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We investigated the response of wurzite GaN thin films to energetic ion irradiation. Both swift 

heavy ions (92 MeV Xe23+, 23 MeV I6+) and highly charged ions (100 keV Xe40+) were used. After 

irradiation, the samples were investigated using atomic force microscopy, grazing incidence small 

angle X-ray scattering, Rutherford backscattering spectroscopy in channelling orientation and 

time of flight elastic recoil detection analysis. Only grazing incidence swift heavy ion irradiation 

induced changes on the surface of the GaN, when the appearance of nanoholes is accompanied 

by a notable loss of nitrogen. The results are discussed in the framework of the thermal spike 

model. 
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1. INTRODUCTION 

Over the past two decades, GaN has proven to be a useful and reliable material for various electronic and 

optoelectronic applications, particularly for blue and violet light emission. White light emitting diodes based on 

GaN are well established on the market and have become a part of everyday life. This created considerable interest 

for the investigation of various phenomena related to GaN.   
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Interactions of energetic ions with GaN are interesting both for processing and for the study of sustainability 

of devices based on GaN. The response of GaN to ion irradiation has been investigated previously but mostly for 

low energy ions, when the nuclear energy loss is the dominant energy transfer mechanism [1,2]. Despite the 

importance of this material and its known reliability in harsh radiation environments [3,4], only a few reports are 

available in which the response of GaN to high energy ions, i.e. swift heavy ions (SHI) was studied [5-10]. The 

reason for the present situation is that in comparison to insulators, semiconductors are less prone to this kind of 

radiation damage [11-13] and have thus not been extensively studied.   

The response of GaN to another class of energetic ions, namely highly charged ions (HCI), has also been 

investigated before. A significant erosion of the surface was observed for a potential energy (defined as the sum 

of the ionizing energies) above 7 keV [14]. However, large fluencies in the range of 1014 – 1016 ions/cm2 used in 

the work of Zhang et al. yield a pre-damaged surface area (due to unavoidable elastic ion collisions with surface 

atoms) which could strongly influence erosion driven by the potential energy of the HCI. Therefore, low fluence 

experiments are essential to elucidate the response of non-damaged GaN surfaces to individual HCI impacts. 

In the present work, we report the results of our investigations regarding SHI and HCI irradiation of GaN. 

The irradiation effects were investigated using atomic force microscopy (AFM), grazing incidence small angle 

X-ray scattering (GISAXS), Rutherford backscattering spectroscopy in channelling orientation (RBS/c) and time 

of flight elastic recoil detection analysis (TOF-ERDA). The irradiation parameters were chosen to investigate the 

response of GaN close to the so called “ion track formation threshold”, and to complement previous work 

performed with higher energy SHI beams [5-8]. In addition, grazing incidence SHI irradiation [15-17] was applied 

in order to study the response of the GaN surface in particular. Possible compositional changes in this case were 

investigated by TOF-ERDA which is sensitive to a possible nitrogen loss which has been reported previously for 

this material [18-20]. Our results are interpreted in terms of the material changes predicted by the thermal spike 

model [21,22]. 

 

2. MATERIAL RESPONSE TO ENERGETIC IONS 

The passage of a swift heavy ion (SHI) through a solid material can result in permanent damage along the ion’s 

trajectory and is commonly called an ion track [12,13,23-25]. The most common description of the ion track 

formation, the thermal spike model, suggests that the considerable kinetic energy of the projectile (in the MeV – 

GeV range) is predominantly deposited in the form of a dense electronic excitation along the trajectory and can 

thus lead to localised melting of the material. The density of the deposited energy is given by the electronic energy 

loss (Se) of the SHI that can be evaluated by the SRIM code [26]. In contrast, the nuclear energy loss is small and 

can be neglected in this energy regime. Upon rapid quenching due to the large temperature gradient between the 

molten track and the surrounding cold matter, the melt may resolidify in an amorphous phase along the ion 
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trajectory. Increasing the intensity of the electronic excitation by using heavier and more energetic ion beams 

results in a spatially extended molten zone. Consequently, wider ion tracks are observed. On the other hand, if the 

electronic excitation is not sufficiently intense, melting may not occur, and the deposited energy dissipates away 

leaving the material almost unaltered. Therefore, the energy threshold for ion track formation (Set) and the track 

size both depend on the ion beam parameters and material properties.  

Despite their nanometric sizes, ion tracks in the bulk can be observed with several techniques. The techniques 

most often used are transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy in the 

channelling mode (RBS/c) [5,17,27,28]. TEM offers the possibility for direct observation of the ion tracks, but 

the procedure is not simple and not many samples can be examined readily. RBS/c measures the ion track size 

indirectly by observing the fraction of amorphised material in the crystal matrix, as a function of the applied SHI 

fluence. With some exceptions, the agreement between these two techniques is good [27]. Only for very small ion 

tracks with radii less than 2 nm, RBS/c yields lower values of the ion track sizes than TEM because such small 

tracks tend to be discontinuous. Analyzing ion tracks in amorphous materials is even more challenging, but 

recently other techniques like small angle X-ray scattering (SAXS) and infrared spectroscopy (IR) were found to 

be applicable [29-35]. 

