342 

Brightness and contrast were set for best appearance in figure, while the raw images 343 

were used for further analysis.  344 

 345 
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 346 
 347 

Figure 2. 2.1. – Cross-sections of Serbian spruce (Picea omorika) leafs. A – 348 

transmission image, B-E – fluorescence images obtained by application of DAPI, FAM, 349 

GFP and DsRED filter respectively. F – composite image made using fluorescence 350 

images according to CIE convention. 2.2. – images of common centaury (Centaurium 351 

erythraea Rafn) stamen captured using the same filter sets 352 

 353 

Some of the tissues can be identified from the raw images, among them the layer of 354 

cuticle, mesophyll cells, stomas and central vascular bundle. The resin artefact is visible 355 

on red fluorescence image (Figure 2.1. E). However, the boundaries between the tissues 356 

remain uncertain, and delicate structures of tissue organization are lacking. Schematic 357 

view of leaf structure is presented in Figure 3. 358 
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In case of stamens, it is even more difficult to clearly determine which tissue types 359 

are present. Only the pollen grains are easily distinguishable. 360 

 361 

 362 

 363 
 364 

Figure 3. A – Schematic representation of Picea omorika leaf cross-section structure. 365 

Cuticle (C), epidermis (EP), mesophyll (M), endodermis (ED), xylem (X), phloem (P), 366 

transfusion tissue (TT), hypodermis (H), stoma cells (S), guard cells (GC). B – 367 

Schematic representation of common centaury (Centaurium erythraea Rafn) stamen 368 

structure: epidermis (ED), endothelium (ET), middle layer (ML), tapetum (TP) and 369 

pollen grains. 370 

 371 

After dimensionality extension and the application of 0 -norm constrained NMF, 21 372 

images were extracted. Three of them represented the background only (with artefacts 373 

originating from particles and surrounding water), while the rest of images were used 374 

for further analysis. Closer look to extracted images reveals presence of previously 375 

hardly detectable structures such as individual components of central vascular bundle, 376 

namely, xylem, phloem and transfusion tissue bordered by endodermis (Figure 4a). 377 

Furthermore, stoma guard cells can be clearly distinguished from the surrounding 378 

hypodermis tissue.  379 
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Histology of stamen is much simpler, and the images revealed: connective, 380 

recognized to be made from the similar material as epidermis of the anther, deeper layer 381 

that consists of endothelium, middle layer and tapetum, and the pollen grains, with even 382 

internal structures that can be observed on some grains. 383 

Visually richer results can be easily obtained if the images of pure components were 384 

combined into a composite RBG image, where each channel represents one extracted 385 

image. Suitable combinations of images reveal all the tissues existed (Figure 4). Even 386 

more important, the same histological structure can be described by (different) multiple 387 

combinations of extracted images. This leads to a multidimensional space for accurate 388 

tissue segmentation, so that each tissue can be determined by several parameters in the 389 

linear combination of extracted images.  390 

This step in the analytical procedure could sounds controversial as we pick only 391 

some combinations of pure components that support the classification of the tissues. In 392 

practice, such paradigm is very common, especially in diagnostics when one or few 393 

parameters define such important classes as health or illness. Reason for this also lies in 394 

the fluorescence properties of the cells. Most of the cells share various common 395 

fluorophores. Generally speaking, when we apply most of spectroscopic techniques on 396 

biological samples we observe complex mixtures of signals shared among all the cells 397 

various in origin. 398 

Each plant cell consists of complex polymers based on sugars followed by proteins 399 

and nucleic acids that have auto fluorescence. Large differences could appear if some 400 

type of cells contains special pigments. With such complex spectra it is impossible to 401 

obtain compounds which are pure in chemical meaning (one pure compound – one 402 

chemical compound), but instead proper analytical method will emphasise important 403 
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differences between very similar types of spectra. At this point the algorithms show its 404 

full potential, as method should be sensitive enough to capture the smallest differences, 405 

and yet robust enough not to produce the artefacts. 406 

Keeping that in mind, combining multiple pure components to composite images 407 

becomes more intuitive, as this procedure allows construction of long true-false string 408 

that can describe and classify even the tissues that share almost entirely correlated 409 

spectra. 410 

 411 

 412 

 413 
 414 

Figure 4. Pure components separated by NMF_L0 algorithm on dimensionality 415 

expanded multichannel image of needle (A), and the pure components of stamen (B). 416 

