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Abstract 

Gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the mammalian 

central nervous system, plays a key role in the regulation of neuronal transmission throughout 

the brain, affecting numerous physiological and psychological processes. Changes in GABA 

levels provoke disbalance between excitatory and inhibitory signals, and are involved in the 

development of numerous neuropsychiatric disorders. GABA exerts its effects via ionotropic 

(GABAA) and metabotropic (GABAB) receptors. Both types of receptors are targeted by many 

clinically important drugs that affect GABAergic function and are widely used in the 

treatment of anxiety disorder, epilepsy, insomnia, spasticity, aggressive behaviour, and other 

pathophysiological conditions and diseases. Of particular importance are drugs that modulate 

GABAA receptor complex, such as benzodiazepines, barbiturates, neuroactive steroids, 

intravenous and inhalational anesthetics, and ethanol. Molecular interactions and subsequent 

pharmacological effects induced by drugs acting at GABAA receptors are extremely complex 

due to structural heterogeneity of GABAA receptors and existence of numerous allosterically 

interconnected binding sites and various chemically distinct ligands that are able to bound to 

them. There is a growing interest in the development and application of subtype-selective 

drugs that will achieve specific therapeutic benefits without undesirable side effects. The aim 

of this review is to briefly summarize the key pharmacological properties of GABA receptors, 

and to present selected novel findings with the potential to open new perspectives in the 

development of more effective therapeutic strategies. 
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Introduction to GABA receptor diversity and pharmacological complexity 

As the principal mediator of inhibitory synaptic transmission in the mammalian brain, 

GABA exerts its effects and shapes behaviour via two different types of GABA receptors. 

While fast ionotropic GABAA receptors belong to the family of ligand gated ion channels, 

metabotropic GABAB receptors are receptors with seven transmembrane domains coupled to 

G-proteins. Activation of GABA receptors by GABA induces membrane hyperpolarization, 

reduces the frequency of the generation of action potentials, and results in inhibition. Mainly 

local-circuit interneurons that constitute 15-20% of all cortical neurons predominantly use 

GABA as the neurotransmitter [1-3]. 

Most of its effects GABA exerts via GABAA receptors. GABAA receptors may be 

embedded in postsynaptic membrane where they mediate transient and fast synaptic inhibition 

that occurs in milliseconds, or may be located at the extrasynaptic places where respond to 

ambient concentrations of GABA and mediate long-term inhibition. In fast synaptic 

inhibition, GABA released from the presynaptic membrane terminals rapidly diffuses across 

the synaptic cleft and binds to binding sites at postsynaptic GABAA receptors. Following 

binding, these receptors undergo a rapid conformational change that opens integral chloride 

channel and permit the flow of chloride ions down their chemical gradient, across the 

postsynaptic membrane. This ensures propagation of neurotransmission and represents basis 

of neural communication [4,5]. 

In contrast to GABA that directly activates and opens ion channels, some drugs, such 

as competitive antagonist bicuculline, selectively block GABAA receptors and prevent 

inhibitory action of GABA. Muscimol, the principal psychoactive constituent of the 

mushroom Amanita muscaria, also acts as a potent, selective agonist of GABAA receptors. A 

variety of clinically important drugs, including anticonvulsants, anxiolytics, general 

anesthetics, barbiturates, ethanol and neuroactive steroids, as well as drugs important as 

research tool such as convulsive picrotoxin, allosterically modulate GABA-induced activation 

of GABAA receptors by acting on distinct binding sites on the receptor and modulate GABA 

action [5,6]. These drug interactions, together with structural diversity of GABAA receptors, 

shape the complex nature of GABAA receptor pharmacology, although simultaneously offer a 

great opportunity for the design of novel and more selective compounds for improved 

therapeutic applications [7]. Unfortunately, severe problems are related to the long-term use 

of drugs acting at GABAA receptors, including loss of efficacy, and development of tolerance 



and dependence that largely limit the time window of their desirable therapeutic benefits [4,8-

11]. 

GABA also achieves inhibitory effects by acting at G-protein-coupled metabotropic 

GABAB receptors. The slow, longer-lasting inhibition of GABAB receptors is mediated by 

indirect gating of either potassium or calcium channels via second messengers. Characteristic 

agonists of GABAB are the GABA analog baclofen and 3-aminopropylphosponous acid (3-

APPA; CGP27492), while saclofen, phaclofen and 2-hydroxysaclofen act as antagonists of 

GABAB receptors [12]. 

Old nomenclature also included GABAC receptors that are expressed predominantly in 

retina. However, International Union of Basic and Clinical Pharmacology has recommended 

that GABAC receptors should be assumed as one of the many isoforms of GABAA receptors 

[5].  

 

GABAA receptors and their subunits 

 

Ubiquitously expressed GABAA receptors are the major receptors of inhibitory 

neurotransmission across the central nervous system (CNS) that play a major role in virtually 

all brain physiological functions. GABAA receptors are heteropentameric ligand-gated 

proteins that form a channel specific for chloride ions as an integral part. GABAA receptors 

are members of the Cys-loop ligand-gated ion channel superfamily due to the presence of a 

disulphide-bridged loop in the extracellular domain. They share structural and functional 

homology with other members of the family. In addition to GABAA receptors, the main 

pentameric receptors within the Cys-loop superfamily are nicotinic acetylcholine (nACh), 5-

hydroxytryptamine type 3 (5HT3) and glycine receptors [13,14].  

GABAA receptors are assembled from an impressive repertoire of different 

homologous subunits that are encoded from the pool of 19 different genes. Six α (α1-6), three β 

(β1-3), three γ (γ1-3), δ, ε, , π and three ρ (ρ1-3) subunits have been identified by molecular 

cloning techniques [6,14-16]. In some cells expression of more than eight different isoforms 

has been demonstrated [5]. Throughout the CNS some subunits are broadly expressed, while 

others exhibit more restricted expression profile [17,18]. For example, the most abundant α1 

subunit is expressed almost ubiquitously in the brain, α5 is highly expressed in the 

hippocampus, α6 subunit is expressed only in granule cells of the cerebellum, while ρ-

subunits, the major molecular components of the formerly called GABAC receptors, are 

expressed mainly in the retina [19-22]. Expression of β2 subunit strongly correlates with that 



of α1, while expression pattern of β3 subunit resembles to that of α2. Isoform γ2 is the most 

widely distributed isoform of γ subunit [17].  

GABAA receptor subtypes composed of different subunits represent distinct receptor 

populations that exhibit unique functional and pharmacological properties, and are 

differentially regulated at the transcriptional, post-transcriptional and translational levels [23]. 

GABAA receptor subtypes are expressed in a specific spatio-temporal pattern in the 

developing and adult CNS. Some combinations of subunits, such as α1β2γ2, the most 

prevalent adult isoform, are broadly distributed in different brain areas, while the expression 

of some other subtypes of GABAA receptors is restricted to certain regions [24].  

Mature subunits share a common topological organization, and have approximately 

450 amino acid residues in length. Subunits consist of a large extracellular N-terminal domain 

that contains already mentioned Cys loop, followed by four transmembrane domains (TM1-

TM4), and a short extracellular C-terminal domain. TM2 domains of all five subunits line the 

lumen of ion channel. There is a large phosphorytable intracellular loop between TM3 and 

TM4 domains of each subunit that participates in protein-protein interactions and plays an 

important role in the regulation of GABAA receptor function. Some of the intracellular 

proteins that interact with GABAA receptors are GABAA receptor associated protein 

(GABARAP), Golgi-specific DHHC zinc finger protein (GODZ) phospholipase C-related, 

catalytically inactive proteins PRIP-1 and PRIP-2, Plic-1, radixin, GABAA receptors 

interacting factor-1 (GRIF-1), and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2). 

These proteins interact with particular subunits at GABAA receptor complex and modulate 

broad spectrum of GABAA receptors activities, such as trafficking enhancement, surface 

stabilization, receptor internalization, anchoring of receptors in the cytoskeleton, and 

regulation of modification of GABAA receptors [5,25]. 

Chromosomal mapping techniques revealed that the majority of genes coding for the 

subunits of GABAA receptors are localized into four clusters on chromosomes 4, 5, 15 and X 

in the human genome, and within these clusters genes have conserved transcriptional 

orientation [26]. Additional diversity of receptor structure is accomplished by alternative 

splicing of some of the subunit mRNAs and by RNA editing that might affect kinetics, 

subunit assembly and cell-surface expression of GABAA receptors [27]. For example, the γ2 

subunit appears in three alternatively spliced variants termed γ2L, γ2S and γ2XL [28], 

although physiological and pharmacological relevance of this diversity is still not completely 

resolved. Nova, a neuron-specific RNA binding protein, regulates alternative splicing of γ2 

subunit by acting on an intronic splicing enhancer which lies far downstream of the regulated 



exon, and general dysregulation of Nova's splicing enhancer function may underlie the 

neurologic defects seen in patients with Nova's absence [29]. 

Only a limited number of mutations have been found in GABAA receptor subunit 

genes that are specific for different diseases. For example, point mutations in the α1 and γ2 

subunits are found in patients with genetic epilepsies, while single nucleotide polymorphisms 

(SNPs) in the gene encoding the α2 subunit are involved in alcohol dependence and illicit 

drug dependence. The gene encoding the β1 subunit also has been linked to alcohol 

dependence and to bipolar disorder. The genes encoding the α1, α6, β2 and π subunits have 

been linked to schizophrenia [4]. 