In radiation sensitive material, at the position of the ion impact, typically surface ion tracks in form of 

nanohillocks or craters can be observed by using scanning probe microscopy techniques like atomic force 

microscopy (AFM) [23]. Similar to ion tracks in the bulk, there is always a threshold for nanohillock formation. 

Above this threshold, nanohillocks grow in size with increasing ion energy. Similar values for the threshold for 

ion tracks in the bulk and on the surface have often been observed [17,36,37], thus enabling to analyse the 

threshold with two complementary techniques. SHI irradiation under grazing incidence angles increases the near-

surface interaction volume and therefore induces even more dramatic changes on the material surface. In this case 

individual single ions may produce long chains of evenly spaced nanohillocks [15-17,38].  

Slow highly charged ions (HCI) as another class of energetic ions can also induce changes on the sample 

surface because their potential energy due to the large number of missing electrons is often sufficient to induce 

surface nanostructures in many materials via electronic excitations [23]. Given the similarities between SHI tracks 

and HCI induced surface nanostructures (material modification due to dense electronic excitation, threshold for 

track formation Ept), the thermal spike concept was also extended to this field [22,39,40]. For brevity and 

simplicity, here we refer to HCI induced surface nanostructures as 'HCI tracks' even though the ion's potential 

energy is deposited in a point-like volume rather than in an elongated track - in contrast to SHI.  
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3. EXPERIMENTAL DETAILS 

Wurzite GaN thin film samples were grown by low-pressure metalorganic vapor phase epitaxy on c-plane sapphire 

substrates at the University of Ulm following an optimized procedure for low defect density material [41]. The 

layer thickness was 3 μm with a surface RMS roughness of <0.15 nm. SHI irradiations were performed at the 

IRRSUD beamline at GANIL, Caen (France) using 92 MeV Xe23+ ions. A second set of SHI irradiations was done 

at the RBI, Zagreb (Croatia) using 23 MeV I6+ ions. The ion beams were scanned using magnetic coils to achieve 

homogenous irradiation of the samples. All irradiations were done at room temperature. Normal and grazing 

incidence irradiation geometries were used. To avoid channelling of the SHI, normal incidence irradiation was 

done at 6° with respect to the c-axis, while grazing incidence irradiation was done at 1° with respect to the surface, 

in the m-crystallographic direction ([10-10]). The applied fluencies were up to 1013 ions/cm2 (IRRSUD), up to 

1014 ions/cm2 (RBI) for normal incidence irradiation, and up to 1010 ions/cm2 for grazing incidence irradiation. 

Additionally, HCI irradiation was done at UDE, Duisburg (Germany), with Xe40+ under normal incidence with a 

fluence of 1010 ions/cm2 and kinetic energy of 100 keV [42]. Relevant ion beam parameters are given in Table 1. 

For HCI it is not possible to calculate the electronic energy loss using the SRIM code [26], but a recent study 

indicates that the energy loss of such a projectile can be up to 10% of its kinetic energy when passing through 1 

nm thin membrane [43]. 

TABLE 1. Irradiation parameters used in this work. Energy losses were calculated using the SRIM 2013 code 

[26].  

Ion Kinetic 

energy 

(MeV) 

Potential 

energy 

(keV) 

Electronic 

energy loss 

(keV/nm) 

Nuclear 

energy loss 

(keV/nm) 

Angle Fluence 

 

(ions/m2) 

Irradiation 

facility 

Xe23+ 92 6.5 22.8 0.2 84º 103 – 105 IRRSUD 

Xe23+ 92 6.5 22.8 0.2 90º 100 IRRSUD 

Xe23+ 92 6.5 22.8 0.2 1º 5, 100 IRRSUD 

Xe40+ 0.1 38.5 N/A 4 90º 100 UDE 

I6+ 23 0.2 7.8 0.6 84º 104 – 106 RBI 

I6+ 23 0.2 7.8 0.6 1º 5, 100 RBI 

 

Surface modifications were inspected by tapping mode AFM performed under ambient conditions using a 

Dimension 3100 AFM (Veeco Metrology, Santa Barbara, CA, USA) and NCHR cantilevers (Nanosensors, 

Neuchatel, Switzerland) with cantilever resonance frequencies around 300 kHz. Images were analysed using the 

WSXM code [44]. From the raw data (512x512) only a parabolic background was subtracted.  