Abbreviations were used to emphasize some of the extracted structures. Check Figure 3 417 

for more details. 418 
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419 
420 

Figure 5. 5.1. A – Composite RBG images obtained by combining some of the 421 

extracted components from Figure 4, as channels. Each combination (A-I) uncovers cell 422 

types and describes it (check Figure 2 for abbreviations).423 

A = C+H+ED+TT+X+P+S+GC, B = C+E+H+M+ED+X+S,   424 

C = C+E+H+M+ED+TT+X+P+S+GC, D = C+H+M+GC, E = C+M+X+S+GC,             425 

F = C+ED+P+TT+S, G = C+H+ED+X+P, H = C+E+H+M+TT+X+S+GC,426 

I = C+E+H+M+TT+X+P+S+GC. 5.2. – J = ED+ET, K – ML+TP, L – pollen grain.  427 

Examples from the Figure 5 are just a small fraction of many combinations with a 428 

strong biological meaning chosen because of visual effect. However, these 9 images 429 

presented on figure 5a reveal all 11 types of cells in needle with very high level of 430 

confidence based on anatomical meaning of extracted structures. Resin canals and some 431 
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artefact elements are presented in background. Histology of stamen is less complex, 432 

well presented on set of reconstructed composite images in figure 5b. On some grains, 433 

even internal structures can be observed, Figure 5l, blue – exine and intrine, red – 434 

middle part of the pollen grain and green shows two structures, generative nucleus 435 

(larger) and pollen tube nucleus (smaller). The reason why the complete determination 436 

of tissues in stamen was more difficult even the number if tissues was smaller, is the 437 

fact that the fluorescence properties among various tissues are less expressed, as the 438 

tissues in stamen do not have so different biological roles, as in needles.  439 

 440 

 441 

4.  CONCLUSION  442 

  443 

Described procedures of image analysis offer numerous possibilities for 444 

improvement of virtually all imaging procedures that capture the same object using 445 

different instrumental settings. Besides the fluorescence microscopy, it is applicable in 446 

light microscopy, MRI (if different sequences were applied) or satellite images for 447 

environmental sciences. As the development of methods is in constant progress and 448 

more spectroscopic techniques become coupled with the microscopy, it is expected that 449 

the demand for procedures for analysis of multidimensional images will be in constant 450 

growth. 451 

0 -norm constrained nonnegative matrix factorization in space induced by explicit 452 

feature map was proven to be the method of choice for BSS based analysis of images 453 

with good (high) spatial resolution and highly correlated spectra of the pure 454 

components. From only 5 starting images, algorithm needed to be able to find the exact 455 
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number of components that exceeds the number of input images by factor of more than 456 

2. Next, it needed to distinguish among the pure components that are not independent 457 

but highly correlated, sharing the same spectral form, as majority of fluorophores are 458 

present in each pixel on image, only in different ratios. It means that often only the 459 

contribution of individual fluorophores affects the final result as the pixel brightness 460 

intensity. And finally, task should be proven for tissue discrimination in anatomically 461 

right manner. 462 

We also suggested that 0 -norm constrained nonnegative matrix factorization in 463 

mapped space can be applied as one module in whole analytical procedure that can be 464 

applied not only on raw images, but instead on images with selected ROI. Such 465 

approach could include image segmentation, clustering based techniques, textural 466 

parameters, filters or fractal based techniques. Future work will be focused on 467 

application of described procedure on various image sets originating from different 468 

instruments. Special attention will be given to micro-spectroscopy, including 469 

fluorescence and Raman micro-spectroscopy.  470 

 471 

 472 

List of abbreviations: cuticle (C), epidermis (EP), mesophyll (M), endodermis (ED), 473 

xylem (X), phloem (P), transfusion tissue (TT), hypodermis (H), stoma cells (S), guard 474 

cells (GC), epidermis of stamen (ED), endothelium (ET), middle layer (ML), tapetum 475 

(TP) and pollen grains. 476 

 477 
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