 

Subunit composition determines pharmacological effects 

 

It is still not resolved which subunits assemble together to form different isoforms of 

GABAA receptors that really exist in nature [14]. Numerous expression studies using 

recombinant receptors indicated that receptors composed of α, β, and γ subunits form GABAA 

receptors with a pharmacological profile that mimic properties of the majority of native 

receptors. Despite the fact that the immense number of different pentameric combinations can 

be assembled from the pool of native protein subunits, it seems that the prevalent form of 

native GABAA receptors is the combination of two α, two β and a single γ, δ or ε subunit 

[30,31]. As mentioned before, isoform α1β2γ2 is considered as the most prevalent subtype of 

adult GABAA receptors, with γ2β2α1β2α1 counter-clockwise arrangement surrounding 

central ion pore when viewed from the synaptic cleft [32]. It is estimated that approximately 

60% of all GABAA receptors have the subunit composition α1β2γ2, approximately 15–20% 

have the α2β3γ2 combination, approximately 10–15% have the α3βnγ2 combination, 

approximately 5% have the α4βnγ or α4βnδ combination, less than 5% have the α5β2γ2 

combination and, likewise, less than 5% have the α6β2/3γ2 combination [4]. Furthermore, it 

is possible for GABAA receptors to contain two different  subunits. Thus, α16βxγ2 and 

α16βx receptors have been found in the cerebellum [33].  

Composition and arrangement of GABAA receptors subunits shapes the synaptic 

response to GABA, as well as electrophysiological, functional and pharmacological properties 

of GABAA receptors, including potency and efficacy of different drugs to exert their effects 

[6,34,35]. For example, Zezula et al. [36] systematically investigated properties of 

recombinant GABAA receptors formed after transfection of human embryonic kidney (HEK) 

293 cells with α1-, β3-, or γ2-subunits, or with various combinations of these subunits. From 



all possible subunit combinations, high affinity binding sites for GABA were formed in cells 

transfected with α1β3- or α1β3γ2-subunits only. Binding of benzodiazepines were induced in 

cells after transfection with α1γ2- or α1β3γ2 subunits, whereas binding sites for convulsant 

[35S]t-butylbicyclophosphorothionate (TBPS) were found in cells transfected with β3-, β3γ2-, 

α1β3-, or α1β3γ2-subunits. Binding of [35S]TBPS was inhibited by pentobarbital 

(barbiturate), alphaxalone (anesthetic neuroactive steroid) and propofol (anesthetic) with a 

potency which differed in cells transfected with β3-, β3γ2-, α1β3-, or α1β3γ2-subunits, 

demonstrating that receptors with different subunit composition exhibit distinct 

pharmacological properties. 

 

Tonic and phasic inhibition by GABAA receptors 

 

Some subunits, such as  subunits, are placed only at extrasynaptic places where 

GABAA receptors are activated by low ambient GABA concentrations present in the 

extracellular fluid, and mediate a so-called tonic inhibition that is relatively non-desensitizing. 

Isoforms containing γ subunit are expressed predominantly at synapses and mediate rapidly 

desensitizing phasic GABAergic neurotransmission. Synaptic GABAA receptors are activated 

transiently after the release of GABA from presynaptic vesicles, while extrasynaptic GABAA 

receptors are in general activated continuously, controlling neuronal excitability and the 

strength of synaptic transmission [37-41]. 

Tonic and phasic conductances underlie different physiological and behavioural 

processes [4]. Receptors containing δ subunit regulate numerous behavioural functions, 

including memory, nociception and anxiety, and may modulate neurogenesis. Taking into 

account that they are highly responsive to sedative-hypnotic and sleep-promoting drugs, 

general anesthetics, alcohol and neuroactive steroids, they are considered as potential 

therapeutic targets for the treatment of memory impairment, insomnia, mood disorders, pain, 

and post-stroke recovery [39,41-44].  

Furthermore, extrasynaptic GABAA receptors with δ subunit exhibit a pronounced 

variability in expression levels under different physiological and pathophysiological 

conditions that might reshape behaviour and change neuronal susceptibility to different drugs 

[41]. Modulation of tonic inhibition might be of clinical relevance as extrasynaptic GABAA 

receptors may diminish seizure susceptibility and states of anxiety during the estrous cycle. In 

particular, in late diestrus in mice (high-progesteron phase), increased expression of δ-

containing receptors increases tonic inhibition, suggesting that consequent reduction of 



neuronal excitability might be beneficial in women with catamenial epilepsy and premenstrual 

dysphoric disorder [45]. The large increase in progesterone-derived neurosteroids during 

pregnancy, and their sharp decline at parturition, may also have considerable effects on 

GABAA receptors during pregnancy and postpartum. Both tonic and phasic inhibition 

decrease in pregnant mice due to down-regulation of  and 2 subunits, and are rebound 

immediately after delivery. Mice which do not exhibit -subunit regulation throughout 

pregnancy show depression-like and abnormal maternal behaviours [46]. On the other hand, 

expression of GABAA receptors containing δ subunit is diminished in depression and 

schizophrenia [47,48]. 

 

Endogenous ligands of GABAA receptors 

 

In addition to GABA, neurosteroids are the most important endogenous ligands of 

GABAA receptors. Certain neurosteroids potently and specifically enhance function of 

GABAA receptors, and consequently exert anxiolytic, analgesic, anticonvulsant, sedative, 

hypnotic and anesthetic properties, and contribute to behavioural effects of psychoactive 

substances [49]. In the CNS, steroids can be synthesized de novo from cholesterol, during 

stress, pregnancy and after ethanol consumption, and these steroids are called neurosteroids, 

or can be converted from steroid precursors from periphery [50-52]. De novo synthesized 

neuroactive steroids locally modify neuronal activity in a paracrine manner, and can influence 

mood and behaviour in various physiological and pathophysiological conditions. GABA-

modulatory actions of the pregnane steroids are highly selective, with their actions being brain 

region- and neuron-dependent. Furthermore, the sensitivity of GABAA receptors to 

neurosteroids is not static but can dynamically change. The molecular mechanisms 

determining this neuronal specificity include different GABAA receptor isoforms, protein 

phosphorylation and local steroid metabolism and synthesis [53,54]. 

Relatively recently, it has been discovered that endocannabinoid 2-arachidonoyl 

glycerol (2-AG) potentiates GABAA receptors at low concentrations of GABA, specifically in 

receptors containing β2 subunit [55]. 2-AG allosterically potentiates GABAA receptors via a 

binding site located in transmembrane segment TM4 of the β2 subunit GABAA receptors [56]. 

The discovery of a direct action of the 2-AG on the β2-containing GABAA receptors offers 

the potential for selective pharmacological intervention that would reduce motility and 

possibly affect sedation and state of anxiety [56]. Furthermore, it is shown that 2-AG acts 

synergistically with the neurosteroid tetrahydrodeoxycorticosterone (THDOC; 3α,21-
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dihydroxy-5α-pregnan-20-one) and modulates extrasynaptic receptors that respond to 

neurosteroids [55]. 

 

 

Modulation of GABAA receptors by pharmacological agents 

 

GABAA receptors are targeted by many clinically important drugs. Namely, besides 

binding site(s) for GABA, GABAA receptors possess binding sites for a variety of clinically 

important substances, such as benzodiazepines and benzodiazepine-site ligands, barbiturates, 

intravenous and volatile anesthetics, ethanol and neuroactive steroids, all of which achieve at 

least some of their pharmacological effects after binding to GABAA receptor complex 

[6,17,57]. These drugs modulate effects of GABA and affect GABAergic transmission, 

exerting a wide spectrum of pharmacological effects and inducing numerous conformational 

states of GABAA receptors.  

Diverse approaches have been applied in last years to more precisely identify various 

binding sites on GABAA receptor complex, as this knowledge is prerequisite for the design of 

subtype specific, selective drugs of clinical relevance. Study performed on the comparative 

models of the extracellular and transmembrane domains of GABAA receptors in the agonist-

free state has revealed that a loose packing of these domains results in a large amount of 

solvent-accessible space, probably offering a potential explanation for such complex 

pharmacology and great flexibility of GABAA receptors [58]. 

Drugs acting at benzodiazepine binding sites can only modulate GABAA receptors, 

while barbiturates, neuroactive steroids and anesthetics at higher concentrations are able to 

directly activate GABAA receptors in the absence of GABA [31,59-63]. Binding sites for all 

of these drugs are allosterically coupled. Therefore, drug that fits or binds to any of these 

multiple binding pockets induces conformational changes of the receptor complex and 

modulates GABA-elicited response [64,65]. For some of these multiple binding sites ligands 

have been identified, whereas for others sites, ligands are unknown. Similarly, the sites of 

action of large number of compounds that allosterically modulate GABAA receptors are still 

not identified [66].  

Increased activity of GABAA receptor activity leads to anxiolysis, ataxia, 

myorelaxation, sedation, hypnosis, anesthesia and anterograde amnesia, whereas decrease in 

GABAA receptor activity leads to increased vigilance, memory enhancement, anxiety and 

seizures [6,67]. GABAA receptors are therefore widely used in the treatment of anxiety 



disorders, insomnia, epilepsy, restlessness, and aggressive behaviours [17,68]. Recently, 

Rudolph and Möhler [69] gave comprehensive overview of the role of GABAA receptor 

subtypes on cognitive and emotional behaviour, particularly to cognitive dysfunction and 

Down syndrome, anxiety disorders, depression, schizophrenia, and autism. They highlighted 

that a partial inverse agonist acting at the α5-subunit-containing GABAA receptors is in a 

clinical trial in individuals with Down syndrome. Substances that selectively reduce function 

of α5-containing GABAA receptors are considered as potential cognition enhancers for 

Alzheimer's syndrome and other dementia, consistent with genetic studies implicating 

GABAA receptors in learning performances [70]. With regard to anxiety disorders, 

nonsedative anxiolytics based on the modulation of α2- and α3-subunit-containing GABAA 

receptors have been established in clinical proof-of-concept trials. Furthermore, Rudolph and 

Möhler [69] emphasized the GABA hypothesis of depression and new options for 

antidepressant drug development. They also pointed out that cognitive symptoms in 

schizophrenia are attributed to a cortical GABAergic deficit, and that dysfunctional 

GABAergic inhibition contributes to the pathophysiology of autism spectrum disorders. 

Furthermore, the properties of GABAA receptors specific to interneurons may differ 

significantly from those found on projecting neurons, offering the possibility of developing 

interneuron-specific drugs that is of great therapeutic interest as more and more neurological 

and psychiatric disorders are linked to malfunction or deficits of interneurons [3]. Cells of 

glial origin also express GABAA receptor subunit isoforms and form functional ion channels 

that are modulated by classical GABAA receptor drugs, including diazepam and anesthetics 

etomidate and propofol [71]. 