The analysis of surface ion tracks was complemented by a novel approach using GISAXS. This experiment 

was carried out at the synchrotron facilities of Elettra-Sincrotrone Trieste, Italy on the SAXS beamline [45], using 
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synchrotron radiation with wavelength λ=0.154 nm (photon energy of 8 keV). The grazing angle of incidence was 

selected to be slightly above the critical angle for total reflection. A two dimensional image plate detector with 

2000x2000 pixels, positioned perpendicular to the incident beam at a detector to sample distance L=1800 mm, 

was used to record the SAXS intensity. A thin, partly transparent Al strip was placed in front of the 2D detector 

in order to avoid saturation in the specular plane direction where the usually much stronger surface scattering is 

present.  

Swift heavy ion tracks in bulk GaN, formed after normal incidence irradiation, were investigated with RBS/c 

using 1.7 MeV He ions delivered by a 2 MV Van de Graaff accelerator located at the Ion Beam Center of the 

Helmholtz-Zentrum Dresden-Rossendorf. A beam spot size of 1 mm2 was chosen by means of a collimator and 

the ion beam current was kept below 10 nA. The backscattered particles were detected in a silicon surface barrier 

detector with 15 keV energy resolution located at 170° with respect to the incoming beam. The alignment of each 

analyzed sample was achieved by obtaining characteristic RBS/c spectra from an unirradiated part of the sample. 

The samples were not coated with a conducting layer, although this is a common procedure to avoid a charge 

build-up during analysis [28]. However, the low current of the analysing beam and the quality of the RBS/c spectra 

of the virgin samples was sufficient to justify the omission of this step. 

To investigate possible stoichiometric changes of the GaN, in situ TOF-ERDA measurements were performed 

at the RBI using a 23 MeV I6+ beam at 20° and 1° grazing angle of incidence with respect to the sample surface. 

The TOF-ERDA spectrometer [46-48] was positioned at an angle of 37.5° toward the beam direction. All data 

were collected in the “list mode” and offline replay/analysis with sections was performed using the Potku software 

package [49]. The total number of ions hitting the sample was calculated using the known solid angle of the 

detector and the charge × solid angle product determined by simulating the energy spectra of Ga and N using the 

simulation code SIMNRA [50]. 

 

4. RESULTS 

4.1. Atomic force microscopy (AFM) 

Grazing incidence SHI irradiation induces pronounced changes on the GaN surface where chainlike surface ion 

tracks were observed. In contrast to our previous work on other materials  [15-17,38], where only nanohillocks 

were found, the morphology of the 92 MeV Xe23+ surface ion tracks on the GaN surface contains both nanohillocks 

and as a new feature nanoholes (Fig. 1a, b). Since the beam direction of the SHI was always from the top of the 

AFM images, we conclude that at these values of energy loss, surface ion tracks typically start with a series of 

nanoholes, and only later, when the SHI penetrates deeper into the material, nanohillocks can appear. For heavier 

and more energetic ions (104 MeV Pb28+, Se = 24 keV/nm, grazing angle = 1°) only nanohillocks have been 
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observed earlier [8].  On the other hand, after 23 MeV I6+ (Se = 7.8 keV/nm) irradiation, we observed that the 

surface ion tracks consist only of nanoholes (Fig. 1c). This same morphology of surface ion tracks was also 

observed in contact mode AFM (not shown here) and similar features were probably also observed earlier (74 

MeV Kr18+, Se = 17 keV/nm) [8]. Therefore, we conclude that two thresholds for surface ion tracks exist: one 

below 8 keV/nm when only nanoholes are produced, and the other, around 20 keV/nm, when nanohillocks appear 

as well. This is probably the reason why surface ion tracks consisting of only nanoholes are also sometimes 

observed after 92 MeV Xe23+ irradiation, because the electronic energy loss of 92 MeV Xe23+ is very close to the 

second threshold and both kinds of SHI track morphologies are likely to appear.  

 

Figure 1. AFM images of the GaN surface after 1° grazing incidence irradiation using (a) 92 MeV Xe23+, fluence 

5×108 ions/cm2 (b) 92 MeV Xe23+, fluence 1×1010 ions/cm2 and (c) 23 MeV I6+, fluence 1×1010 ions/cm2. The 

white arrow marks ion beam direction. 

In contrast, after normal incidence irradiation with 92 MeV Xe23+ ions, very few nanohillocks were observed 

on the GaN surface, see Fig. 2a for a typical AFM image. The efficiency for the nanohillock production is 

estimated to be below 1%, since the applied fluence was 1010 ions/cm2, and typically only few nanohillocks were 

observed. Such an extremely low efficiency indicates that the irradiation conditions are below the threshold for 

nanohillock formation. In the case of HCI irradiation, at this resolution no surface tracks were observed after Xe40+ 

irradiation with a fluence of 1010 ions/cm2 and kinetic energy of 100 keV (Fig. 2b).  
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Figure 2. AFM images of the GaN surface after normal incidence irradiation using (a) 92 MeV Xe23+ and (b) 100 

keV Xe40+. The diagonal lines are terraces and surface steps, respectively. Despite a fluence of 1010 ions/cm2 only 

very few (a) or even no features at all (b) are detected. 

 

4.2. Grazing incidence small angle X-ray scattering (GISAXS) 

The structural properties of the GaN surfaces irradiated by SHIs at grazing angle were analysed by the GISAXS 

technique [32,33]. GISAXS intensity distributions measured on differently treated surfaces are shown in Fig.3. 

All maps show significant intensity originating from the surface ion tracks shown in Fig. 1. GISAXS maps 

measured for three different angles between the probing X-ray beam and ion-track directions (denoted by ) are 

shown for each sample. The maps of the GaN surface irradiated with 92 MeV Xe23+ ions, fluence 5×108 ions/cm2 

are shown in Figs. 3. (a)-(c).  When the X-ray beam is parallel to the ion tracks (=0º), the maps are symmetric, 

while a characteristic tail is present for the non-parallel orientations. The analysis of the GISAXS maps has been 

performed using two modified paracrystal models developed for the analysis of ion tracks formed on irradiated 

surfaces [51].   

The simulations using the first model are shown in the insets of Figs. 3(a)-(c). The model assumes that ion 

tracks are randomly distributed on the surface. Each track consists of nanostructures formed along the trajectory 

during the ion passage. The arrangement of nanostructures within each track is described by a basis vector a1 

directed along the track (x direction).  The number of the periods (i.e. the number of nanostructures along the 

track) of a1 is denoted by Nx, so the average ion track length is Nx |a1|. Such a geometry is assumed in accordance 

with the AFM measurements showing the formation of ordered nanostructures along the ion tracks. The deviations 

from the ideal positions defined by a1 are described by two parameters: 1 which describes the deviation in the 

direction along the track (the nanostructures are assumed to have a short range order in this direction) and 2 

which describes the deviations of the nanostructure positions perpendicular (y direction) to the ion tracks.  The 

nanostructures are assumed to deviate from the ideal positions (centre of ion track) according to a normal 

distribution with a standard deviation of 2 /2 [51].  The nanostructures are assumed to have an elliptical shape 
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described by the radii Rx, Ry and Rz. The best fit for all three maps was obtained using the following parameters: 

|a1|= 50 ±10 nm, Nx=12±4, Rx=4±1 nm, Ry=1.9±0.3 and Rz=1.2 ±0.3 nm. The standard deviation of the size 

distribution was found to be 0.6±0.2 nm, while the disorder parameters are 1= 34±2 nm and 2= 0.4±0.2 nm. 

The GISAXS maps of the GaN surface irradiated with 92 MeV Xe23+, fluence 1×1010 ions/cm2 are shown in 

Figs. 3(d)-(f). It is interesting to note two lateral peaks located at nearly |Qy|=0.5 nm-1 that are present in the 

GISAXS maps and indicated in Fig. 3(d) by arrows. These peaks show that the separation between the ion tracks 

exhibits short range ordering, probably related to the higher fluence applied. Therefore we use a second model to 

describe this observed GISAXS intensity distribution. In addition to the assumptions presented above (our first 

model), we assume now that the tracks are separated by a basis vector a2 oriented perpendicular to the ion tracks 

instead of the random separation which was used for the first model. The distribution of the deviations of the 

positions of the ion track from the ideal ones (defined by a2) in y direction are described by the third disorder 

parameter 3. The analysis of the maps shows that the characteristic separation between the tracks (|a2|) is 9.1 ±0.8 

nm and 3= 5.3 ±0.8 nm. The other parameters are very similar to the ones obtained for lower irradiation fluence. 

The results of the GISAXS analysis agree well with the available AFM data for 92 MeV Xe23+ irradiation (ion 

track length 200-500 nm, inter-hillock distance 40-50 nm, height of the nanohillocks ~ 1 nm). However, the 

analysis of the AFM images is not straightforward because the periodicity of the ion tracks is much less 

pronounced than for example in SrTiO3 [17]. Hence GISAXS is a valuable tool that can provide ion track 

parameters with more reliability. Also, effects related to the AFM tip size are avoided, which could be important 

in particular for the nanohole characterisation. 