 

 

Effects of GABA and GABA agonists at GABAA receptor 

 

Besides GABA, other compounds also act at GABA recognition sites. Muscimol, 

4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridine-3-ol (THIP, a bicyclic muscimol analog) and 

isoguvacine are structural analogs of GABA, and have direct GABA mimetic effects, while 

alkaloid bicuculline competitively antagonises effects of GABA at GABA binding sites. 

Muscimol has been widely used as a valuable tool to study pharmacology of GABAA 

receptors, and was the lead compound in the development of a range of GABAergic agents 

[72-74]. Behavioural effects of muscimol and THIP are preferentially mediated via high-

affinity agonist binding sites at extrasynaptic receptors containing 4 and  subunits. For 



THIP at high concentrations, the superagonistic behaviour on 43 receptors is achieved 

due to its ability to increase the duration of longer channel openings and their frequency, 

resulting in longer burst durations, while muscimol-related moderate superagonist behaviour 

is caused by reduced receptor desensitisation [75]. The ability to specifically increase the 

efficacy of extrasynaptic receptor activation by selected exogenous agonists might have 

important therapeutic implications, particularly under circumstances when synaptic inhibition 

is compromised, enabling manipulation of different components of inhibitory circuits [75-77]. 

Furthermore, it was found that chronic activation of GABAA receptors by muscimol may 

exert neuroprotective effects against A-induced apoptotic neuronal death [78].  

Radioligand binding studies indicated that GABA and GABA agonists stimulate 

binding of benzodiazepine agonists, and inhibit binding of inverse agonists at benzodiazepine 

binding site. Vice versa, GABA binding is stimulated by benzodiazepines, barbiturates, 

neuroactive steroids and anesthetics. Picrotoxin and other convulsants allosterically inhibit 

binding of GABA at GABAA receptors [79-83]. Studies with [3H]muscimol and [3H]GABA 

have revealed two kinds of agonist binding sites on the GABAA receptor that differ in affinity. 

Biochemical and pharmacological experiments have suggested that high- and low-affinity 

sites might be interchangeable conformational variants of the same receptor complex. In most 

studies, functional responses to GABA have been observed only at micromolar 

concentrations, while nanomolar concentrations are needed to occupy the high-affinity 

binding sites. Hence, it is possible that the high-affinity sites represent a desensitized form of 

GABAA receptors or otherwise non-functional binding sites [76,84]. 

The binding site for GABA at GABAA receptor is located at the extracellular interface 

between the α and the β subunit, and a number of amino acids residues in the binding pocket 

have been identified that are important for pharmacological activity, subtype selectivity, 

assembly, trafficking and surface expression [84-87]. At the major, and the best characterized 

subtype of GABAA receptor that is assembled from ,  and  subunits, there are two binding 

sites for GABA. When two molecules of GABA bind to receptor complex, the receptor 

channel opens, and chloride ions rush into the postsynaptic neuron. However, as one pair of 

these otherwise identical subunits is flanked by  and  (site 1) and the other by  and  (site 

2), different environments affect the binding sites. In 122 receptors, site 2 has an 

approximately threefold higher affinity for GABA than site 1, whereas muscimol and 

bicuculline show some preference for site 1. Opening of the chloride channel also occurs for 

receptors occupied with a single agonist molecule but is promoted approximately 60-fold in 



those occupied by two agonists [88]. After occupancy of GABA binding sites, the large 

portion of the receptor undergo conformational changes that trap agonist inside the binding 

pocket, a deep narrowing cleft that probably may constrict during channel gating [64].  

The potency of GABA in opening chloride channels is determined by subunit 

composition. For example, in one study aimed to characterize the potency of GABA at human 

recombinant δ-containing extrasynaptic GABAA receptors expressed in Xenopus oocytes, it is 

found that α4/δ-containing receptors display high sensitivity to GABA, with mid-nanomolar 

concentrations activating α4β1δ and α4β3δ receptors. In the majority of oocytes expressing 

α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the 

receptor with low and high concentrations, while at α4β2δ receptors, GABA exerted low 

micromolar activity. An analysis of 10 point mutations in the large N-terminal extracellular 

domains in α4β3δ receptors shows that GABA interacts with amino acids different to those 

reported for α1β2γ2 GABAA receptors suggesting that GABA may have different binding 

modes for extrasynaptic δ-containing GABAA receptors compared to their synaptic 

counterparts [89].   

 

 

Effects of drugs acting at benzodiazepine binding sites at GABAA receptor 

 

Due to their pharmacological and clinical relevance, benzodiazepines have attracted 

much attention as allosteric modulators of GABAA receptors. Various ligands acting at 

benzodiazepine binding site can enhance (positive modulators or agonists) or reduce (negative 

modulators or inverse agonists) the actions of GABA on GABAergic transmission with a 

different range of efficacy (from full to partial). Antagonists are devoid of intrinsic activity, 

but can inhibit effects of both positive and negative modulators [6].  

Benzodiazepines and other substances acting at the benzodiazepine binding site are the 

most commonly prescribed drugs in therapeutic use due to their desirable anxiolytic, 

myorelaxant, sedative/hypnotic and anticonvulsant effects. Classical benzodiazepines, such as 

diazepam and flunitrazepam, do not open channel directly, but allosterically potentiate 

activation of GABAA receptor containing either α1, -2, -3 or -5 subunits. This means that after 

their binding, conformational changes at the receptor confer to increased affinity for channel 

gating by GABA at both agonist sites. Accordingly, in electrophysiological recordings 

classical benzodiazepines do not affect the maximal current amplitude, but GABA 



concentrations required for channel opening are shifted to lower values. In contrast to them, 

negative allosteric modulators shift GABA concentration curve to the right [5].  

The subunit composition of the GABAA receptor complex largely determines 

pharmacological properties at benzodiazepine binding site. In fact, pharmacological profile is 

predominantly determined by α and γ subunits isoforms. It has been shown that different 

receptor conformations, in particular 16, 61, 11 and 66, have their 

own pharmacological signature and that diazepam efficacy is determined exclusively by the 

- subunit neighbouring the 2-subunit [35]. The most applied concept is that the α1βxγ2-

receptors, called type I BZ receptors, preferentially bind full benzodiazepine agonists with 

high affinity, while α2/3/5βxγ2-receptors, classified as type II BZ receptors, have 

approximately 10-fold lower affinity for benzodiazepine agonists [24,81]. Sedative, 

anterograde amnesic and partly anticonvulsant properties are attributed to α1-containing 

receptors, while the presence of α2 and/or α3 subunits determines anxiolytic and myorelaxant 

activity of benzodiazepines [90-92]. This means that compound that selectively modulates 

receptors with α2 and/or α3 subunits, but not α1-containing receptors, would be a non-

sedating anxiolytic, suitable for the treatment of generalised anxiety disorder [93]. Receptors 

containing 5 subunits confer to learning and temporal and spatial memory. The 5 subunit 

of the GABAA receptor is localized mainly to the hippocampus of the mammalian brain. It is 

shown that the largely extrasynaptic 5 GABAA receptors in hippocampal pyramidal cells are 

implicated as control elements of the temporal association of threat cues in trace fear 

conditioning [94]. Furthermore, the 5 -/- mice showed a significantly improved performance 

in a water maze model of spatial learning, indicating that 5-containing receptors play a key 

role in cognitive processes [95]. However, as pointed by Sigel and Steinmann [5], behaviour 

is a complex phenomenon, and caution is needed in an attempt to define the role of individual 

GABAA receptor subunits, as most probably several types of GABAA receptors determines 

even the simple behavioural traits. Receptors containing α4 and α6 subunits are generally 

thought as insensitive to classical benzodiazepine agonists [96,97], although they retain a high 

affinity for the partial inverse benzodiazepine agonist Ro 15-4513 [98]. Unusually, specific 

high-affinity binding of the benzodiazepine agonist flunitrazepam to α6β2γ2-containing 

GABAA receptors was shown [99], but flunitrazepam action on α6β2γ2-receptors was 

opposite to its action on α1β2γ2-receptors where it exhibits an inverse agonistic effect in a 

GABA-dependent manner.  



Benzodiazepines bind with high-affinity to a binding site located at the α/γ subunit 

interface in the extracellular domain of GABAA receptor [65,100]. The binding site for 

benzodiazepines is formed by one of α subunits (α1, α2, α3 or α5) and a γ subunit (typically 

the γ2 subunit, which is present in approximately 90% of all GABAA receptors) [4]. Studies 

on recombinant GABAA receptors indicated that co-expression of α, β and γ subunits is 

required for arrangement of high-affinity binding sites at GABAA receptor complex [101]. 

Hanson and Czajkowsky [102] have identified that Gln182-Arg197 region of γ2 subunit is 

part of the allosteric pathway that allows propagation of structural changes induced by 

positive benzodiazepine modulators through the protein to the channel domain. Furthermore, 

several amino acid residues on α and γ subunits have been identified that are crucial for 

benzodiazepine activity and form benzodiazepine binding pocket [86,103-105]. It is 

considered that antagonists bind in a pocket partly overlapping with the agonist site, although 

they can extend further into the solvent accessible cavity [106].  

Richter et al. [107] described a binding mode for diazepam and analogs. By using this 

binding hypothesis and virtual screening approaches, they identified numerous known ligands 

of benzodiazepine-binding site from different structural classes and predicted potential new 

chemotypes for this site, thus demonstrating its suitability for drug discovery and structure-

based drug design which is of major therapeutic importance. According to the model, 

although hundreds of ligands from different structural classes can bind to the benzodiazepine-

binding sites, only a minority is bound to the same bioactive conformation as diazepam. 

Evidence exists that some benzodiazepines can also bind to additional binding sites on 

GABAA receptor complex. Walters et al. [108] demonstrated that in the presence of low 

concentrations of GABA, diazepam produces a biphasic potentiation of α1β2γ2-receptor 

channels, with distinct components in the nanomolar and micromolar concentration ranges. 

Mutations at equivalent residues within the second transmembrane domains (TM2) of α, β 

and γ subunits abolished only the micromolar component, while nanomolar component, which 

depends on the presence of γ2 subunit, was not affected. Similarly, converse mutation of the 

corresponding TM2 residue and a TM3 residue within ρ1 subunits confers diazepam 

sensitivity on homo-oligomeric ρ1-receptor channels that are otherwise insensitive to 

benzodiazepines. Furthermore, effect of micromolar component on the GABA-induced 

current was not inhibited by flumazenil, an antagonist of benzodiazepine binding sites. As 

these transmembrane domains are important for effects of anesthetics, and taking into account 

anesthetic properties of diazepam, it might be that low potency modulation is elicited via 

anesthetic binding site [66]. 



In contrast to diazepam that act as positive allosteric modulator in both nanomolar and 

micromolar range, β-carbolines, such as methyl-6,7-dimethoxy-4-ethyl--carboline (DMCM),  

act as negative allosteric modulators at high affinity sites, but potentiate effects of GABA via 

the low-affinity binding sites [109]. The apparent reversal of inhibition and potentiation by 

high concentrations of DMCM is insensitive to flumazenil, β2/3 subunit dependent, and 

probably elicited via the binding site for anticonvulsant loreclezole in the transmembrane 

domain. Moreover, Baur et al. [110] found evidence for the presence of a third site for 

benzodiazepines that prevents modulation of GABAA receptors via the classical 

benzodiazepine site. The novel site potentially contributes to the high degree of safety to some 

of these drugs. Their results indicate that this site may be located at the α/β subunit interface 

pseudo-symmetrically to the site for classical benzodiazepines located at the α/γ interface.  

In addition, it is found that the specific effects of imidazobenzodiazepine Ro15-4513 

in antagonizing ethanol-stimulated 36Cl- uptake and behaviour can be completely blocked by 

benzodiazepine receptor antagonists. As other benzodiazepine receptor inverse agonists fail to 

antagonize the actions of ethanol in vitro or in vivo, a novel binding site for Ro15-4513 is also 

hypothesized [111]. Hanchar et al. [112] demonstrated that extrasynaptic δ subunit-containing 

receptors bind the imidazo-benzodiazepines flumazenil and Ro15-4513 with high affinity, 

contrary to the widely held belief that these receptors are benzodiazepine insensitive. 

Recently, it was identified that in addition to benzodiazepine binding site, Ro15-4513 

interacts with high affinity to sites at the α4/6+β3- interface (each subunit has a plus and 

minus side determined by the absolute arrangement of subunits around central pore) and thus 

inhibits ethanol effects [98]. 

As for some potential binding sites no interacting drugs have been identified, 

Ramerstorfer et al. [113] established a steric hindrance procedure for the identification of 

drugs acting at the extracellular α1+β3– interface, which is homologous to the benzodiazepine 

binding site at the α1+γ2– interface, while GABA-binding sites are located at the β+– 

interface [66]. Among screened compounds, anxiolytic pyrazoloquinoline 2-p-

methoxyphenylpyrazolo[4,3-c]quinolin-3(5H)-one (CGS 9895) was able to enhance GABA-

induced currents at α1β3 receptors from rat. Thus, at nanomolar concentrations CGS 9895 

behaves as an antagonist of high-affinity, benzodiazepine binding site, but exerts a low-

potency positive modulatory action at the extracellular α+β– interface of α1β3γ2 and α1β3 

receptors. Other experiments indicated that the CGS 9895 effect was dependent on α and β 

subunit isoforms forming the interface. Since CGS 9895, even at high concentrations, was 

only able to enhance GABA-induced currents but not directly activate these receptors, it is 



likely that drugs acting via the α+β− interface only have GABA-modulatory properties, like 

the benzodiazepines do. In contrast to benzodiazepines, these drugs will interact with 

receptors composed of αβ, αβγ, and αβδ subunits. Hence, they would exhibit a much broader 

anticonvulsive action than benzodiazepines, which might be of clinical importance for the 

treatment of epilepsy and development of subtype-selective drugs.  

Based on results obtained with crystal structure of ELIC, prokaryotic homolog of 

GABAA receptor, it is possible that at least some benzodiazepines, such as flurazepam, may 

directly interact with the GABA-binding site at β+α- interface at high concentration and 

displace GABA from its binding site, although these effects are observed only at high 

concentrations and further experiments are needed to confirm if this site has a functional role 

in GABAA receptors [66,114].  

Unfortunately, despite their proven clinical efficacy, positive modulators of 

benzodiazepine binding sites at GABAA receptor possess a relatively narrow window between 

doses that produce anxiolytic effects and those that cause sedation, and are associated with the 

development of tolerance and physical and psychological dependence and a potential for 

abuse [115-117]. Hence, strategy to resolve the disadvantages of classical full agonists was 

directed toward development of partial agonists with lower intrinsic efficacy. A number of 

non-selective partial agonists with reduced intrinsic efficacy, including bretazenil, 

pazinaclone and abecarnil, were described. In general, although they have a large window 

between anxiolytic and sedative doses and their dependence and abuse liabilities were much 

lower, they failed to translate into clinical benefit [93]. More recently, the imidazolone 

derivatives imepitoin was shown to act as low-affinity partial agonist at the benzodiazepine 

site of the GABAA receptor, and was approved for the treatment of epilepsy in epileptic dogs 

due to its more favorable pharmacokinetic profile in dogs versus humans, reactivating again 

the interest for partial benzodiazepine agonists for the treatments of human epilepsy [118]. 

Regarding development of tolerance and dependence to benzodiazepine-site ligands 

after prolonged administration, diverse effects at the molecular and cellular level have been 

described, including receptor desensitization and changes in the number and subunit 

composition of surface GABAA receptors, often leading to decreased ability of 

benzodiazepines to potentiate effects of GABA [17,119-124].  

 

Effects of convulsants at GABAA receptor 

 



Very early picrotoxin was identified as a noncompetitive inhibitor of GABAA 

receptor. Binding studies further revealed that numerous compounds from heterogeneous 

chemical classes posses affinity for picrotoxin-binding sites, including t-

butylbicyclophosphorothionate (TBPS), t-butylbicycloorthobenzoate (TBOB), 

pentylenetetrazole, and some insecticides (such as dieldrin and lindane). They inhibit GABA-

induced influx of chloride ions acting as allosteric antagonists at GABAA receptor complex 

[125-128].  

TBPS partially and allosterically inhibits binding of GABA and positive modulators of 

GABAA receptors, but facilitates binding of negative modulators. Similarly, modulators of 

GABAA receptor function affect [35S]TBPS binding. GABA exhibits biphasic effect on the 

allosteric modulation of [35S]TBPS binding. Thus, [35S]TBPS binding was allosterically 

inhibited by high concentrations of GABA, GABA agonists and other positive modulators 

(various benzodiazepine receptor agonists, anesthetics and pentobarbital) and promoted in the 

presence of negative modulators such as ethyl-β-carboline-3carboxylate (β-CCE). On the 

contrary, GABA applied at low concentrations enhanced [35S]TBPS binding [6,36,129-132]. 

In addition, the effects of the anesthetic steroid and pentobarbital on [35S]TBPS binding were 

markedly altered by GABA, which at 2 μM increased their maximal effects and half-maximal 

concentrations. On the contrary, GABA did not affect changes in [35S]TBPS binding 

produced by various benzodiazepine receptor agonists, indicating more pronounced functional 

coupling of the GABA sites with those for the steroid and the barbiturate, as compared with 

the benzodiazepine site. Hence, it appears that the degree of [35S]TBPS binding in the 

presence of GABA reflects the functional state of GABAA receptors and may be useful for 

characterization of allosteric interactions between various sites on the receptor [6,133].  

Inhibitory effects of GABA on [35S]TBPS binding are determined by α subunit 

isoform. It has been shown that expression of recombinant α6β2γ2 GABAA receptors 

produces [35S]TBPS binding sites that are about 10-fold more sensitive to inhibition by 

GABA than were those inherent to α1β2γ2 GABAA receptors. Similarly, the neurosteroid 5α-

pregnan-3α-ol-20-one (allopregnanolone) affected the binding in both α1β2γ2 and α6β2γ2 

receptors, but inhibition was greater in α6-containing than in α1-containing receptors, also 

suggesting differential coupling of both GABA and neurosteroid sites with the convulsant site 

[134]. 

At first, it was suggested that picrotoxin's site of action is probably within the channel 

pore as mutations in TM2 domains (that form chloride channels) produced currents that were 

insensitive to picrotoxin [135]. By convention, Cys-loop receptor TM2 residues are numbered 



from intracellular 0 to extracellular 20 positions. Although the exact location of picrotoxin 

binding to ionophore is still unknown, its sensitivity to mutations in residues 2/3 and 6 of 

TM2 indicates that the site contains residues 2–6. In particular, it is suggested that picrotoxin 

enters deep inside the ionophore pore, binds with its hydrophobic moiety to residue 2 of TM2 

(close to the pore) and forms hydrogen bounds with residue 6 in the middle of TM2. Residue 

15 is probably important for interplay between GABA and picrotoxin binding sites. Other 

studies implicated residues 9 and 15 in the regulation of channel properties, including 

desensitization, stabilization of open states and gating. This indirectly supports the possibility 

of a second “modulatory” (allosteric) binding site of picrotoxin including residues 15–19 

[128]. 

Dillon et al. [136] provided evidence that picrotoxin and TBPS interact with GABA-

bound and -resting receptors, but their affinity for GABA-bound receptors is about 10 times 

greater, largely due to a markedly increased association rate to the multi-liganded receptors. 

Accordingly, TBPS and picrotoxin are considered as open channel blockers. However, 

[35S]TBPS binds to recombinant receptors in the absence of GABA [130]. Hence, it does not 

gain access to its binding site via the open pore but through alternative routes regulated from 

the agonist binding site [137]. It is shown that picrotoxin displaceable [35S]TBPS binding to 

α1β2γ2 GABAA receptors might occur in the absence of GABA, suggesting that access to the 

binding site is independent of activation. In fact, bicuculline-sensitive spontaneous gating 

contributes to [35S]TBPS binding in the absence of GABA by providing access to the channel. 