Finally, we analyse the GISAXS maps of the GaN surface irradiated with 23 MeV I6+, fluence 1×1010 ions/cm2 

(Fig. 3(g)-(i)). Although the tracks are hardly visible by AFM (Fig. 1c), their presence is clearly evident in the 

corresponding GISAXS maps. The characteristic tails are well visible; however, their relative intensity is 

significantly lower than for the 92 MeV Xe23+ ion irradiation. The map of the non-irradiated sample (shown in the 

inset of Fig. 3 (i)) shows no tails, only very low diffuse scattering excluding the intensity close to Qy=0 which 

originates mostly from the surface roughness contribution.  The analysis of the GISAXS maps shows the presence 

of nanostructures with characteristic separation of 8±1 nm, similar to the case of irradiation with higher fluence 

of 92 MeV Xe23+ ions. The standard deviation of the characteristic separation is 3= 4±1 nm for this case. 

According to the GISAXS analysis, Rx is found to be larger than 4 nm, indicating that the formed nanostructures 

can be even connected along the ion tracks. However, the data obtained by GISAXS in this case are not very 

accurate due to the low signal originating from the tracks with respect to the signal coming from the surface 

roughness of the unaffected area. 
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Figure 3. GISAXS maps of: (a)-(c) 92 MeV Xe23+, fluence 5×108 ions/cm2, the insets show simulations of the 

measured GISAXS maps. (d)-(f) 92 MeV Xe23+, fluence 1×1010 ions/cm2,  (g)-(i) 23 MeV I6+, fluence 1×1010 

ions/cm2. The inset in Fig. (i) shows a GISAXS map of the non-irradiated sample for comparison. 
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4.3. Rutherford backscattering in channelling (RBS/c) 

The presence of ion tracks can be detected using RBS/c since the amorphised fraction of the initially crystalline 

sample enhances the yield of backscattered He ions. To calculate the ion track radii, a surface approximation is 

often used, where a linear fit of the high energy part of the RBS/c spectra allows to determine the backscattering 

yield at the position of the surface peak [27,52]. By comparing this backscattering yield to the same yield when 

RBS/c is done in a random orientation, the fraction of the amorphised material can be calculated. The radii of the 

ion tracks (assuming they have identical sizes and cylindrical symmetry) can then be derived from Poisson’s law 

that describes the evolution of the amorphisation with the applied SHI fluence.  

The results presented here show that no tracks were observed in GaN after normal incidence 23 MeV I6+ and 

92 MeV Xe23+ ion irradiation, even after the exposure to the highest fluences of 1014/cm2 and 1013/cm2, 

respectively (Fig. 4). All of the recorded RBS/c spectra are almost identical to the spectra obtained on the virgin 

(i.e. not irradiated) sample, therefore we conclude that the Ga sublattice remains intact. Slight dechanneling 

observed in the RBS/c spectrum of the sample irradiated using 92 MeV Xe23+ with the highest fluence (1013/cm2) 

indicates a small amount of subthreshold damage because the backscattering yield at the position of the surface 

peak vanishes. 

 

Figure 4.  RBS/c spectra from the samples irradiated by 92 MeV Xe23+ with fluence 1013/cm2 (red) and 23 MeV 

I6+ with fluence 1014/cm2 (blue). For comparison, RBS/c spectra from the unirradiated sample in channeling 

(black) and in random geometry (magenta) are also shown. 
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4.4. Time of Flight - Elastic Recoil Detection Analysis (TOF-ERDA) 

In a TOF-ERDA analysis, the atomic composition and the depth profiles of all elements present in the sample can 

be measured in just one run. The energy spectra of each element are converted to a depth profile using known 

electronic energy loss data and scattering cross sections. Since the experimental data are collected in the “list 

mode” (event by event), compositional changes of the sample due to elemental losses (caused by primary beam 

irradiation) can be easily monitored. In contrast to ref. [18], where nitrogen depletion of GaN samples was 

observed during ERDA using 200 MeV Ag (Se = 26 keV/nm) ions at 20° angle between incoming ion and sample 

surface, an offline replay shows that the nitrogen content within the first 5 nm seems to be stable during 23 MeV 

I6+ irradiation up to a fluence of 5×1012/cm2 at the same angle of 20º. However, the offline analysis of the TOF-

ERDA measurement performed using 23 MeV I6+ at a grazing incidence angle of 1° shows a significant loss of 

nitrogen from the first 8.5 nm already at the fluence of 2×1011/cm2 (Fig. 5).  

 

Figure 5. Nitrogen-to Gallium ratio calculated from an offline analysis of in-situ TOF-ERDA measurements 

performed by 23 MeV I6+ ions at 1° grazing incidence angle. A significant loss of nitrogen is evident.  