Accordingly, a decrease in a spontaneous gating reduces accessibility of TBPS to its binding 

site [132]. GABA application during picrotoxin or TBPS administration enhanced α1β2γ2 

receptor blockade, and this GABA-dependent component of TBPS blockade accounts for the 

stimulation of [35S]TBPS binding to α1β2γ2 receptors seen with low concentrations of 

GABA, while application of GABA at concentrations that cause significant steady-state 

desensitization reduces [35S]TBPS binding [132].  

 

Effects of anesthetics at GABAA receptor 

 

General anesthetics are used to induce a reversible loss of consciousness in surgical 

patients and to relieve pain. GABAA receptors are the major site of action of clinically used 

intravenous anesthetics such as etomidate, propofol, barbiturates and neuroactive steroids. On 

the other hand, clinically used volatile anesthetics such as isoflurane and enflurane, and long-



chain alcohols, presumably act via a multitude of targets, GABAA receptors being just one of 

them [4,63,138,139].  

In general, GABAA receptors are positively modulated by clinical doses of anesthetics, 

while at higher concentrations anesthetics can directly activate GABAA receptors [63,140]. 

Accordingly, many studies were aimed to identify binding site(s) for anesthetics on GABAA 

receptors, which are generally considered as the main target for propofol and etomidate action 

as already mentioned. Belelli and co-authors [141] have shown that the ability of etomidate to 

modulate and activate GABAA receptors in vitro is uniquely dependent upon the  subunit 

subtype present within the receptor, i.e. receptors containing 2- or 3-, but not 1 subunit, 

are highly sensitive to etomidate. They identified a region distal to the extracellular N-

terminal domain as a determinant of the selectivity of etomidate: mutation of Asn present 

within the channel domain of the 3 subunit to Ser (the homologous residue in 1) strongly 

suppressed the GABA-modulatory and GABA-mimetic effects of etomidate. Later, it was 

confirmed that the same point mutation (Asn265Met) completely abolished the suppression of 

noxious-evoked movements in response to propofol and etomidate in a knock-in mouse, while 

only slightly decreased in response to volatile anesthetics enflurane and halothane. Mice also 

displayed a profound reduction in the loss of righting reflex duration (a surrogate for loss of 

consciousness) in response to intravenous but not volatile anesthetics. Accordingly, 

electrophysiological recordings revealed that anesthetic agents were significantly less 

effective in enhancing GABA-induced currents in cortical brain slices derived from mutant 

mice, thus identifying the key molecular determinant of behavioural responses evoked by 

intravenous anesthetics [142].  

Studies on recombinant receptors have revealed that isoforms of α, γ and δ subunits 

affect propofol modulation of the GABAA receptor, although it seems likely that the propofol 

binding site involves the β subunit (see below). In order to investigate the role of α subunit in 

the modulatory effects of propofol, Krasowski et al. [143] used whole-cell patch clamp 

recordings from cells expressing only α1β3γ2 or α6β3γ2 subtypes, and found that at clinically 

relevant concentrations, propofol potentiated submaximal GABA currents in α1β3γ2 receptors 

to a far greater degree than in α6β3γ2 receptors. Isoform of α subunit influenced the efficacy 

of propofol for modulation, but not its potency. On the contrary, direct gating of the chloride 

channel was significantly larger in the α6β3γ2 receptors. A same trend for potentiation and 

direct gating was observed for other anesthetics. Similarly, pharmacological properties of 

human recombinant GABAA receptors were studied in Xenopus oocytes expressing α1β2, 



α1β2γ2L, or α2β2γ2L receptor isoforms. In all receptor isoforms tested, propofol potentiated 

the GABA-activated currents in a concentration-dependent manner, and was able to directly 

activate all three receptor isoforms. Addition of the γ2L subunit to the α1β2 isoform reduced 

receptor sensitivity to direct activation, while replacement of the α1-subunit with the α2-

subunit increased receptor sensitivity to propofol's direct effects, indicating that isoforms of α 

and γ subunits have the ability to influence both the direct and modulatory actions of propofol 

on GABAA receptor function [144]. Jones et al. [140] reported that γ2 subunit is not a 

prerequisite for activation of GABAA receptors by propofol or for its potentiation of GABA-

activated currents, but showed that it may contribute to the efficacy of propofol as a GABAA 

receptor activator. Furthermore, the findings that propofol reduced desensitization and 

prolonged deactivation of receptors containing γ2L subunit and enhanced peak currents or 

prolonged deactivation of receptors containing δ subunit suggest that propofol-induced 

enhancement of both phasic and tonic inhibition may contribute to its anesthetic effect in the 

brain [145]. In accordance with mentioned studies, mutations in α and γ subunits change 

modulatory effects of propofol at the GABAA receptors [146,147], while particular residues in 

β subunits, distributed throughout the membrane-spanning region of the receptor, as well as in 

the extracellular domain, determine the propofol’s actions. Thus, a point mutation in the β1 

subunit (Met286Trp) abolished potentiation of GABA by propofol, but did not alter direct 

activation of the receptor by high concentrations of propofol [148]. The same mutation had 

the same effect in the β2 subunit, probably by altering the dimensions of a binding pocket for 

propofol and related alkylphenol general anesthetics [149]. One mutation in β2 subunit 

(Tyr444Trp) was particularly interesting, as it selectively suppressed the ability of propofol to 

enhance receptor function, while retaining normal sensitivity to etomidate [150]. 

Although various anesthetics do not bind to the same binding site and exhibit distinct 

structural requirements for modulatory and direct actions, it seems that main sites of action 

are located close to each other, within the transmembrane domain [151]. The influence of the 

large intracellular loop in propofol sensitivity has also been recognized. Moraga-Cid et al. 

[147] have shown that mutation of a conserved Phe385 residue within the α1 large 

intracellular loop significantly reduced propofol enhancement, although propofol-

hyposensitive mutant receptors retained their sensitivity to other allosteric modulators such as 

alcohols, etomidate, trichloroethanol, and isoflurane. At the single-channel level, the ability of 

propofol to increase open probability was significantly reduced, altogether suggesting a new 

role of the large intracellular loop in allosteric modulation, and providing new insight into the 

propofol-mediated modulation of GABAA receptor complex. By using a novel propofol 



analogue photolabeling reagent, Yip et al. [152] have identified a novel binding site for 

propofol in β3 homopentamers and α1β3 heteropentamers. The binding site is located within 

the β subunit, at the interface between the transmembrane domains and the extracellular 

domain, and lies close to known determinants of anesthetic sensitivity in transmembrane 

segments TM1 and TM2.  

The similar approach was used to determine binding site for etomidate. By using 

radiolabeled, photoreactive etomidate analogs, residues αMet-236 and βMet-286 in the αTM1 

and βTM3 transmembrane helices, were identified as a part of single binding pocket in the 

transmembrane domain at the β+α- interface, close to the extracellular domain, bellow the 

GABA-binding site. Such localization of the etomidate binding site to an inter-subunit, not an 

intra-subunit binding pocket was an interesting finding, suggesting that binding sites at 

subunit interfaces may be a feature not only for GABA and benzodiazepines, but also for 

etomidate and other anesthetics [153,154]. As photolabeled etomidate analog was also 

displaced by isoflurane, Li et al. [139] suggested that inhalation anesthetics also interact with 

this binding site. More precisely, in their study photolabeling was inhibited by low millimolar 

anesthetic concentrations of propofol, barbiturates, and isoflurane, but not by octanol or 

ethanol. Inhibition by barbiturates and propofol was only partial, consistent with allosteric 

interactions, whereas isoflurane inhibition was nearly complete, suggesting competitive 

interactions.  

 

Effects of barbiturates at GABAA receptor 

 

Response of GABAA receptors may also be modulated by barbiturates. They have 

been used in the past due to their anticonvulsant, anxiolytic, sedative, and hypnotic actions, 

but they exert serious side effects, including profound depression of CNS activity with the 

induction of pronounced sedation, cognitive slowing or confusion, hyperactivity in children 

and a lethal risk in a case of overdose [155-157].  

As they bind to GABAA receptor with low affinity, most of their actions have been 

analysed indirectly by studying interactions with other binding sites. Barbiturates enhance 

binding of GABA and benzodiazepines, whereas inhibit binding at convulsant binding site 

[158]. Depending on the concentration, barbiturates act in three different ways, and their 

effects are proportional to anesthetic potency. At low µM (sub-anesthetic) concentrations they 

potentiate GABA-induced effects (modulatory effect) and prolong duration of open 

conformation of chloride channel, possibly by stabilizing open state(s). In higher µM 



(anesthetic) concentrations (app. >50 µM) they directly open chloride channel (agonistic 

effect), whereas at very high mM concentrations block GABA-induced current (inhibitory 

effect) [159,160]. More precisely, when co-applied with low concentrations of GABA, 

barbiturates increased the mean open time. The increase in channel open time results in 

greater chloride current flux and increased likelihood that channel openings will summate, 

producing larger inhibitory currents [157]. In the absence of GABA, high concentrations of 

barbiturates may directly activate GABAA receptor chloride currents, although with lower 

efficacy than GABA [60]. All these effects are probably mediated by separate mechanisms. In 

support of this conclusion, it was demonstrated that mutation of Thr262 in the transmembrane 

domain of β1 subunits at α1β1 recombinant GABAA receptors abolished modulatory effect, 

without affecting direct agonistic or inhibitory effects of pentobarbital [161].  

Although barbiturate sensitivity does not require a specific subunit composition, their 

effects are also determined by subunit composition [57,157]. Isoforms of α subunit affect 

efficacy, but not affinity of barbiturates in potentiation of GABA response. In contrast to 

benzodiazepines that are ineffective at GABAA receptors containing α4 or α6 subunit, 

barbiturates elicit modulatory effects at receptors containing these isoforms [97,159], and the 

isoform of α subunit influences the level of potentiation [162]. Related to agonistic activity, 

the type of α subunit present determines both the degree of affinity and efficacy observed. 

Receptors containing α6 isoform produce maximum direct response to barbiturate 

pentobarbitone, larger than that obtainable with maximum GABA, and larger than that 

obtainable with other α subunits. GABAA receptors containing α6 subunits also have higher 

affinity for direct activation by pentobarbitone. Furthermore, the direct effect of 

pentobarbitone can be blocked by picrotoxin, but not by competitive antagonists, such as 

bicuculline [97,159]. Surprisingly, unlike receptors containing α6 isoform, α4β1γ2 receptors 

did not elicit any direct activation of GABAA receptors by pentobarbital [97].  

Some amino acid residues have been identified with major impact on barbiturate 

activity. An invariant proline residue in transmembrane domain TM1 is included in a 

consensus motif of all GABAA receptor subunits. Proline in TM1 segment of β1 subunit 

affects the linkage between GABA binding and channel gating and is critical for barbiturate 

enhancement at recombinant GABAA receptors, without affecting enhancement by diazepam 

or neurosteroid alfaxalone [163]. Gly219 near the TM1 at β2 subunit is also identified as 

important for allosteric (modulatory) effects of pentobarbital since pentobarbital-induced 

enhancement of [3H]muscimol and [3H]flunitrazepam binding in receptors containing the 

β2(Gly219Phe) point mutation displayed a significantly reduced efficacy in modulation. 



Furthermore, functional analysis of pentobarbital-enhanced GABA currents recorded with 

whole-cell patch clamp demonstrated that this mutation eliminates the potentiating effect of 

the anesthetic. Interestingly, the α1β2(Gly219Phe)γ2 receptors also were more sensitive to 

direct channel activation by pentobarbital, suggesting that Gly219 may be important for 

conformational or allosteric interactions of channel gating by GABA and barbiturates [164].  

Chiara et al. [165] used a photoreactive barbiturate analog to determine residues 

important for barbiturate binding site. It photolabeled sites at the α+β- and γ+β- subunit 

interfaces in the transmembrane domain, near the synaptic side. These binding sites are 

distinct but homologous to the etomidate sites at the two β+α- subunit interfaces, as all are 

located at the same depth in the transmembrane domain. They demonstrated that 

photoreactive barbiturate and etomidate derivatives are highly selective for their own sites, 

indicating that there are two structurally related, but pharmacologically distinct, classes of 

inter-subunit general anesthetic-binding sites in the transmembrane domain of human α1β3γ2 

GABAA receptors. They hypothesized that binding at any of these homologous inter-subunit 

sites is sufficient for anesthetic action. Namely, a wide range of general anesthetic structures 

target these four sites but with variable selectivity, which offers an explanation of the puzzling 

lack of well defined structure-activity relationships among general anesthetics. More 

importantly, these findings indicate that it may be possible to synthesize general anesthetics 

with specificity for sites between specific subunits in the transmembrane domain of 

pentameric GABAA receptors, with a hope to target specific nerve pathways and behaviours 

in a subunit-dependent manner in the future [165].  

 

 

Effects of neurosteroids at GABAA receptors 

 

Inhibitory neurotransmission mediated by GABAA receptors can be modulated by 

endogenous neurosteroids, mostly metabolites of progesterone and deoxycorticosterine, 

including allopregnanolone and tetrahydrodeoxycorticosterone (THDOC). In general, they 

potently enhance function of synaptic and extrasynaptic GABAA receptors by an allosteric 

mechanism [31,40,166,167]. Neurosteroids possess distinct, characteristic effects on the 

membrane potential and current conductance mainly via potentiation of GABAA receptors at 

low doses, and direct activation of receptor chloride channel at higher concentrations. As a 

results, upon administration neurosteroids exert anxiolytic, analgesic, anticonvulsive, sedative 

and hypnotic effects, while applied at higher doses may induce a state of general anesthesia 



[40,168-171]. Although the most important effects of neurosteroids are mediated via GABAA 

receptors, they also exert various effects on an array of ligand-gated ion channels and distinct 

G-protein-coupled receptors via nongenomic mechanisms, including the N-methyl-D-

aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), 

kainate, glycine, serotonin, sigma type-1, and nicotinic acetylcholine receptors [156,172]. 

Besides modulation of diverse receptors, the other functions attributed to specific 

neurosteroids include neuroprotection, for example against glutamate-induced excitotoxicity, 

and induction of neurite outgrowth, dendritic spines and synaptogenesis, and contribution to 

the behavioural effects of psychoactive drugs [49,51,173-175]. 

As emphasized before, neurosteroids exhibit two modes of action at GABAA 

receptors. They allosterically modulate channel opening, and at high concentrations act as 

GABA-mimetics and directly open the chloride channel [31,53,176]. Two discrete binding 

sites in the receptor’s transmembrane domains have been identified that mediate the 

potentiating and direct activation effects of neurosteroids. Neurosteroids potentiate GABA 

responses from a cavity formed by the α-subunit transmembrane domains, while direct 

receptor activation is achieved by interfacial residues between α and β subunits and is 

additionally enhanced by steroid binding to the potentiation site, indicating that activation of 

GABAA receptors by neurosteroids relies on the occupancy of both sites [177]. Further work 

provided a more detailed kinetic and pharmacological characterization of the effects of 

mutations on channel activation and modulation by neurosteroids, leading to a model where 

residues in the TM1 membrane-spanning domain shape the binding surface to accommodate a 

variety of structurally distinct neurosteroids [178]. The potentiating effect of neurosteroids 

can be mediated by steroid interactions with its site within the same β-α pair that mediates 

receptor activation as well as the opposite β-α pair [179]. Chisary et al. [180] have shown that 

neurosteroids require a membranous route of access to transmembrane-domain binding sites 

that might have implications for the design of novel neuroactive steroids because their lipid 

solubility and related accessibility are probably the key determinants of receptor modulation 

[180]. This also suggests that by virtue of their high lipid solubility, µM concentrations of 

neurosteroids may be achieved locally [31]. 

Neuroactive steroids may act both as positive and negative modulators of GABAA 

receptor function. Applied at concentrations below 300 nM, they are positive allosteric 

neuromodulators as they facilitate conformational transition of the GABA-gated chloride 

channel to an open state, increase mean channel open time and consequently increase GABA-

elicited chloride currents [49,131,181-183]. Furthermore, they modulate binding of GABA 



agonists, increase binding of positive modulators at benzodiazepine binding sites, and 

enhance TBPS binding in the absence of GABA [184-187]. On the contrary, sulphated 

endogenous steroids like pregnenolone sulphate and dehydroepiandrosterone sulphate 

(DHEAS) act as negative modulators at steroid binding site when applied at µM 

concentrations [59]. For various neuroactive steroids sulfation at C-3 reverses the direction of 

modulation from positive to negative, suggesting that sulfation could be an important control 

point for the activity of endogenous neurosteroids. As interactions of positive and negative 

steroid modulators are not competitive, they probably act via distinct binding sites at GABAA 

receptor. This implies that negative and positive steroid modulators can act independently or 

coordinately to regulate GABA-mediated inhibition in the CNS [188]. Antagonistic 

neurosteroids may shorten the channel open time and enhance GABA-induced desensitization 

[6].  

Similarly to other binding sites, subunit assembly determines sensitivity and 

pharmacological effects of neuroactive steroids. Studies on recombinant GABAA receptors 

have revealed that presence of δ subunit confers increases sensitivity to neurosteroid 

modulation by affecting intrinsic gating and desensitization kinetics [181,189]. Thus, at 

concentrations known to occur in vivo, neuroactive steroids specifically enhance a tonic 

inhibitory conductance in central neurons that is mediated by extrasynaptic δ subunit-

containing GABAA receptors [190]. In addition, expression of extrasynaptic GABAA 

receptors is dynamically regulated by neuroactive steroids. For example, it is suggested that 

neuroactive steroids mediate a stress-induced enhancement in the expression of α4βδ 

receptors, probably contributing to observed stress-related memory impairment [41,44,191]. 

Potency and efficacy of neuroactive steroids is also determined by other subunits. Although 

these differences are not very pronounced, even small differences in receptor sensitivity might 

be physiologically relevant. Namely, allopregnanolone concentrations in plasma are 3-10 nM 

in physiological conditions, and increase only to 30-60 nM during stress [168].  

Interestingly, it is confirmed that endogenous neurosteroids profoundly affect neuronal 

activity at particular receptor isoform. For example, it is shown that α1β2δ subtype of 

GABAA receptors presumably expressed in the forebrain, exhibits an extremely small GABA-

mediated current in the absence of the modulator, but in the presence of THDOC exerts a 

profound inhibitory influence on neuronal activity by increasing maximum current amplitude 

and decreasing half-maximal concentration (EC50) of GABA [192]. Hence, depending on the 

subunit composition, GABA-modulatory effects of physiological levels of the neurosteroid 

are not uniformly experienced throughout the CNS, or even within the same brain region. In 



addition, these modulatory effects are determined by the phosphorylation status of the 

GABAA receptor, or associated proteins, and by local steroid metabolism [31,49,54,193].  

As endogenous ligands, neuroactive steroids may modulate diverse physiological and 

pathophysiological conditions, regulating GABAA receptor-associated functions and 

behaviour. Altered neurosteroid levels are associated with psychiatric and neurological 

disorders, including premenstrual dysphoric disorder, premenstrual syndrome, menstrual 

migraine, postpartum depression, pain disorder, catamenial epilepsy, major depression, 

schizophrenia, alcohol dependence and anxiety [51,177,194]. The pathogenesis of these 

diseases remains unclear, partly due to the lack of useful animal models to study such 

complex disorders [46]. As mentioned before, pregnancy is associated with a pronounced 

enhancement in progesterone-derived neurosteroid levels, with sharp decline after delivery. 

Because neuroactive steroids exert anxiolytic effects, neurosteroid withdrawal could play role 

in the pathophysiology of postpartum depression [195]. Synthetic neurosteroids that exerts 

better bioavailability and efficacy, as well as drugs that enhance neurosteroid synthesis and 

lack unwarranted side effects of benzodiazepines, are therefore considered as potential 

therapeutics in the treatment of anxiety, epilepsy and other brain disorders [156,195-197].  