 

5. DISCUSSION 

5.1. Grazing incidence irradiation  

Irradiation of crystalline materials using SHI at grazing incidence angles is known to result in elongated surface 

ion tracks, sometimes with prominent, equally spaced nanohillocks along the SHI trajectory [15-17,38]. An 

explanation for their occurrence was given within the thermal spike model by taking into account that the 

electronic energy loss of SHI oscillates when it traverses a crystal at grazing incidence angle. The oscillating 

electronic energy loss of the SHI is due to encounters with regions of different electron densities along its 

trajectory when passing through the crystal planes [53]. The transfer of the SHI energy loss into the material via 

electron phonon coupling results in localized melting along the SHI trajectory [15]. Upon rapid quenching, distinct 
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nanohillocks are formed, as demonstrated for several insulating materials like CaF2, SiO2, etc. [38]. Thus, our 

findings as shown in Fig. 1 are in principle in line with these earlier studies.  

While the hillocks are generally interpreted as a signature of molten material, the occurrence of holes (see 

Fig.1) clearly indicates a loss of material. Very recently, it was shown that in case of another wide band gap 

material, silicon carbide (SiC), grooves with a depth of ~ 0.3 nm instead of chains of nanohillocks appear [54] 

when irradiated by SHI under grazing incidence angle. In a broader context, the observation of nitrogen loss 

reported here and the loss of silicon from the SiC surface upon SHI irradiation reported in ref. [54] opens up the 

question of the composition of SHI tracks. The underlying material modification mechanism is different compared 

to classical experiments of sputtering the material by SHI in the electronic energy loss regime, when secondary 

ions are detected after large incidence angle irradiation, and when sputtering is assigned to vaporisation of the 

material [55]. In case of SiC, spatially resolved thermal spike calculations [54] indicate that surface ion tracks are 

formed where the temperature increase is above the required temperature for SiC decomposition. It is known that 

GaN undergoes decomposition via nitrogen loss when heated above 900 °C [56,57], so it is indeed very likely 

that a similar mechanism takes place at low stopping powers (23 MeV I6+). At higher stopping powers however 

(92 MeV Xe23+) the formation of hillocks, i.e. fully developed surface SHI tracks (Fig. 1b) occur in GaN, because 

now the thermal spike overcomes the melting temperature of around 2500 °C. Because SiC is a very radiation 

hard material [58,59], the latter mechanism is inactive, and thus only decomposition by sublimation takes place.  

To describe the SHI track formation on the surface produced after grazing incidence irradiation, several 

important issues have to be considered. A major channel of energy dissipation at the surface is the loss of primary 

electrons that carry energy away from the material; hence not all kinetic energy of the SHI is deposited into the 

material. This effect should be most pronounced close to the track formation threshold. Ejected electrons could 

also promote a Coulomb explosion mechanism because charge imbalance close to the place of the SHI impact 

would prolong the time during which this mechanism is active. Mass removal, as observed in case of SiC [54] 

and GaN (Fig. 5), can also be an important channel for energy dissipation. In addition, the surface acts as a heat 

flux reflector, hence the achieved temperatures can be higher due to the confinement effect [60].  

Both our GISAXS and AFM measurements have shown that grazing angle SHI irradiation yields pronounced 

surface tracks. These measurements reveal that the surface tracks in GaN, be it hillocks or holes, exhibit a periodic 

pattern. In crystalline materials the oscillating energy loss of the SHI during penetration into the material under 

grazing incidence can have peak values much higher than the average values calculated by the SRIM code [53]. 

The wurzite structure of GaN could promote this effect even more, as shown in Fig. 6. The crystal planes normal 

to the c-axis are grouped into Ga-N bilayers, which are separated by a distance three times larger than the bilayer’s 

thickness. In addition, 3/4 of the bonding electrons are contained in the bilayers. When a grazing ion penetrates 

through such a bilayer, it encounters densely packed atoms and bonding electrons (Fig. 6a). Since the grazing 

angle is typically 1º (see the cyan line in Fig. 6), the energy deposition is high along the track within a bilayer. On 

the other hand, for normal incidence, an ion encounters hexagonal openings along the c-axis. Due to the slightly 

larger angle (6º off the normal axis) chosen in our experiment, an ion encounters only a few atoms before its 
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trajectory switches to the other side of the hexagonal tube or to the neighbouring hex-tube. A side view of such 

an ion trajectory is shown in Fig. 6(b). Therefore, due to the choices of the angles, 1º with respect to the c-plane 

for grazing incidence and 6º with respect to the c-axis for normal incidence, and due to the GaN quasi-layered 

structure, the energy depositions along those exemplary trajectories are quite different. For normal incidence 

smaller energy packages are released at higher frequency, making the energy deposition more uniform and 

stretched along the trajectory. For grazing incidence, larger energy packages are released each time the ion transits 

through a bilayer. We assume this to be the main reason why ion tracks on the surface accompanied by the nitrogen 

loss are observed after grazing incidence irradiation even at lower SHI energies (23 MeV I6+, see Figs. 1c, 3g-i 

and 5). 