 

 

Effects of ethanol at GABAA receptors 

 

Ethanol is often classified as modulator of GABAA receptor activity. It is without 

doubt that very high concentrations of ethanol modulate activity of diverse membrane 

proteins, including GABAA receptors [198]. However, it is not quite clear whether social 

ethanol intake (<20 mM) really exerts effects on human behaviour via GABAA receptors [5]. 

Wallner and co-authors [199] have demonstrated that GABAA receptors might be enhanced 

by ethanol concentrations that are reachable by moderate, social consumption. They found 

that GABAA receptors responsive to these low concentrations require presence of δ-subunit, 

which is thought to be associated exclusively with α4- and α6-subunits, and the β3-subunit. 

Their finding also suggests that extrasynaptic GABAA receptors are primary targets for 

ethanol. Later, Borghese and co-workers [198] failed to replicate the sensitivity of α4β3δ 

GABAA receptors to low concentrations of ethanol at rat and human recombinant GABAA 

receptors expressed in Xenopus oocytes. In addition, in their study ethanol at 30 mM 

concentration did not affect tonic GABA-mediated currents in dentate gyrus reported to be 

mediated by α4β3δ subtype of GABAA receptors. Similarly, in another study, α6β3δ GABAA 



receptors were expressed in Xenopus oocytes and were not modulated by physiological 

concentrations (up to 30 mM) of ethanol [200].  

On the other hand, prolonged ethanol consumption that leads to the development of 

alcohol dependence induces changes of GABAA receptor subunits at transcriptional and 

translational levels in brain area-specific manner, including reduction in  subunit expression 

in the orbitofrontal cortex, cerebellum, hippocampus and amygdala. Changes in receptor 

composition might have important consequences for GABAergic neurotransmission, plasticity 

and behaviour including impairment in memory, anxiety, and executive and motor functions 

[201-203]. Furthermore, it was found that ethanol at concentrations of 20 to 100 mM 

stimulates GABA-mediated uptake of chloride ions in isolated brain vesicles, and this effect 

can be blocked by the imidazobenzodiazepine Ro15-4513. Pre-treatment of rats with Ro15-

4513 blocks the anticonflict activity of lower doses of ethanol, and behavioural intoxication 

observed with higher doses of ethanol. These effects of Ro15-4513 in antagonizing ethanol-

stimulated 36Cl- uptake and behaviour can be completely blocked by benzodiazepine binding 

site antagonists, indicating that neuropharmacological actions of ethanol (20-100 mM) may be 

mediated via central GABA receptors [111]. Similarly, it was shown that [3H]Ro15-4513 

binding is inhibited only by those benzodiazepine-site ligands that reverse the behavioural 

alcohol antagonism of Ro15-4513 such as flumazenil and β-carboline-3-carboxylate ethyl 

ester (β-CCE), but not by any classical benzodiazepine agonists. Additional experiments 

indicated that ethanol and Ro15-4513 occupy mutually exclusive binding sites. Since only 

Ro15-4513, but not flumazenil, can inhibit ethanol effects, and taking into account that Ro15-

4513 differs from flumazenil by only a single group at the C7 position of the benzodiazepine 

ring, it is assumed that this group in Ro15-4513 might be the area that overlaps with the 

alcohol-binding site. Hence, it turns out that many of the behavioural effects of ethanol at 

relevant physiological concentrations are mediated via ethanol/Ro15-4513-sensitive GABAA 

receptors [112]. 

Wallner and co-workers [98] showed that differences in alcohol sensitivity toward β 

subunits are determined by the extracellular N-terminal part of the protein. By using point 

mutations, they discovered that the β3 alcohol selectivity is determined by a single amino acid 

residue in the N-terminus that differs between β subunits (β3Tyr66, β2Ala66, β1Ser66). The 

β3Tyr66 residue is located in a region which in γ subunits contributes to the 

imidazobenzodiazepine binding site at the classical α+γ2- subunit interface. Furthermore, they 

proposed a model in which β3 and δ containing GABAA receptors form a unique ethanol site 

at the α4/6+β3- subunit interface. As this site is homologous to the classical benzodiazepine 



binding site, it also has high affinity for a few selected benzodiazepine site ligands including 

alcohol antagonistic Ro15-4513 that bears large moiety at the C7 position of the 

benzodiazepine ring. They also suggested that large moieties at the C7-benzodiazepine ring 

compete with alcohol for its binding pocket at a α4/6+β3- ethanol/Ro15-4513 site, thus finally 

providing explanation for the competitive relationship between ethanol and 

imidazobenzodiazepine antagonists.  

 

 

Interactions of flavonoids with GABAA receptor 

 

Flavonoids represent a heterogeneous class of plant secondary metabolites. They exert 

a wide-range of health-promoting effects including antioxidative, anti-inflammatory, 

cardioprotective, anticarcinogenic, antidiabetic and neuroprotective activities [204-206]. Like 

many neuroactive drugs, they achieve their effects, at least in part, by modulating GABAA 

receptors [207,208]. Radioligand binding studies indicated that flavonoids exert a selective 

affinity for the benzodiazepine binding site at GABAA receptor complex, mostly acting as 

partial agonists [209]. Although it is initially thought that they act on classical, “high-affinity” 

benzodiazepine binding sites, many flavonoid actions are not inhibited by classical 

benzodiazepine antagonist flumazenil. For example, Hall et al. [210] have shown that 6-

methoxyflavanone and 6-methoxyflavone act as flumazenil-insensitive positive allosteric 

modulators of GABA responses at human recombinant 122L and 222L GABAA 

receptors. Functional electrophysiological studies suggest that flavonoids act on GABAA 

receptors via two separate mechanisms: by acting on flumazenil-sensitive high-affinity site 

and an alternative site that may be the flumazenil-insensitive low-affinity benzodiazepine site 

[208]. However, as in aforementioned study 6-methoxyflavanone inhibited [3H]-

flunitrazepam binding whilst remaining unaffected by flumazenil, this might suggest a novel 

allosteric binding site that is independent of both the high-affinity and low affinity 

benzodiazepine binding sites [210].  

More importantly, some flavonoids may directly open certain subtypes of GABAA 

receptors in the absence of GABA [208]. Behavioural studies demonstrated anxiolytic effects 

of flavonoids in animal models. Some of the tested flavonoids (e.g. chrysin) have anxiolytic 

effects similar to diazepam, but not associated with myorelaxant, sedative or amnesic actions, 

suggesting that they could lead to improved therapeutic drugs in the treatment of anxiety 

[211,212]. However, in addition to positive modulation, flavonoids may also achieve negative 

http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Secondary_metabolite


effects on GABAA receptors [213,214]. Some flavonoids are positive neuromodulators when 

applied in the presence of low concentrations of GABA, but in the presence of high 

concentrations of GABA act as negative modulators [215]. A range of natural flavonoids act 

as negative modulators of receptors containing ρ-subunits. 

Recently, it was found that quercetin and its glycosides inhibit GABA-induced inward 

current at recombinant GABAC receptors. These inhibitory effects of quercetin and quercetin-

glycosides on GABA-induced inward current were noncompetitive and membrane voltage-

insensitive, indicating that quercetin and its glycosides regulate GABAC receptor channel 

activity through interaction with a different site from that of GABA [216]. This study also 

provides evidence that the number of carbohydrate attached to quercetin might play an 

important role in the regulation of GABAC receptor channel activity. On the contrary, 6-

methoxyflavanone and 6-methoxyflavone were inactive as modulators at human recombinant 

receptors containing ρ1 subunits [210].  

Interestingly, menthol, a naturally occurring compound in the essential oil of mint 

leaves, also act as a positive allosteric modulator of recombinant GABAA receptors. In 

particular, menthol (150-750 μM) produced a concentration-dependent prolongation of 

spontaneous GABAA receptor-mediated inhibitory postsynaptic currents in the periaqueductal 

grey (PAG) neurons, although menthol actions were unaffected by the benzodiazepine 

antagonist flumazenil. Menthol also enhanced a tonic current, which was sensitive to the 

GABAA receptor antagonists picrotoxin and bicuculline, but unaffected by gabazine and 

GABAC receptor antagonist (1,2,5,6-tetrahydropyridine-4-yl)-methyl-phosphonic acid 

(TPMPA). In addition, menthol potentiated currents induced by the extrasynaptic GABAA 

receptor agonist THIP, altogether indicating that menthol positively modulates both synaptic 

and extrasynaptic populations of GABAA receptors in native PAG neurons [217].  

 

GABAC receptors 

 

GABAC receptors are considered as a specific subtype of GABAA receptors due to 

their structural homology, although they differ from GABAA receptors by biochemical, 

pharmacological and physiological properties [218-220]. They are predominantly expressed 

in the retina where play a unique functional role in retinal signal processing, but are also 

expressed throughout brain and in periphery [221,222]. GABAC receptors are involved in 

numerous processes across the CNS, including vision, olfactory senses, sleep, memory and 

cognitive functions, hormone secretion and pain perception, with promising potential for the 



treatment of myopia, sleep disorders, memory and learning enhancement, and fear and 

anxiety-related disorders [222,223]. Although understanding of the role of GABAC receptors 

and processes triggered by ligand–receptor interactions in neurons are still limited because of 

the lack of adequate pharmacological tools, some progress has been made following synthesis 

and pharmacological evaluation of the selective fluorescent and biotinylated probes for ρ1 

GABAC receptors that hopefully will bring new knowledge regarding the binding site and 

GABAC receptors flexibility, and be useful tools for localizing, visualizing, and studying the 

physiopathological processes of GABAC receptors [224].  

In mammals, there are three isoforms of ρ subunits (ρ1-ρ3) that form homooligomeric 

(formed by ρ1, ρ2 or ρ3 isoform) or pseudoheteromeric (made up of a combination of ρ1 and 

ρ2 isoforms or ρ2 and ρ3 isoforms) GABAC receptor pentamers [220,224]. In humans, only 

two isoforms are expressed: ρ1 and ρ2.  