 

Figure 6. (a) Wurzite GaN crystal lattice, reddish and blue balls represent Ga and N atoms, respectively. Orange 

lines designate the standard unit cell.  The c-axis (green arrow) points upwards. The cyan line illustrates the 

grazing trajectory, inclined by 1º with respect to the c-plane.  (b)  Side view of an ion trajectory inclined by 6º 

with respect to the c-axis (green arrow).   

From a more general point of view, the present study demonstrates the possibilities for ion track based 

applications like surface nano-patterning [15,17] and the production of rippled substrates [61] at smaller ion 

accelerator facilities. The relevant parameter for material modification using SHI is the electronic energy loss 

which is not linear with respect to the kinetic energy of the ion. By performing irradiations at grazing incidence 

angle, when the peak values of the oscillating energy loss exceed the average energy loss values to a large extent, 

the use of smaller ion accelerator facilities could be extended to an even wider range of materials. The availability 

of advanced ion beam analysis techniques like TOF-ERDA is an additional valuable asset for in-situ analysis. 
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5.2. Normal incidence irradiation 

Our RBS/c and AFM measurements showed that normal incidence irradiation using SHIs does not result in the 

formation of ion tracks, neither on the GaN surface nor in the bulk. Similarly, after normal incidence irradiation 

using HCIs, surface HCI tracks were also not observed. These results thus provide a lower limit for SHI track 

formation threshold of Set > 22.8 keV/nm, and for HCI track formation threshold of Ept > 38.5 keV. In the following 

we will discuss the relevance of these findings in the frame of the thermal spike model. 

The analytical thermal spike model (ATSM) [62] provides a simple estimate for the SHI track formation 

threshold (Eq. 1) and a recent extension of the same model [22] provides an estimate for the HCI track formation 

threshold (Eq. 2): 

��� =
�����(�)∆��

�
            (1) 

��� =
���√��(�)�

�
∆��

��
           (2) 

According to the model, thresholds can be calculated in terms of electronic energy loss of the SHI or potential 

energy of the HCI using thermodynamic parameters of the given material (density , specific heat capacity c given 

by the Dulong-Petit law and the temperature increase to achieve melting Tm) and the model parameters a(0) and 

g. The model parameters a(0) and g can be interpreted as the initial width of the thermal spike having a Gaussian 

profile and the fraction of the energy deposited into the material due to the SHI impact that transfers into the 

thermal spike, respectively. Standard model parameters for the SHI tracks in insulators are a(0) = 4.5 nm and g = 

0.4 for low velocity irradiation (Ekin < 2 MeV/nucleon). In case of SHI tracks in semiconductors, these values 

should be different: a(0) = 9 nm is expected for  GaN because its bandgap is Eg = 3.4 eV  and g = 0.2 is expected 

even for low velocity irradiations [21]. For the HCI tracks, the threshold potential energy can be calculated using 

Eq. (2) but the values of the model parameters a(0) and g are still an open question in the case of semiconductors 

[22].  

TABLE 2. Experimental data on SHI ion tracks in GaN. Energy losses were calculated using the SRIM 2013 

code [26].    

Ion Kinetic 

energy 

(MeV) 

Electronic 

energy loss 

(keV/nm) 

Ion track 

radius  

(nm) 

Characterization 

technique 

Reference 

Xe23+ 92 22.8 0 RBS/c Present work 

Pb32+ 132 28.3 1.5 HREM [7] 

Au16+ 200 34.3 4.5 RBS/c [5] 

Au16+ 200 34.3 5 TEM [5] 

Pb27+ 230 36.5 2.4 RBS/c [6] 
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We begin by discussing the SHI case, where experimentally determined track radii may be used to extract 

a(0) and g, using the available literature data on SHI tracks in GaN (compiled in Table 2) and known material 

parameters of GaN ( = 6.15 g/cm3, c = 0.6 J/gK, Tm = 2500 °C). We have not observed ion tracks after 92 MeV 

Xe23+ irradiation, and very small ion tracks were observed after 132 MeV Pb27+ irradiation [7]. Therefore, the 

threshold for SHI track formation is between 22.8 keV/nm and 28.3 keV/nm, which is rather high. The analysis 

of the data from Table 2, using a procedure as outlined in ref. [62], yields the model parameters a(0) = 8.5 ± 1.9 

nm and g = 0.51 ± 0.08. As expected for semiconductors, the parameter a(0) is larger than the standard value for 

insulators (a(0) = 4.5 nm), with a value close to the one predicted in ref. [21]. The value of g is more in line with 

the expectations for the insulator response to SHI irradiation (g = 0.4). Still, more experimental data is needed to 

evaluate both model parameters with better accuracy. For example, high velocity experiments (Ekin > 8 

MeV/nucleon) could clarify this issue, because in this case g should have a low value regardless of the material 

under investigation [21]. Different g values found at high and low velocity experiments would then provide 

evidence for a possible contribution from Coulomb explosion at low velocities, which is a typical response of 

insulators.  