 GABAC receptors are sensitive neither to bicuculline (characteristic ligand of GABAA 

receptors) nor to baclofen (characteristic ligand of GABAB receptors) [222,225]. They are 

more sensitive to GABA than GABAA receptors, and at least three GABA molecules are 

required to activate the GABAC receptor [222]. When activated, they have a smaller chloride 

conductance, longer channel opening time and desensitize less readily in the presence of 

GABA then GABAA receptors [218]. Benzodiazepines and barbiturates do not modulate 

GABAC receptors [218]. Neuroactive steroids may modulate GABA-induced current at 

GABAC receptors, in particular at ρ1 receptor channels, in both positive and negative manner, 

although the modulation occurs with relatively high concentrations of neuroactive steroids 

and is more prominent in the presence of low concentrations of GABA [226]. Characteristic 

agonists of GABAC receptors are cis enantiomer of 4-aminocrotonic acid (CACA) and (+)cis-

2-aminomethylcyclopropane carboxylic acid ((+)-CAMP) [218]. Furthermore, GABAC 

receptors are much less sensitive to GABAA receptor antagonist gabazine, but can be 

selectively antagonized by (1,2,5,6-tetrahydropyridine-4-yl)-methyl-phosphinic acid 

(TPMPA), 3-aminopropyl(methyl) phosphinic acid (3-APMPA), and 3-

aminopropylphosphonic acid (3-APA), indicating that agonist/antagonist binding pockets of 

GABAA and GABAC receptors are not the same [220,227,228]. Compound imidazole-4-acetic 

acid exhibits a ρ subunit-dependent pharmacological profile: at ρ1 and ρ3 receptors acts as a 

potent antagonist, while at ρ2 receptors as a potent partial agonist [222]. 

N-terminal half of the ρ subunits has been shown to mediate formation of homo- and 

heterooligomeric GABAC receptors, and specific sequence within the N-terminus of the ρ1 

subunit involved in the assembly process has been determined [229]. Furthermore, several 



key structural elements that determine specific pharmacological response of GABAC 

receptors have been found [228]. Namely, mutational studies, including those directed toward 

N-terminal domain and transmembrane domain TM4, have revealed residues that change 

sensitivity to agonists or make GABAC complex inactive, and contribute to the binding pocket 

determining properties of GABA binding [221,230,231]. Thus, Tyr102 at ρ1 subunit was 

identified as part of GABA binding domain, and probably the important residue for coupling 

agonist binding to channel opening [232]. Barbiturate sensitivity was imparted by mutation of 

Trp328 at ρ1 subunit, located within the transmembrane domain TM3. It also seems that this 

residue plays an important role in agonist-dependent activation, suggesting a functional 

interconnection between the GABA and pentobarbital activation domains [233]. GABAC 

receptors that contain ρ2 subunit exhibit decreased sensitivity to picrotoxin [234]. On ρ1 

receptor it is shown that the mechanism of picrotoxin effects is compatible with an allosteric 

inhibition and receptor activation was a prerequisite for antagonism [235]. Difference in 

picrotoxin sensitivity of ρ1 and ρ2 homo-oligomers is determined by a single residue. 

Interestingly, it was found that this amino acid in the putative channel domain (TM2) of 

GABA ρ1 receptors influences picrotoxin sensitivity, and also meditates agonist binding by 

an allosteric mechanism [236].   

 

GABAB receptors 

 

Metabotropic GABAB receptors are G-protein coupled receptors that mediate slow and 

prolonged inhibitory neurotransmission in the brain [237]. They are widely expressed and 

distributed in the CNS, although GABAA sites generally outnumber GABAB sites [238]. 

GABAB receptors differ from GABAA receptors by their structural and functional properties, 

but also exhibit numerous pharmacological effects, including central muscle relaxation, 

epileptogenesis, suppression of drug craving, antinociception, cognitive impairment and 

inhibition of hormone release [12,239]. 

GABAB receptors can be located presynaptically and postsynaptically. Stimulation of 

presynaptic GABAB receptors decreases conductance of calcium ions via voltage-gated 

calcium channels. Consequently, activation of presynaptic GABAB autoreceptors induces 

inhibition of GABA release, while presynaptic GABAB heteroreceptors suppress release of 

other neurotransmitters and bioactive peptides. Depending on whether synaptic terminal 

releases an inhibitory or excitatory neurotransmitter, presynaptic GABAB receptors will 

facilitate or suppress neuronal excitability thus playing important role in tuning various 



synapses [12,240,241]. On the other hand, postsynaptic GABAB receptors are coupled via G-

proteins to inwardly rectifying potassium channels and underlie slow inhibitory postsynaptic 

currents. Postsynaptic GABAB receptors stimulate efflux of potassium ions that 

hyperpolarizes neuronal membrane and shunts excitatory currents. As presynaptic and 

postsynaptic GABAB receptors are dominantly located at extrasynaptic sites, their activation 

requires patterns of presynaptic activity that ends in simultaneous GABA spillover from 

neighbouring synapses and elevations of ambient GABA, as it occurs during epileptic 

seizures. Furthermore, the association of GABAB receptors with glutamatergic synapses 

suggests their important role in the modulation of glutamatergic neurotransmission 

[240,242,243].  

The GABAB receptor was the first heteromeric G-protein coupled receptor identified. It 

functions as an obligatory heterodimer assembly: both GABAB1 and GABAB2 subunits are 

necessary to form a functional GABAB receptor, and neither of these subunits is functional on 

its own [244] (Kaupmann et al. 1998). Soon after the cloning of both subunits, it was 

demonstrated that GABAB2 is required for GABAB1 to reach the cell surface by masking an 

endoplasmic reticulum retention signal of GABAB1 [245]. However, GABAB2 is not only 

required for the correct trafficking of GABAB1, but also for the proper functioning of the 

receptor. In particular, GABAB1 is involved in ligand recognition via its N-terminal 

extracellular domain and it binds GABA [246]. Although GABAB2 subunit does not constitute 

a binding site for any natural GABAB ligand [247], it enhances agonist affinity [248], and is 

required for receptor activation. In addition, GABAB2 subunit is responsible for G-protein 

coupling [249].  

There are two physiologically significant isoforms of GABAB1 subunit, GABAB1a and 

GABAB1b that differ in N-terminal region. Expression of these two subunits is 

developmentally regulated at the transcription level. They are transcribed from the same gene 

after activation of alternative promoters [250]. Accordingly, there are two major subtypes of 

GABAB receptor, one formed from GABAB2 and GABAB1a subunits, and the other formed 

from GABAB2 and GABAB1b subunits [240].  

GABAB1 and GABAB2 subunits are structurally homologous and both possess two main 

domains: a heptahelical membrane domain that is responsible for recognition and activation 

of G-proteins (HD domain), and a large extracellular “Venus flytrap” domain (VFT domain) 

involved in ligand binding. Both domains oscillate between different conformational states, 

and these allosteric transitions are essential for receptor function and offer numerous 

possibilities for the allosteric regulation of receptor activity. GABA and other agonists bind 



exclusively at the VFT domain of the GABAB1 subunit, but VFT domain of the GABAB2 

subunit is necessary for the activation of whole receptor. On the other hand, GABAB2 HD 

contains molecular determinants required for G-protein coupling, and by trans-activation 

mechanism, binding of GABA at VFT domain of GABAB1 subunit lead to activation of HD 

domain of GABAB2 subunit [251-253]. However, the HD of GABAB1 improves coupling 

efficacy. Conversely, although GABAB1 extracellular domain is sufficient to bind GABAB 

ligands, the extracellular domain of GABAB2 increases the agonist affinity on GABAB1, and is 

necessary for agonist activation of the receptor. Altogether, this indicates that multiple 

allosteric interactions between the two subunits are required for wild-type functioning of the 

GABAB receptor [251]. 

Geng et al. [254] presented the crystal structures of heterodimeric GABAB complex 

consisting of extracellular VFT domains of GABAB1 and GABAB2 subunits in the apo, 

agonist-bound and antagonist-bound forms. The apo and antagonist-bound structures 

represent the resting state of the receptor; while the agonist-bound complex corresponds to the 

active state. They found that both subunits adopt an open conformation at rest, but only 

GABAB1 VFT closes on agonist-induced receptor activation. Furthermore, they revealed a 

unique activation mechanism for GABAB receptor that involves the formation of a novel 

heterodimer interface between subunits. 

GABAB receptors are not modulated by benzodiazepines, barbiturates, or steroids, and 

are not sensitive to bicuculline [218,225]. Characteristic agonists of GABAB receptors are 

baclofen, a lipophilic derivative of GABA, and 3-aminopropylphosponous acid (3-APPA; 

CGP27492), while saclofen, phaclofen and 2-hydroxysaclofen act as antagonists of GABAB 

receptors [12]. Baclofen was introduced to the market in 1972 and is used to treat spasticity 

and skeletal muscle rigidity in patients with spinal cord injury, multiple sclerosis, 

amyotrophic lateral sclerosis, and cerebral palsy. However, although GABAB agonists showed 

promising therapeutic effects in a whole range of other indications, they exhibit numerous 

side effects, including sedation, tolerance, and muscle relaxation [237,256].  

 

Conclusions 

GABAA receptors mediate most of the fast synaptic inhibition in the mammalian brain 

and are targeted by many clinically important drugs. They are subject to modulation at a 

variety of allosteric sites, with pharmacology dependent on receptor subunit combination. In 

addition to GABA, naturally occurring steroids can potently and specifically enhance GABAA 

receptor function in a direct manner, and consequently exert anxiolytic, analgesic, 



anticonvulsant, sedative, hypnotic and anesthetic properties. GABAA receptors are thus 

important for function and plasticity of the CNS. Analysis of the specific roles of GABAAR 

subtypes reveals their involvement in the pathophysiology of major CNS disorders, and opens 

novel perspectives for therapeutic intervention. Further pharmacological studies will 

contribute to more complete understanding of numerous interactions between various ligands 

and their binding sites on GABA receptors that might improve current pharmacological 

approach in treating various diseases. 
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