Next, we address the HCI case, where both model parameters may be different from the standard values. To 

obtain upper boundaries for the model parameters, HCI irradiations with sufficiently high charge states that induce 

observable surface ion tracks would be needed. However, GaN has a very high threshold for HCI track formation 

compared to other inorganic crystalline materials, see the compilation in Fig. 7. In this compilation we omitted 

results from HCI irradiations of layered materials like mica, HOPG and recently MoS2 [63] because of their 

anisotropic transport properties that can influence the thermal spike [64] and may result in a shift of the track 

formation threshold. From Fig. 7 one can see that recently obtained experimental data points for LiNbO3 [65], 

BaF2 [66] and Al2O3 [67], together with the present new data for GaN, exhibit a large scatter. This is different 

from an earlier study where a more uniform threshold behavior for a variety of other materials was found [22]. 

The reason for this may be the different and in part high kinetic energy of the HCI used in the various studies. 

The velocity of the projectile will certainly influence the energy deposition and thus the track formation [68-70]. 

For this reason a systematic study with HCI at very low kinetic energies [39] would be helpful. Still, in contrast 

to SHI tracks [71-74], it seems that the investigated materials do not show the same uniform response with respect 

to HCI track formation. As can be seen from Fig.7, especially more experimental work on HCI irradiation of TiO2 

(rutile) and Al2O3 would be of interest. Track formation below Ept = 11 keV for TiO2 and below Ept = 16 keV for 

Al2O3 is forbidden according to Eq. (2) because of energy conservation (g ≤ 1), so this could be a chance to test 

the ATSM. 
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Figure 7. Experimentally determined thresholds for HCI track formation (nanohillocks) in different inorganic 

crystalline materials from ref. [22] updated with data for LiNbO3 [65], BaF2 [66], Al2O3 [67] and GaN (present 

work, in red). According to the ATSM, the formation of HCI tracks should be forbidden in the area marked in 

red. The blue line presents the expected HCI track formation threshold in insulators (a(0) = 4.5 nm, g = 0.64). 

Finally we compare the threshold values found for SHI and HCI irradiations. The ion tracks in both cases 

stem from dense electronic excitations and usually show similar surface features [22,23]. These obvious 

similarities have led to the idea that the physical mechanisms are essentially the same and at least for insulators, 

there should be a relationship between the track formation thresholds for SHI and HCI based on eqs. (1) and (2). 

More precisely, assuming a(0) = 4.5 nm for both SHI and HCI tracks, and gSHI/gHCI = 0.625 [22], their ratios 

should be given by the following estimate: 

���

���
=

�(�)√�

�

����

���� = 2.5 ��          (3) 

A large majority of insulating materials indeed shows an Ept/Set ratio around 2.5 nm [22] as predicted by eq. (3). 

In particular, other wide bandgap semiconductors with similar energy bandgap values as GaN (Eg = 3 eV for both 

SrTiO3 and TiO2) follow eq. (3). Therefore, with the threshold for SHI track formation Set determined to be around 

25 keV/nm in GaN, a threshold for HCI track formation above Ept = 38.5 keV is not surprising. However, the 

much higher SHI track formation threshold in GaN as compared to SrTiO3 and TiO2, as well as only approximately 

known values of the ATSM model parameters a(0) and g for GaN, makes any more specific predictions too 

speculative at this point. For this, clearly more experimental work on the response of GaN to energetic ions is 

needed.  
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VI. CONCLUSION  

We have investigated the response of GaN to energetic ion irradiation. Based on the experimental results presented 

here and in ref. [7], the threshold for SHI track formation in bulk GaN was found to lie between 22.8 keV/nm and 

28.3 keV/nm. After HCI irradiation, no ion tracks were observed under normal incidence even after irradiation 

with Xe40+ having a potential energy of Ept = 38.5 keV and a kinetic energy of Ek = 100 keV. An analysis based 

on the analytical thermal spike model showed that the model parameters are in general agreement with the 

expected response of a semiconducting material to SHI irradiation, while the exact value of the HCI track 

formation threshold remains to be addressed in future experiments.  

After grazing incidence SHI irradiation, ion tracks mostly in the form of chains of nanohillocks were found 

after 92 MeV Xe23+ irradiation, while only nanoholes were found after 23 MeV I6+. Although here presented 

results indicate that SHI track formation is much easier on the surface than in the bulk, the origin of the unusual 

track morphology remains to be elucidated further. The appearance of nanoholes and the significant loss of 

nitrogen found by in-situ TOF-ERDA, in combination with the relatively low decomposition temperature of GaN, 

suggest similarities with the groove formation in SiC [54], where the predominant loss of Si is also described as 

a thermally driven process.  
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